xref: /openbsd-src/gnu/llvm/clang/lib/CodeGen/CGExprCXX.cpp (revision e5dd70708596ae51455a0ffa086a00c5b29f8583)
1*e5dd7070Spatrick //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2*e5dd7070Spatrick //
3*e5dd7070Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*e5dd7070Spatrick // See https://llvm.org/LICENSE.txt for license information.
5*e5dd7070Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*e5dd7070Spatrick //
7*e5dd7070Spatrick //===----------------------------------------------------------------------===//
8*e5dd7070Spatrick //
9*e5dd7070Spatrick // This contains code dealing with code generation of C++ expressions
10*e5dd7070Spatrick //
11*e5dd7070Spatrick //===----------------------------------------------------------------------===//
12*e5dd7070Spatrick 
13*e5dd7070Spatrick #include "CGCUDARuntime.h"
14*e5dd7070Spatrick #include "CGCXXABI.h"
15*e5dd7070Spatrick #include "CGDebugInfo.h"
16*e5dd7070Spatrick #include "CGObjCRuntime.h"
17*e5dd7070Spatrick #include "CodeGenFunction.h"
18*e5dd7070Spatrick #include "ConstantEmitter.h"
19*e5dd7070Spatrick #include "TargetInfo.h"
20*e5dd7070Spatrick #include "clang/Basic/CodeGenOptions.h"
21*e5dd7070Spatrick #include "clang/CodeGen/CGFunctionInfo.h"
22*e5dd7070Spatrick #include "llvm/IR/Intrinsics.h"
23*e5dd7070Spatrick 
24*e5dd7070Spatrick using namespace clang;
25*e5dd7070Spatrick using namespace CodeGen;
26*e5dd7070Spatrick 
27*e5dd7070Spatrick namespace {
28*e5dd7070Spatrick struct MemberCallInfo {
29*e5dd7070Spatrick   RequiredArgs ReqArgs;
30*e5dd7070Spatrick   // Number of prefix arguments for the call. Ignores the `this` pointer.
31*e5dd7070Spatrick   unsigned PrefixSize;
32*e5dd7070Spatrick };
33*e5dd7070Spatrick }
34*e5dd7070Spatrick 
35*e5dd7070Spatrick static MemberCallInfo
36*e5dd7070Spatrick commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37*e5dd7070Spatrick                                   llvm::Value *This, llvm::Value *ImplicitParam,
38*e5dd7070Spatrick                                   QualType ImplicitParamTy, const CallExpr *CE,
39*e5dd7070Spatrick                                   CallArgList &Args, CallArgList *RtlArgs) {
40*e5dd7070Spatrick   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41*e5dd7070Spatrick          isa<CXXOperatorCallExpr>(CE));
42*e5dd7070Spatrick   assert(MD->isInstance() &&
43*e5dd7070Spatrick          "Trying to emit a member or operator call expr on a static method!");
44*e5dd7070Spatrick 
45*e5dd7070Spatrick   // Push the this ptr.
46*e5dd7070Spatrick   const CXXRecordDecl *RD =
47*e5dd7070Spatrick       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48*e5dd7070Spatrick   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49*e5dd7070Spatrick 
50*e5dd7070Spatrick   // If there is an implicit parameter (e.g. VTT), emit it.
51*e5dd7070Spatrick   if (ImplicitParam) {
52*e5dd7070Spatrick     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53*e5dd7070Spatrick   }
54*e5dd7070Spatrick 
55*e5dd7070Spatrick   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56*e5dd7070Spatrick   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57*e5dd7070Spatrick   unsigned PrefixSize = Args.size() - 1;
58*e5dd7070Spatrick 
59*e5dd7070Spatrick   // And the rest of the call args.
60*e5dd7070Spatrick   if (RtlArgs) {
61*e5dd7070Spatrick     // Special case: if the caller emitted the arguments right-to-left already
62*e5dd7070Spatrick     // (prior to emitting the *this argument), we're done. This happens for
63*e5dd7070Spatrick     // assignment operators.
64*e5dd7070Spatrick     Args.addFrom(*RtlArgs);
65*e5dd7070Spatrick   } else if (CE) {
66*e5dd7070Spatrick     // Special case: skip first argument of CXXOperatorCall (it is "this").
67*e5dd7070Spatrick     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68*e5dd7070Spatrick     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69*e5dd7070Spatrick                      CE->getDirectCallee());
70*e5dd7070Spatrick   } else {
71*e5dd7070Spatrick     assert(
72*e5dd7070Spatrick         FPT->getNumParams() == 0 &&
73*e5dd7070Spatrick         "No CallExpr specified for function with non-zero number of arguments");
74*e5dd7070Spatrick   }
75*e5dd7070Spatrick   return {required, PrefixSize};
76*e5dd7070Spatrick }
77*e5dd7070Spatrick 
78*e5dd7070Spatrick RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79*e5dd7070Spatrick     const CXXMethodDecl *MD, const CGCallee &Callee,
80*e5dd7070Spatrick     ReturnValueSlot ReturnValue,
81*e5dd7070Spatrick     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82*e5dd7070Spatrick     const CallExpr *CE, CallArgList *RtlArgs) {
83*e5dd7070Spatrick   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84*e5dd7070Spatrick   CallArgList Args;
85*e5dd7070Spatrick   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86*e5dd7070Spatrick       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87*e5dd7070Spatrick   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88*e5dd7070Spatrick       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89*e5dd7070Spatrick   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90*e5dd7070Spatrick                   CE ? CE->getExprLoc() : SourceLocation());
91*e5dd7070Spatrick }
92*e5dd7070Spatrick 
93*e5dd7070Spatrick RValue CodeGenFunction::EmitCXXDestructorCall(
94*e5dd7070Spatrick     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95*e5dd7070Spatrick     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96*e5dd7070Spatrick   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97*e5dd7070Spatrick 
98*e5dd7070Spatrick   assert(!ThisTy.isNull());
99*e5dd7070Spatrick   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
100*e5dd7070Spatrick          "Pointer/Object mixup");
101*e5dd7070Spatrick 
102*e5dd7070Spatrick   LangAS SrcAS = ThisTy.getAddressSpace();
103*e5dd7070Spatrick   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104*e5dd7070Spatrick   if (SrcAS != DstAS) {
105*e5dd7070Spatrick     QualType DstTy = DtorDecl->getThisType();
106*e5dd7070Spatrick     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107*e5dd7070Spatrick     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108*e5dd7070Spatrick                                                  NewType);
109*e5dd7070Spatrick   }
110*e5dd7070Spatrick 
111*e5dd7070Spatrick   CallArgList Args;
112*e5dd7070Spatrick   commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113*e5dd7070Spatrick                                     ImplicitParamTy, CE, Args, nullptr);
114*e5dd7070Spatrick   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115*e5dd7070Spatrick                   ReturnValueSlot(), Args);
116*e5dd7070Spatrick }
117*e5dd7070Spatrick 
118*e5dd7070Spatrick RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119*e5dd7070Spatrick                                             const CXXPseudoDestructorExpr *E) {
120*e5dd7070Spatrick   QualType DestroyedType = E->getDestroyedType();
121*e5dd7070Spatrick   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122*e5dd7070Spatrick     // Automatic Reference Counting:
123*e5dd7070Spatrick     //   If the pseudo-expression names a retainable object with weak or
124*e5dd7070Spatrick     //   strong lifetime, the object shall be released.
125*e5dd7070Spatrick     Expr *BaseExpr = E->getBase();
126*e5dd7070Spatrick     Address BaseValue = Address::invalid();
127*e5dd7070Spatrick     Qualifiers BaseQuals;
128*e5dd7070Spatrick 
129*e5dd7070Spatrick     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130*e5dd7070Spatrick     if (E->isArrow()) {
131*e5dd7070Spatrick       BaseValue = EmitPointerWithAlignment(BaseExpr);
132*e5dd7070Spatrick       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
133*e5dd7070Spatrick       BaseQuals = PTy->getPointeeType().getQualifiers();
134*e5dd7070Spatrick     } else {
135*e5dd7070Spatrick       LValue BaseLV = EmitLValue(BaseExpr);
136*e5dd7070Spatrick       BaseValue = BaseLV.getAddress(*this);
137*e5dd7070Spatrick       QualType BaseTy = BaseExpr->getType();
138*e5dd7070Spatrick       BaseQuals = BaseTy.getQualifiers();
139*e5dd7070Spatrick     }
140*e5dd7070Spatrick 
141*e5dd7070Spatrick     switch (DestroyedType.getObjCLifetime()) {
142*e5dd7070Spatrick     case Qualifiers::OCL_None:
143*e5dd7070Spatrick     case Qualifiers::OCL_ExplicitNone:
144*e5dd7070Spatrick     case Qualifiers::OCL_Autoreleasing:
145*e5dd7070Spatrick       break;
146*e5dd7070Spatrick 
147*e5dd7070Spatrick     case Qualifiers::OCL_Strong:
148*e5dd7070Spatrick       EmitARCRelease(Builder.CreateLoad(BaseValue,
149*e5dd7070Spatrick                         DestroyedType.isVolatileQualified()),
150*e5dd7070Spatrick                      ARCPreciseLifetime);
151*e5dd7070Spatrick       break;
152*e5dd7070Spatrick 
153*e5dd7070Spatrick     case Qualifiers::OCL_Weak:
154*e5dd7070Spatrick       EmitARCDestroyWeak(BaseValue);
155*e5dd7070Spatrick       break;
156*e5dd7070Spatrick     }
157*e5dd7070Spatrick   } else {
158*e5dd7070Spatrick     // C++ [expr.pseudo]p1:
159*e5dd7070Spatrick     //   The result shall only be used as the operand for the function call
160*e5dd7070Spatrick     //   operator (), and the result of such a call has type void. The only
161*e5dd7070Spatrick     //   effect is the evaluation of the postfix-expression before the dot or
162*e5dd7070Spatrick     //   arrow.
163*e5dd7070Spatrick     EmitIgnoredExpr(E->getBase());
164*e5dd7070Spatrick   }
165*e5dd7070Spatrick 
166*e5dd7070Spatrick   return RValue::get(nullptr);
167*e5dd7070Spatrick }
168*e5dd7070Spatrick 
169*e5dd7070Spatrick static CXXRecordDecl *getCXXRecord(const Expr *E) {
170*e5dd7070Spatrick   QualType T = E->getType();
171*e5dd7070Spatrick   if (const PointerType *PTy = T->getAs<PointerType>())
172*e5dd7070Spatrick     T = PTy->getPointeeType();
173*e5dd7070Spatrick   const RecordType *Ty = T->castAs<RecordType>();
174*e5dd7070Spatrick   return cast<CXXRecordDecl>(Ty->getDecl());
175*e5dd7070Spatrick }
176*e5dd7070Spatrick 
177*e5dd7070Spatrick // Note: This function also emit constructor calls to support a MSVC
178*e5dd7070Spatrick // extensions allowing explicit constructor function call.
179*e5dd7070Spatrick RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180*e5dd7070Spatrick                                               ReturnValueSlot ReturnValue) {
181*e5dd7070Spatrick   const Expr *callee = CE->getCallee()->IgnoreParens();
182*e5dd7070Spatrick 
183*e5dd7070Spatrick   if (isa<BinaryOperator>(callee))
184*e5dd7070Spatrick     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185*e5dd7070Spatrick 
186*e5dd7070Spatrick   const MemberExpr *ME = cast<MemberExpr>(callee);
187*e5dd7070Spatrick   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188*e5dd7070Spatrick 
189*e5dd7070Spatrick   if (MD->isStatic()) {
190*e5dd7070Spatrick     // The method is static, emit it as we would a regular call.
191*e5dd7070Spatrick     CGCallee callee =
192*e5dd7070Spatrick         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193*e5dd7070Spatrick     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194*e5dd7070Spatrick                     ReturnValue);
195*e5dd7070Spatrick   }
196*e5dd7070Spatrick 
197*e5dd7070Spatrick   bool HasQualifier = ME->hasQualifier();
198*e5dd7070Spatrick   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199*e5dd7070Spatrick   bool IsArrow = ME->isArrow();
200*e5dd7070Spatrick   const Expr *Base = ME->getBase();
201*e5dd7070Spatrick 
202*e5dd7070Spatrick   return EmitCXXMemberOrOperatorMemberCallExpr(
203*e5dd7070Spatrick       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204*e5dd7070Spatrick }
205*e5dd7070Spatrick 
206*e5dd7070Spatrick RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207*e5dd7070Spatrick     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208*e5dd7070Spatrick     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209*e5dd7070Spatrick     const Expr *Base) {
210*e5dd7070Spatrick   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
211*e5dd7070Spatrick 
212*e5dd7070Spatrick   // Compute the object pointer.
213*e5dd7070Spatrick   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214*e5dd7070Spatrick 
215*e5dd7070Spatrick   const CXXMethodDecl *DevirtualizedMethod = nullptr;
216*e5dd7070Spatrick   if (CanUseVirtualCall &&
217*e5dd7070Spatrick       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218*e5dd7070Spatrick     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219*e5dd7070Spatrick     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220*e5dd7070Spatrick     assert(DevirtualizedMethod);
221*e5dd7070Spatrick     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222*e5dd7070Spatrick     const Expr *Inner = Base->ignoreParenBaseCasts();
223*e5dd7070Spatrick     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224*e5dd7070Spatrick         MD->getReturnType().getCanonicalType())
225*e5dd7070Spatrick       // If the return types are not the same, this might be a case where more
226*e5dd7070Spatrick       // code needs to run to compensate for it. For example, the derived
227*e5dd7070Spatrick       // method might return a type that inherits form from the return
228*e5dd7070Spatrick       // type of MD and has a prefix.
229*e5dd7070Spatrick       // For now we just avoid devirtualizing these covariant cases.
230*e5dd7070Spatrick       DevirtualizedMethod = nullptr;
231*e5dd7070Spatrick     else if (getCXXRecord(Inner) == DevirtualizedClass)
232*e5dd7070Spatrick       // If the class of the Inner expression is where the dynamic method
233*e5dd7070Spatrick       // is defined, build the this pointer from it.
234*e5dd7070Spatrick       Base = Inner;
235*e5dd7070Spatrick     else if (getCXXRecord(Base) != DevirtualizedClass) {
236*e5dd7070Spatrick       // If the method is defined in a class that is not the best dynamic
237*e5dd7070Spatrick       // one or the one of the full expression, we would have to build
238*e5dd7070Spatrick       // a derived-to-base cast to compute the correct this pointer, but
239*e5dd7070Spatrick       // we don't have support for that yet, so do a virtual call.
240*e5dd7070Spatrick       DevirtualizedMethod = nullptr;
241*e5dd7070Spatrick     }
242*e5dd7070Spatrick   }
243*e5dd7070Spatrick 
244*e5dd7070Spatrick   bool TrivialForCodegen =
245*e5dd7070Spatrick       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
246*e5dd7070Spatrick   bool TrivialAssignment =
247*e5dd7070Spatrick       TrivialForCodegen &&
248*e5dd7070Spatrick       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
249*e5dd7070Spatrick       !MD->getParent()->mayInsertExtraPadding();
250*e5dd7070Spatrick 
251*e5dd7070Spatrick   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
252*e5dd7070Spatrick   // operator before the LHS.
253*e5dd7070Spatrick   CallArgList RtlArgStorage;
254*e5dd7070Spatrick   CallArgList *RtlArgs = nullptr;
255*e5dd7070Spatrick   LValue TrivialAssignmentRHS;
256*e5dd7070Spatrick   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
257*e5dd7070Spatrick     if (OCE->isAssignmentOp()) {
258*e5dd7070Spatrick       if (TrivialAssignment) {
259*e5dd7070Spatrick         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
260*e5dd7070Spatrick       } else {
261*e5dd7070Spatrick         RtlArgs = &RtlArgStorage;
262*e5dd7070Spatrick         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
263*e5dd7070Spatrick                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
264*e5dd7070Spatrick                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
265*e5dd7070Spatrick       }
266*e5dd7070Spatrick     }
267*e5dd7070Spatrick   }
268*e5dd7070Spatrick 
269*e5dd7070Spatrick   LValue This;
270*e5dd7070Spatrick   if (IsArrow) {
271*e5dd7070Spatrick     LValueBaseInfo BaseInfo;
272*e5dd7070Spatrick     TBAAAccessInfo TBAAInfo;
273*e5dd7070Spatrick     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
274*e5dd7070Spatrick     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
275*e5dd7070Spatrick   } else {
276*e5dd7070Spatrick     This = EmitLValue(Base);
277*e5dd7070Spatrick   }
278*e5dd7070Spatrick 
279*e5dd7070Spatrick   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
280*e5dd7070Spatrick     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
281*e5dd7070Spatrick     // constructing a new complete object of type Ctor.
282*e5dd7070Spatrick     assert(!RtlArgs);
283*e5dd7070Spatrick     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
284*e5dd7070Spatrick     CallArgList Args;
285*e5dd7070Spatrick     commonEmitCXXMemberOrOperatorCall(
286*e5dd7070Spatrick         *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
287*e5dd7070Spatrick         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
288*e5dd7070Spatrick 
289*e5dd7070Spatrick     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
290*e5dd7070Spatrick                            /*Delegating=*/false, This.getAddress(*this), Args,
291*e5dd7070Spatrick                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
292*e5dd7070Spatrick                            /*NewPointerIsChecked=*/false);
293*e5dd7070Spatrick     return RValue::get(nullptr);
294*e5dd7070Spatrick   }
295*e5dd7070Spatrick 
296*e5dd7070Spatrick   if (TrivialForCodegen) {
297*e5dd7070Spatrick     if (isa<CXXDestructorDecl>(MD))
298*e5dd7070Spatrick       return RValue::get(nullptr);
299*e5dd7070Spatrick 
300*e5dd7070Spatrick     if (TrivialAssignment) {
301*e5dd7070Spatrick       // We don't like to generate the trivial copy/move assignment operator
302*e5dd7070Spatrick       // when it isn't necessary; just produce the proper effect here.
303*e5dd7070Spatrick       // It's important that we use the result of EmitLValue here rather than
304*e5dd7070Spatrick       // emitting call arguments, in order to preserve TBAA information from
305*e5dd7070Spatrick       // the RHS.
306*e5dd7070Spatrick       LValue RHS = isa<CXXOperatorCallExpr>(CE)
307*e5dd7070Spatrick                        ? TrivialAssignmentRHS
308*e5dd7070Spatrick                        : EmitLValue(*CE->arg_begin());
309*e5dd7070Spatrick       EmitAggregateAssign(This, RHS, CE->getType());
310*e5dd7070Spatrick       return RValue::get(This.getPointer(*this));
311*e5dd7070Spatrick     }
312*e5dd7070Spatrick 
313*e5dd7070Spatrick     assert(MD->getParent()->mayInsertExtraPadding() &&
314*e5dd7070Spatrick            "unknown trivial member function");
315*e5dd7070Spatrick   }
316*e5dd7070Spatrick 
317*e5dd7070Spatrick   // Compute the function type we're calling.
318*e5dd7070Spatrick   const CXXMethodDecl *CalleeDecl =
319*e5dd7070Spatrick       DevirtualizedMethod ? DevirtualizedMethod : MD;
320*e5dd7070Spatrick   const CGFunctionInfo *FInfo = nullptr;
321*e5dd7070Spatrick   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
322*e5dd7070Spatrick     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
323*e5dd7070Spatrick         GlobalDecl(Dtor, Dtor_Complete));
324*e5dd7070Spatrick   else
325*e5dd7070Spatrick     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
326*e5dd7070Spatrick 
327*e5dd7070Spatrick   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
328*e5dd7070Spatrick 
329*e5dd7070Spatrick   // C++11 [class.mfct.non-static]p2:
330*e5dd7070Spatrick   //   If a non-static member function of a class X is called for an object that
331*e5dd7070Spatrick   //   is not of type X, or of a type derived from X, the behavior is undefined.
332*e5dd7070Spatrick   SourceLocation CallLoc;
333*e5dd7070Spatrick   ASTContext &C = getContext();
334*e5dd7070Spatrick   if (CE)
335*e5dd7070Spatrick     CallLoc = CE->getExprLoc();
336*e5dd7070Spatrick 
337*e5dd7070Spatrick   SanitizerSet SkippedChecks;
338*e5dd7070Spatrick   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
339*e5dd7070Spatrick     auto *IOA = CMCE->getImplicitObjectArgument();
340*e5dd7070Spatrick     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
341*e5dd7070Spatrick     if (IsImplicitObjectCXXThis)
342*e5dd7070Spatrick       SkippedChecks.set(SanitizerKind::Alignment, true);
343*e5dd7070Spatrick     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
344*e5dd7070Spatrick       SkippedChecks.set(SanitizerKind::Null, true);
345*e5dd7070Spatrick   }
346*e5dd7070Spatrick   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
347*e5dd7070Spatrick                 This.getPointer(*this),
348*e5dd7070Spatrick                 C.getRecordType(CalleeDecl->getParent()),
349*e5dd7070Spatrick                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
350*e5dd7070Spatrick 
351*e5dd7070Spatrick   // C++ [class.virtual]p12:
352*e5dd7070Spatrick   //   Explicit qualification with the scope operator (5.1) suppresses the
353*e5dd7070Spatrick   //   virtual call mechanism.
354*e5dd7070Spatrick   //
355*e5dd7070Spatrick   // We also don't emit a virtual call if the base expression has a record type
356*e5dd7070Spatrick   // because then we know what the type is.
357*e5dd7070Spatrick   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
358*e5dd7070Spatrick 
359*e5dd7070Spatrick   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
360*e5dd7070Spatrick     assert(CE->arg_begin() == CE->arg_end() &&
361*e5dd7070Spatrick            "Destructor shouldn't have explicit parameters");
362*e5dd7070Spatrick     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
363*e5dd7070Spatrick     if (UseVirtualCall) {
364*e5dd7070Spatrick       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
365*e5dd7070Spatrick                                                 This.getAddress(*this),
366*e5dd7070Spatrick                                                 cast<CXXMemberCallExpr>(CE));
367*e5dd7070Spatrick     } else {
368*e5dd7070Spatrick       GlobalDecl GD(Dtor, Dtor_Complete);
369*e5dd7070Spatrick       CGCallee Callee;
370*e5dd7070Spatrick       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
371*e5dd7070Spatrick         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
372*e5dd7070Spatrick       else if (!DevirtualizedMethod)
373*e5dd7070Spatrick         Callee =
374*e5dd7070Spatrick             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
375*e5dd7070Spatrick       else {
376*e5dd7070Spatrick         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
377*e5dd7070Spatrick       }
378*e5dd7070Spatrick 
379*e5dd7070Spatrick       QualType ThisTy =
380*e5dd7070Spatrick           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
381*e5dd7070Spatrick       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
382*e5dd7070Spatrick                             /*ImplicitParam=*/nullptr,
383*e5dd7070Spatrick                             /*ImplicitParamTy=*/QualType(), nullptr);
384*e5dd7070Spatrick     }
385*e5dd7070Spatrick     return RValue::get(nullptr);
386*e5dd7070Spatrick   }
387*e5dd7070Spatrick 
388*e5dd7070Spatrick   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
389*e5dd7070Spatrick   // 'CalleeDecl' instead.
390*e5dd7070Spatrick 
391*e5dd7070Spatrick   CGCallee Callee;
392*e5dd7070Spatrick   if (UseVirtualCall) {
393*e5dd7070Spatrick     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
394*e5dd7070Spatrick   } else {
395*e5dd7070Spatrick     if (SanOpts.has(SanitizerKind::CFINVCall) &&
396*e5dd7070Spatrick         MD->getParent()->isDynamicClass()) {
397*e5dd7070Spatrick       llvm::Value *VTable;
398*e5dd7070Spatrick       const CXXRecordDecl *RD;
399*e5dd7070Spatrick       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
400*e5dd7070Spatrick           *this, This.getAddress(*this), CalleeDecl->getParent());
401*e5dd7070Spatrick       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
402*e5dd7070Spatrick     }
403*e5dd7070Spatrick 
404*e5dd7070Spatrick     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
405*e5dd7070Spatrick       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
406*e5dd7070Spatrick     else if (!DevirtualizedMethod)
407*e5dd7070Spatrick       Callee =
408*e5dd7070Spatrick           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
409*e5dd7070Spatrick     else {
410*e5dd7070Spatrick       Callee =
411*e5dd7070Spatrick           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
412*e5dd7070Spatrick                               GlobalDecl(DevirtualizedMethod));
413*e5dd7070Spatrick     }
414*e5dd7070Spatrick   }
415*e5dd7070Spatrick 
416*e5dd7070Spatrick   if (MD->isVirtual()) {
417*e5dd7070Spatrick     Address NewThisAddr =
418*e5dd7070Spatrick         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
419*e5dd7070Spatrick             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
420*e5dd7070Spatrick     This.setAddress(NewThisAddr);
421*e5dd7070Spatrick   }
422*e5dd7070Spatrick 
423*e5dd7070Spatrick   return EmitCXXMemberOrOperatorCall(
424*e5dd7070Spatrick       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
425*e5dd7070Spatrick       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
426*e5dd7070Spatrick }
427*e5dd7070Spatrick 
428*e5dd7070Spatrick RValue
429*e5dd7070Spatrick CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
430*e5dd7070Spatrick                                               ReturnValueSlot ReturnValue) {
431*e5dd7070Spatrick   const BinaryOperator *BO =
432*e5dd7070Spatrick       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
433*e5dd7070Spatrick   const Expr *BaseExpr = BO->getLHS();
434*e5dd7070Spatrick   const Expr *MemFnExpr = BO->getRHS();
435*e5dd7070Spatrick 
436*e5dd7070Spatrick   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
437*e5dd7070Spatrick   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
438*e5dd7070Spatrick   const auto *RD =
439*e5dd7070Spatrick       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
440*e5dd7070Spatrick 
441*e5dd7070Spatrick   // Emit the 'this' pointer.
442*e5dd7070Spatrick   Address This = Address::invalid();
443*e5dd7070Spatrick   if (BO->getOpcode() == BO_PtrMemI)
444*e5dd7070Spatrick     This = EmitPointerWithAlignment(BaseExpr);
445*e5dd7070Spatrick   else
446*e5dd7070Spatrick     This = EmitLValue(BaseExpr).getAddress(*this);
447*e5dd7070Spatrick 
448*e5dd7070Spatrick   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
449*e5dd7070Spatrick                 QualType(MPT->getClass(), 0));
450*e5dd7070Spatrick 
451*e5dd7070Spatrick   // Get the member function pointer.
452*e5dd7070Spatrick   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
453*e5dd7070Spatrick 
454*e5dd7070Spatrick   // Ask the ABI to load the callee.  Note that This is modified.
455*e5dd7070Spatrick   llvm::Value *ThisPtrForCall = nullptr;
456*e5dd7070Spatrick   CGCallee Callee =
457*e5dd7070Spatrick     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
458*e5dd7070Spatrick                                              ThisPtrForCall, MemFnPtr, MPT);
459*e5dd7070Spatrick 
460*e5dd7070Spatrick   CallArgList Args;
461*e5dd7070Spatrick 
462*e5dd7070Spatrick   QualType ThisType =
463*e5dd7070Spatrick     getContext().getPointerType(getContext().getTagDeclType(RD));
464*e5dd7070Spatrick 
465*e5dd7070Spatrick   // Push the this ptr.
466*e5dd7070Spatrick   Args.add(RValue::get(ThisPtrForCall), ThisType);
467*e5dd7070Spatrick 
468*e5dd7070Spatrick   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
469*e5dd7070Spatrick 
470*e5dd7070Spatrick   // And the rest of the call args
471*e5dd7070Spatrick   EmitCallArgs(Args, FPT, E->arguments());
472*e5dd7070Spatrick   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
473*e5dd7070Spatrick                                                       /*PrefixSize=*/0),
474*e5dd7070Spatrick                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
475*e5dd7070Spatrick }
476*e5dd7070Spatrick 
477*e5dd7070Spatrick RValue
478*e5dd7070Spatrick CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
479*e5dd7070Spatrick                                                const CXXMethodDecl *MD,
480*e5dd7070Spatrick                                                ReturnValueSlot ReturnValue) {
481*e5dd7070Spatrick   assert(MD->isInstance() &&
482*e5dd7070Spatrick          "Trying to emit a member call expr on a static method!");
483*e5dd7070Spatrick   return EmitCXXMemberOrOperatorMemberCallExpr(
484*e5dd7070Spatrick       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
485*e5dd7070Spatrick       /*IsArrow=*/false, E->getArg(0));
486*e5dd7070Spatrick }
487*e5dd7070Spatrick 
488*e5dd7070Spatrick RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
489*e5dd7070Spatrick                                                ReturnValueSlot ReturnValue) {
490*e5dd7070Spatrick   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
491*e5dd7070Spatrick }
492*e5dd7070Spatrick 
493*e5dd7070Spatrick static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
494*e5dd7070Spatrick                                             Address DestPtr,
495*e5dd7070Spatrick                                             const CXXRecordDecl *Base) {
496*e5dd7070Spatrick   if (Base->isEmpty())
497*e5dd7070Spatrick     return;
498*e5dd7070Spatrick 
499*e5dd7070Spatrick   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
500*e5dd7070Spatrick 
501*e5dd7070Spatrick   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
502*e5dd7070Spatrick   CharUnits NVSize = Layout.getNonVirtualSize();
503*e5dd7070Spatrick 
504*e5dd7070Spatrick   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
505*e5dd7070Spatrick   // present, they are initialized by the most derived class before calling the
506*e5dd7070Spatrick   // constructor.
507*e5dd7070Spatrick   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
508*e5dd7070Spatrick   Stores.emplace_back(CharUnits::Zero(), NVSize);
509*e5dd7070Spatrick 
510*e5dd7070Spatrick   // Each store is split by the existence of a vbptr.
511*e5dd7070Spatrick   CharUnits VBPtrWidth = CGF.getPointerSize();
512*e5dd7070Spatrick   std::vector<CharUnits> VBPtrOffsets =
513*e5dd7070Spatrick       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
514*e5dd7070Spatrick   for (CharUnits VBPtrOffset : VBPtrOffsets) {
515*e5dd7070Spatrick     // Stop before we hit any virtual base pointers located in virtual bases.
516*e5dd7070Spatrick     if (VBPtrOffset >= NVSize)
517*e5dd7070Spatrick       break;
518*e5dd7070Spatrick     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
519*e5dd7070Spatrick     CharUnits LastStoreOffset = LastStore.first;
520*e5dd7070Spatrick     CharUnits LastStoreSize = LastStore.second;
521*e5dd7070Spatrick 
522*e5dd7070Spatrick     CharUnits SplitBeforeOffset = LastStoreOffset;
523*e5dd7070Spatrick     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
524*e5dd7070Spatrick     assert(!SplitBeforeSize.isNegative() && "negative store size!");
525*e5dd7070Spatrick     if (!SplitBeforeSize.isZero())
526*e5dd7070Spatrick       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
527*e5dd7070Spatrick 
528*e5dd7070Spatrick     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
529*e5dd7070Spatrick     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
530*e5dd7070Spatrick     assert(!SplitAfterSize.isNegative() && "negative store size!");
531*e5dd7070Spatrick     if (!SplitAfterSize.isZero())
532*e5dd7070Spatrick       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
533*e5dd7070Spatrick   }
534*e5dd7070Spatrick 
535*e5dd7070Spatrick   // If the type contains a pointer to data member we can't memset it to zero.
536*e5dd7070Spatrick   // Instead, create a null constant and copy it to the destination.
537*e5dd7070Spatrick   // TODO: there are other patterns besides zero that we can usefully memset,
538*e5dd7070Spatrick   // like -1, which happens to be the pattern used by member-pointers.
539*e5dd7070Spatrick   // TODO: isZeroInitializable can be over-conservative in the case where a
540*e5dd7070Spatrick   // virtual base contains a member pointer.
541*e5dd7070Spatrick   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
542*e5dd7070Spatrick   if (!NullConstantForBase->isNullValue()) {
543*e5dd7070Spatrick     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
544*e5dd7070Spatrick         CGF.CGM.getModule(), NullConstantForBase->getType(),
545*e5dd7070Spatrick         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
546*e5dd7070Spatrick         NullConstantForBase, Twine());
547*e5dd7070Spatrick 
548*e5dd7070Spatrick     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
549*e5dd7070Spatrick                                DestPtr.getAlignment());
550*e5dd7070Spatrick     NullVariable->setAlignment(Align.getAsAlign());
551*e5dd7070Spatrick 
552*e5dd7070Spatrick     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
553*e5dd7070Spatrick 
554*e5dd7070Spatrick     // Get and call the appropriate llvm.memcpy overload.
555*e5dd7070Spatrick     for (std::pair<CharUnits, CharUnits> Store : Stores) {
556*e5dd7070Spatrick       CharUnits StoreOffset = Store.first;
557*e5dd7070Spatrick       CharUnits StoreSize = Store.second;
558*e5dd7070Spatrick       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
559*e5dd7070Spatrick       CGF.Builder.CreateMemCpy(
560*e5dd7070Spatrick           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
561*e5dd7070Spatrick           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
562*e5dd7070Spatrick           StoreSizeVal);
563*e5dd7070Spatrick     }
564*e5dd7070Spatrick 
565*e5dd7070Spatrick   // Otherwise, just memset the whole thing to zero.  This is legal
566*e5dd7070Spatrick   // because in LLVM, all default initializers (other than the ones we just
567*e5dd7070Spatrick   // handled above) are guaranteed to have a bit pattern of all zeros.
568*e5dd7070Spatrick   } else {
569*e5dd7070Spatrick     for (std::pair<CharUnits, CharUnits> Store : Stores) {
570*e5dd7070Spatrick       CharUnits StoreOffset = Store.first;
571*e5dd7070Spatrick       CharUnits StoreSize = Store.second;
572*e5dd7070Spatrick       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
573*e5dd7070Spatrick       CGF.Builder.CreateMemSet(
574*e5dd7070Spatrick           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
575*e5dd7070Spatrick           CGF.Builder.getInt8(0), StoreSizeVal);
576*e5dd7070Spatrick     }
577*e5dd7070Spatrick   }
578*e5dd7070Spatrick }
579*e5dd7070Spatrick 
580*e5dd7070Spatrick void
581*e5dd7070Spatrick CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
582*e5dd7070Spatrick                                       AggValueSlot Dest) {
583*e5dd7070Spatrick   assert(!Dest.isIgnored() && "Must have a destination!");
584*e5dd7070Spatrick   const CXXConstructorDecl *CD = E->getConstructor();
585*e5dd7070Spatrick 
586*e5dd7070Spatrick   // If we require zero initialization before (or instead of) calling the
587*e5dd7070Spatrick   // constructor, as can be the case with a non-user-provided default
588*e5dd7070Spatrick   // constructor, emit the zero initialization now, unless destination is
589*e5dd7070Spatrick   // already zeroed.
590*e5dd7070Spatrick   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
591*e5dd7070Spatrick     switch (E->getConstructionKind()) {
592*e5dd7070Spatrick     case CXXConstructExpr::CK_Delegating:
593*e5dd7070Spatrick     case CXXConstructExpr::CK_Complete:
594*e5dd7070Spatrick       EmitNullInitialization(Dest.getAddress(), E->getType());
595*e5dd7070Spatrick       break;
596*e5dd7070Spatrick     case CXXConstructExpr::CK_VirtualBase:
597*e5dd7070Spatrick     case CXXConstructExpr::CK_NonVirtualBase:
598*e5dd7070Spatrick       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
599*e5dd7070Spatrick                                       CD->getParent());
600*e5dd7070Spatrick       break;
601*e5dd7070Spatrick     }
602*e5dd7070Spatrick   }
603*e5dd7070Spatrick 
604*e5dd7070Spatrick   // If this is a call to a trivial default constructor, do nothing.
605*e5dd7070Spatrick   if (CD->isTrivial() && CD->isDefaultConstructor())
606*e5dd7070Spatrick     return;
607*e5dd7070Spatrick 
608*e5dd7070Spatrick   // Elide the constructor if we're constructing from a temporary.
609*e5dd7070Spatrick   // The temporary check is required because Sema sets this on NRVO
610*e5dd7070Spatrick   // returns.
611*e5dd7070Spatrick   if (getLangOpts().ElideConstructors && E->isElidable()) {
612*e5dd7070Spatrick     assert(getContext().hasSameUnqualifiedType(E->getType(),
613*e5dd7070Spatrick                                                E->getArg(0)->getType()));
614*e5dd7070Spatrick     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
615*e5dd7070Spatrick       EmitAggExpr(E->getArg(0), Dest);
616*e5dd7070Spatrick       return;
617*e5dd7070Spatrick     }
618*e5dd7070Spatrick   }
619*e5dd7070Spatrick 
620*e5dd7070Spatrick   if (const ArrayType *arrayType
621*e5dd7070Spatrick         = getContext().getAsArrayType(E->getType())) {
622*e5dd7070Spatrick     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
623*e5dd7070Spatrick                                Dest.isSanitizerChecked());
624*e5dd7070Spatrick   } else {
625*e5dd7070Spatrick     CXXCtorType Type = Ctor_Complete;
626*e5dd7070Spatrick     bool ForVirtualBase = false;
627*e5dd7070Spatrick     bool Delegating = false;
628*e5dd7070Spatrick 
629*e5dd7070Spatrick     switch (E->getConstructionKind()) {
630*e5dd7070Spatrick      case CXXConstructExpr::CK_Delegating:
631*e5dd7070Spatrick       // We should be emitting a constructor; GlobalDecl will assert this
632*e5dd7070Spatrick       Type = CurGD.getCtorType();
633*e5dd7070Spatrick       Delegating = true;
634*e5dd7070Spatrick       break;
635*e5dd7070Spatrick 
636*e5dd7070Spatrick      case CXXConstructExpr::CK_Complete:
637*e5dd7070Spatrick       Type = Ctor_Complete;
638*e5dd7070Spatrick       break;
639*e5dd7070Spatrick 
640*e5dd7070Spatrick      case CXXConstructExpr::CK_VirtualBase:
641*e5dd7070Spatrick       ForVirtualBase = true;
642*e5dd7070Spatrick       LLVM_FALLTHROUGH;
643*e5dd7070Spatrick 
644*e5dd7070Spatrick      case CXXConstructExpr::CK_NonVirtualBase:
645*e5dd7070Spatrick       Type = Ctor_Base;
646*e5dd7070Spatrick      }
647*e5dd7070Spatrick 
648*e5dd7070Spatrick      // Call the constructor.
649*e5dd7070Spatrick      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
650*e5dd7070Spatrick   }
651*e5dd7070Spatrick }
652*e5dd7070Spatrick 
653*e5dd7070Spatrick void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
654*e5dd7070Spatrick                                                  const Expr *Exp) {
655*e5dd7070Spatrick   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
656*e5dd7070Spatrick     Exp = E->getSubExpr();
657*e5dd7070Spatrick   assert(isa<CXXConstructExpr>(Exp) &&
658*e5dd7070Spatrick          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
659*e5dd7070Spatrick   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
660*e5dd7070Spatrick   const CXXConstructorDecl *CD = E->getConstructor();
661*e5dd7070Spatrick   RunCleanupsScope Scope(*this);
662*e5dd7070Spatrick 
663*e5dd7070Spatrick   // If we require zero initialization before (or instead of) calling the
664*e5dd7070Spatrick   // constructor, as can be the case with a non-user-provided default
665*e5dd7070Spatrick   // constructor, emit the zero initialization now.
666*e5dd7070Spatrick   // FIXME. Do I still need this for a copy ctor synthesis?
667*e5dd7070Spatrick   if (E->requiresZeroInitialization())
668*e5dd7070Spatrick     EmitNullInitialization(Dest, E->getType());
669*e5dd7070Spatrick 
670*e5dd7070Spatrick   assert(!getContext().getAsConstantArrayType(E->getType())
671*e5dd7070Spatrick          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
672*e5dd7070Spatrick   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
673*e5dd7070Spatrick }
674*e5dd7070Spatrick 
675*e5dd7070Spatrick static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
676*e5dd7070Spatrick                                         const CXXNewExpr *E) {
677*e5dd7070Spatrick   if (!E->isArray())
678*e5dd7070Spatrick     return CharUnits::Zero();
679*e5dd7070Spatrick 
680*e5dd7070Spatrick   // No cookie is required if the operator new[] being used is the
681*e5dd7070Spatrick   // reserved placement operator new[].
682*e5dd7070Spatrick   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
683*e5dd7070Spatrick     return CharUnits::Zero();
684*e5dd7070Spatrick 
685*e5dd7070Spatrick   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
686*e5dd7070Spatrick }
687*e5dd7070Spatrick 
688*e5dd7070Spatrick static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
689*e5dd7070Spatrick                                         const CXXNewExpr *e,
690*e5dd7070Spatrick                                         unsigned minElements,
691*e5dd7070Spatrick                                         llvm::Value *&numElements,
692*e5dd7070Spatrick                                         llvm::Value *&sizeWithoutCookie) {
693*e5dd7070Spatrick   QualType type = e->getAllocatedType();
694*e5dd7070Spatrick 
695*e5dd7070Spatrick   if (!e->isArray()) {
696*e5dd7070Spatrick     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
697*e5dd7070Spatrick     sizeWithoutCookie
698*e5dd7070Spatrick       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
699*e5dd7070Spatrick     return sizeWithoutCookie;
700*e5dd7070Spatrick   }
701*e5dd7070Spatrick 
702*e5dd7070Spatrick   // The width of size_t.
703*e5dd7070Spatrick   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
704*e5dd7070Spatrick 
705*e5dd7070Spatrick   // Figure out the cookie size.
706*e5dd7070Spatrick   llvm::APInt cookieSize(sizeWidth,
707*e5dd7070Spatrick                          CalculateCookiePadding(CGF, e).getQuantity());
708*e5dd7070Spatrick 
709*e5dd7070Spatrick   // Emit the array size expression.
710*e5dd7070Spatrick   // We multiply the size of all dimensions for NumElements.
711*e5dd7070Spatrick   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
712*e5dd7070Spatrick   numElements =
713*e5dd7070Spatrick     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
714*e5dd7070Spatrick   if (!numElements)
715*e5dd7070Spatrick     numElements = CGF.EmitScalarExpr(*e->getArraySize());
716*e5dd7070Spatrick   assert(isa<llvm::IntegerType>(numElements->getType()));
717*e5dd7070Spatrick 
718*e5dd7070Spatrick   // The number of elements can be have an arbitrary integer type;
719*e5dd7070Spatrick   // essentially, we need to multiply it by a constant factor, add a
720*e5dd7070Spatrick   // cookie size, and verify that the result is representable as a
721*e5dd7070Spatrick   // size_t.  That's just a gloss, though, and it's wrong in one
722*e5dd7070Spatrick   // important way: if the count is negative, it's an error even if
723*e5dd7070Spatrick   // the cookie size would bring the total size >= 0.
724*e5dd7070Spatrick   bool isSigned
725*e5dd7070Spatrick     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
726*e5dd7070Spatrick   llvm::IntegerType *numElementsType
727*e5dd7070Spatrick     = cast<llvm::IntegerType>(numElements->getType());
728*e5dd7070Spatrick   unsigned numElementsWidth = numElementsType->getBitWidth();
729*e5dd7070Spatrick 
730*e5dd7070Spatrick   // Compute the constant factor.
731*e5dd7070Spatrick   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
732*e5dd7070Spatrick   while (const ConstantArrayType *CAT
733*e5dd7070Spatrick              = CGF.getContext().getAsConstantArrayType(type)) {
734*e5dd7070Spatrick     type = CAT->getElementType();
735*e5dd7070Spatrick     arraySizeMultiplier *= CAT->getSize();
736*e5dd7070Spatrick   }
737*e5dd7070Spatrick 
738*e5dd7070Spatrick   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
739*e5dd7070Spatrick   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
740*e5dd7070Spatrick   typeSizeMultiplier *= arraySizeMultiplier;
741*e5dd7070Spatrick 
742*e5dd7070Spatrick   // This will be a size_t.
743*e5dd7070Spatrick   llvm::Value *size;
744*e5dd7070Spatrick 
745*e5dd7070Spatrick   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
746*e5dd7070Spatrick   // Don't bloat the -O0 code.
747*e5dd7070Spatrick   if (llvm::ConstantInt *numElementsC =
748*e5dd7070Spatrick         dyn_cast<llvm::ConstantInt>(numElements)) {
749*e5dd7070Spatrick     const llvm::APInt &count = numElementsC->getValue();
750*e5dd7070Spatrick 
751*e5dd7070Spatrick     bool hasAnyOverflow = false;
752*e5dd7070Spatrick 
753*e5dd7070Spatrick     // If 'count' was a negative number, it's an overflow.
754*e5dd7070Spatrick     if (isSigned && count.isNegative())
755*e5dd7070Spatrick       hasAnyOverflow = true;
756*e5dd7070Spatrick 
757*e5dd7070Spatrick     // We want to do all this arithmetic in size_t.  If numElements is
758*e5dd7070Spatrick     // wider than that, check whether it's already too big, and if so,
759*e5dd7070Spatrick     // overflow.
760*e5dd7070Spatrick     else if (numElementsWidth > sizeWidth &&
761*e5dd7070Spatrick              numElementsWidth - sizeWidth > count.countLeadingZeros())
762*e5dd7070Spatrick       hasAnyOverflow = true;
763*e5dd7070Spatrick 
764*e5dd7070Spatrick     // Okay, compute a count at the right width.
765*e5dd7070Spatrick     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
766*e5dd7070Spatrick 
767*e5dd7070Spatrick     // If there is a brace-initializer, we cannot allocate fewer elements than
768*e5dd7070Spatrick     // there are initializers. If we do, that's treated like an overflow.
769*e5dd7070Spatrick     if (adjustedCount.ult(minElements))
770*e5dd7070Spatrick       hasAnyOverflow = true;
771*e5dd7070Spatrick 
772*e5dd7070Spatrick     // Scale numElements by that.  This might overflow, but we don't
773*e5dd7070Spatrick     // care because it only overflows if allocationSize does, too, and
774*e5dd7070Spatrick     // if that overflows then we shouldn't use this.
775*e5dd7070Spatrick     numElements = llvm::ConstantInt::get(CGF.SizeTy,
776*e5dd7070Spatrick                                          adjustedCount * arraySizeMultiplier);
777*e5dd7070Spatrick 
778*e5dd7070Spatrick     // Compute the size before cookie, and track whether it overflowed.
779*e5dd7070Spatrick     bool overflow;
780*e5dd7070Spatrick     llvm::APInt allocationSize
781*e5dd7070Spatrick       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
782*e5dd7070Spatrick     hasAnyOverflow |= overflow;
783*e5dd7070Spatrick 
784*e5dd7070Spatrick     // Add in the cookie, and check whether it's overflowed.
785*e5dd7070Spatrick     if (cookieSize != 0) {
786*e5dd7070Spatrick       // Save the current size without a cookie.  This shouldn't be
787*e5dd7070Spatrick       // used if there was overflow.
788*e5dd7070Spatrick       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
789*e5dd7070Spatrick 
790*e5dd7070Spatrick       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
791*e5dd7070Spatrick       hasAnyOverflow |= overflow;
792*e5dd7070Spatrick     }
793*e5dd7070Spatrick 
794*e5dd7070Spatrick     // On overflow, produce a -1 so operator new will fail.
795*e5dd7070Spatrick     if (hasAnyOverflow) {
796*e5dd7070Spatrick       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
797*e5dd7070Spatrick     } else {
798*e5dd7070Spatrick       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
799*e5dd7070Spatrick     }
800*e5dd7070Spatrick 
801*e5dd7070Spatrick   // Otherwise, we might need to use the overflow intrinsics.
802*e5dd7070Spatrick   } else {
803*e5dd7070Spatrick     // There are up to five conditions we need to test for:
804*e5dd7070Spatrick     // 1) if isSigned, we need to check whether numElements is negative;
805*e5dd7070Spatrick     // 2) if numElementsWidth > sizeWidth, we need to check whether
806*e5dd7070Spatrick     //   numElements is larger than something representable in size_t;
807*e5dd7070Spatrick     // 3) if minElements > 0, we need to check whether numElements is smaller
808*e5dd7070Spatrick     //    than that.
809*e5dd7070Spatrick     // 4) we need to compute
810*e5dd7070Spatrick     //      sizeWithoutCookie := numElements * typeSizeMultiplier
811*e5dd7070Spatrick     //    and check whether it overflows; and
812*e5dd7070Spatrick     // 5) if we need a cookie, we need to compute
813*e5dd7070Spatrick     //      size := sizeWithoutCookie + cookieSize
814*e5dd7070Spatrick     //    and check whether it overflows.
815*e5dd7070Spatrick 
816*e5dd7070Spatrick     llvm::Value *hasOverflow = nullptr;
817*e5dd7070Spatrick 
818*e5dd7070Spatrick     // If numElementsWidth > sizeWidth, then one way or another, we're
819*e5dd7070Spatrick     // going to have to do a comparison for (2), and this happens to
820*e5dd7070Spatrick     // take care of (1), too.
821*e5dd7070Spatrick     if (numElementsWidth > sizeWidth) {
822*e5dd7070Spatrick       llvm::APInt threshold(numElementsWidth, 1);
823*e5dd7070Spatrick       threshold <<= sizeWidth;
824*e5dd7070Spatrick 
825*e5dd7070Spatrick       llvm::Value *thresholdV
826*e5dd7070Spatrick         = llvm::ConstantInt::get(numElementsType, threshold);
827*e5dd7070Spatrick 
828*e5dd7070Spatrick       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
829*e5dd7070Spatrick       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
830*e5dd7070Spatrick 
831*e5dd7070Spatrick     // Otherwise, if we're signed, we want to sext up to size_t.
832*e5dd7070Spatrick     } else if (isSigned) {
833*e5dd7070Spatrick       if (numElementsWidth < sizeWidth)
834*e5dd7070Spatrick         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
835*e5dd7070Spatrick 
836*e5dd7070Spatrick       // If there's a non-1 type size multiplier, then we can do the
837*e5dd7070Spatrick       // signedness check at the same time as we do the multiply
838*e5dd7070Spatrick       // because a negative number times anything will cause an
839*e5dd7070Spatrick       // unsigned overflow.  Otherwise, we have to do it here. But at least
840*e5dd7070Spatrick       // in this case, we can subsume the >= minElements check.
841*e5dd7070Spatrick       if (typeSizeMultiplier == 1)
842*e5dd7070Spatrick         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
843*e5dd7070Spatrick                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
844*e5dd7070Spatrick 
845*e5dd7070Spatrick     // Otherwise, zext up to size_t if necessary.
846*e5dd7070Spatrick     } else if (numElementsWidth < sizeWidth) {
847*e5dd7070Spatrick       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
848*e5dd7070Spatrick     }
849*e5dd7070Spatrick 
850*e5dd7070Spatrick     assert(numElements->getType() == CGF.SizeTy);
851*e5dd7070Spatrick 
852*e5dd7070Spatrick     if (minElements) {
853*e5dd7070Spatrick       // Don't allow allocation of fewer elements than we have initializers.
854*e5dd7070Spatrick       if (!hasOverflow) {
855*e5dd7070Spatrick         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
856*e5dd7070Spatrick                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
857*e5dd7070Spatrick       } else if (numElementsWidth > sizeWidth) {
858*e5dd7070Spatrick         // The other existing overflow subsumes this check.
859*e5dd7070Spatrick         // We do an unsigned comparison, since any signed value < -1 is
860*e5dd7070Spatrick         // taken care of either above or below.
861*e5dd7070Spatrick         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
862*e5dd7070Spatrick                           CGF.Builder.CreateICmpULT(numElements,
863*e5dd7070Spatrick                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
864*e5dd7070Spatrick       }
865*e5dd7070Spatrick     }
866*e5dd7070Spatrick 
867*e5dd7070Spatrick     size = numElements;
868*e5dd7070Spatrick 
869*e5dd7070Spatrick     // Multiply by the type size if necessary.  This multiplier
870*e5dd7070Spatrick     // includes all the factors for nested arrays.
871*e5dd7070Spatrick     //
872*e5dd7070Spatrick     // This step also causes numElements to be scaled up by the
873*e5dd7070Spatrick     // nested-array factor if necessary.  Overflow on this computation
874*e5dd7070Spatrick     // can be ignored because the result shouldn't be used if
875*e5dd7070Spatrick     // allocation fails.
876*e5dd7070Spatrick     if (typeSizeMultiplier != 1) {
877*e5dd7070Spatrick       llvm::Function *umul_with_overflow
878*e5dd7070Spatrick         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
879*e5dd7070Spatrick 
880*e5dd7070Spatrick       llvm::Value *tsmV =
881*e5dd7070Spatrick         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
882*e5dd7070Spatrick       llvm::Value *result =
883*e5dd7070Spatrick           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
884*e5dd7070Spatrick 
885*e5dd7070Spatrick       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
886*e5dd7070Spatrick       if (hasOverflow)
887*e5dd7070Spatrick         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
888*e5dd7070Spatrick       else
889*e5dd7070Spatrick         hasOverflow = overflowed;
890*e5dd7070Spatrick 
891*e5dd7070Spatrick       size = CGF.Builder.CreateExtractValue(result, 0);
892*e5dd7070Spatrick 
893*e5dd7070Spatrick       // Also scale up numElements by the array size multiplier.
894*e5dd7070Spatrick       if (arraySizeMultiplier != 1) {
895*e5dd7070Spatrick         // If the base element type size is 1, then we can re-use the
896*e5dd7070Spatrick         // multiply we just did.
897*e5dd7070Spatrick         if (typeSize.isOne()) {
898*e5dd7070Spatrick           assert(arraySizeMultiplier == typeSizeMultiplier);
899*e5dd7070Spatrick           numElements = size;
900*e5dd7070Spatrick 
901*e5dd7070Spatrick         // Otherwise we need a separate multiply.
902*e5dd7070Spatrick         } else {
903*e5dd7070Spatrick           llvm::Value *asmV =
904*e5dd7070Spatrick             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
905*e5dd7070Spatrick           numElements = CGF.Builder.CreateMul(numElements, asmV);
906*e5dd7070Spatrick         }
907*e5dd7070Spatrick       }
908*e5dd7070Spatrick     } else {
909*e5dd7070Spatrick       // numElements doesn't need to be scaled.
910*e5dd7070Spatrick       assert(arraySizeMultiplier == 1);
911*e5dd7070Spatrick     }
912*e5dd7070Spatrick 
913*e5dd7070Spatrick     // Add in the cookie size if necessary.
914*e5dd7070Spatrick     if (cookieSize != 0) {
915*e5dd7070Spatrick       sizeWithoutCookie = size;
916*e5dd7070Spatrick 
917*e5dd7070Spatrick       llvm::Function *uadd_with_overflow
918*e5dd7070Spatrick         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
919*e5dd7070Spatrick 
920*e5dd7070Spatrick       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
921*e5dd7070Spatrick       llvm::Value *result =
922*e5dd7070Spatrick           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
923*e5dd7070Spatrick 
924*e5dd7070Spatrick       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
925*e5dd7070Spatrick       if (hasOverflow)
926*e5dd7070Spatrick         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
927*e5dd7070Spatrick       else
928*e5dd7070Spatrick         hasOverflow = overflowed;
929*e5dd7070Spatrick 
930*e5dd7070Spatrick       size = CGF.Builder.CreateExtractValue(result, 0);
931*e5dd7070Spatrick     }
932*e5dd7070Spatrick 
933*e5dd7070Spatrick     // If we had any possibility of dynamic overflow, make a select to
934*e5dd7070Spatrick     // overwrite 'size' with an all-ones value, which should cause
935*e5dd7070Spatrick     // operator new to throw.
936*e5dd7070Spatrick     if (hasOverflow)
937*e5dd7070Spatrick       size = CGF.Builder.CreateSelect(hasOverflow,
938*e5dd7070Spatrick                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
939*e5dd7070Spatrick                                       size);
940*e5dd7070Spatrick   }
941*e5dd7070Spatrick 
942*e5dd7070Spatrick   if (cookieSize == 0)
943*e5dd7070Spatrick     sizeWithoutCookie = size;
944*e5dd7070Spatrick   else
945*e5dd7070Spatrick     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
946*e5dd7070Spatrick 
947*e5dd7070Spatrick   return size;
948*e5dd7070Spatrick }
949*e5dd7070Spatrick 
950*e5dd7070Spatrick static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
951*e5dd7070Spatrick                                     QualType AllocType, Address NewPtr,
952*e5dd7070Spatrick                                     AggValueSlot::Overlap_t MayOverlap) {
953*e5dd7070Spatrick   // FIXME: Refactor with EmitExprAsInit.
954*e5dd7070Spatrick   switch (CGF.getEvaluationKind(AllocType)) {
955*e5dd7070Spatrick   case TEK_Scalar:
956*e5dd7070Spatrick     CGF.EmitScalarInit(Init, nullptr,
957*e5dd7070Spatrick                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
958*e5dd7070Spatrick     return;
959*e5dd7070Spatrick   case TEK_Complex:
960*e5dd7070Spatrick     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
961*e5dd7070Spatrick                                   /*isInit*/ true);
962*e5dd7070Spatrick     return;
963*e5dd7070Spatrick   case TEK_Aggregate: {
964*e5dd7070Spatrick     AggValueSlot Slot
965*e5dd7070Spatrick       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
966*e5dd7070Spatrick                               AggValueSlot::IsDestructed,
967*e5dd7070Spatrick                               AggValueSlot::DoesNotNeedGCBarriers,
968*e5dd7070Spatrick                               AggValueSlot::IsNotAliased,
969*e5dd7070Spatrick                               MayOverlap, AggValueSlot::IsNotZeroed,
970*e5dd7070Spatrick                               AggValueSlot::IsSanitizerChecked);
971*e5dd7070Spatrick     CGF.EmitAggExpr(Init, Slot);
972*e5dd7070Spatrick     return;
973*e5dd7070Spatrick   }
974*e5dd7070Spatrick   }
975*e5dd7070Spatrick   llvm_unreachable("bad evaluation kind");
976*e5dd7070Spatrick }
977*e5dd7070Spatrick 
978*e5dd7070Spatrick void CodeGenFunction::EmitNewArrayInitializer(
979*e5dd7070Spatrick     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
980*e5dd7070Spatrick     Address BeginPtr, llvm::Value *NumElements,
981*e5dd7070Spatrick     llvm::Value *AllocSizeWithoutCookie) {
982*e5dd7070Spatrick   // If we have a type with trivial initialization and no initializer,
983*e5dd7070Spatrick   // there's nothing to do.
984*e5dd7070Spatrick   if (!E->hasInitializer())
985*e5dd7070Spatrick     return;
986*e5dd7070Spatrick 
987*e5dd7070Spatrick   Address CurPtr = BeginPtr;
988*e5dd7070Spatrick 
989*e5dd7070Spatrick   unsigned InitListElements = 0;
990*e5dd7070Spatrick 
991*e5dd7070Spatrick   const Expr *Init = E->getInitializer();
992*e5dd7070Spatrick   Address EndOfInit = Address::invalid();
993*e5dd7070Spatrick   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
994*e5dd7070Spatrick   EHScopeStack::stable_iterator Cleanup;
995*e5dd7070Spatrick   llvm::Instruction *CleanupDominator = nullptr;
996*e5dd7070Spatrick 
997*e5dd7070Spatrick   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
998*e5dd7070Spatrick   CharUnits ElementAlign =
999*e5dd7070Spatrick     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1000*e5dd7070Spatrick 
1001*e5dd7070Spatrick   // Attempt to perform zero-initialization using memset.
1002*e5dd7070Spatrick   auto TryMemsetInitialization = [&]() -> bool {
1003*e5dd7070Spatrick     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1004*e5dd7070Spatrick     // we can initialize with a memset to -1.
1005*e5dd7070Spatrick     if (!CGM.getTypes().isZeroInitializable(ElementType))
1006*e5dd7070Spatrick       return false;
1007*e5dd7070Spatrick 
1008*e5dd7070Spatrick     // Optimization: since zero initialization will just set the memory
1009*e5dd7070Spatrick     // to all zeroes, generate a single memset to do it in one shot.
1010*e5dd7070Spatrick 
1011*e5dd7070Spatrick     // Subtract out the size of any elements we've already initialized.
1012*e5dd7070Spatrick     auto *RemainingSize = AllocSizeWithoutCookie;
1013*e5dd7070Spatrick     if (InitListElements) {
1014*e5dd7070Spatrick       // We know this can't overflow; we check this when doing the allocation.
1015*e5dd7070Spatrick       auto *InitializedSize = llvm::ConstantInt::get(
1016*e5dd7070Spatrick           RemainingSize->getType(),
1017*e5dd7070Spatrick           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1018*e5dd7070Spatrick               InitListElements);
1019*e5dd7070Spatrick       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1020*e5dd7070Spatrick     }
1021*e5dd7070Spatrick 
1022*e5dd7070Spatrick     // Create the memset.
1023*e5dd7070Spatrick     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1024*e5dd7070Spatrick     return true;
1025*e5dd7070Spatrick   };
1026*e5dd7070Spatrick 
1027*e5dd7070Spatrick   // If the initializer is an initializer list, first do the explicit elements.
1028*e5dd7070Spatrick   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1029*e5dd7070Spatrick     // Initializing from a (braced) string literal is a special case; the init
1030*e5dd7070Spatrick     // list element does not initialize a (single) array element.
1031*e5dd7070Spatrick     if (ILE->isStringLiteralInit()) {
1032*e5dd7070Spatrick       // Initialize the initial portion of length equal to that of the string
1033*e5dd7070Spatrick       // literal. The allocation must be for at least this much; we emitted a
1034*e5dd7070Spatrick       // check for that earlier.
1035*e5dd7070Spatrick       AggValueSlot Slot =
1036*e5dd7070Spatrick           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1037*e5dd7070Spatrick                                 AggValueSlot::IsDestructed,
1038*e5dd7070Spatrick                                 AggValueSlot::DoesNotNeedGCBarriers,
1039*e5dd7070Spatrick                                 AggValueSlot::IsNotAliased,
1040*e5dd7070Spatrick                                 AggValueSlot::DoesNotOverlap,
1041*e5dd7070Spatrick                                 AggValueSlot::IsNotZeroed,
1042*e5dd7070Spatrick                                 AggValueSlot::IsSanitizerChecked);
1043*e5dd7070Spatrick       EmitAggExpr(ILE->getInit(0), Slot);
1044*e5dd7070Spatrick 
1045*e5dd7070Spatrick       // Move past these elements.
1046*e5dd7070Spatrick       InitListElements =
1047*e5dd7070Spatrick           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1048*e5dd7070Spatrick               ->getSize().getZExtValue();
1049*e5dd7070Spatrick       CurPtr =
1050*e5dd7070Spatrick           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1051*e5dd7070Spatrick                                             Builder.getSize(InitListElements),
1052*e5dd7070Spatrick                                             "string.init.end"),
1053*e5dd7070Spatrick                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1054*e5dd7070Spatrick                                                           ElementSize));
1055*e5dd7070Spatrick 
1056*e5dd7070Spatrick       // Zero out the rest, if any remain.
1057*e5dd7070Spatrick       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1058*e5dd7070Spatrick       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1059*e5dd7070Spatrick         bool OK = TryMemsetInitialization();
1060*e5dd7070Spatrick         (void)OK;
1061*e5dd7070Spatrick         assert(OK && "couldn't memset character type?");
1062*e5dd7070Spatrick       }
1063*e5dd7070Spatrick       return;
1064*e5dd7070Spatrick     }
1065*e5dd7070Spatrick 
1066*e5dd7070Spatrick     InitListElements = ILE->getNumInits();
1067*e5dd7070Spatrick 
1068*e5dd7070Spatrick     // If this is a multi-dimensional array new, we will initialize multiple
1069*e5dd7070Spatrick     // elements with each init list element.
1070*e5dd7070Spatrick     QualType AllocType = E->getAllocatedType();
1071*e5dd7070Spatrick     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1072*e5dd7070Spatrick             AllocType->getAsArrayTypeUnsafe())) {
1073*e5dd7070Spatrick       ElementTy = ConvertTypeForMem(AllocType);
1074*e5dd7070Spatrick       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1075*e5dd7070Spatrick       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1076*e5dd7070Spatrick     }
1077*e5dd7070Spatrick 
1078*e5dd7070Spatrick     // Enter a partial-destruction Cleanup if necessary.
1079*e5dd7070Spatrick     if (needsEHCleanup(DtorKind)) {
1080*e5dd7070Spatrick       // In principle we could tell the Cleanup where we are more
1081*e5dd7070Spatrick       // directly, but the control flow can get so varied here that it
1082*e5dd7070Spatrick       // would actually be quite complex.  Therefore we go through an
1083*e5dd7070Spatrick       // alloca.
1084*e5dd7070Spatrick       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1085*e5dd7070Spatrick                                    "array.init.end");
1086*e5dd7070Spatrick       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1087*e5dd7070Spatrick       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1088*e5dd7070Spatrick                                        ElementType, ElementAlign,
1089*e5dd7070Spatrick                                        getDestroyer(DtorKind));
1090*e5dd7070Spatrick       Cleanup = EHStack.stable_begin();
1091*e5dd7070Spatrick     }
1092*e5dd7070Spatrick 
1093*e5dd7070Spatrick     CharUnits StartAlign = CurPtr.getAlignment();
1094*e5dd7070Spatrick     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1095*e5dd7070Spatrick       // Tell the cleanup that it needs to destroy up to this
1096*e5dd7070Spatrick       // element.  TODO: some of these stores can be trivially
1097*e5dd7070Spatrick       // observed to be unnecessary.
1098*e5dd7070Spatrick       if (EndOfInit.isValid()) {
1099*e5dd7070Spatrick         auto FinishedPtr =
1100*e5dd7070Spatrick           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1101*e5dd7070Spatrick         Builder.CreateStore(FinishedPtr, EndOfInit);
1102*e5dd7070Spatrick       }
1103*e5dd7070Spatrick       // FIXME: If the last initializer is an incomplete initializer list for
1104*e5dd7070Spatrick       // an array, and we have an array filler, we can fold together the two
1105*e5dd7070Spatrick       // initialization loops.
1106*e5dd7070Spatrick       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1107*e5dd7070Spatrick                               ILE->getInit(i)->getType(), CurPtr,
1108*e5dd7070Spatrick                               AggValueSlot::DoesNotOverlap);
1109*e5dd7070Spatrick       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1110*e5dd7070Spatrick                                                  Builder.getSize(1),
1111*e5dd7070Spatrick                                                  "array.exp.next"),
1112*e5dd7070Spatrick                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1113*e5dd7070Spatrick     }
1114*e5dd7070Spatrick 
1115*e5dd7070Spatrick     // The remaining elements are filled with the array filler expression.
1116*e5dd7070Spatrick     Init = ILE->getArrayFiller();
1117*e5dd7070Spatrick 
1118*e5dd7070Spatrick     // Extract the initializer for the individual array elements by pulling
1119*e5dd7070Spatrick     // out the array filler from all the nested initializer lists. This avoids
1120*e5dd7070Spatrick     // generating a nested loop for the initialization.
1121*e5dd7070Spatrick     while (Init && Init->getType()->isConstantArrayType()) {
1122*e5dd7070Spatrick       auto *SubILE = dyn_cast<InitListExpr>(Init);
1123*e5dd7070Spatrick       if (!SubILE)
1124*e5dd7070Spatrick         break;
1125*e5dd7070Spatrick       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1126*e5dd7070Spatrick       Init = SubILE->getArrayFiller();
1127*e5dd7070Spatrick     }
1128*e5dd7070Spatrick 
1129*e5dd7070Spatrick     // Switch back to initializing one base element at a time.
1130*e5dd7070Spatrick     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1131*e5dd7070Spatrick   }
1132*e5dd7070Spatrick 
1133*e5dd7070Spatrick   // If all elements have already been initialized, skip any further
1134*e5dd7070Spatrick   // initialization.
1135*e5dd7070Spatrick   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1136*e5dd7070Spatrick   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1137*e5dd7070Spatrick     // If there was a Cleanup, deactivate it.
1138*e5dd7070Spatrick     if (CleanupDominator)
1139*e5dd7070Spatrick       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1140*e5dd7070Spatrick     return;
1141*e5dd7070Spatrick   }
1142*e5dd7070Spatrick 
1143*e5dd7070Spatrick   assert(Init && "have trailing elements to initialize but no initializer");
1144*e5dd7070Spatrick 
1145*e5dd7070Spatrick   // If this is a constructor call, try to optimize it out, and failing that
1146*e5dd7070Spatrick   // emit a single loop to initialize all remaining elements.
1147*e5dd7070Spatrick   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1148*e5dd7070Spatrick     CXXConstructorDecl *Ctor = CCE->getConstructor();
1149*e5dd7070Spatrick     if (Ctor->isTrivial()) {
1150*e5dd7070Spatrick       // If new expression did not specify value-initialization, then there
1151*e5dd7070Spatrick       // is no initialization.
1152*e5dd7070Spatrick       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1153*e5dd7070Spatrick         return;
1154*e5dd7070Spatrick 
1155*e5dd7070Spatrick       if (TryMemsetInitialization())
1156*e5dd7070Spatrick         return;
1157*e5dd7070Spatrick     }
1158*e5dd7070Spatrick 
1159*e5dd7070Spatrick     // Store the new Cleanup position for irregular Cleanups.
1160*e5dd7070Spatrick     //
1161*e5dd7070Spatrick     // FIXME: Share this cleanup with the constructor call emission rather than
1162*e5dd7070Spatrick     // having it create a cleanup of its own.
1163*e5dd7070Spatrick     if (EndOfInit.isValid())
1164*e5dd7070Spatrick       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1165*e5dd7070Spatrick 
1166*e5dd7070Spatrick     // Emit a constructor call loop to initialize the remaining elements.
1167*e5dd7070Spatrick     if (InitListElements)
1168*e5dd7070Spatrick       NumElements = Builder.CreateSub(
1169*e5dd7070Spatrick           NumElements,
1170*e5dd7070Spatrick           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1171*e5dd7070Spatrick     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1172*e5dd7070Spatrick                                /*NewPointerIsChecked*/true,
1173*e5dd7070Spatrick                                CCE->requiresZeroInitialization());
1174*e5dd7070Spatrick     return;
1175*e5dd7070Spatrick   }
1176*e5dd7070Spatrick 
1177*e5dd7070Spatrick   // If this is value-initialization, we can usually use memset.
1178*e5dd7070Spatrick   ImplicitValueInitExpr IVIE(ElementType);
1179*e5dd7070Spatrick   if (isa<ImplicitValueInitExpr>(Init)) {
1180*e5dd7070Spatrick     if (TryMemsetInitialization())
1181*e5dd7070Spatrick       return;
1182*e5dd7070Spatrick 
1183*e5dd7070Spatrick     // Switch to an ImplicitValueInitExpr for the element type. This handles
1184*e5dd7070Spatrick     // only one case: multidimensional array new of pointers to members. In
1185*e5dd7070Spatrick     // all other cases, we already have an initializer for the array element.
1186*e5dd7070Spatrick     Init = &IVIE;
1187*e5dd7070Spatrick   }
1188*e5dd7070Spatrick 
1189*e5dd7070Spatrick   // At this point we should have found an initializer for the individual
1190*e5dd7070Spatrick   // elements of the array.
1191*e5dd7070Spatrick   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1192*e5dd7070Spatrick          "got wrong type of element to initialize");
1193*e5dd7070Spatrick 
1194*e5dd7070Spatrick   // If we have an empty initializer list, we can usually use memset.
1195*e5dd7070Spatrick   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1196*e5dd7070Spatrick     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1197*e5dd7070Spatrick       return;
1198*e5dd7070Spatrick 
1199*e5dd7070Spatrick   // If we have a struct whose every field is value-initialized, we can
1200*e5dd7070Spatrick   // usually use memset.
1201*e5dd7070Spatrick   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1202*e5dd7070Spatrick     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1203*e5dd7070Spatrick       if (RType->getDecl()->isStruct()) {
1204*e5dd7070Spatrick         unsigned NumElements = 0;
1205*e5dd7070Spatrick         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1206*e5dd7070Spatrick           NumElements = CXXRD->getNumBases();
1207*e5dd7070Spatrick         for (auto *Field : RType->getDecl()->fields())
1208*e5dd7070Spatrick           if (!Field->isUnnamedBitfield())
1209*e5dd7070Spatrick             ++NumElements;
1210*e5dd7070Spatrick         // FIXME: Recurse into nested InitListExprs.
1211*e5dd7070Spatrick         if (ILE->getNumInits() == NumElements)
1212*e5dd7070Spatrick           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1213*e5dd7070Spatrick             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1214*e5dd7070Spatrick               --NumElements;
1215*e5dd7070Spatrick         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1216*e5dd7070Spatrick           return;
1217*e5dd7070Spatrick       }
1218*e5dd7070Spatrick     }
1219*e5dd7070Spatrick   }
1220*e5dd7070Spatrick 
1221*e5dd7070Spatrick   // Create the loop blocks.
1222*e5dd7070Spatrick   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1223*e5dd7070Spatrick   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1224*e5dd7070Spatrick   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1225*e5dd7070Spatrick 
1226*e5dd7070Spatrick   // Find the end of the array, hoisted out of the loop.
1227*e5dd7070Spatrick   llvm::Value *EndPtr =
1228*e5dd7070Spatrick     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1229*e5dd7070Spatrick 
1230*e5dd7070Spatrick   // If the number of elements isn't constant, we have to now check if there is
1231*e5dd7070Spatrick   // anything left to initialize.
1232*e5dd7070Spatrick   if (!ConstNum) {
1233*e5dd7070Spatrick     llvm::Value *IsEmpty =
1234*e5dd7070Spatrick       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1235*e5dd7070Spatrick     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1236*e5dd7070Spatrick   }
1237*e5dd7070Spatrick 
1238*e5dd7070Spatrick   // Enter the loop.
1239*e5dd7070Spatrick   EmitBlock(LoopBB);
1240*e5dd7070Spatrick 
1241*e5dd7070Spatrick   // Set up the current-element phi.
1242*e5dd7070Spatrick   llvm::PHINode *CurPtrPhi =
1243*e5dd7070Spatrick     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1244*e5dd7070Spatrick   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1245*e5dd7070Spatrick 
1246*e5dd7070Spatrick   CurPtr = Address(CurPtrPhi, ElementAlign);
1247*e5dd7070Spatrick 
1248*e5dd7070Spatrick   // Store the new Cleanup position for irregular Cleanups.
1249*e5dd7070Spatrick   if (EndOfInit.isValid())
1250*e5dd7070Spatrick     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1251*e5dd7070Spatrick 
1252*e5dd7070Spatrick   // Enter a partial-destruction Cleanup if necessary.
1253*e5dd7070Spatrick   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1254*e5dd7070Spatrick     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1255*e5dd7070Spatrick                                    ElementType, ElementAlign,
1256*e5dd7070Spatrick                                    getDestroyer(DtorKind));
1257*e5dd7070Spatrick     Cleanup = EHStack.stable_begin();
1258*e5dd7070Spatrick     CleanupDominator = Builder.CreateUnreachable();
1259*e5dd7070Spatrick   }
1260*e5dd7070Spatrick 
1261*e5dd7070Spatrick   // Emit the initializer into this element.
1262*e5dd7070Spatrick   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1263*e5dd7070Spatrick                           AggValueSlot::DoesNotOverlap);
1264*e5dd7070Spatrick 
1265*e5dd7070Spatrick   // Leave the Cleanup if we entered one.
1266*e5dd7070Spatrick   if (CleanupDominator) {
1267*e5dd7070Spatrick     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1268*e5dd7070Spatrick     CleanupDominator->eraseFromParent();
1269*e5dd7070Spatrick   }
1270*e5dd7070Spatrick 
1271*e5dd7070Spatrick   // Advance to the next element by adjusting the pointer type as necessary.
1272*e5dd7070Spatrick   llvm::Value *NextPtr =
1273*e5dd7070Spatrick     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1274*e5dd7070Spatrick                                        "array.next");
1275*e5dd7070Spatrick 
1276*e5dd7070Spatrick   // Check whether we've gotten to the end of the array and, if so,
1277*e5dd7070Spatrick   // exit the loop.
1278*e5dd7070Spatrick   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1279*e5dd7070Spatrick   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1280*e5dd7070Spatrick   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1281*e5dd7070Spatrick 
1282*e5dd7070Spatrick   EmitBlock(ContBB);
1283*e5dd7070Spatrick }
1284*e5dd7070Spatrick 
1285*e5dd7070Spatrick static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1286*e5dd7070Spatrick                                QualType ElementType, llvm::Type *ElementTy,
1287*e5dd7070Spatrick                                Address NewPtr, llvm::Value *NumElements,
1288*e5dd7070Spatrick                                llvm::Value *AllocSizeWithoutCookie) {
1289*e5dd7070Spatrick   ApplyDebugLocation DL(CGF, E);
1290*e5dd7070Spatrick   if (E->isArray())
1291*e5dd7070Spatrick     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1292*e5dd7070Spatrick                                 AllocSizeWithoutCookie);
1293*e5dd7070Spatrick   else if (const Expr *Init = E->getInitializer())
1294*e5dd7070Spatrick     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1295*e5dd7070Spatrick                             AggValueSlot::DoesNotOverlap);
1296*e5dd7070Spatrick }
1297*e5dd7070Spatrick 
1298*e5dd7070Spatrick /// Emit a call to an operator new or operator delete function, as implicitly
1299*e5dd7070Spatrick /// created by new-expressions and delete-expressions.
1300*e5dd7070Spatrick static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1301*e5dd7070Spatrick                                 const FunctionDecl *CalleeDecl,
1302*e5dd7070Spatrick                                 const FunctionProtoType *CalleeType,
1303*e5dd7070Spatrick                                 const CallArgList &Args) {
1304*e5dd7070Spatrick   llvm::CallBase *CallOrInvoke;
1305*e5dd7070Spatrick   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1306*e5dd7070Spatrick   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1307*e5dd7070Spatrick   RValue RV =
1308*e5dd7070Spatrick       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1309*e5dd7070Spatrick                        Args, CalleeType, /*ChainCall=*/false),
1310*e5dd7070Spatrick                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1311*e5dd7070Spatrick 
1312*e5dd7070Spatrick   /// C++1y [expr.new]p10:
1313*e5dd7070Spatrick   ///   [In a new-expression,] an implementation is allowed to omit a call
1314*e5dd7070Spatrick   ///   to a replaceable global allocation function.
1315*e5dd7070Spatrick   ///
1316*e5dd7070Spatrick   /// We model such elidable calls with the 'builtin' attribute.
1317*e5dd7070Spatrick   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1318*e5dd7070Spatrick   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1319*e5dd7070Spatrick       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1320*e5dd7070Spatrick     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1321*e5dd7070Spatrick                                llvm::Attribute::Builtin);
1322*e5dd7070Spatrick   }
1323*e5dd7070Spatrick 
1324*e5dd7070Spatrick   return RV;
1325*e5dd7070Spatrick }
1326*e5dd7070Spatrick 
1327*e5dd7070Spatrick RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1328*e5dd7070Spatrick                                                  const CallExpr *TheCall,
1329*e5dd7070Spatrick                                                  bool IsDelete) {
1330*e5dd7070Spatrick   CallArgList Args;
1331*e5dd7070Spatrick   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1332*e5dd7070Spatrick   // Find the allocation or deallocation function that we're calling.
1333*e5dd7070Spatrick   ASTContext &Ctx = getContext();
1334*e5dd7070Spatrick   DeclarationName Name = Ctx.DeclarationNames
1335*e5dd7070Spatrick       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1336*e5dd7070Spatrick 
1337*e5dd7070Spatrick   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1338*e5dd7070Spatrick     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1339*e5dd7070Spatrick       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1340*e5dd7070Spatrick         return EmitNewDeleteCall(*this, FD, Type, Args);
1341*e5dd7070Spatrick   llvm_unreachable("predeclared global operator new/delete is missing");
1342*e5dd7070Spatrick }
1343*e5dd7070Spatrick 
1344*e5dd7070Spatrick namespace {
1345*e5dd7070Spatrick /// The parameters to pass to a usual operator delete.
1346*e5dd7070Spatrick struct UsualDeleteParams {
1347*e5dd7070Spatrick   bool DestroyingDelete = false;
1348*e5dd7070Spatrick   bool Size = false;
1349*e5dd7070Spatrick   bool Alignment = false;
1350*e5dd7070Spatrick };
1351*e5dd7070Spatrick }
1352*e5dd7070Spatrick 
1353*e5dd7070Spatrick static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1354*e5dd7070Spatrick   UsualDeleteParams Params;
1355*e5dd7070Spatrick 
1356*e5dd7070Spatrick   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1357*e5dd7070Spatrick   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1358*e5dd7070Spatrick 
1359*e5dd7070Spatrick   // The first argument is always a void*.
1360*e5dd7070Spatrick   ++AI;
1361*e5dd7070Spatrick 
1362*e5dd7070Spatrick   // The next parameter may be a std::destroying_delete_t.
1363*e5dd7070Spatrick   if (FD->isDestroyingOperatorDelete()) {
1364*e5dd7070Spatrick     Params.DestroyingDelete = true;
1365*e5dd7070Spatrick     assert(AI != AE);
1366*e5dd7070Spatrick     ++AI;
1367*e5dd7070Spatrick   }
1368*e5dd7070Spatrick 
1369*e5dd7070Spatrick   // Figure out what other parameters we should be implicitly passing.
1370*e5dd7070Spatrick   if (AI != AE && (*AI)->isIntegerType()) {
1371*e5dd7070Spatrick     Params.Size = true;
1372*e5dd7070Spatrick     ++AI;
1373*e5dd7070Spatrick   }
1374*e5dd7070Spatrick 
1375*e5dd7070Spatrick   if (AI != AE && (*AI)->isAlignValT()) {
1376*e5dd7070Spatrick     Params.Alignment = true;
1377*e5dd7070Spatrick     ++AI;
1378*e5dd7070Spatrick   }
1379*e5dd7070Spatrick 
1380*e5dd7070Spatrick   assert(AI == AE && "unexpected usual deallocation function parameter");
1381*e5dd7070Spatrick   return Params;
1382*e5dd7070Spatrick }
1383*e5dd7070Spatrick 
1384*e5dd7070Spatrick namespace {
1385*e5dd7070Spatrick   /// A cleanup to call the given 'operator delete' function upon abnormal
1386*e5dd7070Spatrick   /// exit from a new expression. Templated on a traits type that deals with
1387*e5dd7070Spatrick   /// ensuring that the arguments dominate the cleanup if necessary.
1388*e5dd7070Spatrick   template<typename Traits>
1389*e5dd7070Spatrick   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1390*e5dd7070Spatrick     /// Type used to hold llvm::Value*s.
1391*e5dd7070Spatrick     typedef typename Traits::ValueTy ValueTy;
1392*e5dd7070Spatrick     /// Type used to hold RValues.
1393*e5dd7070Spatrick     typedef typename Traits::RValueTy RValueTy;
1394*e5dd7070Spatrick     struct PlacementArg {
1395*e5dd7070Spatrick       RValueTy ArgValue;
1396*e5dd7070Spatrick       QualType ArgType;
1397*e5dd7070Spatrick     };
1398*e5dd7070Spatrick 
1399*e5dd7070Spatrick     unsigned NumPlacementArgs : 31;
1400*e5dd7070Spatrick     unsigned PassAlignmentToPlacementDelete : 1;
1401*e5dd7070Spatrick     const FunctionDecl *OperatorDelete;
1402*e5dd7070Spatrick     ValueTy Ptr;
1403*e5dd7070Spatrick     ValueTy AllocSize;
1404*e5dd7070Spatrick     CharUnits AllocAlign;
1405*e5dd7070Spatrick 
1406*e5dd7070Spatrick     PlacementArg *getPlacementArgs() {
1407*e5dd7070Spatrick       return reinterpret_cast<PlacementArg *>(this + 1);
1408*e5dd7070Spatrick     }
1409*e5dd7070Spatrick 
1410*e5dd7070Spatrick   public:
1411*e5dd7070Spatrick     static size_t getExtraSize(size_t NumPlacementArgs) {
1412*e5dd7070Spatrick       return NumPlacementArgs * sizeof(PlacementArg);
1413*e5dd7070Spatrick     }
1414*e5dd7070Spatrick 
1415*e5dd7070Spatrick     CallDeleteDuringNew(size_t NumPlacementArgs,
1416*e5dd7070Spatrick                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1417*e5dd7070Spatrick                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1418*e5dd7070Spatrick                         CharUnits AllocAlign)
1419*e5dd7070Spatrick       : NumPlacementArgs(NumPlacementArgs),
1420*e5dd7070Spatrick         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1421*e5dd7070Spatrick         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1422*e5dd7070Spatrick         AllocAlign(AllocAlign) {}
1423*e5dd7070Spatrick 
1424*e5dd7070Spatrick     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1425*e5dd7070Spatrick       assert(I < NumPlacementArgs && "index out of range");
1426*e5dd7070Spatrick       getPlacementArgs()[I] = {Arg, Type};
1427*e5dd7070Spatrick     }
1428*e5dd7070Spatrick 
1429*e5dd7070Spatrick     void Emit(CodeGenFunction &CGF, Flags flags) override {
1430*e5dd7070Spatrick       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1431*e5dd7070Spatrick       CallArgList DeleteArgs;
1432*e5dd7070Spatrick 
1433*e5dd7070Spatrick       // The first argument is always a void* (or C* for a destroying operator
1434*e5dd7070Spatrick       // delete for class type C).
1435*e5dd7070Spatrick       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1436*e5dd7070Spatrick 
1437*e5dd7070Spatrick       // Figure out what other parameters we should be implicitly passing.
1438*e5dd7070Spatrick       UsualDeleteParams Params;
1439*e5dd7070Spatrick       if (NumPlacementArgs) {
1440*e5dd7070Spatrick         // A placement deallocation function is implicitly passed an alignment
1441*e5dd7070Spatrick         // if the placement allocation function was, but is never passed a size.
1442*e5dd7070Spatrick         Params.Alignment = PassAlignmentToPlacementDelete;
1443*e5dd7070Spatrick       } else {
1444*e5dd7070Spatrick         // For a non-placement new-expression, 'operator delete' can take a
1445*e5dd7070Spatrick         // size and/or an alignment if it has the right parameters.
1446*e5dd7070Spatrick         Params = getUsualDeleteParams(OperatorDelete);
1447*e5dd7070Spatrick       }
1448*e5dd7070Spatrick 
1449*e5dd7070Spatrick       assert(!Params.DestroyingDelete &&
1450*e5dd7070Spatrick              "should not call destroying delete in a new-expression");
1451*e5dd7070Spatrick 
1452*e5dd7070Spatrick       // The second argument can be a std::size_t (for non-placement delete).
1453*e5dd7070Spatrick       if (Params.Size)
1454*e5dd7070Spatrick         DeleteArgs.add(Traits::get(CGF, AllocSize),
1455*e5dd7070Spatrick                        CGF.getContext().getSizeType());
1456*e5dd7070Spatrick 
1457*e5dd7070Spatrick       // The next (second or third) argument can be a std::align_val_t, which
1458*e5dd7070Spatrick       // is an enum whose underlying type is std::size_t.
1459*e5dd7070Spatrick       // FIXME: Use the right type as the parameter type. Note that in a call
1460*e5dd7070Spatrick       // to operator delete(size_t, ...), we may not have it available.
1461*e5dd7070Spatrick       if (Params.Alignment)
1462*e5dd7070Spatrick         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1463*e5dd7070Spatrick                            CGF.SizeTy, AllocAlign.getQuantity())),
1464*e5dd7070Spatrick                        CGF.getContext().getSizeType());
1465*e5dd7070Spatrick 
1466*e5dd7070Spatrick       // Pass the rest of the arguments, which must match exactly.
1467*e5dd7070Spatrick       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1468*e5dd7070Spatrick         auto Arg = getPlacementArgs()[I];
1469*e5dd7070Spatrick         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1470*e5dd7070Spatrick       }
1471*e5dd7070Spatrick 
1472*e5dd7070Spatrick       // Call 'operator delete'.
1473*e5dd7070Spatrick       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1474*e5dd7070Spatrick     }
1475*e5dd7070Spatrick   };
1476*e5dd7070Spatrick }
1477*e5dd7070Spatrick 
1478*e5dd7070Spatrick /// Enter a cleanup to call 'operator delete' if the initializer in a
1479*e5dd7070Spatrick /// new-expression throws.
1480*e5dd7070Spatrick static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1481*e5dd7070Spatrick                                   const CXXNewExpr *E,
1482*e5dd7070Spatrick                                   Address NewPtr,
1483*e5dd7070Spatrick                                   llvm::Value *AllocSize,
1484*e5dd7070Spatrick                                   CharUnits AllocAlign,
1485*e5dd7070Spatrick                                   const CallArgList &NewArgs) {
1486*e5dd7070Spatrick   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1487*e5dd7070Spatrick 
1488*e5dd7070Spatrick   // If we're not inside a conditional branch, then the cleanup will
1489*e5dd7070Spatrick   // dominate and we can do the easier (and more efficient) thing.
1490*e5dd7070Spatrick   if (!CGF.isInConditionalBranch()) {
1491*e5dd7070Spatrick     struct DirectCleanupTraits {
1492*e5dd7070Spatrick       typedef llvm::Value *ValueTy;
1493*e5dd7070Spatrick       typedef RValue RValueTy;
1494*e5dd7070Spatrick       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1495*e5dd7070Spatrick       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1496*e5dd7070Spatrick     };
1497*e5dd7070Spatrick 
1498*e5dd7070Spatrick     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1499*e5dd7070Spatrick 
1500*e5dd7070Spatrick     DirectCleanup *Cleanup = CGF.EHStack
1501*e5dd7070Spatrick       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1502*e5dd7070Spatrick                                            E->getNumPlacementArgs(),
1503*e5dd7070Spatrick                                            E->getOperatorDelete(),
1504*e5dd7070Spatrick                                            NewPtr.getPointer(),
1505*e5dd7070Spatrick                                            AllocSize,
1506*e5dd7070Spatrick                                            E->passAlignment(),
1507*e5dd7070Spatrick                                            AllocAlign);
1508*e5dd7070Spatrick     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1509*e5dd7070Spatrick       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1510*e5dd7070Spatrick       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1511*e5dd7070Spatrick     }
1512*e5dd7070Spatrick 
1513*e5dd7070Spatrick     return;
1514*e5dd7070Spatrick   }
1515*e5dd7070Spatrick 
1516*e5dd7070Spatrick   // Otherwise, we need to save all this stuff.
1517*e5dd7070Spatrick   DominatingValue<RValue>::saved_type SavedNewPtr =
1518*e5dd7070Spatrick     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1519*e5dd7070Spatrick   DominatingValue<RValue>::saved_type SavedAllocSize =
1520*e5dd7070Spatrick     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1521*e5dd7070Spatrick 
1522*e5dd7070Spatrick   struct ConditionalCleanupTraits {
1523*e5dd7070Spatrick     typedef DominatingValue<RValue>::saved_type ValueTy;
1524*e5dd7070Spatrick     typedef DominatingValue<RValue>::saved_type RValueTy;
1525*e5dd7070Spatrick     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1526*e5dd7070Spatrick       return V.restore(CGF);
1527*e5dd7070Spatrick     }
1528*e5dd7070Spatrick   };
1529*e5dd7070Spatrick   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1530*e5dd7070Spatrick 
1531*e5dd7070Spatrick   ConditionalCleanup *Cleanup = CGF.EHStack
1532*e5dd7070Spatrick     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1533*e5dd7070Spatrick                                               E->getNumPlacementArgs(),
1534*e5dd7070Spatrick                                               E->getOperatorDelete(),
1535*e5dd7070Spatrick                                               SavedNewPtr,
1536*e5dd7070Spatrick                                               SavedAllocSize,
1537*e5dd7070Spatrick                                               E->passAlignment(),
1538*e5dd7070Spatrick                                               AllocAlign);
1539*e5dd7070Spatrick   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1540*e5dd7070Spatrick     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1541*e5dd7070Spatrick     Cleanup->setPlacementArg(
1542*e5dd7070Spatrick         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1543*e5dd7070Spatrick   }
1544*e5dd7070Spatrick 
1545*e5dd7070Spatrick   CGF.initFullExprCleanup();
1546*e5dd7070Spatrick }
1547*e5dd7070Spatrick 
1548*e5dd7070Spatrick llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1549*e5dd7070Spatrick   // The element type being allocated.
1550*e5dd7070Spatrick   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1551*e5dd7070Spatrick 
1552*e5dd7070Spatrick   // 1. Build a call to the allocation function.
1553*e5dd7070Spatrick   FunctionDecl *allocator = E->getOperatorNew();
1554*e5dd7070Spatrick 
1555*e5dd7070Spatrick   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1556*e5dd7070Spatrick   unsigned minElements = 0;
1557*e5dd7070Spatrick   if (E->isArray() && E->hasInitializer()) {
1558*e5dd7070Spatrick     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1559*e5dd7070Spatrick     if (ILE && ILE->isStringLiteralInit())
1560*e5dd7070Spatrick       minElements =
1561*e5dd7070Spatrick           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1562*e5dd7070Spatrick               ->getSize().getZExtValue();
1563*e5dd7070Spatrick     else if (ILE)
1564*e5dd7070Spatrick       minElements = ILE->getNumInits();
1565*e5dd7070Spatrick   }
1566*e5dd7070Spatrick 
1567*e5dd7070Spatrick   llvm::Value *numElements = nullptr;
1568*e5dd7070Spatrick   llvm::Value *allocSizeWithoutCookie = nullptr;
1569*e5dd7070Spatrick   llvm::Value *allocSize =
1570*e5dd7070Spatrick     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1571*e5dd7070Spatrick                         allocSizeWithoutCookie);
1572*e5dd7070Spatrick   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1573*e5dd7070Spatrick 
1574*e5dd7070Spatrick   // Emit the allocation call.  If the allocator is a global placement
1575*e5dd7070Spatrick   // operator, just "inline" it directly.
1576*e5dd7070Spatrick   Address allocation = Address::invalid();
1577*e5dd7070Spatrick   CallArgList allocatorArgs;
1578*e5dd7070Spatrick   if (allocator->isReservedGlobalPlacementOperator()) {
1579*e5dd7070Spatrick     assert(E->getNumPlacementArgs() == 1);
1580*e5dd7070Spatrick     const Expr *arg = *E->placement_arguments().begin();
1581*e5dd7070Spatrick 
1582*e5dd7070Spatrick     LValueBaseInfo BaseInfo;
1583*e5dd7070Spatrick     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1584*e5dd7070Spatrick 
1585*e5dd7070Spatrick     // The pointer expression will, in many cases, be an opaque void*.
1586*e5dd7070Spatrick     // In these cases, discard the computed alignment and use the
1587*e5dd7070Spatrick     // formal alignment of the allocated type.
1588*e5dd7070Spatrick     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1589*e5dd7070Spatrick       allocation = Address(allocation.getPointer(), allocAlign);
1590*e5dd7070Spatrick 
1591*e5dd7070Spatrick     // Set up allocatorArgs for the call to operator delete if it's not
1592*e5dd7070Spatrick     // the reserved global operator.
1593*e5dd7070Spatrick     if (E->getOperatorDelete() &&
1594*e5dd7070Spatrick         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1595*e5dd7070Spatrick       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1596*e5dd7070Spatrick       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1597*e5dd7070Spatrick     }
1598*e5dd7070Spatrick 
1599*e5dd7070Spatrick   } else {
1600*e5dd7070Spatrick     const FunctionProtoType *allocatorType =
1601*e5dd7070Spatrick       allocator->getType()->castAs<FunctionProtoType>();
1602*e5dd7070Spatrick     unsigned ParamsToSkip = 0;
1603*e5dd7070Spatrick 
1604*e5dd7070Spatrick     // The allocation size is the first argument.
1605*e5dd7070Spatrick     QualType sizeType = getContext().getSizeType();
1606*e5dd7070Spatrick     allocatorArgs.add(RValue::get(allocSize), sizeType);
1607*e5dd7070Spatrick     ++ParamsToSkip;
1608*e5dd7070Spatrick 
1609*e5dd7070Spatrick     if (allocSize != allocSizeWithoutCookie) {
1610*e5dd7070Spatrick       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1611*e5dd7070Spatrick       allocAlign = std::max(allocAlign, cookieAlign);
1612*e5dd7070Spatrick     }
1613*e5dd7070Spatrick 
1614*e5dd7070Spatrick     // The allocation alignment may be passed as the second argument.
1615*e5dd7070Spatrick     if (E->passAlignment()) {
1616*e5dd7070Spatrick       QualType AlignValT = sizeType;
1617*e5dd7070Spatrick       if (allocatorType->getNumParams() > 1) {
1618*e5dd7070Spatrick         AlignValT = allocatorType->getParamType(1);
1619*e5dd7070Spatrick         assert(getContext().hasSameUnqualifiedType(
1620*e5dd7070Spatrick                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1621*e5dd7070Spatrick                    sizeType) &&
1622*e5dd7070Spatrick                "wrong type for alignment parameter");
1623*e5dd7070Spatrick         ++ParamsToSkip;
1624*e5dd7070Spatrick       } else {
1625*e5dd7070Spatrick         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1626*e5dd7070Spatrick         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1627*e5dd7070Spatrick       }
1628*e5dd7070Spatrick       allocatorArgs.add(
1629*e5dd7070Spatrick           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1630*e5dd7070Spatrick           AlignValT);
1631*e5dd7070Spatrick     }
1632*e5dd7070Spatrick 
1633*e5dd7070Spatrick     // FIXME: Why do we not pass a CalleeDecl here?
1634*e5dd7070Spatrick     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1635*e5dd7070Spatrick                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1636*e5dd7070Spatrick 
1637*e5dd7070Spatrick     RValue RV =
1638*e5dd7070Spatrick       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1639*e5dd7070Spatrick 
1640*e5dd7070Spatrick     // If this was a call to a global replaceable allocation function that does
1641*e5dd7070Spatrick     // not take an alignment argument, the allocator is known to produce
1642*e5dd7070Spatrick     // storage that's suitably aligned for any object that fits, up to a known
1643*e5dd7070Spatrick     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1644*e5dd7070Spatrick     CharUnits allocationAlign = allocAlign;
1645*e5dd7070Spatrick     if (!E->passAlignment() &&
1646*e5dd7070Spatrick         allocator->isReplaceableGlobalAllocationFunction()) {
1647*e5dd7070Spatrick       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1648*e5dd7070Spatrick           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1649*e5dd7070Spatrick       allocationAlign = std::max(
1650*e5dd7070Spatrick           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1651*e5dd7070Spatrick     }
1652*e5dd7070Spatrick 
1653*e5dd7070Spatrick     allocation = Address(RV.getScalarVal(), allocationAlign);
1654*e5dd7070Spatrick   }
1655*e5dd7070Spatrick 
1656*e5dd7070Spatrick   // Emit a null check on the allocation result if the allocation
1657*e5dd7070Spatrick   // function is allowed to return null (because it has a non-throwing
1658*e5dd7070Spatrick   // exception spec or is the reserved placement new) and we have an
1659*e5dd7070Spatrick   // interesting initializer will be running sanitizers on the initialization.
1660*e5dd7070Spatrick   bool nullCheck = E->shouldNullCheckAllocation() &&
1661*e5dd7070Spatrick                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1662*e5dd7070Spatrick                     sanitizePerformTypeCheck());
1663*e5dd7070Spatrick 
1664*e5dd7070Spatrick   llvm::BasicBlock *nullCheckBB = nullptr;
1665*e5dd7070Spatrick   llvm::BasicBlock *contBB = nullptr;
1666*e5dd7070Spatrick 
1667*e5dd7070Spatrick   // The null-check means that the initializer is conditionally
1668*e5dd7070Spatrick   // evaluated.
1669*e5dd7070Spatrick   ConditionalEvaluation conditional(*this);
1670*e5dd7070Spatrick 
1671*e5dd7070Spatrick   if (nullCheck) {
1672*e5dd7070Spatrick     conditional.begin(*this);
1673*e5dd7070Spatrick 
1674*e5dd7070Spatrick     nullCheckBB = Builder.GetInsertBlock();
1675*e5dd7070Spatrick     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1676*e5dd7070Spatrick     contBB = createBasicBlock("new.cont");
1677*e5dd7070Spatrick 
1678*e5dd7070Spatrick     llvm::Value *isNull =
1679*e5dd7070Spatrick       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1680*e5dd7070Spatrick     Builder.CreateCondBr(isNull, contBB, notNullBB);
1681*e5dd7070Spatrick     EmitBlock(notNullBB);
1682*e5dd7070Spatrick   }
1683*e5dd7070Spatrick 
1684*e5dd7070Spatrick   // If there's an operator delete, enter a cleanup to call it if an
1685*e5dd7070Spatrick   // exception is thrown.
1686*e5dd7070Spatrick   EHScopeStack::stable_iterator operatorDeleteCleanup;
1687*e5dd7070Spatrick   llvm::Instruction *cleanupDominator = nullptr;
1688*e5dd7070Spatrick   if (E->getOperatorDelete() &&
1689*e5dd7070Spatrick       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1690*e5dd7070Spatrick     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1691*e5dd7070Spatrick                           allocatorArgs);
1692*e5dd7070Spatrick     operatorDeleteCleanup = EHStack.stable_begin();
1693*e5dd7070Spatrick     cleanupDominator = Builder.CreateUnreachable();
1694*e5dd7070Spatrick   }
1695*e5dd7070Spatrick 
1696*e5dd7070Spatrick   assert((allocSize == allocSizeWithoutCookie) ==
1697*e5dd7070Spatrick          CalculateCookiePadding(*this, E).isZero());
1698*e5dd7070Spatrick   if (allocSize != allocSizeWithoutCookie) {
1699*e5dd7070Spatrick     assert(E->isArray());
1700*e5dd7070Spatrick     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1701*e5dd7070Spatrick                                                        numElements,
1702*e5dd7070Spatrick                                                        E, allocType);
1703*e5dd7070Spatrick   }
1704*e5dd7070Spatrick 
1705*e5dd7070Spatrick   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1706*e5dd7070Spatrick   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1707*e5dd7070Spatrick 
1708*e5dd7070Spatrick   // Passing pointer through launder.invariant.group to avoid propagation of
1709*e5dd7070Spatrick   // vptrs information which may be included in previous type.
1710*e5dd7070Spatrick   // To not break LTO with different optimizations levels, we do it regardless
1711*e5dd7070Spatrick   // of optimization level.
1712*e5dd7070Spatrick   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1713*e5dd7070Spatrick       allocator->isReservedGlobalPlacementOperator())
1714*e5dd7070Spatrick     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1715*e5dd7070Spatrick                      result.getAlignment());
1716*e5dd7070Spatrick 
1717*e5dd7070Spatrick   // Emit sanitizer checks for pointer value now, so that in the case of an
1718*e5dd7070Spatrick   // array it was checked only once and not at each constructor call. We may
1719*e5dd7070Spatrick   // have already checked that the pointer is non-null.
1720*e5dd7070Spatrick   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1721*e5dd7070Spatrick   // we'll null check the wrong pointer here.
1722*e5dd7070Spatrick   SanitizerSet SkippedChecks;
1723*e5dd7070Spatrick   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1724*e5dd7070Spatrick   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1725*e5dd7070Spatrick                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1726*e5dd7070Spatrick                 result.getPointer(), allocType, result.getAlignment(),
1727*e5dd7070Spatrick                 SkippedChecks, numElements);
1728*e5dd7070Spatrick 
1729*e5dd7070Spatrick   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1730*e5dd7070Spatrick                      allocSizeWithoutCookie);
1731*e5dd7070Spatrick   if (E->isArray()) {
1732*e5dd7070Spatrick     // NewPtr is a pointer to the base element type.  If we're
1733*e5dd7070Spatrick     // allocating an array of arrays, we'll need to cast back to the
1734*e5dd7070Spatrick     // array pointer type.
1735*e5dd7070Spatrick     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1736*e5dd7070Spatrick     if (result.getType() != resultType)
1737*e5dd7070Spatrick       result = Builder.CreateBitCast(result, resultType);
1738*e5dd7070Spatrick   }
1739*e5dd7070Spatrick 
1740*e5dd7070Spatrick   // Deactivate the 'operator delete' cleanup if we finished
1741*e5dd7070Spatrick   // initialization.
1742*e5dd7070Spatrick   if (operatorDeleteCleanup.isValid()) {
1743*e5dd7070Spatrick     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1744*e5dd7070Spatrick     cleanupDominator->eraseFromParent();
1745*e5dd7070Spatrick   }
1746*e5dd7070Spatrick 
1747*e5dd7070Spatrick   llvm::Value *resultPtr = result.getPointer();
1748*e5dd7070Spatrick   if (nullCheck) {
1749*e5dd7070Spatrick     conditional.end(*this);
1750*e5dd7070Spatrick 
1751*e5dd7070Spatrick     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1752*e5dd7070Spatrick     EmitBlock(contBB);
1753*e5dd7070Spatrick 
1754*e5dd7070Spatrick     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1755*e5dd7070Spatrick     PHI->addIncoming(resultPtr, notNullBB);
1756*e5dd7070Spatrick     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1757*e5dd7070Spatrick                      nullCheckBB);
1758*e5dd7070Spatrick 
1759*e5dd7070Spatrick     resultPtr = PHI;
1760*e5dd7070Spatrick   }
1761*e5dd7070Spatrick 
1762*e5dd7070Spatrick   return resultPtr;
1763*e5dd7070Spatrick }
1764*e5dd7070Spatrick 
1765*e5dd7070Spatrick void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1766*e5dd7070Spatrick                                      llvm::Value *Ptr, QualType DeleteTy,
1767*e5dd7070Spatrick                                      llvm::Value *NumElements,
1768*e5dd7070Spatrick                                      CharUnits CookieSize) {
1769*e5dd7070Spatrick   assert((!NumElements && CookieSize.isZero()) ||
1770*e5dd7070Spatrick          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1771*e5dd7070Spatrick 
1772*e5dd7070Spatrick   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1773*e5dd7070Spatrick   CallArgList DeleteArgs;
1774*e5dd7070Spatrick 
1775*e5dd7070Spatrick   auto Params = getUsualDeleteParams(DeleteFD);
1776*e5dd7070Spatrick   auto ParamTypeIt = DeleteFTy->param_type_begin();
1777*e5dd7070Spatrick 
1778*e5dd7070Spatrick   // Pass the pointer itself.
1779*e5dd7070Spatrick   QualType ArgTy = *ParamTypeIt++;
1780*e5dd7070Spatrick   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1781*e5dd7070Spatrick   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1782*e5dd7070Spatrick 
1783*e5dd7070Spatrick   // Pass the std::destroying_delete tag if present.
1784*e5dd7070Spatrick   if (Params.DestroyingDelete) {
1785*e5dd7070Spatrick     QualType DDTag = *ParamTypeIt++;
1786*e5dd7070Spatrick     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1787*e5dd7070Spatrick     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1788*e5dd7070Spatrick     DeleteArgs.add(RValue::get(V), DDTag);
1789*e5dd7070Spatrick   }
1790*e5dd7070Spatrick 
1791*e5dd7070Spatrick   // Pass the size if the delete function has a size_t parameter.
1792*e5dd7070Spatrick   if (Params.Size) {
1793*e5dd7070Spatrick     QualType SizeType = *ParamTypeIt++;
1794*e5dd7070Spatrick     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1795*e5dd7070Spatrick     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1796*e5dd7070Spatrick                                                DeleteTypeSize.getQuantity());
1797*e5dd7070Spatrick 
1798*e5dd7070Spatrick     // For array new, multiply by the number of elements.
1799*e5dd7070Spatrick     if (NumElements)
1800*e5dd7070Spatrick       Size = Builder.CreateMul(Size, NumElements);
1801*e5dd7070Spatrick 
1802*e5dd7070Spatrick     // If there is a cookie, add the cookie size.
1803*e5dd7070Spatrick     if (!CookieSize.isZero())
1804*e5dd7070Spatrick       Size = Builder.CreateAdd(
1805*e5dd7070Spatrick           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1806*e5dd7070Spatrick 
1807*e5dd7070Spatrick     DeleteArgs.add(RValue::get(Size), SizeType);
1808*e5dd7070Spatrick   }
1809*e5dd7070Spatrick 
1810*e5dd7070Spatrick   // Pass the alignment if the delete function has an align_val_t parameter.
1811*e5dd7070Spatrick   if (Params.Alignment) {
1812*e5dd7070Spatrick     QualType AlignValType = *ParamTypeIt++;
1813*e5dd7070Spatrick     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1814*e5dd7070Spatrick         getContext().getTypeAlignIfKnown(DeleteTy));
1815*e5dd7070Spatrick     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1816*e5dd7070Spatrick                                                 DeleteTypeAlign.getQuantity());
1817*e5dd7070Spatrick     DeleteArgs.add(RValue::get(Align), AlignValType);
1818*e5dd7070Spatrick   }
1819*e5dd7070Spatrick 
1820*e5dd7070Spatrick   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1821*e5dd7070Spatrick          "unknown parameter to usual delete function");
1822*e5dd7070Spatrick 
1823*e5dd7070Spatrick   // Emit the call to delete.
1824*e5dd7070Spatrick   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1825*e5dd7070Spatrick }
1826*e5dd7070Spatrick 
1827*e5dd7070Spatrick namespace {
1828*e5dd7070Spatrick   /// Calls the given 'operator delete' on a single object.
1829*e5dd7070Spatrick   struct CallObjectDelete final : EHScopeStack::Cleanup {
1830*e5dd7070Spatrick     llvm::Value *Ptr;
1831*e5dd7070Spatrick     const FunctionDecl *OperatorDelete;
1832*e5dd7070Spatrick     QualType ElementType;
1833*e5dd7070Spatrick 
1834*e5dd7070Spatrick     CallObjectDelete(llvm::Value *Ptr,
1835*e5dd7070Spatrick                      const FunctionDecl *OperatorDelete,
1836*e5dd7070Spatrick                      QualType ElementType)
1837*e5dd7070Spatrick       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1838*e5dd7070Spatrick 
1839*e5dd7070Spatrick     void Emit(CodeGenFunction &CGF, Flags flags) override {
1840*e5dd7070Spatrick       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1841*e5dd7070Spatrick     }
1842*e5dd7070Spatrick   };
1843*e5dd7070Spatrick }
1844*e5dd7070Spatrick 
1845*e5dd7070Spatrick void
1846*e5dd7070Spatrick CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1847*e5dd7070Spatrick                                              llvm::Value *CompletePtr,
1848*e5dd7070Spatrick                                              QualType ElementType) {
1849*e5dd7070Spatrick   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1850*e5dd7070Spatrick                                         OperatorDelete, ElementType);
1851*e5dd7070Spatrick }
1852*e5dd7070Spatrick 
1853*e5dd7070Spatrick /// Emit the code for deleting a single object with a destroying operator
1854*e5dd7070Spatrick /// delete. If the element type has a non-virtual destructor, Ptr has already
1855*e5dd7070Spatrick /// been converted to the type of the parameter of 'operator delete'. Otherwise
1856*e5dd7070Spatrick /// Ptr points to an object of the static type.
1857*e5dd7070Spatrick static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1858*e5dd7070Spatrick                                        const CXXDeleteExpr *DE, Address Ptr,
1859*e5dd7070Spatrick                                        QualType ElementType) {
1860*e5dd7070Spatrick   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1861*e5dd7070Spatrick   if (Dtor && Dtor->isVirtual())
1862*e5dd7070Spatrick     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1863*e5dd7070Spatrick                                                 Dtor);
1864*e5dd7070Spatrick   else
1865*e5dd7070Spatrick     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1866*e5dd7070Spatrick }
1867*e5dd7070Spatrick 
1868*e5dd7070Spatrick /// Emit the code for deleting a single object.
1869*e5dd7070Spatrick static void EmitObjectDelete(CodeGenFunction &CGF,
1870*e5dd7070Spatrick                              const CXXDeleteExpr *DE,
1871*e5dd7070Spatrick                              Address Ptr,
1872*e5dd7070Spatrick                              QualType ElementType) {
1873*e5dd7070Spatrick   // C++11 [expr.delete]p3:
1874*e5dd7070Spatrick   //   If the static type of the object to be deleted is different from its
1875*e5dd7070Spatrick   //   dynamic type, the static type shall be a base class of the dynamic type
1876*e5dd7070Spatrick   //   of the object to be deleted and the static type shall have a virtual
1877*e5dd7070Spatrick   //   destructor or the behavior is undefined.
1878*e5dd7070Spatrick   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1879*e5dd7070Spatrick                     DE->getExprLoc(), Ptr.getPointer(),
1880*e5dd7070Spatrick                     ElementType);
1881*e5dd7070Spatrick 
1882*e5dd7070Spatrick   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1883*e5dd7070Spatrick   assert(!OperatorDelete->isDestroyingOperatorDelete());
1884*e5dd7070Spatrick 
1885*e5dd7070Spatrick   // Find the destructor for the type, if applicable.  If the
1886*e5dd7070Spatrick   // destructor is virtual, we'll just emit the vcall and return.
1887*e5dd7070Spatrick   const CXXDestructorDecl *Dtor = nullptr;
1888*e5dd7070Spatrick   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1889*e5dd7070Spatrick     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1890*e5dd7070Spatrick     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1891*e5dd7070Spatrick       Dtor = RD->getDestructor();
1892*e5dd7070Spatrick 
1893*e5dd7070Spatrick       if (Dtor->isVirtual()) {
1894*e5dd7070Spatrick         bool UseVirtualCall = true;
1895*e5dd7070Spatrick         const Expr *Base = DE->getArgument();
1896*e5dd7070Spatrick         if (auto *DevirtualizedDtor =
1897*e5dd7070Spatrick                 dyn_cast_or_null<const CXXDestructorDecl>(
1898*e5dd7070Spatrick                     Dtor->getDevirtualizedMethod(
1899*e5dd7070Spatrick                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1900*e5dd7070Spatrick           UseVirtualCall = false;
1901*e5dd7070Spatrick           const CXXRecordDecl *DevirtualizedClass =
1902*e5dd7070Spatrick               DevirtualizedDtor->getParent();
1903*e5dd7070Spatrick           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1904*e5dd7070Spatrick             // Devirtualized to the class of the base type (the type of the
1905*e5dd7070Spatrick             // whole expression).
1906*e5dd7070Spatrick             Dtor = DevirtualizedDtor;
1907*e5dd7070Spatrick           } else {
1908*e5dd7070Spatrick             // Devirtualized to some other type. Would need to cast the this
1909*e5dd7070Spatrick             // pointer to that type but we don't have support for that yet, so
1910*e5dd7070Spatrick             // do a virtual call. FIXME: handle the case where it is
1911*e5dd7070Spatrick             // devirtualized to the derived type (the type of the inner
1912*e5dd7070Spatrick             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1913*e5dd7070Spatrick             UseVirtualCall = true;
1914*e5dd7070Spatrick           }
1915*e5dd7070Spatrick         }
1916*e5dd7070Spatrick         if (UseVirtualCall) {
1917*e5dd7070Spatrick           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1918*e5dd7070Spatrick                                                       Dtor);
1919*e5dd7070Spatrick           return;
1920*e5dd7070Spatrick         }
1921*e5dd7070Spatrick       }
1922*e5dd7070Spatrick     }
1923*e5dd7070Spatrick   }
1924*e5dd7070Spatrick 
1925*e5dd7070Spatrick   // Make sure that we call delete even if the dtor throws.
1926*e5dd7070Spatrick   // This doesn't have to a conditional cleanup because we're going
1927*e5dd7070Spatrick   // to pop it off in a second.
1928*e5dd7070Spatrick   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1929*e5dd7070Spatrick                                             Ptr.getPointer(),
1930*e5dd7070Spatrick                                             OperatorDelete, ElementType);
1931*e5dd7070Spatrick 
1932*e5dd7070Spatrick   if (Dtor)
1933*e5dd7070Spatrick     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1934*e5dd7070Spatrick                               /*ForVirtualBase=*/false,
1935*e5dd7070Spatrick                               /*Delegating=*/false,
1936*e5dd7070Spatrick                               Ptr, ElementType);
1937*e5dd7070Spatrick   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1938*e5dd7070Spatrick     switch (Lifetime) {
1939*e5dd7070Spatrick     case Qualifiers::OCL_None:
1940*e5dd7070Spatrick     case Qualifiers::OCL_ExplicitNone:
1941*e5dd7070Spatrick     case Qualifiers::OCL_Autoreleasing:
1942*e5dd7070Spatrick       break;
1943*e5dd7070Spatrick 
1944*e5dd7070Spatrick     case Qualifiers::OCL_Strong:
1945*e5dd7070Spatrick       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1946*e5dd7070Spatrick       break;
1947*e5dd7070Spatrick 
1948*e5dd7070Spatrick     case Qualifiers::OCL_Weak:
1949*e5dd7070Spatrick       CGF.EmitARCDestroyWeak(Ptr);
1950*e5dd7070Spatrick       break;
1951*e5dd7070Spatrick     }
1952*e5dd7070Spatrick   }
1953*e5dd7070Spatrick 
1954*e5dd7070Spatrick   CGF.PopCleanupBlock();
1955*e5dd7070Spatrick }
1956*e5dd7070Spatrick 
1957*e5dd7070Spatrick namespace {
1958*e5dd7070Spatrick   /// Calls the given 'operator delete' on an array of objects.
1959*e5dd7070Spatrick   struct CallArrayDelete final : EHScopeStack::Cleanup {
1960*e5dd7070Spatrick     llvm::Value *Ptr;
1961*e5dd7070Spatrick     const FunctionDecl *OperatorDelete;
1962*e5dd7070Spatrick     llvm::Value *NumElements;
1963*e5dd7070Spatrick     QualType ElementType;
1964*e5dd7070Spatrick     CharUnits CookieSize;
1965*e5dd7070Spatrick 
1966*e5dd7070Spatrick     CallArrayDelete(llvm::Value *Ptr,
1967*e5dd7070Spatrick                     const FunctionDecl *OperatorDelete,
1968*e5dd7070Spatrick                     llvm::Value *NumElements,
1969*e5dd7070Spatrick                     QualType ElementType,
1970*e5dd7070Spatrick                     CharUnits CookieSize)
1971*e5dd7070Spatrick       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1972*e5dd7070Spatrick         ElementType(ElementType), CookieSize(CookieSize) {}
1973*e5dd7070Spatrick 
1974*e5dd7070Spatrick     void Emit(CodeGenFunction &CGF, Flags flags) override {
1975*e5dd7070Spatrick       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1976*e5dd7070Spatrick                          CookieSize);
1977*e5dd7070Spatrick     }
1978*e5dd7070Spatrick   };
1979*e5dd7070Spatrick }
1980*e5dd7070Spatrick 
1981*e5dd7070Spatrick /// Emit the code for deleting an array of objects.
1982*e5dd7070Spatrick static void EmitArrayDelete(CodeGenFunction &CGF,
1983*e5dd7070Spatrick                             const CXXDeleteExpr *E,
1984*e5dd7070Spatrick                             Address deletedPtr,
1985*e5dd7070Spatrick                             QualType elementType) {
1986*e5dd7070Spatrick   llvm::Value *numElements = nullptr;
1987*e5dd7070Spatrick   llvm::Value *allocatedPtr = nullptr;
1988*e5dd7070Spatrick   CharUnits cookieSize;
1989*e5dd7070Spatrick   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1990*e5dd7070Spatrick                                       numElements, allocatedPtr, cookieSize);
1991*e5dd7070Spatrick 
1992*e5dd7070Spatrick   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1993*e5dd7070Spatrick 
1994*e5dd7070Spatrick   // Make sure that we call delete even if one of the dtors throws.
1995*e5dd7070Spatrick   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1996*e5dd7070Spatrick   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1997*e5dd7070Spatrick                                            allocatedPtr, operatorDelete,
1998*e5dd7070Spatrick                                            numElements, elementType,
1999*e5dd7070Spatrick                                            cookieSize);
2000*e5dd7070Spatrick 
2001*e5dd7070Spatrick   // Destroy the elements.
2002*e5dd7070Spatrick   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2003*e5dd7070Spatrick     assert(numElements && "no element count for a type with a destructor!");
2004*e5dd7070Spatrick 
2005*e5dd7070Spatrick     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2006*e5dd7070Spatrick     CharUnits elementAlign =
2007*e5dd7070Spatrick       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2008*e5dd7070Spatrick 
2009*e5dd7070Spatrick     llvm::Value *arrayBegin = deletedPtr.getPointer();
2010*e5dd7070Spatrick     llvm::Value *arrayEnd =
2011*e5dd7070Spatrick       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2012*e5dd7070Spatrick 
2013*e5dd7070Spatrick     // Note that it is legal to allocate a zero-length array, and we
2014*e5dd7070Spatrick     // can never fold the check away because the length should always
2015*e5dd7070Spatrick     // come from a cookie.
2016*e5dd7070Spatrick     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2017*e5dd7070Spatrick                          CGF.getDestroyer(dtorKind),
2018*e5dd7070Spatrick                          /*checkZeroLength*/ true,
2019*e5dd7070Spatrick                          CGF.needsEHCleanup(dtorKind));
2020*e5dd7070Spatrick   }
2021*e5dd7070Spatrick 
2022*e5dd7070Spatrick   // Pop the cleanup block.
2023*e5dd7070Spatrick   CGF.PopCleanupBlock();
2024*e5dd7070Spatrick }
2025*e5dd7070Spatrick 
2026*e5dd7070Spatrick void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2027*e5dd7070Spatrick   const Expr *Arg = E->getArgument();
2028*e5dd7070Spatrick   Address Ptr = EmitPointerWithAlignment(Arg);
2029*e5dd7070Spatrick 
2030*e5dd7070Spatrick   // Null check the pointer.
2031*e5dd7070Spatrick   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2032*e5dd7070Spatrick   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2033*e5dd7070Spatrick 
2034*e5dd7070Spatrick   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2035*e5dd7070Spatrick 
2036*e5dd7070Spatrick   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2037*e5dd7070Spatrick   EmitBlock(DeleteNotNull);
2038*e5dd7070Spatrick 
2039*e5dd7070Spatrick   QualType DeleteTy = E->getDestroyedType();
2040*e5dd7070Spatrick 
2041*e5dd7070Spatrick   // A destroying operator delete overrides the entire operation of the
2042*e5dd7070Spatrick   // delete expression.
2043*e5dd7070Spatrick   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2044*e5dd7070Spatrick     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2045*e5dd7070Spatrick     EmitBlock(DeleteEnd);
2046*e5dd7070Spatrick     return;
2047*e5dd7070Spatrick   }
2048*e5dd7070Spatrick 
2049*e5dd7070Spatrick   // We might be deleting a pointer to array.  If so, GEP down to the
2050*e5dd7070Spatrick   // first non-array element.
2051*e5dd7070Spatrick   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2052*e5dd7070Spatrick   if (DeleteTy->isConstantArrayType()) {
2053*e5dd7070Spatrick     llvm::Value *Zero = Builder.getInt32(0);
2054*e5dd7070Spatrick     SmallVector<llvm::Value*,8> GEP;
2055*e5dd7070Spatrick 
2056*e5dd7070Spatrick     GEP.push_back(Zero); // point at the outermost array
2057*e5dd7070Spatrick 
2058*e5dd7070Spatrick     // For each layer of array type we're pointing at:
2059*e5dd7070Spatrick     while (const ConstantArrayType *Arr
2060*e5dd7070Spatrick              = getContext().getAsConstantArrayType(DeleteTy)) {
2061*e5dd7070Spatrick       // 1. Unpeel the array type.
2062*e5dd7070Spatrick       DeleteTy = Arr->getElementType();
2063*e5dd7070Spatrick 
2064*e5dd7070Spatrick       // 2. GEP to the first element of the array.
2065*e5dd7070Spatrick       GEP.push_back(Zero);
2066*e5dd7070Spatrick     }
2067*e5dd7070Spatrick 
2068*e5dd7070Spatrick     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2069*e5dd7070Spatrick                   Ptr.getAlignment());
2070*e5dd7070Spatrick   }
2071*e5dd7070Spatrick 
2072*e5dd7070Spatrick   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2073*e5dd7070Spatrick 
2074*e5dd7070Spatrick   if (E->isArrayForm()) {
2075*e5dd7070Spatrick     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2076*e5dd7070Spatrick   } else {
2077*e5dd7070Spatrick     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2078*e5dd7070Spatrick   }
2079*e5dd7070Spatrick 
2080*e5dd7070Spatrick   EmitBlock(DeleteEnd);
2081*e5dd7070Spatrick }
2082*e5dd7070Spatrick 
2083*e5dd7070Spatrick static bool isGLValueFromPointerDeref(const Expr *E) {
2084*e5dd7070Spatrick   E = E->IgnoreParens();
2085*e5dd7070Spatrick 
2086*e5dd7070Spatrick   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2087*e5dd7070Spatrick     if (!CE->getSubExpr()->isGLValue())
2088*e5dd7070Spatrick       return false;
2089*e5dd7070Spatrick     return isGLValueFromPointerDeref(CE->getSubExpr());
2090*e5dd7070Spatrick   }
2091*e5dd7070Spatrick 
2092*e5dd7070Spatrick   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2093*e5dd7070Spatrick     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2094*e5dd7070Spatrick 
2095*e5dd7070Spatrick   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2096*e5dd7070Spatrick     if (BO->getOpcode() == BO_Comma)
2097*e5dd7070Spatrick       return isGLValueFromPointerDeref(BO->getRHS());
2098*e5dd7070Spatrick 
2099*e5dd7070Spatrick   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2100*e5dd7070Spatrick     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2101*e5dd7070Spatrick            isGLValueFromPointerDeref(ACO->getFalseExpr());
2102*e5dd7070Spatrick 
2103*e5dd7070Spatrick   // C++11 [expr.sub]p1:
2104*e5dd7070Spatrick   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2105*e5dd7070Spatrick   if (isa<ArraySubscriptExpr>(E))
2106*e5dd7070Spatrick     return true;
2107*e5dd7070Spatrick 
2108*e5dd7070Spatrick   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2109*e5dd7070Spatrick     if (UO->getOpcode() == UO_Deref)
2110*e5dd7070Spatrick       return true;
2111*e5dd7070Spatrick 
2112*e5dd7070Spatrick   return false;
2113*e5dd7070Spatrick }
2114*e5dd7070Spatrick 
2115*e5dd7070Spatrick static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2116*e5dd7070Spatrick                                          llvm::Type *StdTypeInfoPtrTy) {
2117*e5dd7070Spatrick   // Get the vtable pointer.
2118*e5dd7070Spatrick   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2119*e5dd7070Spatrick 
2120*e5dd7070Spatrick   QualType SrcRecordTy = E->getType();
2121*e5dd7070Spatrick 
2122*e5dd7070Spatrick   // C++ [class.cdtor]p4:
2123*e5dd7070Spatrick   //   If the operand of typeid refers to the object under construction or
2124*e5dd7070Spatrick   //   destruction and the static type of the operand is neither the constructor
2125*e5dd7070Spatrick   //   or destructor’s class nor one of its bases, the behavior is undefined.
2126*e5dd7070Spatrick   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2127*e5dd7070Spatrick                     ThisPtr.getPointer(), SrcRecordTy);
2128*e5dd7070Spatrick 
2129*e5dd7070Spatrick   // C++ [expr.typeid]p2:
2130*e5dd7070Spatrick   //   If the glvalue expression is obtained by applying the unary * operator to
2131*e5dd7070Spatrick   //   a pointer and the pointer is a null pointer value, the typeid expression
2132*e5dd7070Spatrick   //   throws the std::bad_typeid exception.
2133*e5dd7070Spatrick   //
2134*e5dd7070Spatrick   // However, this paragraph's intent is not clear.  We choose a very generous
2135*e5dd7070Spatrick   // interpretation which implores us to consider comma operators, conditional
2136*e5dd7070Spatrick   // operators, parentheses and other such constructs.
2137*e5dd7070Spatrick   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2138*e5dd7070Spatrick           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2139*e5dd7070Spatrick     llvm::BasicBlock *BadTypeidBlock =
2140*e5dd7070Spatrick         CGF.createBasicBlock("typeid.bad_typeid");
2141*e5dd7070Spatrick     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2142*e5dd7070Spatrick 
2143*e5dd7070Spatrick     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2144*e5dd7070Spatrick     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2145*e5dd7070Spatrick 
2146*e5dd7070Spatrick     CGF.EmitBlock(BadTypeidBlock);
2147*e5dd7070Spatrick     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2148*e5dd7070Spatrick     CGF.EmitBlock(EndBlock);
2149*e5dd7070Spatrick   }
2150*e5dd7070Spatrick 
2151*e5dd7070Spatrick   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2152*e5dd7070Spatrick                                         StdTypeInfoPtrTy);
2153*e5dd7070Spatrick }
2154*e5dd7070Spatrick 
2155*e5dd7070Spatrick llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2156*e5dd7070Spatrick   llvm::Type *StdTypeInfoPtrTy =
2157*e5dd7070Spatrick     ConvertType(E->getType())->getPointerTo();
2158*e5dd7070Spatrick 
2159*e5dd7070Spatrick   if (E->isTypeOperand()) {
2160*e5dd7070Spatrick     llvm::Constant *TypeInfo =
2161*e5dd7070Spatrick         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2162*e5dd7070Spatrick     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2163*e5dd7070Spatrick   }
2164*e5dd7070Spatrick 
2165*e5dd7070Spatrick   // C++ [expr.typeid]p2:
2166*e5dd7070Spatrick   //   When typeid is applied to a glvalue expression whose type is a
2167*e5dd7070Spatrick   //   polymorphic class type, the result refers to a std::type_info object
2168*e5dd7070Spatrick   //   representing the type of the most derived object (that is, the dynamic
2169*e5dd7070Spatrick   //   type) to which the glvalue refers.
2170*e5dd7070Spatrick   if (E->isPotentiallyEvaluated())
2171*e5dd7070Spatrick     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2172*e5dd7070Spatrick                                 StdTypeInfoPtrTy);
2173*e5dd7070Spatrick 
2174*e5dd7070Spatrick   QualType OperandTy = E->getExprOperand()->getType();
2175*e5dd7070Spatrick   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2176*e5dd7070Spatrick                                StdTypeInfoPtrTy);
2177*e5dd7070Spatrick }
2178*e5dd7070Spatrick 
2179*e5dd7070Spatrick static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2180*e5dd7070Spatrick                                           QualType DestTy) {
2181*e5dd7070Spatrick   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2182*e5dd7070Spatrick   if (DestTy->isPointerType())
2183*e5dd7070Spatrick     return llvm::Constant::getNullValue(DestLTy);
2184*e5dd7070Spatrick 
2185*e5dd7070Spatrick   /// C++ [expr.dynamic.cast]p9:
2186*e5dd7070Spatrick   ///   A failed cast to reference type throws std::bad_cast
2187*e5dd7070Spatrick   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2188*e5dd7070Spatrick     return nullptr;
2189*e5dd7070Spatrick 
2190*e5dd7070Spatrick   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2191*e5dd7070Spatrick   return llvm::UndefValue::get(DestLTy);
2192*e5dd7070Spatrick }
2193*e5dd7070Spatrick 
2194*e5dd7070Spatrick llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2195*e5dd7070Spatrick                                               const CXXDynamicCastExpr *DCE) {
2196*e5dd7070Spatrick   CGM.EmitExplicitCastExprType(DCE, this);
2197*e5dd7070Spatrick   QualType DestTy = DCE->getTypeAsWritten();
2198*e5dd7070Spatrick 
2199*e5dd7070Spatrick   QualType SrcTy = DCE->getSubExpr()->getType();
2200*e5dd7070Spatrick 
2201*e5dd7070Spatrick   // C++ [expr.dynamic.cast]p7:
2202*e5dd7070Spatrick   //   If T is "pointer to cv void," then the result is a pointer to the most
2203*e5dd7070Spatrick   //   derived object pointed to by v.
2204*e5dd7070Spatrick   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2205*e5dd7070Spatrick 
2206*e5dd7070Spatrick   bool isDynamicCastToVoid;
2207*e5dd7070Spatrick   QualType SrcRecordTy;
2208*e5dd7070Spatrick   QualType DestRecordTy;
2209*e5dd7070Spatrick   if (DestPTy) {
2210*e5dd7070Spatrick     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2211*e5dd7070Spatrick     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2212*e5dd7070Spatrick     DestRecordTy = DestPTy->getPointeeType();
2213*e5dd7070Spatrick   } else {
2214*e5dd7070Spatrick     isDynamicCastToVoid = false;
2215*e5dd7070Spatrick     SrcRecordTy = SrcTy;
2216*e5dd7070Spatrick     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2217*e5dd7070Spatrick   }
2218*e5dd7070Spatrick 
2219*e5dd7070Spatrick   // C++ [class.cdtor]p5:
2220*e5dd7070Spatrick   //   If the operand of the dynamic_cast refers to the object under
2221*e5dd7070Spatrick   //   construction or destruction and the static type of the operand is not a
2222*e5dd7070Spatrick   //   pointer to or object of the constructor or destructor’s own class or one
2223*e5dd7070Spatrick   //   of its bases, the dynamic_cast results in undefined behavior.
2224*e5dd7070Spatrick   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2225*e5dd7070Spatrick                 SrcRecordTy);
2226*e5dd7070Spatrick 
2227*e5dd7070Spatrick   if (DCE->isAlwaysNull())
2228*e5dd7070Spatrick     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2229*e5dd7070Spatrick       return T;
2230*e5dd7070Spatrick 
2231*e5dd7070Spatrick   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2232*e5dd7070Spatrick 
2233*e5dd7070Spatrick   // C++ [expr.dynamic.cast]p4:
2234*e5dd7070Spatrick   //   If the value of v is a null pointer value in the pointer case, the result
2235*e5dd7070Spatrick   //   is the null pointer value of type T.
2236*e5dd7070Spatrick   bool ShouldNullCheckSrcValue =
2237*e5dd7070Spatrick       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2238*e5dd7070Spatrick                                                          SrcRecordTy);
2239*e5dd7070Spatrick 
2240*e5dd7070Spatrick   llvm::BasicBlock *CastNull = nullptr;
2241*e5dd7070Spatrick   llvm::BasicBlock *CastNotNull = nullptr;
2242*e5dd7070Spatrick   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2243*e5dd7070Spatrick 
2244*e5dd7070Spatrick   if (ShouldNullCheckSrcValue) {
2245*e5dd7070Spatrick     CastNull = createBasicBlock("dynamic_cast.null");
2246*e5dd7070Spatrick     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2247*e5dd7070Spatrick 
2248*e5dd7070Spatrick     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2249*e5dd7070Spatrick     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2250*e5dd7070Spatrick     EmitBlock(CastNotNull);
2251*e5dd7070Spatrick   }
2252*e5dd7070Spatrick 
2253*e5dd7070Spatrick   llvm::Value *Value;
2254*e5dd7070Spatrick   if (isDynamicCastToVoid) {
2255*e5dd7070Spatrick     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2256*e5dd7070Spatrick                                                   DestTy);
2257*e5dd7070Spatrick   } else {
2258*e5dd7070Spatrick     assert(DestRecordTy->isRecordType() &&
2259*e5dd7070Spatrick            "destination type must be a record type!");
2260*e5dd7070Spatrick     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2261*e5dd7070Spatrick                                                 DestTy, DestRecordTy, CastEnd);
2262*e5dd7070Spatrick     CastNotNull = Builder.GetInsertBlock();
2263*e5dd7070Spatrick   }
2264*e5dd7070Spatrick 
2265*e5dd7070Spatrick   if (ShouldNullCheckSrcValue) {
2266*e5dd7070Spatrick     EmitBranch(CastEnd);
2267*e5dd7070Spatrick 
2268*e5dd7070Spatrick     EmitBlock(CastNull);
2269*e5dd7070Spatrick     EmitBranch(CastEnd);
2270*e5dd7070Spatrick   }
2271*e5dd7070Spatrick 
2272*e5dd7070Spatrick   EmitBlock(CastEnd);
2273*e5dd7070Spatrick 
2274*e5dd7070Spatrick   if (ShouldNullCheckSrcValue) {
2275*e5dd7070Spatrick     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2276*e5dd7070Spatrick     PHI->addIncoming(Value, CastNotNull);
2277*e5dd7070Spatrick     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2278*e5dd7070Spatrick 
2279*e5dd7070Spatrick     Value = PHI;
2280*e5dd7070Spatrick   }
2281*e5dd7070Spatrick 
2282*e5dd7070Spatrick   return Value;
2283*e5dd7070Spatrick }
2284