xref: /openbsd-src/gnu/llvm/clang/lib/Basic/TargetInfo.cpp (revision 46035553bfdd96e63c94e32da0210227ec2e3cf1)
1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetParser.h"
23 #include <cstdlib>
24 using namespace clang;
25 
26 static const LangASMap DefaultAddrSpaceMap = {0};
27 
28 // TargetInfo Constructor.
29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
30   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
31   // SPARC.  These should be overridden by concrete targets as needed.
32   BigEndian = !T.isLittleEndian();
33   TLSSupported = true;
34   VLASupported = true;
35   NoAsmVariants = false;
36   HasLegalHalfType = false;
37   HasFloat128 = false;
38   HasFloat16 = false;
39   HasStrictFP = false;
40   PointerWidth = PointerAlign = 32;
41   BoolWidth = BoolAlign = 8;
42   IntWidth = IntAlign = 32;
43   LongWidth = LongAlign = 32;
44   LongLongWidth = LongLongAlign = 64;
45 
46   // Fixed point default bit widths
47   ShortAccumWidth = ShortAccumAlign = 16;
48   AccumWidth = AccumAlign = 32;
49   LongAccumWidth = LongAccumAlign = 64;
50   ShortFractWidth = ShortFractAlign = 8;
51   FractWidth = FractAlign = 16;
52   LongFractWidth = LongFractAlign = 32;
53 
54   // Fixed point default integral and fractional bit sizes
55   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
56   // types by default to have the same number of fractional bits between _Accum
57   // and _Fract types.
58   PaddingOnUnsignedFixedPoint = false;
59   ShortAccumScale = 7;
60   AccumScale = 15;
61   LongAccumScale = 31;
62 
63   SuitableAlign = 64;
64   DefaultAlignForAttributeAligned = 128;
65   MinGlobalAlign = 0;
66   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
67   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
68   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
69   // This alignment guarantee also applies to Windows and Android.
70   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
71     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
72   else
73     NewAlign = 0; // Infer from basic type alignment.
74   HalfWidth = 16;
75   HalfAlign = 16;
76   FloatWidth = 32;
77   FloatAlign = 32;
78   DoubleWidth = 64;
79   DoubleAlign = 64;
80   LongDoubleWidth = 64;
81   LongDoubleAlign = 64;
82   Float128Align = 128;
83   LargeArrayMinWidth = 0;
84   LargeArrayAlign = 0;
85   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
86   MaxVectorAlign = 0;
87   MaxTLSAlign = 0;
88   SimdDefaultAlign = 0;
89   SizeType = UnsignedLong;
90   PtrDiffType = SignedLong;
91   IntMaxType = SignedLongLong;
92   IntPtrType = SignedLong;
93   WCharType = SignedInt;
94   WIntType = SignedInt;
95   Char16Type = UnsignedShort;
96   Char32Type = UnsignedInt;
97   Int64Type = SignedLongLong;
98   SigAtomicType = SignedInt;
99   ProcessIDType = SignedInt;
100   UseSignedCharForObjCBool = true;
101   UseBitFieldTypeAlignment = true;
102   UseZeroLengthBitfieldAlignment = false;
103   UseExplicitBitFieldAlignment = true;
104   ZeroLengthBitfieldBoundary = 0;
105   HalfFormat = &llvm::APFloat::IEEEhalf();
106   FloatFormat = &llvm::APFloat::IEEEsingle();
107   DoubleFormat = &llvm::APFloat::IEEEdouble();
108   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
109   Float128Format = &llvm::APFloat::IEEEquad();
110   MCountName = "mcount";
111   RegParmMax = 0;
112   SSERegParmMax = 0;
113   HasAlignMac68kSupport = false;
114   HasBuiltinMSVaList = false;
115   IsRenderScriptTarget = false;
116   HasAArch64SVETypes = false;
117 
118   // Default to no types using fpret.
119   RealTypeUsesObjCFPRet = 0;
120 
121   // Default to not using fp2ret for __Complex long double
122   ComplexLongDoubleUsesFP2Ret = false;
123 
124   // Set the C++ ABI based on the triple.
125   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
126                     ? TargetCXXABI::Microsoft
127                     : TargetCXXABI::GenericItanium);
128 
129   // Default to an empty address space map.
130   AddrSpaceMap = &DefaultAddrSpaceMap;
131   UseAddrSpaceMapMangling = false;
132 
133   // Default to an unknown platform name.
134   PlatformName = "unknown";
135   PlatformMinVersion = VersionTuple();
136 }
137 
138 // Out of line virtual dtor for TargetInfo.
139 TargetInfo::~TargetInfo() {}
140 
141 void TargetInfo::resetDataLayout(StringRef DL) {
142   DataLayout.reset(new llvm::DataLayout(DL));
143 }
144 
145 bool
146 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
147   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
148   return false;
149 }
150 
151 bool
152 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
153   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
154   return false;
155 }
156 
157 /// getTypeName - Return the user string for the specified integer type enum.
158 /// For example, SignedShort -> "short".
159 const char *TargetInfo::getTypeName(IntType T) {
160   switch (T) {
161   default: llvm_unreachable("not an integer!");
162   case SignedChar:       return "signed char";
163   case UnsignedChar:     return "unsigned char";
164   case SignedShort:      return "short";
165   case UnsignedShort:    return "unsigned short";
166   case SignedInt:        return "int";
167   case UnsignedInt:      return "unsigned int";
168   case SignedLong:       return "long int";
169   case UnsignedLong:     return "long unsigned int";
170   case SignedLongLong:   return "long long int";
171   case UnsignedLongLong: return "long long unsigned int";
172   }
173 }
174 
175 /// getTypeConstantSuffix - Return the constant suffix for the specified
176 /// integer type enum. For example, SignedLong -> "L".
177 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
178   switch (T) {
179   default: llvm_unreachable("not an integer!");
180   case SignedChar:
181   case SignedShort:
182   case SignedInt:        return "";
183   case SignedLong:       return "L";
184   case SignedLongLong:   return "LL";
185   case UnsignedChar:
186     if (getCharWidth() < getIntWidth())
187       return "";
188     LLVM_FALLTHROUGH;
189   case UnsignedShort:
190     if (getShortWidth() < getIntWidth())
191       return "";
192     LLVM_FALLTHROUGH;
193   case UnsignedInt:      return "U";
194   case UnsignedLong:     return "UL";
195   case UnsignedLongLong: return "ULL";
196   }
197 }
198 
199 /// getTypeFormatModifier - Return the printf format modifier for the
200 /// specified integer type enum. For example, SignedLong -> "l".
201 
202 const char *TargetInfo::getTypeFormatModifier(IntType T) {
203   switch (T) {
204   default: llvm_unreachable("not an integer!");
205   case SignedChar:
206   case UnsignedChar:     return "hh";
207   case SignedShort:
208   case UnsignedShort:    return "h";
209   case SignedInt:
210   case UnsignedInt:      return "";
211   case SignedLong:
212   case UnsignedLong:     return "l";
213   case SignedLongLong:
214   case UnsignedLongLong: return "ll";
215   }
216 }
217 
218 /// getTypeWidth - Return the width (in bits) of the specified integer type
219 /// enum. For example, SignedInt -> getIntWidth().
220 unsigned TargetInfo::getTypeWidth(IntType T) const {
221   switch (T) {
222   default: llvm_unreachable("not an integer!");
223   case SignedChar:
224   case UnsignedChar:     return getCharWidth();
225   case SignedShort:
226   case UnsignedShort:    return getShortWidth();
227   case SignedInt:
228   case UnsignedInt:      return getIntWidth();
229   case SignedLong:
230   case UnsignedLong:     return getLongWidth();
231   case SignedLongLong:
232   case UnsignedLongLong: return getLongLongWidth();
233   };
234 }
235 
236 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
237     unsigned BitWidth, bool IsSigned) const {
238   if (getCharWidth() == BitWidth)
239     return IsSigned ? SignedChar : UnsignedChar;
240   if (getShortWidth() == BitWidth)
241     return IsSigned ? SignedShort : UnsignedShort;
242   if (getIntWidth() == BitWidth)
243     return IsSigned ? SignedInt : UnsignedInt;
244   if (getLongWidth() == BitWidth)
245     return IsSigned ? SignedLong : UnsignedLong;
246   if (getLongLongWidth() == BitWidth)
247     return IsSigned ? SignedLongLong : UnsignedLongLong;
248   return NoInt;
249 }
250 
251 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
252                                                        bool IsSigned) const {
253   if (getCharWidth() >= BitWidth)
254     return IsSigned ? SignedChar : UnsignedChar;
255   if (getShortWidth() >= BitWidth)
256     return IsSigned ? SignedShort : UnsignedShort;
257   if (getIntWidth() >= BitWidth)
258     return IsSigned ? SignedInt : UnsignedInt;
259   if (getLongWidth() >= BitWidth)
260     return IsSigned ? SignedLong : UnsignedLong;
261   if (getLongLongWidth() >= BitWidth)
262     return IsSigned ? SignedLongLong : UnsignedLongLong;
263   return NoInt;
264 }
265 
266 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
267   if (getFloatWidth() == BitWidth)
268     return Float;
269   if (getDoubleWidth() == BitWidth)
270     return Double;
271 
272   switch (BitWidth) {
273   case 96:
274     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
275       return LongDouble;
276     break;
277   case 128:
278     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
279         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
280       return LongDouble;
281     if (hasFloat128Type())
282       return Float128;
283     break;
284   }
285 
286   return NoFloat;
287 }
288 
289 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
290 /// enum. For example, SignedInt -> getIntAlign().
291 unsigned TargetInfo::getTypeAlign(IntType T) const {
292   switch (T) {
293   default: llvm_unreachable("not an integer!");
294   case SignedChar:
295   case UnsignedChar:     return getCharAlign();
296   case SignedShort:
297   case UnsignedShort:    return getShortAlign();
298   case SignedInt:
299   case UnsignedInt:      return getIntAlign();
300   case SignedLong:
301   case UnsignedLong:     return getLongAlign();
302   case SignedLongLong:
303   case UnsignedLongLong: return getLongLongAlign();
304   };
305 }
306 
307 /// isTypeSigned - Return whether an integer types is signed. Returns true if
308 /// the type is signed; false otherwise.
309 bool TargetInfo::isTypeSigned(IntType T) {
310   switch (T) {
311   default: llvm_unreachable("not an integer!");
312   case SignedChar:
313   case SignedShort:
314   case SignedInt:
315   case SignedLong:
316   case SignedLongLong:
317     return true;
318   case UnsignedChar:
319   case UnsignedShort:
320   case UnsignedInt:
321   case UnsignedLong:
322   case UnsignedLongLong:
323     return false;
324   };
325 }
326 
327 /// adjust - Set forced language options.
328 /// Apply changes to the target information with respect to certain
329 /// language options which change the target configuration and adjust
330 /// the language based on the target options where applicable.
331 void TargetInfo::adjust(LangOptions &Opts) {
332   if (Opts.NoBitFieldTypeAlign)
333     UseBitFieldTypeAlignment = false;
334 
335   switch (Opts.WCharSize) {
336   default: llvm_unreachable("invalid wchar_t width");
337   case 0: break;
338   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
339   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
340   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
341   }
342 
343   if (Opts.AlignDouble) {
344     DoubleAlign = LongLongAlign = 64;
345     LongDoubleAlign = 64;
346   }
347 
348   if (Opts.OpenCL) {
349     // OpenCL C requires specific widths for types, irrespective of
350     // what these normally are for the target.
351     // We also define long long and long double here, although the
352     // OpenCL standard only mentions these as "reserved".
353     IntWidth = IntAlign = 32;
354     LongWidth = LongAlign = 64;
355     LongLongWidth = LongLongAlign = 128;
356     HalfWidth = HalfAlign = 16;
357     FloatWidth = FloatAlign = 32;
358 
359     // Embedded 32-bit targets (OpenCL EP) might have double C type
360     // defined as float. Let's not override this as it might lead
361     // to generating illegal code that uses 64bit doubles.
362     if (DoubleWidth != FloatWidth) {
363       DoubleWidth = DoubleAlign = 64;
364       DoubleFormat = &llvm::APFloat::IEEEdouble();
365     }
366     LongDoubleWidth = LongDoubleAlign = 128;
367 
368     unsigned MaxPointerWidth = getMaxPointerWidth();
369     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
370     bool Is32BitArch = MaxPointerWidth == 32;
371     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
372     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
373     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
374 
375     IntMaxType = SignedLongLong;
376     Int64Type = SignedLong;
377 
378     HalfFormat = &llvm::APFloat::IEEEhalf();
379     FloatFormat = &llvm::APFloat::IEEEsingle();
380     LongDoubleFormat = &llvm::APFloat::IEEEquad();
381   }
382 
383   if (Opts.LongDoubleSize) {
384     if (Opts.LongDoubleSize == DoubleWidth) {
385       LongDoubleWidth = DoubleWidth;
386       LongDoubleAlign = DoubleAlign;
387       LongDoubleFormat = DoubleFormat;
388     } else if (Opts.LongDoubleSize == 128) {
389       LongDoubleWidth = LongDoubleAlign = 128;
390       LongDoubleFormat = &llvm::APFloat::IEEEquad();
391     }
392   }
393 
394   if (Opts.NewAlignOverride)
395     NewAlign = Opts.NewAlignOverride * getCharWidth();
396 
397   // Each unsigned fixed point type has the same number of fractional bits as
398   // its corresponding signed type.
399   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
400   CheckFixedPointBits();
401 }
402 
403 bool TargetInfo::initFeatureMap(
404     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
405     const std::vector<std::string> &FeatureVec) const {
406   for (const auto &F : FeatureVec) {
407     StringRef Name = F;
408     // Apply the feature via the target.
409     bool Enabled = Name[0] == '+';
410     setFeatureEnabled(Features, Name.substr(1), Enabled);
411   }
412   return true;
413 }
414 
415 TargetInfo::CallingConvKind
416 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
417   if (getCXXABI() != TargetCXXABI::Microsoft &&
418       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
419     return CCK_ClangABI4OrPS4;
420   return CCK_Default;
421 }
422 
423 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
424   switch (TK) {
425   case OCLTK_Image:
426   case OCLTK_Pipe:
427     return LangAS::opencl_global;
428 
429   case OCLTK_Sampler:
430     return LangAS::opencl_constant;
431 
432   default:
433     return LangAS::Default;
434   }
435 }
436 
437 //===----------------------------------------------------------------------===//
438 
439 
440 static StringRef removeGCCRegisterPrefix(StringRef Name) {
441   if (Name[0] == '%' || Name[0] == '#')
442     Name = Name.substr(1);
443 
444   return Name;
445 }
446 
447 /// isValidClobber - Returns whether the passed in string is
448 /// a valid clobber in an inline asm statement. This is used by
449 /// Sema.
450 bool TargetInfo::isValidClobber(StringRef Name) const {
451   return (isValidGCCRegisterName(Name) ||
452           Name == "memory" || Name == "cc");
453 }
454 
455 /// isValidGCCRegisterName - Returns whether the passed in string
456 /// is a valid register name according to GCC. This is used by Sema for
457 /// inline asm statements.
458 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
459   if (Name.empty())
460     return false;
461 
462   // Get rid of any register prefix.
463   Name = removeGCCRegisterPrefix(Name);
464   if (Name.empty())
465     return false;
466 
467   ArrayRef<const char *> Names = getGCCRegNames();
468 
469   // If we have a number it maps to an entry in the register name array.
470   if (isDigit(Name[0])) {
471     unsigned n;
472     if (!Name.getAsInteger(0, n))
473       return n < Names.size();
474   }
475 
476   // Check register names.
477   if (llvm::is_contained(Names, Name))
478     return true;
479 
480   // Check any additional names that we have.
481   for (const AddlRegName &ARN : getGCCAddlRegNames())
482     for (const char *AN : ARN.Names) {
483       if (!AN)
484         break;
485       // Make sure the register that the additional name is for is within
486       // the bounds of the register names from above.
487       if (AN == Name && ARN.RegNum < Names.size())
488         return true;
489     }
490 
491   // Now check aliases.
492   for (const GCCRegAlias &GRA : getGCCRegAliases())
493     for (const char *A : GRA.Aliases) {
494       if (!A)
495         break;
496       if (A == Name)
497         return true;
498     }
499 
500   return false;
501 }
502 
503 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
504                                                    bool ReturnCanonical) const {
505   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
506 
507   // Get rid of any register prefix.
508   Name = removeGCCRegisterPrefix(Name);
509 
510   ArrayRef<const char *> Names = getGCCRegNames();
511 
512   // First, check if we have a number.
513   if (isDigit(Name[0])) {
514     unsigned n;
515     if (!Name.getAsInteger(0, n)) {
516       assert(n < Names.size() && "Out of bounds register number!");
517       return Names[n];
518     }
519   }
520 
521   // Check any additional names that we have.
522   for (const AddlRegName &ARN : getGCCAddlRegNames())
523     for (const char *AN : ARN.Names) {
524       if (!AN)
525         break;
526       // Make sure the register that the additional name is for is within
527       // the bounds of the register names from above.
528       if (AN == Name && ARN.RegNum < Names.size())
529         return ReturnCanonical ? Names[ARN.RegNum] : Name;
530     }
531 
532   // Now check aliases.
533   for (const GCCRegAlias &RA : getGCCRegAliases())
534     for (const char *A : RA.Aliases) {
535       if (!A)
536         break;
537       if (A == Name)
538         return RA.Register;
539     }
540 
541   return Name;
542 }
543 
544 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
545   const char *Name = Info.getConstraintStr().c_str();
546   // An output constraint must start with '=' or '+'
547   if (*Name != '=' && *Name != '+')
548     return false;
549 
550   if (*Name == '+')
551     Info.setIsReadWrite();
552 
553   Name++;
554   while (*Name) {
555     switch (*Name) {
556     default:
557       if (!validateAsmConstraint(Name, Info)) {
558         // FIXME: We temporarily return false
559         // so we can add more constraints as we hit it.
560         // Eventually, an unknown constraint should just be treated as 'g'.
561         return false;
562       }
563       break;
564     case '&': // early clobber.
565       Info.setEarlyClobber();
566       break;
567     case '%': // commutative.
568       // FIXME: Check that there is a another register after this one.
569       break;
570     case 'r': // general register.
571       Info.setAllowsRegister();
572       break;
573     case 'm': // memory operand.
574     case 'o': // offsetable memory operand.
575     case 'V': // non-offsetable memory operand.
576     case '<': // autodecrement memory operand.
577     case '>': // autoincrement memory operand.
578       Info.setAllowsMemory();
579       break;
580     case 'g': // general register, memory operand or immediate integer.
581     case 'X': // any operand.
582       Info.setAllowsRegister();
583       Info.setAllowsMemory();
584       break;
585     case ',': // multiple alternative constraint.  Pass it.
586       // Handle additional optional '=' or '+' modifiers.
587       if (Name[1] == '=' || Name[1] == '+')
588         Name++;
589       break;
590     case '#': // Ignore as constraint.
591       while (Name[1] && Name[1] != ',')
592         Name++;
593       break;
594     case '?': // Disparage slightly code.
595     case '!': // Disparage severely.
596     case '*': // Ignore for choosing register preferences.
597     case 'i': // Ignore i,n,E,F as output constraints (match from the other
598               // chars)
599     case 'n':
600     case 'E':
601     case 'F':
602       break;  // Pass them.
603     }
604 
605     Name++;
606   }
607 
608   // Early clobber with a read-write constraint which doesn't permit registers
609   // is invalid.
610   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
611     return false;
612 
613   // If a constraint allows neither memory nor register operands it contains
614   // only modifiers. Reject it.
615   return Info.allowsMemory() || Info.allowsRegister();
616 }
617 
618 bool TargetInfo::resolveSymbolicName(const char *&Name,
619                                      ArrayRef<ConstraintInfo> OutputConstraints,
620                                      unsigned &Index) const {
621   assert(*Name == '[' && "Symbolic name did not start with '['");
622   Name++;
623   const char *Start = Name;
624   while (*Name && *Name != ']')
625     Name++;
626 
627   if (!*Name) {
628     // Missing ']'
629     return false;
630   }
631 
632   std::string SymbolicName(Start, Name - Start);
633 
634   for (Index = 0; Index != OutputConstraints.size(); ++Index)
635     if (SymbolicName == OutputConstraints[Index].getName())
636       return true;
637 
638   return false;
639 }
640 
641 bool TargetInfo::validateInputConstraint(
642                               MutableArrayRef<ConstraintInfo> OutputConstraints,
643                               ConstraintInfo &Info) const {
644   const char *Name = Info.ConstraintStr.c_str();
645 
646   if (!*Name)
647     return false;
648 
649   while (*Name) {
650     switch (*Name) {
651     default:
652       // Check if we have a matching constraint
653       if (*Name >= '0' && *Name <= '9') {
654         const char *DigitStart = Name;
655         while (Name[1] >= '0' && Name[1] <= '9')
656           Name++;
657         const char *DigitEnd = Name;
658         unsigned i;
659         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
660                 .getAsInteger(10, i))
661           return false;
662 
663         // Check if matching constraint is out of bounds.
664         if (i >= OutputConstraints.size()) return false;
665 
666         // A number must refer to an output only operand.
667         if (OutputConstraints[i].isReadWrite())
668           return false;
669 
670         // If the constraint is already tied, it must be tied to the
671         // same operand referenced to by the number.
672         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
673           return false;
674 
675         // The constraint should have the same info as the respective
676         // output constraint.
677         Info.setTiedOperand(i, OutputConstraints[i]);
678       } else if (!validateAsmConstraint(Name, Info)) {
679         // FIXME: This error return is in place temporarily so we can
680         // add more constraints as we hit it.  Eventually, an unknown
681         // constraint should just be treated as 'g'.
682         return false;
683       }
684       break;
685     case '[': {
686       unsigned Index = 0;
687       if (!resolveSymbolicName(Name, OutputConstraints, Index))
688         return false;
689 
690       // If the constraint is already tied, it must be tied to the
691       // same operand referenced to by the number.
692       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
693         return false;
694 
695       // A number must refer to an output only operand.
696       if (OutputConstraints[Index].isReadWrite())
697         return false;
698 
699       Info.setTiedOperand(Index, OutputConstraints[Index]);
700       break;
701     }
702     case '%': // commutative
703       // FIXME: Fail if % is used with the last operand.
704       break;
705     case 'i': // immediate integer.
706       break;
707     case 'n': // immediate integer with a known value.
708       Info.setRequiresImmediate();
709       break;
710     case 'I':  // Various constant constraints with target-specific meanings.
711     case 'J':
712     case 'K':
713     case 'L':
714     case 'M':
715     case 'N':
716     case 'O':
717     case 'P':
718       if (!validateAsmConstraint(Name, Info))
719         return false;
720       break;
721     case 'r': // general register.
722       Info.setAllowsRegister();
723       break;
724     case 'm': // memory operand.
725     case 'o': // offsettable memory operand.
726     case 'V': // non-offsettable memory operand.
727     case '<': // autodecrement memory operand.
728     case '>': // autoincrement memory operand.
729       Info.setAllowsMemory();
730       break;
731     case 'g': // general register, memory operand or immediate integer.
732     case 'X': // any operand.
733       Info.setAllowsRegister();
734       Info.setAllowsMemory();
735       break;
736     case 'E': // immediate floating point.
737     case 'F': // immediate floating point.
738     case 'p': // address operand.
739       break;
740     case ',': // multiple alternative constraint.  Ignore comma.
741       break;
742     case '#': // Ignore as constraint.
743       while (Name[1] && Name[1] != ',')
744         Name++;
745       break;
746     case '?': // Disparage slightly code.
747     case '!': // Disparage severely.
748     case '*': // Ignore for choosing register preferences.
749       break;  // Pass them.
750     }
751 
752     Name++;
753   }
754 
755   return true;
756 }
757 
758 void TargetInfo::CheckFixedPointBits() const {
759   // Check that the number of fractional and integral bits (and maybe sign) can
760   // fit into the bits given for a fixed point type.
761   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
762   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
763   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
764   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
765          ShortAccumWidth);
766   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
767   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
768          LongAccumWidth);
769 
770   assert(getShortFractScale() + 1 <= ShortFractWidth);
771   assert(getFractScale() + 1 <= FractWidth);
772   assert(getLongFractScale() + 1 <= LongFractWidth);
773   assert(getUnsignedShortFractScale() <= ShortFractWidth);
774   assert(getUnsignedFractScale() <= FractWidth);
775   assert(getUnsignedLongFractScale() <= LongFractWidth);
776 
777   // Each unsigned fract type has either the same number of fractional bits
778   // as, or one more fractional bit than, its corresponding signed fract type.
779   assert(getShortFractScale() == getUnsignedShortFractScale() ||
780          getShortFractScale() == getUnsignedShortFractScale() - 1);
781   assert(getFractScale() == getUnsignedFractScale() ||
782          getFractScale() == getUnsignedFractScale() - 1);
783   assert(getLongFractScale() == getUnsignedLongFractScale() ||
784          getLongFractScale() == getUnsignedLongFractScale() - 1);
785 
786   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
787   // fractional bits is nondecreasing for each of the following sets of
788   // fixed-point types:
789   // - signed fract types
790   // - unsigned fract types
791   // - signed accum types
792   // - unsigned accum types.
793   assert(getLongFractScale() >= getFractScale() &&
794          getFractScale() >= getShortFractScale());
795   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
796          getUnsignedFractScale() >= getUnsignedShortFractScale());
797   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
798   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
799          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
800 
801   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
802   // integral bits is nondecreasing for each of the following sets of
803   // fixed-point types:
804   // - signed accum types
805   // - unsigned accum types
806   assert(getLongAccumIBits() >= getAccumIBits() &&
807          getAccumIBits() >= getShortAccumIBits());
808   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
809          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
810 
811   // Each signed accum type has at least as many integral bits as its
812   // corresponding unsigned accum type.
813   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
814   assert(getAccumIBits() >= getUnsignedAccumIBits());
815   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
816 }
817 
818 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
819   auto *Target = static_cast<TransferrableTargetInfo*>(this);
820   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
821   *Target = *Src;
822 }
823