1 //===--- Mips.h - Declare Mips target feature support -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares Mips TargetInfo objects. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H 14 #define LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H 15 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/TargetOptions.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/Compiler.h" 20 21 namespace clang { 22 namespace targets { 23 24 class LLVM_LIBRARY_VISIBILITY MipsTargetInfo : public TargetInfo { 25 void setDataLayout() { 26 StringRef Layout; 27 28 if (ABI == "o32") 29 Layout = "m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64"; 30 else if (ABI == "n32") 31 Layout = "m:e-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128"; 32 else if (ABI == "n64") 33 Layout = "m:e-i8:8:32-i16:16:32-i64:64-n32:64-S128"; 34 else 35 llvm_unreachable("Invalid ABI"); 36 37 if (BigEndian) 38 resetDataLayout(("E-" + Layout).str()); 39 else 40 resetDataLayout(("e-" + Layout).str()); 41 } 42 43 static const Builtin::Info BuiltinInfo[]; 44 std::string CPU; 45 bool IsMips16; 46 bool IsMicromips; 47 bool IsNan2008; 48 bool IsAbs2008; 49 bool IsSingleFloat; 50 bool IsNoABICalls; 51 bool CanUseBSDABICalls; 52 enum MipsFloatABI { HardFloat, SoftFloat } FloatABI; 53 enum DspRevEnum { NoDSP, DSP1, DSP2 } DspRev; 54 bool HasMSA; 55 bool DisableMadd4; 56 bool UseIndirectJumpHazard; 57 58 protected: 59 enum FPModeEnum { FPXX, FP32, FP64 } FPMode; 60 std::string ABI; 61 62 public: 63 MipsTargetInfo(const llvm::Triple &Triple, const TargetOptions &) 64 : TargetInfo(Triple), IsMips16(false), IsMicromips(false), 65 IsNan2008(false), IsAbs2008(false), IsSingleFloat(false), 66 IsNoABICalls(false), CanUseBSDABICalls(false), FloatABI(HardFloat), 67 DspRev(NoDSP), HasMSA(false), DisableMadd4(false), 68 UseIndirectJumpHazard(false), FPMode(FPXX) { 69 TheCXXABI.set(TargetCXXABI::GenericMIPS); 70 71 if (Triple.isMIPS32()) 72 setABI("o32"); 73 else if (Triple.getEnvironment() == llvm::Triple::GNUABIN32) 74 setABI("n32"); 75 else 76 setABI("n64"); 77 78 CPU = ABI == "o32" ? "mips32r2" : "mips64r2"; 79 80 CanUseBSDABICalls = Triple.isOSFreeBSD() || 81 Triple.isOSOpenBSD(); 82 } 83 84 bool isIEEE754_2008Default() const { 85 return CPU == "mips32r6" || CPU == "mips64r6"; 86 } 87 88 bool isFP64Default() const { 89 return CPU == "mips32r6" || ABI == "n32" || ABI == "n64" || ABI == "64"; 90 } 91 92 bool isNan2008() const override { return IsNan2008; } 93 94 bool processorSupportsGPR64() const; 95 96 StringRef getABI() const override { return ABI; } 97 98 bool setABI(const std::string &Name) override { 99 if (Name == "o32") { 100 setO32ABITypes(); 101 ABI = Name; 102 return true; 103 } 104 105 if (Name == "n32") { 106 setN32ABITypes(); 107 ABI = Name; 108 return true; 109 } 110 if (Name == "n64") { 111 setN64ABITypes(); 112 ABI = Name; 113 return true; 114 } 115 return false; 116 } 117 118 void setO32ABITypes() { 119 Int64Type = SignedLongLong; 120 IntMaxType = Int64Type; 121 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 122 LongDoubleWidth = LongDoubleAlign = 64; 123 LongWidth = LongAlign = 32; 124 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32; 125 PointerWidth = PointerAlign = 32; 126 PtrDiffType = SignedInt; 127 SizeType = UnsignedInt; 128 SuitableAlign = 64; 129 } 130 131 void setN32N64ABITypes() { 132 LongDoubleWidth = LongDoubleAlign = 128; 133 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 134 if (getTriple().isOSFreeBSD()) { 135 LongDoubleWidth = LongDoubleAlign = 64; 136 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 137 } 138 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64; 139 SuitableAlign = 128; 140 } 141 142 void setN64ABITypes() { 143 setN32N64ABITypes(); 144 if (getTriple().isOSOpenBSD()) { 145 Int64Type = SignedLongLong; 146 } else { 147 Int64Type = SignedLong; 148 } 149 IntMaxType = Int64Type; 150 LongWidth = LongAlign = 64; 151 PointerWidth = PointerAlign = 64; 152 PtrDiffType = SignedLong; 153 SizeType = UnsignedLong; 154 } 155 156 void setN32ABITypes() { 157 setN32N64ABITypes(); 158 Int64Type = SignedLongLong; 159 IntMaxType = Int64Type; 160 LongWidth = LongAlign = 32; 161 PointerWidth = PointerAlign = 32; 162 PtrDiffType = SignedInt; 163 SizeType = UnsignedInt; 164 } 165 166 bool isValidCPUName(StringRef Name) const override; 167 void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const override; 168 169 bool setCPU(const std::string &Name) override { 170 CPU = Name; 171 return isValidCPUName(Name); 172 } 173 174 const std::string &getCPU() const { return CPU; } 175 bool 176 initFeatureMap(llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, 177 StringRef CPU, 178 const std::vector<std::string> &FeaturesVec) const override { 179 if (CPU.empty()) 180 CPU = getCPU(); 181 if (CPU == "octeon") 182 Features["mips64r2"] = Features["cnmips"] = true; 183 else if (CPU == "octeon+") 184 Features["mips64r2"] = Features["cnmips"] = Features["cnmipsp"] = true; 185 else 186 Features[CPU] = true; 187 return TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec); 188 } 189 190 unsigned getISARev() const; 191 192 void getTargetDefines(const LangOptions &Opts, 193 MacroBuilder &Builder) const override; 194 195 ArrayRef<Builtin::Info> getTargetBuiltins() const override; 196 197 bool hasFeature(StringRef Feature) const override; 198 199 BuiltinVaListKind getBuiltinVaListKind() const override { 200 return TargetInfo::VoidPtrBuiltinVaList; 201 } 202 203 ArrayRef<const char *> getGCCRegNames() const override { 204 static const char *const GCCRegNames[] = { 205 // CPU register names 206 // Must match second column of GCCRegAliases 207 "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", 208 "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20", 209 "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30", 210 "$31", 211 // Floating point register names 212 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9", 213 "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", 214 "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", 215 "$f28", "$f29", "$f30", "$f31", 216 // Hi/lo and condition register names 217 "hi", "lo", "", "$fcc0", "$fcc1", "$fcc2", "$fcc3", "$fcc4", "$fcc5", 218 "$fcc6", "$fcc7", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi", 219 "$ac3lo", 220 // MSA register names 221 "$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7", "$w8", "$w9", 222 "$w10", "$w11", "$w12", "$w13", "$w14", "$w15", "$w16", "$w17", "$w18", 223 "$w19", "$w20", "$w21", "$w22", "$w23", "$w24", "$w25", "$w26", "$w27", 224 "$w28", "$w29", "$w30", "$w31", 225 // MSA control register names 226 "$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify", 227 "$msarequest", "$msamap", "$msaunmap" 228 }; 229 return llvm::makeArrayRef(GCCRegNames); 230 } 231 232 bool validateAsmConstraint(const char *&Name, 233 TargetInfo::ConstraintInfo &Info) const override { 234 switch (*Name) { 235 default: 236 return false; 237 case 'r': // CPU registers. 238 case 'd': // Equivalent to "r" unless generating MIPS16 code. 239 case 'y': // Equivalent to "r", backward compatibility only. 240 case 'f': // floating-point registers. 241 case 'c': // $25 for indirect jumps 242 case 'h': // hi register 243 case 'l': // lo register 244 case 'x': // hilo register pair 245 Info.setAllowsRegister(); 246 return true; 247 case 'I': // Signed 16-bit constant 248 case 'J': // Integer 0 249 case 'K': // Unsigned 16-bit constant 250 case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui) 251 case 'M': // Constants not loadable via lui, addiu, or ori 252 case 'N': // Constant -1 to -65535 253 case 'O': // A signed 15-bit constant 254 case 'P': // A constant between 1 go 65535 255 return true; 256 case 'R': // An address that can be used in a non-macro load or store 257 Info.setAllowsMemory(); 258 return true; 259 case 'Z': 260 if (Name[1] == 'C') { // An address usable by ll, and sc. 261 Info.setAllowsMemory(); 262 Name++; // Skip over 'Z'. 263 return true; 264 } 265 return false; 266 } 267 } 268 269 std::string convertConstraint(const char *&Constraint) const override { 270 std::string R; 271 switch (*Constraint) { 272 case 'Z': // Two-character constraint; add "^" hint for later parsing. 273 if (Constraint[1] == 'C') { 274 R = std::string("^") + std::string(Constraint, 2); 275 Constraint++; 276 return R; 277 } 278 break; 279 } 280 return TargetInfo::convertConstraint(Constraint); 281 } 282 283 const char *getClobbers() const override { 284 // In GCC, $1 is not widely used in generated code (it's used only in a few 285 // specific situations), so there is no real need for users to add it to 286 // the clobbers list if they want to use it in their inline assembly code. 287 // 288 // In LLVM, $1 is treated as a normal GPR and is always allocatable during 289 // code generation, so using it in inline assembly without adding it to the 290 // clobbers list can cause conflicts between the inline assembly code and 291 // the surrounding generated code. 292 // 293 // Another problem is that LLVM is allowed to choose $1 for inline assembly 294 // operands, which will conflict with the ".set at" assembler option (which 295 // we use only for inline assembly, in order to maintain compatibility with 296 // GCC) and will also conflict with the user's usage of $1. 297 // 298 // The easiest way to avoid these conflicts and keep $1 as an allocatable 299 // register for generated code is to automatically clobber $1 for all inline 300 // assembly code. 301 // 302 // FIXME: We should automatically clobber $1 only for inline assembly code 303 // which actually uses it. This would allow LLVM to use $1 for inline 304 // assembly operands if the user's assembly code doesn't use it. 305 return "~{$1}"; 306 } 307 308 bool handleTargetFeatures(std::vector<std::string> &Features, 309 DiagnosticsEngine &Diags) override { 310 IsMips16 = false; 311 IsMicromips = false; 312 IsNan2008 = isIEEE754_2008Default(); 313 IsAbs2008 = isIEEE754_2008Default(); 314 IsSingleFloat = false; 315 FloatABI = HardFloat; 316 DspRev = NoDSP; 317 FPMode = isFP64Default() ? FP64 : FPXX; 318 319 for (const auto &Feature : Features) { 320 if (Feature == "+single-float") 321 IsSingleFloat = true; 322 else if (Feature == "+soft-float") 323 FloatABI = SoftFloat; 324 else if (Feature == "+mips16") 325 IsMips16 = true; 326 else if (Feature == "+micromips") 327 IsMicromips = true; 328 else if (Feature == "+dsp") 329 DspRev = std::max(DspRev, DSP1); 330 else if (Feature == "+dspr2") 331 DspRev = std::max(DspRev, DSP2); 332 else if (Feature == "+msa") 333 HasMSA = true; 334 else if (Feature == "+nomadd4") 335 DisableMadd4 = true; 336 else if (Feature == "+fp64") 337 FPMode = FP64; 338 else if (Feature == "-fp64") 339 FPMode = FP32; 340 else if (Feature == "+fpxx") 341 FPMode = FPXX; 342 else if (Feature == "+nan2008") 343 IsNan2008 = true; 344 else if (Feature == "-nan2008") 345 IsNan2008 = false; 346 else if (Feature == "+abs2008") 347 IsAbs2008 = true; 348 else if (Feature == "-abs2008") 349 IsAbs2008 = false; 350 else if (Feature == "+noabicalls") 351 IsNoABICalls = true; 352 else if (Feature == "+use-indirect-jump-hazard") 353 UseIndirectJumpHazard = true; 354 } 355 356 setDataLayout(); 357 358 return true; 359 } 360 361 int getEHDataRegisterNumber(unsigned RegNo) const override { 362 if (RegNo == 0) 363 return 4; 364 if (RegNo == 1) 365 return 5; 366 return -1; 367 } 368 369 bool isCLZForZeroUndef() const override { return false; } 370 371 ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override { 372 static const TargetInfo::GCCRegAlias O32RegAliases[] = { 373 {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, 374 {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, 375 {{"a3"}, "$7"}, {{"t0"}, "$8"}, {{"t1"}, "$9"}, 376 {{"t2"}, "$10"}, {{"t3"}, "$11"}, {{"t4"}, "$12"}, 377 {{"t5"}, "$13"}, {{"t6"}, "$14"}, {{"t7"}, "$15"}, 378 {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, 379 {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, 380 {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, 381 {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, 382 {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, 383 {{"ra"}, "$31"} 384 }; 385 static const TargetInfo::GCCRegAlias NewABIRegAliases[] = { 386 {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, 387 {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, 388 {{"a3"}, "$7"}, {{"a4"}, "$8"}, {{"a5"}, "$9"}, 389 {{"a6"}, "$10"}, {{"a7"}, "$11"}, {{"t0"}, "$12"}, 390 {{"t1"}, "$13"}, {{"t2"}, "$14"}, {{"t3"}, "$15"}, 391 {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, 392 {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, 393 {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, 394 {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, 395 {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, 396 {{"ra"}, "$31"} 397 }; 398 if (ABI == "o32") 399 return llvm::makeArrayRef(O32RegAliases); 400 return llvm::makeArrayRef(NewABIRegAliases); 401 } 402 403 bool hasInt128Type() const override { 404 return (ABI == "n32" || ABI == "n64") || getTargetOpts().ForceEnableInt128; 405 } 406 407 unsigned getUnwindWordWidth() const override; 408 409 bool validateTarget(DiagnosticsEngine &Diags) const override; 410 }; 411 } // namespace targets 412 } // namespace clang 413 414 #endif // LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H 415