1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Randstruct.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/Redeclarable.h" 36 #include "clang/AST/Stmt.h" 37 #include "clang/AST/TemplateBase.h" 38 #include "clang/AST/Type.h" 39 #include "clang/AST/TypeLoc.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/Linkage.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/NoSanitizeList.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/Sanitizers.h" 49 #include "clang/Basic/SourceLocation.h" 50 #include "clang/Basic/SourceManager.h" 51 #include "clang/Basic/Specifiers.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/Visibility.h" 55 #include "llvm/ADT/APSInt.h" 56 #include "llvm/ADT/ArrayRef.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <optional> 71 #include <string> 72 #include <tuple> 73 #include <type_traits> 74 75 using namespace clang; 76 77 Decl *clang::getPrimaryMergedDecl(Decl *D) { 78 return D->getASTContext().getPrimaryMergedDecl(D); 79 } 80 81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 82 SourceLocation Loc = this->Loc; 83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 84 if (Loc.isValid()) { 85 Loc.print(OS, Context.getSourceManager()); 86 OS << ": "; 87 } 88 OS << Message; 89 90 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 91 OS << " '"; 92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 93 OS << "'"; 94 } 95 96 OS << '\n'; 97 } 98 99 // Defined here so that it can be inlined into its direct callers. 100 bool Decl::isOutOfLine() const { 101 return !getLexicalDeclContext()->Equals(getDeclContext()); 102 } 103 104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 105 : Decl(TranslationUnit, nullptr, SourceLocation()), 106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 107 108 //===----------------------------------------------------------------------===// 109 // NamedDecl Implementation 110 //===----------------------------------------------------------------------===// 111 112 // Visibility rules aren't rigorously externally specified, but here 113 // are the basic principles behind what we implement: 114 // 115 // 1. An explicit visibility attribute is generally a direct expression 116 // of the user's intent and should be honored. Only the innermost 117 // visibility attribute applies. If no visibility attribute applies, 118 // global visibility settings are considered. 119 // 120 // 2. There is one caveat to the above: on or in a template pattern, 121 // an explicit visibility attribute is just a default rule, and 122 // visibility can be decreased by the visibility of template 123 // arguments. But this, too, has an exception: an attribute on an 124 // explicit specialization or instantiation causes all the visibility 125 // restrictions of the template arguments to be ignored. 126 // 127 // 3. A variable that does not otherwise have explicit visibility can 128 // be restricted by the visibility of its type. 129 // 130 // 4. A visibility restriction is explicit if it comes from an 131 // attribute (or something like it), not a global visibility setting. 132 // When emitting a reference to an external symbol, visibility 133 // restrictions are ignored unless they are explicit. 134 // 135 // 5. When computing the visibility of a non-type, including a 136 // non-type member of a class, only non-type visibility restrictions 137 // are considered: the 'visibility' attribute, global value-visibility 138 // settings, and a few special cases like __private_extern. 139 // 140 // 6. When computing the visibility of a type, including a type member 141 // of a class, only type visibility restrictions are considered: 142 // the 'type_visibility' attribute and global type-visibility settings. 143 // However, a 'visibility' attribute counts as a 'type_visibility' 144 // attribute on any declaration that only has the former. 145 // 146 // The visibility of a "secondary" entity, like a template argument, 147 // is computed using the kind of that entity, not the kind of the 148 // primary entity for which we are computing visibility. For example, 149 // the visibility of a specialization of either of these templates: 150 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 151 // template <class T, bool (&compare)(T, X)> class matcher; 152 // is restricted according to the type visibility of the argument 'T', 153 // the type visibility of 'bool(&)(T,X)', and the value visibility of 154 // the argument function 'compare'. That 'has_match' is a value 155 // and 'matcher' is a type only matters when looking for attributes 156 // and settings from the immediate context. 157 158 /// Does this computation kind permit us to consider additional 159 /// visibility settings from attributes and the like? 160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 161 return computation.IgnoreExplicitVisibility; 162 } 163 164 /// Given an LVComputationKind, return one of the same type/value sort 165 /// that records that it already has explicit visibility. 166 static LVComputationKind 167 withExplicitVisibilityAlready(LVComputationKind Kind) { 168 Kind.IgnoreExplicitVisibility = true; 169 return Kind; 170 } 171 172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D, 173 LVComputationKind kind) { 174 assert(!kind.IgnoreExplicitVisibility && 175 "asking for explicit visibility when we shouldn't be"); 176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 177 } 178 179 /// Is the given declaration a "type" or a "value" for the purposes of 180 /// visibility computation? 181 static bool usesTypeVisibility(const NamedDecl *D) { 182 return isa<TypeDecl>(D) || 183 isa<ClassTemplateDecl>(D) || 184 isa<ObjCInterfaceDecl>(D); 185 } 186 187 /// Does the given declaration have member specialization information, 188 /// and if so, is it an explicit specialization? 189 template <class T> 190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool> 191 isExplicitMemberSpecialization(const T *D) { 192 if (const MemberSpecializationInfo *member = 193 D->getMemberSpecializationInfo()) { 194 return member->isExplicitSpecialization(); 195 } 196 return false; 197 } 198 199 /// For templates, this question is easier: a member template can't be 200 /// explicitly instantiated, so there's a single bit indicating whether 201 /// or not this is an explicit member specialization. 202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 203 return D->isMemberSpecialization(); 204 } 205 206 /// Given a visibility attribute, return the explicit visibility 207 /// associated with it. 208 template <class T> 209 static Visibility getVisibilityFromAttr(const T *attr) { 210 switch (attr->getVisibility()) { 211 case T::Default: 212 return DefaultVisibility; 213 case T::Hidden: 214 return HiddenVisibility; 215 case T::Protected: 216 return ProtectedVisibility; 217 } 218 llvm_unreachable("bad visibility kind"); 219 } 220 221 /// Return the explicit visibility of the given declaration. 222 static std::optional<Visibility> 223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { 224 // If we're ultimately computing the visibility of a type, look for 225 // a 'type_visibility' attribute before looking for 'visibility'. 226 if (kind == NamedDecl::VisibilityForType) { 227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 228 return getVisibilityFromAttr(A); 229 } 230 } 231 232 // If this declaration has an explicit visibility attribute, use it. 233 if (const auto *A = D->getAttr<VisibilityAttr>()) { 234 return getVisibilityFromAttr(A); 235 } 236 237 return std::nullopt; 238 } 239 240 LinkageInfo LinkageComputer::getLVForType(const Type &T, 241 LVComputationKind computation) { 242 if (computation.IgnoreAllVisibility) 243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 244 return getTypeLinkageAndVisibility(&T); 245 } 246 247 /// Get the most restrictive linkage for the types in the given 248 /// template parameter list. For visibility purposes, template 249 /// parameters are part of the signature of a template. 250 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 251 const TemplateParameterList *Params, LVComputationKind computation) { 252 LinkageInfo LV; 253 for (const NamedDecl *P : *Params) { 254 // Template type parameters are the most common and never 255 // contribute to visibility, pack or not. 256 if (isa<TemplateTypeParmDecl>(P)) 257 continue; 258 259 // Non-type template parameters can be restricted by the value type, e.g. 260 // template <enum X> class A { ... }; 261 // We have to be careful here, though, because we can be dealing with 262 // dependent types. 263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 264 // Handle the non-pack case first. 265 if (!NTTP->isExpandedParameterPack()) { 266 if (!NTTP->getType()->isDependentType()) { 267 LV.merge(getLVForType(*NTTP->getType(), computation)); 268 } 269 continue; 270 } 271 272 // Look at all the types in an expanded pack. 273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 274 QualType type = NTTP->getExpansionType(i); 275 if (!type->isDependentType()) 276 LV.merge(getTypeLinkageAndVisibility(type)); 277 } 278 continue; 279 } 280 281 // Template template parameters can be restricted by their 282 // template parameters, recursively. 283 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 284 285 // Handle the non-pack case first. 286 if (!TTP->isExpandedParameterPack()) { 287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 288 computation)); 289 continue; 290 } 291 292 // Look at all expansions in an expanded pack. 293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 294 i != n; ++i) { 295 LV.merge(getLVForTemplateParameterList( 296 TTP->getExpansionTemplateParameters(i), computation)); 297 } 298 } 299 300 return LV; 301 } 302 303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 304 const Decl *Ret = nullptr; 305 const DeclContext *DC = D->getDeclContext(); 306 while (DC->getDeclKind() != Decl::TranslationUnit) { 307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 308 Ret = cast<Decl>(DC); 309 DC = DC->getParent(); 310 } 311 return Ret; 312 } 313 314 /// Get the most restrictive linkage for the types and 315 /// declarations in the given template argument list. 316 /// 317 /// Note that we don't take an LVComputationKind because we always 318 /// want to honor the visibility of template arguments in the same way. 319 LinkageInfo 320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 321 LVComputationKind computation) { 322 LinkageInfo LV; 323 324 for (const TemplateArgument &Arg : Args) { 325 switch (Arg.getKind()) { 326 case TemplateArgument::Null: 327 case TemplateArgument::Integral: 328 case TemplateArgument::Expression: 329 continue; 330 331 case TemplateArgument::Type: 332 LV.merge(getLVForType(*Arg.getAsType(), computation)); 333 continue; 334 335 case TemplateArgument::Declaration: { 336 const NamedDecl *ND = Arg.getAsDecl(); 337 assert(!usesTypeVisibility(ND)); 338 LV.merge(getLVForDecl(ND, computation)); 339 continue; 340 } 341 342 case TemplateArgument::NullPtr: 343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 344 continue; 345 346 case TemplateArgument::Template: 347 case TemplateArgument::TemplateExpansion: 348 if (TemplateDecl *Template = 349 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 350 LV.merge(getLVForDecl(Template, computation)); 351 continue; 352 353 case TemplateArgument::Pack: 354 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 355 continue; 356 } 357 llvm_unreachable("bad template argument kind"); 358 } 359 360 return LV; 361 } 362 363 LinkageInfo 364 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 365 LVComputationKind computation) { 366 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 367 } 368 369 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 370 const FunctionTemplateSpecializationInfo *specInfo) { 371 // Include visibility from the template parameters and arguments 372 // only if this is not an explicit instantiation or specialization 373 // with direct explicit visibility. (Implicit instantiations won't 374 // have a direct attribute.) 375 if (!specInfo->isExplicitInstantiationOrSpecialization()) 376 return true; 377 378 return !fn->hasAttr<VisibilityAttr>(); 379 } 380 381 /// Merge in template-related linkage and visibility for the given 382 /// function template specialization. 383 /// 384 /// We don't need a computation kind here because we can assume 385 /// LVForValue. 386 /// 387 /// \param[out] LV the computation to use for the parent 388 void LinkageComputer::mergeTemplateLV( 389 LinkageInfo &LV, const FunctionDecl *fn, 390 const FunctionTemplateSpecializationInfo *specInfo, 391 LVComputationKind computation) { 392 bool considerVisibility = 393 shouldConsiderTemplateVisibility(fn, specInfo); 394 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 // Merge information from the template declaration. 397 LinkageInfo tempLV = getLVForDecl(temp, computation); 398 // The linkage of the specialization should be consistent with the 399 // template declaration. 400 LV.setLinkage(tempLV.getLinkage()); 401 402 // Merge information from the template parameters. 403 LinkageInfo paramsLV = 404 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 405 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility); 406 407 // Merge information from the template arguments. 408 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 409 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 410 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 411 } 412 413 /// Does the given declaration have a direct visibility attribute 414 /// that would match the given rules? 415 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 416 LVComputationKind computation) { 417 if (computation.IgnoreAllVisibility) 418 return false; 419 420 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 421 D->hasAttr<VisibilityAttr>(); 422 } 423 424 /// Should we consider visibility associated with the template 425 /// arguments and parameters of the given class template specialization? 426 static bool shouldConsiderTemplateVisibility( 427 const ClassTemplateSpecializationDecl *spec, 428 LVComputationKind computation) { 429 // Include visibility from the template parameters and arguments 430 // only if this is not an explicit instantiation or specialization 431 // with direct explicit visibility (and note that implicit 432 // instantiations won't have a direct attribute). 433 // 434 // Furthermore, we want to ignore template parameters and arguments 435 // for an explicit specialization when computing the visibility of a 436 // member thereof with explicit visibility. 437 // 438 // This is a bit complex; let's unpack it. 439 // 440 // An explicit class specialization is an independent, top-level 441 // declaration. As such, if it or any of its members has an 442 // explicit visibility attribute, that must directly express the 443 // user's intent, and we should honor it. The same logic applies to 444 // an explicit instantiation of a member of such a thing. 445 446 // Fast path: if this is not an explicit instantiation or 447 // specialization, we always want to consider template-related 448 // visibility restrictions. 449 if (!spec->isExplicitInstantiationOrSpecialization()) 450 return true; 451 452 // This is the 'member thereof' check. 453 if (spec->isExplicitSpecialization() && 454 hasExplicitVisibilityAlready(computation)) 455 return false; 456 457 return !hasDirectVisibilityAttribute(spec, computation); 458 } 459 460 /// Merge in template-related linkage and visibility for the given 461 /// class template specialization. 462 void LinkageComputer::mergeTemplateLV( 463 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 464 LVComputationKind computation) { 465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 466 467 // Merge information from the template parameters, but ignore 468 // visibility if we're only considering template arguments. 469 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 470 // Merge information from the template declaration. 471 LinkageInfo tempLV = getLVForDecl(temp, computation); 472 // The linkage of the specialization should be consistent with the 473 // template declaration. 474 LV.setLinkage(tempLV.getLinkage()); 475 476 LinkageInfo paramsLV = 477 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 478 LV.mergeMaybeWithVisibility(paramsLV, 479 considerVisibility && !hasExplicitVisibilityAlready(computation)); 480 481 // Merge information from the template arguments. We ignore 482 // template-argument visibility if we've got an explicit 483 // instantiation with a visibility attribute. 484 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 485 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 486 if (considerVisibility) 487 LV.mergeVisibility(argsLV); 488 LV.mergeExternalVisibility(argsLV); 489 } 490 491 /// Should we consider visibility associated with the template 492 /// arguments and parameters of the given variable template 493 /// specialization? As usual, follow class template specialization 494 /// logic up to initialization. 495 static bool shouldConsiderTemplateVisibility( 496 const VarTemplateSpecializationDecl *spec, 497 LVComputationKind computation) { 498 // Include visibility from the template parameters and arguments 499 // only if this is not an explicit instantiation or specialization 500 // with direct explicit visibility (and note that implicit 501 // instantiations won't have a direct attribute). 502 if (!spec->isExplicitInstantiationOrSpecialization()) 503 return true; 504 505 // An explicit variable specialization is an independent, top-level 506 // declaration. As such, if it has an explicit visibility attribute, 507 // that must directly express the user's intent, and we should honor 508 // it. 509 if (spec->isExplicitSpecialization() && 510 hasExplicitVisibilityAlready(computation)) 511 return false; 512 513 return !hasDirectVisibilityAttribute(spec, computation); 514 } 515 516 /// Merge in template-related linkage and visibility for the given 517 /// variable template specialization. As usual, follow class template 518 /// specialization logic up to initialization. 519 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 520 const VarTemplateSpecializationDecl *spec, 521 LVComputationKind computation) { 522 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 523 524 // Merge information from the template parameters, but ignore 525 // visibility if we're only considering template arguments. 526 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 527 LinkageInfo tempLV = 528 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 529 LV.mergeMaybeWithVisibility(tempLV, 530 considerVisibility && !hasExplicitVisibilityAlready(computation)); 531 532 // Merge information from the template arguments. We ignore 533 // template-argument visibility if we've got an explicit 534 // instantiation with a visibility attribute. 535 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 536 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 537 if (considerVisibility) 538 LV.mergeVisibility(argsLV); 539 LV.mergeExternalVisibility(argsLV); 540 } 541 542 static bool useInlineVisibilityHidden(const NamedDecl *D) { 543 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 544 const LangOptions &Opts = D->getASTContext().getLangOpts(); 545 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 546 return false; 547 548 const auto *FD = dyn_cast<FunctionDecl>(D); 549 if (!FD) 550 return false; 551 552 TemplateSpecializationKind TSK = TSK_Undeclared; 553 if (FunctionTemplateSpecializationInfo *spec 554 = FD->getTemplateSpecializationInfo()) { 555 TSK = spec->getTemplateSpecializationKind(); 556 } else if (MemberSpecializationInfo *MSI = 557 FD->getMemberSpecializationInfo()) { 558 TSK = MSI->getTemplateSpecializationKind(); 559 } 560 561 const FunctionDecl *Def = nullptr; 562 // InlineVisibilityHidden only applies to definitions, and 563 // isInlined() only gives meaningful answers on definitions 564 // anyway. 565 return TSK != TSK_ExplicitInstantiationDeclaration && 566 TSK != TSK_ExplicitInstantiationDefinition && 567 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 568 } 569 570 template <typename T> static bool isFirstInExternCContext(T *D) { 571 const T *First = D->getFirstDecl(); 572 return First->isInExternCContext(); 573 } 574 575 static bool isSingleLineLanguageLinkage(const Decl &D) { 576 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 577 if (!SD->hasBraces()) 578 return true; 579 return false; 580 } 581 582 /// Determine whether D is declared in the purview of a named module. 583 static bool isInModulePurview(const NamedDecl *D) { 584 if (auto *M = D->getOwningModule()) 585 return M->isModulePurview(); 586 return false; 587 } 588 589 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 590 // FIXME: Handle isModulePrivate. 591 switch (D->getModuleOwnershipKind()) { 592 case Decl::ModuleOwnershipKind::Unowned: 593 case Decl::ModuleOwnershipKind::ReachableWhenImported: 594 case Decl::ModuleOwnershipKind::ModulePrivate: 595 return false; 596 case Decl::ModuleOwnershipKind::Visible: 597 case Decl::ModuleOwnershipKind::VisibleWhenImported: 598 return isInModulePurview(D); 599 } 600 llvm_unreachable("unexpected module ownership kind"); 601 } 602 603 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 604 // (for the modules ts) Internal linkage declarations within a module 605 // interface unit are modeled as "module-internal linkage", which means that 606 // they have internal linkage formally but can be indirectly accessed from 607 // outside the module via inline functions and templates defined within the 608 // module. 609 if (isInModulePurview(D) && D->getASTContext().getLangOpts().ModulesTS) 610 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 611 612 return LinkageInfo::internal(); 613 } 614 615 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 616 // C++ Modules TS [basic.link]/6.8: 617 // - A name declared at namespace scope that does not have internal linkage 618 // by the previous rules and that is introduced by a non-exported 619 // declaration has module linkage. 620 // 621 // [basic.namespace.general]/p2 622 // A namespace is never attached to a named module and never has a name with 623 // module linkage. 624 if (isInModulePurview(D) && 625 !isExportedFromModuleInterfaceUnit( 626 cast<NamedDecl>(D->getCanonicalDecl())) && 627 !isa<NamespaceDecl>(D)) 628 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 629 630 return LinkageInfo::external(); 631 } 632 633 static StorageClass getStorageClass(const Decl *D) { 634 if (auto *TD = dyn_cast<TemplateDecl>(D)) 635 D = TD->getTemplatedDecl(); 636 if (D) { 637 if (auto *VD = dyn_cast<VarDecl>(D)) 638 return VD->getStorageClass(); 639 if (auto *FD = dyn_cast<FunctionDecl>(D)) 640 return FD->getStorageClass(); 641 } 642 return SC_None; 643 } 644 645 LinkageInfo 646 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 647 LVComputationKind computation, 648 bool IgnoreVarTypeLinkage) { 649 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 650 "Not a name having namespace scope"); 651 ASTContext &Context = D->getASTContext(); 652 653 // C++ [basic.link]p3: 654 // A name having namespace scope (3.3.6) has internal linkage if it 655 // is the name of 656 657 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 658 // - a variable, variable template, function, or function template 659 // that is explicitly declared static; or 660 // (This bullet corresponds to C99 6.2.2p3.) 661 return getInternalLinkageFor(D); 662 } 663 664 if (const auto *Var = dyn_cast<VarDecl>(D)) { 665 // - a non-template variable of non-volatile const-qualified type, unless 666 // - it is explicitly declared extern, or 667 // - it is inline or exported, or 668 // - it was previously declared and the prior declaration did not have 669 // internal linkage 670 // (There is no equivalent in C99.) 671 if (Context.getLangOpts().CPlusPlus && 672 Var->getType().isConstQualified() && 673 !Var->getType().isVolatileQualified() && 674 !Var->isInline() && 675 !isExportedFromModuleInterfaceUnit(Var) && 676 !isa<VarTemplateSpecializationDecl>(Var) && 677 !Var->getDescribedVarTemplate()) { 678 const VarDecl *PrevVar = Var->getPreviousDecl(); 679 if (PrevVar) 680 return getLVForDecl(PrevVar, computation); 681 682 if (Var->getStorageClass() != SC_Extern && 683 Var->getStorageClass() != SC_PrivateExtern && 684 !isSingleLineLanguageLinkage(*Var)) 685 return getInternalLinkageFor(Var); 686 } 687 688 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 689 PrevVar = PrevVar->getPreviousDecl()) { 690 if (PrevVar->getStorageClass() == SC_PrivateExtern && 691 Var->getStorageClass() == SC_None) 692 return getDeclLinkageAndVisibility(PrevVar); 693 // Explicitly declared static. 694 if (PrevVar->getStorageClass() == SC_Static) 695 return getInternalLinkageFor(Var); 696 } 697 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 698 // - a data member of an anonymous union. 699 const VarDecl *VD = IFD->getVarDecl(); 700 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 701 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 702 } 703 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 704 705 // FIXME: This gives internal linkage to names that should have no linkage 706 // (those not covered by [basic.link]p6). 707 if (D->isInAnonymousNamespace()) { 708 const auto *Var = dyn_cast<VarDecl>(D); 709 const auto *Func = dyn_cast<FunctionDecl>(D); 710 // FIXME: The check for extern "C" here is not justified by the standard 711 // wording, but we retain it from the pre-DR1113 model to avoid breaking 712 // code. 713 // 714 // C++11 [basic.link]p4: 715 // An unnamed namespace or a namespace declared directly or indirectly 716 // within an unnamed namespace has internal linkage. 717 if ((!Var || !isFirstInExternCContext(Var)) && 718 (!Func || !isFirstInExternCContext(Func))) 719 return getInternalLinkageFor(D); 720 } 721 722 // Set up the defaults. 723 724 // C99 6.2.2p5: 725 // If the declaration of an identifier for an object has file 726 // scope and no storage-class specifier, its linkage is 727 // external. 728 LinkageInfo LV = getExternalLinkageFor(D); 729 730 if (!hasExplicitVisibilityAlready(computation)) { 731 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 732 LV.mergeVisibility(*Vis, true); 733 } else { 734 // If we're declared in a namespace with a visibility attribute, 735 // use that namespace's visibility, and it still counts as explicit. 736 for (const DeclContext *DC = D->getDeclContext(); 737 !isa<TranslationUnitDecl>(DC); 738 DC = DC->getParent()) { 739 const auto *ND = dyn_cast<NamespaceDecl>(DC); 740 if (!ND) continue; 741 if (std::optional<Visibility> Vis = 742 getExplicitVisibility(ND, computation)) { 743 LV.mergeVisibility(*Vis, true); 744 break; 745 } 746 } 747 } 748 749 // Add in global settings if the above didn't give us direct visibility. 750 if (!LV.isVisibilityExplicit()) { 751 // Use global type/value visibility as appropriate. 752 Visibility globalVisibility = 753 computation.isValueVisibility() 754 ? Context.getLangOpts().getValueVisibilityMode() 755 : Context.getLangOpts().getTypeVisibilityMode(); 756 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 757 758 // If we're paying attention to global visibility, apply 759 // -finline-visibility-hidden if this is an inline method. 760 if (useInlineVisibilityHidden(D)) 761 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 762 } 763 } 764 765 // C++ [basic.link]p4: 766 767 // A name having namespace scope that has not been given internal linkage 768 // above and that is the name of 769 // [...bullets...] 770 // has its linkage determined as follows: 771 // - if the enclosing namespace has internal linkage, the name has 772 // internal linkage; [handled above] 773 // - otherwise, if the declaration of the name is attached to a named 774 // module and is not exported, the name has module linkage; 775 // - otherwise, the name has external linkage. 776 // LV is currently set up to handle the last two bullets. 777 // 778 // The bullets are: 779 780 // - a variable; or 781 if (const auto *Var = dyn_cast<VarDecl>(D)) { 782 // GCC applies the following optimization to variables and static 783 // data members, but not to functions: 784 // 785 // Modify the variable's LV by the LV of its type unless this is 786 // C or extern "C". This follows from [basic.link]p9: 787 // A type without linkage shall not be used as the type of a 788 // variable or function with external linkage unless 789 // - the entity has C language linkage, or 790 // - the entity is declared within an unnamed namespace, or 791 // - the entity is not used or is defined in the same 792 // translation unit. 793 // and [basic.link]p10: 794 // ...the types specified by all declarations referring to a 795 // given variable or function shall be identical... 796 // C does not have an equivalent rule. 797 // 798 // Ignore this if we've got an explicit attribute; the user 799 // probably knows what they're doing. 800 // 801 // Note that we don't want to make the variable non-external 802 // because of this, but unique-external linkage suits us. 803 804 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 805 !IgnoreVarTypeLinkage) { 806 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 807 if (!isExternallyVisible(TypeLV.getLinkage())) 808 return LinkageInfo::uniqueExternal(); 809 if (!LV.isVisibilityExplicit()) 810 LV.mergeVisibility(TypeLV); 811 } 812 813 if (Var->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeVarDecl already takes care of implementing 817 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 818 // to do it here. 819 820 // As per function and class template specializations (below), 821 // consider LV for the template and template arguments. We're at file 822 // scope, so we do not need to worry about nested specializations. 823 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 824 mergeTemplateLV(LV, spec, computation); 825 } 826 827 // - a function; or 828 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 829 // In theory, we can modify the function's LV by the LV of its 830 // type unless it has C linkage (see comment above about variables 831 // for justification). In practice, GCC doesn't do this, so it's 832 // just too painful to make work. 833 834 if (Function->getStorageClass() == SC_PrivateExtern) 835 LV.mergeVisibility(HiddenVisibility, true); 836 837 // OpenMP target declare device functions are not callable from the host so 838 // they should not be exported from the device image. This applies to all 839 // functions as the host-callable kernel functions are emitted at codegen. 840 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice && 841 ((Context.getTargetInfo().getTriple().isAMDGPU() || 842 Context.getTargetInfo().getTriple().isNVPTX()) || 843 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function))) 844 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 845 846 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 847 // merging storage classes and visibility attributes, so we don't have to 848 // look at previous decls in here. 849 850 // In C++, then if the type of the function uses a type with 851 // unique-external linkage, it's not legally usable from outside 852 // this translation unit. However, we should use the C linkage 853 // rules instead for extern "C" declarations. 854 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 855 // Only look at the type-as-written. Otherwise, deducing the return type 856 // of a function could change its linkage. 857 QualType TypeAsWritten = Function->getType(); 858 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 859 TypeAsWritten = TSI->getType(); 860 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 861 return LinkageInfo::uniqueExternal(); 862 } 863 864 // Consider LV from the template and the template arguments. 865 // We're at file scope, so we do not need to worry about nested 866 // specializations. 867 if (FunctionTemplateSpecializationInfo *specInfo 868 = Function->getTemplateSpecializationInfo()) { 869 mergeTemplateLV(LV, Function, specInfo, computation); 870 } 871 872 // - a named class (Clause 9), or an unnamed class defined in a 873 // typedef declaration in which the class has the typedef name 874 // for linkage purposes (7.1.3); or 875 // - a named enumeration (7.2), or an unnamed enumeration 876 // defined in a typedef declaration in which the enumeration 877 // has the typedef name for linkage purposes (7.1.3); or 878 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 879 // Unnamed tags have no linkage. 880 if (!Tag->hasNameForLinkage()) 881 return LinkageInfo::none(); 882 883 // If this is a class template specialization, consider the 884 // linkage of the template and template arguments. We're at file 885 // scope, so we do not need to worry about nested specializations. 886 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 887 mergeTemplateLV(LV, spec, computation); 888 } 889 890 // FIXME: This is not part of the C++ standard any more. 891 // - an enumerator belonging to an enumeration with external linkage; or 892 } else if (isa<EnumConstantDecl>(D)) { 893 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 894 computation); 895 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 896 return LinkageInfo::none(); 897 LV.merge(EnumLV); 898 899 // - a template 900 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 901 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 902 LinkageInfo tempLV = 903 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 904 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 905 906 // An unnamed namespace or a namespace declared directly or indirectly 907 // within an unnamed namespace has internal linkage. All other namespaces 908 // have external linkage. 909 // 910 // We handled names in anonymous namespaces above. 911 } else if (isa<NamespaceDecl>(D)) { 912 return LV; 913 914 // By extension, we assign external linkage to Objective-C 915 // interfaces. 916 } else if (isa<ObjCInterfaceDecl>(D)) { 917 // fallout 918 919 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 920 // A typedef declaration has linkage if it gives a type a name for 921 // linkage purposes. 922 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 923 return LinkageInfo::none(); 924 925 } else if (isa<MSGuidDecl>(D)) { 926 // A GUID behaves like an inline variable with external linkage. Fall 927 // through. 928 929 // Everything not covered here has no linkage. 930 } else { 931 return LinkageInfo::none(); 932 } 933 934 // If we ended up with non-externally-visible linkage, visibility should 935 // always be default. 936 if (!isExternallyVisible(LV.getLinkage())) 937 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 938 939 return LV; 940 } 941 942 LinkageInfo 943 LinkageComputer::getLVForClassMember(const NamedDecl *D, 944 LVComputationKind computation, 945 bool IgnoreVarTypeLinkage) { 946 // Only certain class members have linkage. Note that fields don't 947 // really have linkage, but it's convenient to say they do for the 948 // purposes of calculating linkage of pointer-to-data-member 949 // template arguments. 950 // 951 // Templates also don't officially have linkage, but since we ignore 952 // the C++ standard and look at template arguments when determining 953 // linkage and visibility of a template specialization, we might hit 954 // a template template argument that way. If we do, we need to 955 // consider its linkage. 956 if (!(isa<CXXMethodDecl>(D) || 957 isa<VarDecl>(D) || 958 isa<FieldDecl>(D) || 959 isa<IndirectFieldDecl>(D) || 960 isa<TagDecl>(D) || 961 isa<TemplateDecl>(D))) 962 return LinkageInfo::none(); 963 964 LinkageInfo LV; 965 966 // If we have an explicit visibility attribute, merge that in. 967 if (!hasExplicitVisibilityAlready(computation)) { 968 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) 969 LV.mergeVisibility(*Vis, true); 970 // If we're paying attention to global visibility, apply 971 // -finline-visibility-hidden if this is an inline method. 972 // 973 // Note that we do this before merging information about 974 // the class visibility. 975 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 976 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 977 } 978 979 // If this class member has an explicit visibility attribute, the only 980 // thing that can change its visibility is the template arguments, so 981 // only look for them when processing the class. 982 LVComputationKind classComputation = computation; 983 if (LV.isVisibilityExplicit()) 984 classComputation = withExplicitVisibilityAlready(computation); 985 986 LinkageInfo classLV = 987 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 988 // The member has the same linkage as the class. If that's not externally 989 // visible, we don't need to compute anything about the linkage. 990 // FIXME: If we're only computing linkage, can we bail out here? 991 if (!isExternallyVisible(classLV.getLinkage())) 992 return classLV; 993 994 995 // Otherwise, don't merge in classLV yet, because in certain cases 996 // we need to completely ignore the visibility from it. 997 998 // Specifically, if this decl exists and has an explicit attribute. 999 const NamedDecl *explicitSpecSuppressor = nullptr; 1000 1001 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 1002 // Only look at the type-as-written. Otherwise, deducing the return type 1003 // of a function could change its linkage. 1004 QualType TypeAsWritten = MD->getType(); 1005 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 1006 TypeAsWritten = TSI->getType(); 1007 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 1008 return LinkageInfo::uniqueExternal(); 1009 1010 // If this is a method template specialization, use the linkage for 1011 // the template parameters and arguments. 1012 if (FunctionTemplateSpecializationInfo *spec 1013 = MD->getTemplateSpecializationInfo()) { 1014 mergeTemplateLV(LV, MD, spec, computation); 1015 if (spec->isExplicitSpecialization()) { 1016 explicitSpecSuppressor = MD; 1017 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 1018 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 1019 } 1020 } else if (isExplicitMemberSpecialization(MD)) { 1021 explicitSpecSuppressor = MD; 1022 } 1023 1024 // OpenMP target declare device functions are not callable from the host so 1025 // they should not be exported from the device image. This applies to all 1026 // functions as the host-callable kernel functions are emitted at codegen. 1027 ASTContext &Context = D->getASTContext(); 1028 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice && 1029 ((Context.getTargetInfo().getTriple().isAMDGPU() || 1030 Context.getTargetInfo().getTriple().isNVPTX()) || 1031 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD))) 1032 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 1033 1034 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1035 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1036 mergeTemplateLV(LV, spec, computation); 1037 if (spec->isExplicitSpecialization()) { 1038 explicitSpecSuppressor = spec; 1039 } else { 1040 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1041 if (isExplicitMemberSpecialization(temp)) { 1042 explicitSpecSuppressor = temp->getTemplatedDecl(); 1043 } 1044 } 1045 } else if (isExplicitMemberSpecialization(RD)) { 1046 explicitSpecSuppressor = RD; 1047 } 1048 1049 // Static data members. 1050 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1051 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1052 mergeTemplateLV(LV, spec, computation); 1053 1054 // Modify the variable's linkage by its type, but ignore the 1055 // type's visibility unless it's a definition. 1056 if (!IgnoreVarTypeLinkage) { 1057 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1058 // FIXME: If the type's linkage is not externally visible, we can 1059 // give this static data member UniqueExternalLinkage. 1060 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1061 LV.mergeVisibility(typeLV); 1062 LV.mergeExternalVisibility(typeLV); 1063 } 1064 1065 if (isExplicitMemberSpecialization(VD)) { 1066 explicitSpecSuppressor = VD; 1067 } 1068 1069 // Template members. 1070 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1071 bool considerVisibility = 1072 (!LV.isVisibilityExplicit() && 1073 !classLV.isVisibilityExplicit() && 1074 !hasExplicitVisibilityAlready(computation)); 1075 LinkageInfo tempLV = 1076 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1077 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1078 1079 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1080 if (isExplicitMemberSpecialization(redeclTemp)) { 1081 explicitSpecSuppressor = temp->getTemplatedDecl(); 1082 } 1083 } 1084 } 1085 1086 // We should never be looking for an attribute directly on a template. 1087 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1088 1089 // If this member is an explicit member specialization, and it has 1090 // an explicit attribute, ignore visibility from the parent. 1091 bool considerClassVisibility = true; 1092 if (explicitSpecSuppressor && 1093 // optimization: hasDVA() is true only with explicit visibility. 1094 LV.isVisibilityExplicit() && 1095 classLV.getVisibility() != DefaultVisibility && 1096 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1097 considerClassVisibility = false; 1098 } 1099 1100 // Finally, merge in information from the class. 1101 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1102 return LV; 1103 } 1104 1105 void NamedDecl::anchor() {} 1106 1107 bool NamedDecl::isLinkageValid() const { 1108 if (!hasCachedLinkage()) 1109 return true; 1110 1111 Linkage L = LinkageComputer{} 1112 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1113 .getLinkage(); 1114 return L == getCachedLinkage(); 1115 } 1116 1117 ReservedIdentifierStatus 1118 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1119 const IdentifierInfo *II = getIdentifier(); 1120 1121 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1122 // at lexing time. 1123 if (!II) 1124 return ReservedIdentifierStatus::NotReserved; 1125 1126 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1127 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1128 // This name is only reserved at global scope. Check if this declaration 1129 // conflicts with a global scope declaration. 1130 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1131 return ReservedIdentifierStatus::NotReserved; 1132 1133 // C++ [dcl.link]/7: 1134 // Two declarations [conflict] if [...] one declares a function or 1135 // variable with C language linkage, and the other declares [...] a 1136 // variable that belongs to the global scope. 1137 // 1138 // Therefore names that are reserved at global scope are also reserved as 1139 // names of variables and functions with C language linkage. 1140 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1141 if (DC->isTranslationUnit()) 1142 return Status; 1143 if (auto *VD = dyn_cast<VarDecl>(this)) 1144 if (VD->isExternC()) 1145 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1146 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1147 if (FD->isExternC()) 1148 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1149 return ReservedIdentifierStatus::NotReserved; 1150 } 1151 1152 return Status; 1153 } 1154 1155 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1156 StringRef name = getName(); 1157 if (name.empty()) return SFF_None; 1158 1159 if (name.front() == 'C') 1160 if (name == "CFStringCreateWithFormat" || 1161 name == "CFStringCreateWithFormatAndArguments" || 1162 name == "CFStringAppendFormat" || 1163 name == "CFStringAppendFormatAndArguments") 1164 return SFF_CFString; 1165 return SFF_None; 1166 } 1167 1168 Linkage NamedDecl::getLinkageInternal() const { 1169 // We don't care about visibility here, so ask for the cheapest 1170 // possible visibility analysis. 1171 return LinkageComputer{} 1172 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1173 .getLinkage(); 1174 } 1175 1176 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1177 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1178 } 1179 1180 static std::optional<Visibility> 1181 getExplicitVisibilityAux(const NamedDecl *ND, 1182 NamedDecl::ExplicitVisibilityKind kind, 1183 bool IsMostRecent) { 1184 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1185 1186 // Check the declaration itself first. 1187 if (std::optional<Visibility> V = getVisibilityOf(ND, kind)) 1188 return V; 1189 1190 // If this is a member class of a specialization of a class template 1191 // and the corresponding decl has explicit visibility, use that. 1192 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1193 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1194 if (InstantiatedFrom) 1195 return getVisibilityOf(InstantiatedFrom, kind); 1196 } 1197 1198 // If there wasn't explicit visibility there, and this is a 1199 // specialization of a class template, check for visibility 1200 // on the pattern. 1201 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1202 // Walk all the template decl till this point to see if there are 1203 // explicit visibility attributes. 1204 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1205 while (TD != nullptr) { 1206 auto Vis = getVisibilityOf(TD, kind); 1207 if (Vis != std::nullopt) 1208 return Vis; 1209 TD = TD->getPreviousDecl(); 1210 } 1211 return std::nullopt; 1212 } 1213 1214 // Use the most recent declaration. 1215 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1216 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1217 if (MostRecent != ND) 1218 return getExplicitVisibilityAux(MostRecent, kind, true); 1219 } 1220 1221 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1222 if (Var->isStaticDataMember()) { 1223 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1224 if (InstantiatedFrom) 1225 return getVisibilityOf(InstantiatedFrom, kind); 1226 } 1227 1228 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1229 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1230 kind); 1231 1232 return std::nullopt; 1233 } 1234 // Also handle function template specializations. 1235 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1236 // If the function is a specialization of a template with an 1237 // explicit visibility attribute, use that. 1238 if (FunctionTemplateSpecializationInfo *templateInfo 1239 = fn->getTemplateSpecializationInfo()) 1240 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1241 kind); 1242 1243 // If the function is a member of a specialization of a class template 1244 // and the corresponding decl has explicit visibility, use that. 1245 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1246 if (InstantiatedFrom) 1247 return getVisibilityOf(InstantiatedFrom, kind); 1248 1249 return std::nullopt; 1250 } 1251 1252 // The visibility of a template is stored in the templated decl. 1253 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1254 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1255 1256 return std::nullopt; 1257 } 1258 1259 std::optional<Visibility> 1260 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1261 return getExplicitVisibilityAux(this, kind, false); 1262 } 1263 1264 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1265 Decl *ContextDecl, 1266 LVComputationKind computation) { 1267 // This lambda has its linkage/visibility determined by its owner. 1268 const NamedDecl *Owner; 1269 if (!ContextDecl) 1270 Owner = dyn_cast<NamedDecl>(DC); 1271 else if (isa<ParmVarDecl>(ContextDecl)) 1272 Owner = 1273 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1274 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) { 1275 // Replace with the concept's owning decl, which is either a namespace or a 1276 // TU, so this needs a dyn_cast. 1277 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext()); 1278 } else { 1279 Owner = cast<NamedDecl>(ContextDecl); 1280 } 1281 1282 if (!Owner) 1283 return LinkageInfo::none(); 1284 1285 // If the owner has a deduced type, we need to skip querying the linkage and 1286 // visibility of that type, because it might involve this closure type. The 1287 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1288 // than NoLinkage when we don't strictly need to, which is benign. 1289 auto *VD = dyn_cast<VarDecl>(Owner); 1290 LinkageInfo OwnerLV = 1291 VD && VD->getType()->getContainedDeducedType() 1292 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1293 : getLVForDecl(Owner, computation); 1294 1295 // A lambda never formally has linkage. But if the owner is externally 1296 // visible, then the lambda is too. We apply the same rules to blocks. 1297 if (!isExternallyVisible(OwnerLV.getLinkage())) 1298 return LinkageInfo::none(); 1299 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1300 OwnerLV.isVisibilityExplicit()); 1301 } 1302 1303 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1304 LVComputationKind computation) { 1305 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1306 if (Function->isInAnonymousNamespace() && 1307 !isFirstInExternCContext(Function)) 1308 return getInternalLinkageFor(Function); 1309 1310 // This is a "void f();" which got merged with a file static. 1311 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1312 return getInternalLinkageFor(Function); 1313 1314 LinkageInfo LV; 1315 if (!hasExplicitVisibilityAlready(computation)) { 1316 if (std::optional<Visibility> Vis = 1317 getExplicitVisibility(Function, computation)) 1318 LV.mergeVisibility(*Vis, true); 1319 } 1320 1321 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1322 // merging storage classes and visibility attributes, so we don't have to 1323 // look at previous decls in here. 1324 1325 return LV; 1326 } 1327 1328 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1329 if (Var->hasExternalStorage()) { 1330 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1331 return getInternalLinkageFor(Var); 1332 1333 LinkageInfo LV; 1334 if (Var->getStorageClass() == SC_PrivateExtern) 1335 LV.mergeVisibility(HiddenVisibility, true); 1336 else if (!hasExplicitVisibilityAlready(computation)) { 1337 if (std::optional<Visibility> Vis = 1338 getExplicitVisibility(Var, computation)) 1339 LV.mergeVisibility(*Vis, true); 1340 } 1341 1342 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1343 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1344 if (PrevLV.getLinkage()) 1345 LV.setLinkage(PrevLV.getLinkage()); 1346 LV.mergeVisibility(PrevLV); 1347 } 1348 1349 return LV; 1350 } 1351 1352 if (!Var->isStaticLocal()) 1353 return LinkageInfo::none(); 1354 } 1355 1356 ASTContext &Context = D->getASTContext(); 1357 if (!Context.getLangOpts().CPlusPlus) 1358 return LinkageInfo::none(); 1359 1360 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1361 if (!OuterD || OuterD->isInvalidDecl()) 1362 return LinkageInfo::none(); 1363 1364 LinkageInfo LV; 1365 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1366 if (!BD->getBlockManglingNumber()) 1367 return LinkageInfo::none(); 1368 1369 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1370 BD->getBlockManglingContextDecl(), computation); 1371 } else { 1372 const auto *FD = cast<FunctionDecl>(OuterD); 1373 if (!FD->isInlined() && 1374 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1375 return LinkageInfo::none(); 1376 1377 // If a function is hidden by -fvisibility-inlines-hidden option and 1378 // is not explicitly attributed as a hidden function, 1379 // we should not make static local variables in the function hidden. 1380 LV = getLVForDecl(FD, computation); 1381 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1382 !LV.isVisibilityExplicit() && 1383 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1384 assert(cast<VarDecl>(D)->isStaticLocal()); 1385 // If this was an implicitly hidden inline method, check again for 1386 // explicit visibility on the parent class, and use that for static locals 1387 // if present. 1388 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1389 LV = getLVForDecl(MD->getParent(), computation); 1390 if (!LV.isVisibilityExplicit()) { 1391 Visibility globalVisibility = 1392 computation.isValueVisibility() 1393 ? Context.getLangOpts().getValueVisibilityMode() 1394 : Context.getLangOpts().getTypeVisibilityMode(); 1395 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1396 /*visibilityExplicit=*/false); 1397 } 1398 } 1399 } 1400 if (!isExternallyVisible(LV.getLinkage())) 1401 return LinkageInfo::none(); 1402 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1403 LV.isVisibilityExplicit()); 1404 } 1405 1406 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1407 LVComputationKind computation, 1408 bool IgnoreVarTypeLinkage) { 1409 // Internal_linkage attribute overrides other considerations. 1410 if (D->hasAttr<InternalLinkageAttr>()) 1411 return getInternalLinkageFor(D); 1412 1413 // Objective-C: treat all Objective-C declarations as having external 1414 // linkage. 1415 switch (D->getKind()) { 1416 default: 1417 break; 1418 1419 // Per C++ [basic.link]p2, only the names of objects, references, 1420 // functions, types, templates, namespaces, and values ever have linkage. 1421 // 1422 // Note that the name of a typedef, namespace alias, using declaration, 1423 // and so on are not the name of the corresponding type, namespace, or 1424 // declaration, so they do *not* have linkage. 1425 case Decl::ImplicitParam: 1426 case Decl::Label: 1427 case Decl::NamespaceAlias: 1428 case Decl::ParmVar: 1429 case Decl::Using: 1430 case Decl::UsingEnum: 1431 case Decl::UsingShadow: 1432 case Decl::UsingDirective: 1433 return LinkageInfo::none(); 1434 1435 case Decl::EnumConstant: 1436 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1437 if (D->getASTContext().getLangOpts().CPlusPlus) 1438 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1439 return LinkageInfo::visible_none(); 1440 1441 case Decl::Typedef: 1442 case Decl::TypeAlias: 1443 // A typedef declaration has linkage if it gives a type a name for 1444 // linkage purposes. 1445 if (!cast<TypedefNameDecl>(D) 1446 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1447 return LinkageInfo::none(); 1448 break; 1449 1450 case Decl::TemplateTemplateParm: // count these as external 1451 case Decl::NonTypeTemplateParm: 1452 case Decl::ObjCAtDefsField: 1453 case Decl::ObjCCategory: 1454 case Decl::ObjCCategoryImpl: 1455 case Decl::ObjCCompatibleAlias: 1456 case Decl::ObjCImplementation: 1457 case Decl::ObjCMethod: 1458 case Decl::ObjCProperty: 1459 case Decl::ObjCPropertyImpl: 1460 case Decl::ObjCProtocol: 1461 return getExternalLinkageFor(D); 1462 1463 case Decl::CXXRecord: { 1464 const auto *Record = cast<CXXRecordDecl>(D); 1465 if (Record->isLambda()) { 1466 if (Record->hasKnownLambdaInternalLinkage() || 1467 !Record->getLambdaManglingNumber()) { 1468 // This lambda has no mangling number, so it's internal. 1469 return getInternalLinkageFor(D); 1470 } 1471 1472 return getLVForClosure( 1473 Record->getDeclContext()->getRedeclContext(), 1474 Record->getLambdaContextDecl(), computation); 1475 } 1476 1477 break; 1478 } 1479 1480 case Decl::TemplateParamObject: { 1481 // The template parameter object can be referenced from anywhere its type 1482 // and value can be referenced. 1483 auto *TPO = cast<TemplateParamObjectDecl>(D); 1484 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1485 LV.merge(getLVForValue(TPO->getValue(), computation)); 1486 return LV; 1487 } 1488 } 1489 1490 // Handle linkage for namespace-scope names. 1491 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1492 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1493 1494 // C++ [basic.link]p5: 1495 // In addition, a member function, static data member, a named 1496 // class or enumeration of class scope, or an unnamed class or 1497 // enumeration defined in a class-scope typedef declaration such 1498 // that the class or enumeration has the typedef name for linkage 1499 // purposes (7.1.3), has external linkage if the name of the class 1500 // has external linkage. 1501 if (D->getDeclContext()->isRecord()) 1502 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1503 1504 // C++ [basic.link]p6: 1505 // The name of a function declared in block scope and the name of 1506 // an object declared by a block scope extern declaration have 1507 // linkage. If there is a visible declaration of an entity with 1508 // linkage having the same name and type, ignoring entities 1509 // declared outside the innermost enclosing namespace scope, the 1510 // block scope declaration declares that same entity and receives 1511 // the linkage of the previous declaration. If there is more than 1512 // one such matching entity, the program is ill-formed. Otherwise, 1513 // if no matching entity is found, the block scope entity receives 1514 // external linkage. 1515 if (D->getDeclContext()->isFunctionOrMethod()) 1516 return getLVForLocalDecl(D, computation); 1517 1518 // C++ [basic.link]p6: 1519 // Names not covered by these rules have no linkage. 1520 return LinkageInfo::none(); 1521 } 1522 1523 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1524 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1525 LVComputationKind computation) { 1526 // Internal_linkage attribute overrides other considerations. 1527 if (D->hasAttr<InternalLinkageAttr>()) 1528 return getInternalLinkageFor(D); 1529 1530 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1531 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1532 1533 if (std::optional<LinkageInfo> LI = lookup(D, computation)) 1534 return *LI; 1535 1536 LinkageInfo LV = computeLVForDecl(D, computation); 1537 if (D->hasCachedLinkage()) 1538 assert(D->getCachedLinkage() == LV.getLinkage()); 1539 1540 D->setCachedLinkage(LV.getLinkage()); 1541 cache(D, computation, LV); 1542 1543 #ifndef NDEBUG 1544 // In C (because of gnu inline) and in c++ with microsoft extensions an 1545 // static can follow an extern, so we can have two decls with different 1546 // linkages. 1547 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1548 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1549 return LV; 1550 1551 // We have just computed the linkage for this decl. By induction we know 1552 // that all other computed linkages match, check that the one we just 1553 // computed also does. 1554 NamedDecl *Old = nullptr; 1555 for (auto *I : D->redecls()) { 1556 auto *T = cast<NamedDecl>(I); 1557 if (T == D) 1558 continue; 1559 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1560 Old = T; 1561 break; 1562 } 1563 } 1564 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1565 #endif 1566 1567 return LV; 1568 } 1569 1570 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1571 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1572 ? NamedDecl::VisibilityForType 1573 : NamedDecl::VisibilityForValue; 1574 LVComputationKind CK(EK); 1575 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1576 ? CK.forLinkageOnly() 1577 : CK); 1578 } 1579 1580 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1581 if (isa<NamespaceDecl>(this)) 1582 // Namespaces never have module linkage. It is the entities within them 1583 // that [may] do. 1584 return nullptr; 1585 1586 Module *M = getOwningModule(); 1587 if (!M) 1588 return nullptr; 1589 1590 switch (M->Kind) { 1591 case Module::ModuleMapModule: 1592 // Module map modules have no special linkage semantics. 1593 return nullptr; 1594 1595 case Module::ModuleInterfaceUnit: 1596 case Module::ModulePartitionInterface: 1597 case Module::ModulePartitionImplementation: 1598 return M; 1599 1600 case Module::ModuleHeaderUnit: 1601 case Module::GlobalModuleFragment: { 1602 // External linkage declarations in the global module have no owning module 1603 // for linkage purposes. But internal linkage declarations in the global 1604 // module fragment of a particular module are owned by that module for 1605 // linkage purposes. 1606 // FIXME: p1815 removes the need for this distinction -- there are no 1607 // internal linkage declarations that need to be referred to from outside 1608 // this TU. 1609 if (IgnoreLinkage) 1610 return nullptr; 1611 bool InternalLinkage; 1612 if (auto *ND = dyn_cast<NamedDecl>(this)) 1613 InternalLinkage = !ND->hasExternalFormalLinkage(); 1614 else 1615 InternalLinkage = isInAnonymousNamespace(); 1616 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent 1617 : nullptr; 1618 } 1619 1620 case Module::PrivateModuleFragment: 1621 // The private module fragment is part of its containing module for linkage 1622 // purposes. 1623 return M->Parent; 1624 } 1625 1626 llvm_unreachable("unknown module kind"); 1627 } 1628 1629 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy&) const { 1630 OS << Name; 1631 } 1632 1633 void NamedDecl::printName(raw_ostream &OS) const { 1634 printName(OS, getASTContext().getPrintingPolicy()); 1635 } 1636 1637 std::string NamedDecl::getQualifiedNameAsString() const { 1638 std::string QualName; 1639 llvm::raw_string_ostream OS(QualName); 1640 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1641 return QualName; 1642 } 1643 1644 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1645 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1646 } 1647 1648 void NamedDecl::printQualifiedName(raw_ostream &OS, 1649 const PrintingPolicy &P) const { 1650 if (getDeclContext()->isFunctionOrMethod()) { 1651 // We do not print '(anonymous)' for function parameters without name. 1652 printName(OS, P); 1653 return; 1654 } 1655 printNestedNameSpecifier(OS, P); 1656 if (getDeclName()) 1657 OS << *this; 1658 else { 1659 // Give the printName override a chance to pick a different name before we 1660 // fall back to "(anonymous)". 1661 SmallString<64> NameBuffer; 1662 llvm::raw_svector_ostream NameOS(NameBuffer); 1663 printName(NameOS, P); 1664 if (NameBuffer.empty()) 1665 OS << "(anonymous)"; 1666 else 1667 OS << NameBuffer; 1668 } 1669 } 1670 1671 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1672 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1673 } 1674 1675 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1676 const PrintingPolicy &P) const { 1677 const DeclContext *Ctx = getDeclContext(); 1678 1679 // For ObjC methods and properties, look through categories and use the 1680 // interface as context. 1681 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1682 if (auto *ID = MD->getClassInterface()) 1683 Ctx = ID; 1684 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1685 if (auto *MD = PD->getGetterMethodDecl()) 1686 if (auto *ID = MD->getClassInterface()) 1687 Ctx = ID; 1688 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1689 if (auto *CI = ID->getContainingInterface()) 1690 Ctx = CI; 1691 } 1692 1693 if (Ctx->isFunctionOrMethod()) 1694 return; 1695 1696 using ContextsTy = SmallVector<const DeclContext *, 8>; 1697 ContextsTy Contexts; 1698 1699 // Collect named contexts. 1700 DeclarationName NameInScope = getDeclName(); 1701 for (; Ctx; Ctx = Ctx->getParent()) { 1702 // Suppress anonymous namespace if requested. 1703 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1704 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1705 continue; 1706 1707 // Suppress inline namespace if it doesn't make the result ambiguous. 1708 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1709 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1710 continue; 1711 1712 // Skip non-named contexts such as linkage specifications and ExportDecls. 1713 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1714 if (!ND) 1715 continue; 1716 1717 Contexts.push_back(Ctx); 1718 NameInScope = ND->getDeclName(); 1719 } 1720 1721 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1722 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1723 OS << Spec->getName(); 1724 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1725 printTemplateArgumentList( 1726 OS, TemplateArgs.asArray(), P, 1727 Spec->getSpecializedTemplate()->getTemplateParameters()); 1728 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1729 if (ND->isAnonymousNamespace()) { 1730 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1731 : "(anonymous namespace)"); 1732 } 1733 else 1734 OS << *ND; 1735 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1736 if (!RD->getIdentifier()) 1737 OS << "(anonymous " << RD->getKindName() << ')'; 1738 else 1739 OS << *RD; 1740 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1741 const FunctionProtoType *FT = nullptr; 1742 if (FD->hasWrittenPrototype()) 1743 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1744 1745 OS << *FD << '('; 1746 if (FT) { 1747 unsigned NumParams = FD->getNumParams(); 1748 for (unsigned i = 0; i < NumParams; ++i) { 1749 if (i) 1750 OS << ", "; 1751 OS << FD->getParamDecl(i)->getType().stream(P); 1752 } 1753 1754 if (FT->isVariadic()) { 1755 if (NumParams > 0) 1756 OS << ", "; 1757 OS << "..."; 1758 } 1759 } 1760 OS << ')'; 1761 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1762 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1763 // enumerator is declared in the scope that immediately contains 1764 // the enum-specifier. Each scoped enumerator is declared in the 1765 // scope of the enumeration. 1766 // For the case of unscoped enumerator, do not include in the qualified 1767 // name any information about its enum enclosing scope, as its visibility 1768 // is global. 1769 if (ED->isScoped()) 1770 OS << *ED; 1771 else 1772 continue; 1773 } else { 1774 OS << *cast<NamedDecl>(DC); 1775 } 1776 OS << "::"; 1777 } 1778 } 1779 1780 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1781 const PrintingPolicy &Policy, 1782 bool Qualified) const { 1783 if (Qualified) 1784 printQualifiedName(OS, Policy); 1785 else 1786 printName(OS, Policy); 1787 } 1788 1789 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1790 return true; 1791 } 1792 static bool isRedeclarableImpl(...) { return false; } 1793 static bool isRedeclarable(Decl::Kind K) { 1794 switch (K) { 1795 #define DECL(Type, Base) \ 1796 case Decl::Type: \ 1797 return isRedeclarableImpl((Type##Decl *)nullptr); 1798 #define ABSTRACT_DECL(DECL) 1799 #include "clang/AST/DeclNodes.inc" 1800 } 1801 llvm_unreachable("unknown decl kind"); 1802 } 1803 1804 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1805 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1806 1807 // Never replace one imported declaration with another; we need both results 1808 // when re-exporting. 1809 if (OldD->isFromASTFile() && isFromASTFile()) 1810 return false; 1811 1812 // A kind mismatch implies that the declaration is not replaced. 1813 if (OldD->getKind() != getKind()) 1814 return false; 1815 1816 // For method declarations, we never replace. (Why?) 1817 if (isa<ObjCMethodDecl>(this)) 1818 return false; 1819 1820 // For parameters, pick the newer one. This is either an error or (in 1821 // Objective-C) permitted as an extension. 1822 if (isa<ParmVarDecl>(this)) 1823 return true; 1824 1825 // Inline namespaces can give us two declarations with the same 1826 // name and kind in the same scope but different contexts; we should 1827 // keep both declarations in this case. 1828 if (!this->getDeclContext()->getRedeclContext()->Equals( 1829 OldD->getDeclContext()->getRedeclContext())) 1830 return false; 1831 1832 // Using declarations can be replaced if they import the same name from the 1833 // same context. 1834 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1835 ASTContext &Context = getASTContext(); 1836 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1837 Context.getCanonicalNestedNameSpecifier( 1838 cast<UsingDecl>(OldD)->getQualifier()); 1839 } 1840 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1841 ASTContext &Context = getASTContext(); 1842 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1843 Context.getCanonicalNestedNameSpecifier( 1844 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1845 } 1846 1847 if (isRedeclarable(getKind())) { 1848 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1849 return false; 1850 1851 if (IsKnownNewer) 1852 return true; 1853 1854 // Check whether this is actually newer than OldD. We want to keep the 1855 // newer declaration. This loop will usually only iterate once, because 1856 // OldD is usually the previous declaration. 1857 for (auto *D : redecls()) { 1858 if (D == OldD) 1859 break; 1860 1861 // If we reach the canonical declaration, then OldD is not actually older 1862 // than this one. 1863 // 1864 // FIXME: In this case, we should not add this decl to the lookup table. 1865 if (D->isCanonicalDecl()) 1866 return false; 1867 } 1868 1869 // It's a newer declaration of the same kind of declaration in the same 1870 // scope: we want this decl instead of the existing one. 1871 return true; 1872 } 1873 1874 // In all other cases, we need to keep both declarations in case they have 1875 // different visibility. Any attempt to use the name will result in an 1876 // ambiguity if more than one is visible. 1877 return false; 1878 } 1879 1880 bool NamedDecl::hasLinkage() const { 1881 return getFormalLinkage() != NoLinkage; 1882 } 1883 1884 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1885 NamedDecl *ND = this; 1886 if (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1887 ND = UD->getTargetDecl(); 1888 1889 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1890 return AD->getClassInterface(); 1891 1892 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1893 return AD->getNamespace(); 1894 1895 return ND; 1896 } 1897 1898 bool NamedDecl::isCXXInstanceMember() const { 1899 if (!isCXXClassMember()) 1900 return false; 1901 1902 const NamedDecl *D = this; 1903 if (isa<UsingShadowDecl>(D)) 1904 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1905 1906 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1907 return true; 1908 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1909 return MD->isInstance(); 1910 return false; 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // DeclaratorDecl Implementation 1915 //===----------------------------------------------------------------------===// 1916 1917 template <typename DeclT> 1918 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1919 if (decl->getNumTemplateParameterLists() > 0) 1920 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1921 return decl->getInnerLocStart(); 1922 } 1923 1924 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1925 TypeSourceInfo *TSI = getTypeSourceInfo(); 1926 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1927 return SourceLocation(); 1928 } 1929 1930 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1931 TypeSourceInfo *TSI = getTypeSourceInfo(); 1932 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1933 return SourceLocation(); 1934 } 1935 1936 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1937 if (QualifierLoc) { 1938 // Make sure the extended decl info is allocated. 1939 if (!hasExtInfo()) { 1940 // Save (non-extended) type source info pointer. 1941 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1942 // Allocate external info struct. 1943 DeclInfo = new (getASTContext()) ExtInfo; 1944 // Restore savedTInfo into (extended) decl info. 1945 getExtInfo()->TInfo = savedTInfo; 1946 } 1947 // Set qualifier info. 1948 getExtInfo()->QualifierLoc = QualifierLoc; 1949 } else if (hasExtInfo()) { 1950 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1951 getExtInfo()->QualifierLoc = QualifierLoc; 1952 } 1953 } 1954 1955 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1956 assert(TrailingRequiresClause); 1957 // Make sure the extended decl info is allocated. 1958 if (!hasExtInfo()) { 1959 // Save (non-extended) type source info pointer. 1960 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1961 // Allocate external info struct. 1962 DeclInfo = new (getASTContext()) ExtInfo; 1963 // Restore savedTInfo into (extended) decl info. 1964 getExtInfo()->TInfo = savedTInfo; 1965 } 1966 // Set requires clause info. 1967 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1968 } 1969 1970 void DeclaratorDecl::setTemplateParameterListsInfo( 1971 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1972 assert(!TPLists.empty()); 1973 // Make sure the extended decl info is allocated. 1974 if (!hasExtInfo()) { 1975 // Save (non-extended) type source info pointer. 1976 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1977 // Allocate external info struct. 1978 DeclInfo = new (getASTContext()) ExtInfo; 1979 // Restore savedTInfo into (extended) decl info. 1980 getExtInfo()->TInfo = savedTInfo; 1981 } 1982 // Set the template parameter lists info. 1983 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1984 } 1985 1986 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1987 return getTemplateOrInnerLocStart(this); 1988 } 1989 1990 // Helper function: returns true if QT is or contains a type 1991 // having a postfix component. 1992 static bool typeIsPostfix(QualType QT) { 1993 while (true) { 1994 const Type* T = QT.getTypePtr(); 1995 switch (T->getTypeClass()) { 1996 default: 1997 return false; 1998 case Type::Pointer: 1999 QT = cast<PointerType>(T)->getPointeeType(); 2000 break; 2001 case Type::BlockPointer: 2002 QT = cast<BlockPointerType>(T)->getPointeeType(); 2003 break; 2004 case Type::MemberPointer: 2005 QT = cast<MemberPointerType>(T)->getPointeeType(); 2006 break; 2007 case Type::LValueReference: 2008 case Type::RValueReference: 2009 QT = cast<ReferenceType>(T)->getPointeeType(); 2010 break; 2011 case Type::PackExpansion: 2012 QT = cast<PackExpansionType>(T)->getPattern(); 2013 break; 2014 case Type::Paren: 2015 case Type::ConstantArray: 2016 case Type::DependentSizedArray: 2017 case Type::IncompleteArray: 2018 case Type::VariableArray: 2019 case Type::FunctionProto: 2020 case Type::FunctionNoProto: 2021 return true; 2022 } 2023 } 2024 } 2025 2026 SourceRange DeclaratorDecl::getSourceRange() const { 2027 SourceLocation RangeEnd = getLocation(); 2028 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 2029 // If the declaration has no name or the type extends past the name take the 2030 // end location of the type. 2031 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 2032 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 2033 } 2034 return SourceRange(getOuterLocStart(), RangeEnd); 2035 } 2036 2037 void QualifierInfo::setTemplateParameterListsInfo( 2038 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 2039 // Free previous template parameters (if any). 2040 if (NumTemplParamLists > 0) { 2041 Context.Deallocate(TemplParamLists); 2042 TemplParamLists = nullptr; 2043 NumTemplParamLists = 0; 2044 } 2045 // Set info on matched template parameter lists (if any). 2046 if (!TPLists.empty()) { 2047 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 2048 NumTemplParamLists = TPLists.size(); 2049 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 2050 } 2051 } 2052 2053 //===----------------------------------------------------------------------===// 2054 // VarDecl Implementation 2055 //===----------------------------------------------------------------------===// 2056 2057 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2058 switch (SC) { 2059 case SC_None: break; 2060 case SC_Auto: return "auto"; 2061 case SC_Extern: return "extern"; 2062 case SC_PrivateExtern: return "__private_extern__"; 2063 case SC_Register: return "register"; 2064 case SC_Static: return "static"; 2065 } 2066 2067 llvm_unreachable("Invalid storage class"); 2068 } 2069 2070 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2071 SourceLocation StartLoc, SourceLocation IdLoc, 2072 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2073 StorageClass SC) 2074 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2075 redeclarable_base(C) { 2076 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2077 "VarDeclBitfields too large!"); 2078 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2079 "ParmVarDeclBitfields too large!"); 2080 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2081 "NonParmVarDeclBitfields too large!"); 2082 AllBits = 0; 2083 VarDeclBits.SClass = SC; 2084 // Everything else is implicitly initialized to false. 2085 } 2086 2087 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, 2088 SourceLocation IdL, const IdentifierInfo *Id, 2089 QualType T, TypeSourceInfo *TInfo, StorageClass S) { 2090 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2091 } 2092 2093 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2094 return new (C, ID) 2095 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2096 QualType(), nullptr, SC_None); 2097 } 2098 2099 void VarDecl::setStorageClass(StorageClass SC) { 2100 assert(isLegalForVariable(SC)); 2101 VarDeclBits.SClass = SC; 2102 } 2103 2104 VarDecl::TLSKind VarDecl::getTLSKind() const { 2105 switch (VarDeclBits.TSCSpec) { 2106 case TSCS_unspecified: 2107 if (!hasAttr<ThreadAttr>() && 2108 !(getASTContext().getLangOpts().OpenMPUseTLS && 2109 getASTContext().getTargetInfo().isTLSSupported() && 2110 hasAttr<OMPThreadPrivateDeclAttr>())) 2111 return TLS_None; 2112 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2113 LangOptions::MSVC2015)) || 2114 hasAttr<OMPThreadPrivateDeclAttr>()) 2115 ? TLS_Dynamic 2116 : TLS_Static; 2117 case TSCS___thread: // Fall through. 2118 case TSCS__Thread_local: 2119 return TLS_Static; 2120 case TSCS_thread_local: 2121 return TLS_Dynamic; 2122 } 2123 llvm_unreachable("Unknown thread storage class specifier!"); 2124 } 2125 2126 SourceRange VarDecl::getSourceRange() const { 2127 if (const Expr *Init = getInit()) { 2128 SourceLocation InitEnd = Init->getEndLoc(); 2129 // If Init is implicit, ignore its source range and fallback on 2130 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2131 if (InitEnd.isValid() && InitEnd != getLocation()) 2132 return SourceRange(getOuterLocStart(), InitEnd); 2133 } 2134 return DeclaratorDecl::getSourceRange(); 2135 } 2136 2137 template<typename T> 2138 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2139 // C++ [dcl.link]p1: All function types, function names with external linkage, 2140 // and variable names with external linkage have a language linkage. 2141 if (!D.hasExternalFormalLinkage()) 2142 return NoLanguageLinkage; 2143 2144 // Language linkage is a C++ concept, but saying that everything else in C has 2145 // C language linkage fits the implementation nicely. 2146 ASTContext &Context = D.getASTContext(); 2147 if (!Context.getLangOpts().CPlusPlus) 2148 return CLanguageLinkage; 2149 2150 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2151 // language linkage of the names of class members and the function type of 2152 // class member functions. 2153 const DeclContext *DC = D.getDeclContext(); 2154 if (DC->isRecord()) 2155 return CXXLanguageLinkage; 2156 2157 // If the first decl is in an extern "C" context, any other redeclaration 2158 // will have C language linkage. If the first one is not in an extern "C" 2159 // context, we would have reported an error for any other decl being in one. 2160 if (isFirstInExternCContext(&D)) 2161 return CLanguageLinkage; 2162 return CXXLanguageLinkage; 2163 } 2164 2165 template<typename T> 2166 static bool isDeclExternC(const T &D) { 2167 // Since the context is ignored for class members, they can only have C++ 2168 // language linkage or no language linkage. 2169 const DeclContext *DC = D.getDeclContext(); 2170 if (DC->isRecord()) { 2171 assert(D.getASTContext().getLangOpts().CPlusPlus); 2172 return false; 2173 } 2174 2175 return D.getLanguageLinkage() == CLanguageLinkage; 2176 } 2177 2178 LanguageLinkage VarDecl::getLanguageLinkage() const { 2179 return getDeclLanguageLinkage(*this); 2180 } 2181 2182 bool VarDecl::isExternC() const { 2183 return isDeclExternC(*this); 2184 } 2185 2186 bool VarDecl::isInExternCContext() const { 2187 return getLexicalDeclContext()->isExternCContext(); 2188 } 2189 2190 bool VarDecl::isInExternCXXContext() const { 2191 return getLexicalDeclContext()->isExternCXXContext(); 2192 } 2193 2194 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2195 2196 VarDecl::DefinitionKind 2197 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2198 if (isThisDeclarationADemotedDefinition()) 2199 return DeclarationOnly; 2200 2201 // C++ [basic.def]p2: 2202 // A declaration is a definition unless [...] it contains the 'extern' 2203 // specifier or a linkage-specification and neither an initializer [...], 2204 // it declares a non-inline static data member in a class declaration [...], 2205 // it declares a static data member outside a class definition and the variable 2206 // was defined within the class with the constexpr specifier [...], 2207 // C++1y [temp.expl.spec]p15: 2208 // An explicit specialization of a static data member or an explicit 2209 // specialization of a static data member template is a definition if the 2210 // declaration includes an initializer; otherwise, it is a declaration. 2211 // 2212 // FIXME: How do you declare (but not define) a partial specialization of 2213 // a static data member template outside the containing class? 2214 if (isStaticDataMember()) { 2215 if (isOutOfLine() && 2216 !(getCanonicalDecl()->isInline() && 2217 getCanonicalDecl()->isConstexpr()) && 2218 (hasInit() || 2219 // If the first declaration is out-of-line, this may be an 2220 // instantiation of an out-of-line partial specialization of a variable 2221 // template for which we have not yet instantiated the initializer. 2222 (getFirstDecl()->isOutOfLine() 2223 ? getTemplateSpecializationKind() == TSK_Undeclared 2224 : getTemplateSpecializationKind() != 2225 TSK_ExplicitSpecialization) || 2226 isa<VarTemplatePartialSpecializationDecl>(this))) 2227 return Definition; 2228 if (!isOutOfLine() && isInline()) 2229 return Definition; 2230 return DeclarationOnly; 2231 } 2232 // C99 6.7p5: 2233 // A definition of an identifier is a declaration for that identifier that 2234 // [...] causes storage to be reserved for that object. 2235 // Note: that applies for all non-file-scope objects. 2236 // C99 6.9.2p1: 2237 // If the declaration of an identifier for an object has file scope and an 2238 // initializer, the declaration is an external definition for the identifier 2239 if (hasInit()) 2240 return Definition; 2241 2242 if (hasDefiningAttr()) 2243 return Definition; 2244 2245 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2246 if (!SAA->isInherited()) 2247 return Definition; 2248 2249 // A variable template specialization (other than a static data member 2250 // template or an explicit specialization) is a declaration until we 2251 // instantiate its initializer. 2252 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2253 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2254 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2255 !VTSD->IsCompleteDefinition) 2256 return DeclarationOnly; 2257 } 2258 2259 if (hasExternalStorage()) 2260 return DeclarationOnly; 2261 2262 // [dcl.link] p7: 2263 // A declaration directly contained in a linkage-specification is treated 2264 // as if it contains the extern specifier for the purpose of determining 2265 // the linkage of the declared name and whether it is a definition. 2266 if (isSingleLineLanguageLinkage(*this)) 2267 return DeclarationOnly; 2268 2269 // C99 6.9.2p2: 2270 // A declaration of an object that has file scope without an initializer, 2271 // and without a storage class specifier or the scs 'static', constitutes 2272 // a tentative definition. 2273 // No such thing in C++. 2274 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2275 return TentativeDefinition; 2276 2277 // What's left is (in C, block-scope) declarations without initializers or 2278 // external storage. These are definitions. 2279 return Definition; 2280 } 2281 2282 VarDecl *VarDecl::getActingDefinition() { 2283 DefinitionKind Kind = isThisDeclarationADefinition(); 2284 if (Kind != TentativeDefinition) 2285 return nullptr; 2286 2287 VarDecl *LastTentative = nullptr; 2288 2289 // Loop through the declaration chain, starting with the most recent. 2290 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2291 Decl = Decl->getPreviousDecl()) { 2292 Kind = Decl->isThisDeclarationADefinition(); 2293 if (Kind == Definition) 2294 return nullptr; 2295 // Record the first (most recent) TentativeDefinition that is encountered. 2296 if (Kind == TentativeDefinition && !LastTentative) 2297 LastTentative = Decl; 2298 } 2299 2300 return LastTentative; 2301 } 2302 2303 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2304 VarDecl *First = getFirstDecl(); 2305 for (auto *I : First->redecls()) { 2306 if (I->isThisDeclarationADefinition(C) == Definition) 2307 return I; 2308 } 2309 return nullptr; 2310 } 2311 2312 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2313 DefinitionKind Kind = DeclarationOnly; 2314 2315 const VarDecl *First = getFirstDecl(); 2316 for (auto *I : First->redecls()) { 2317 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2318 if (Kind == Definition) 2319 break; 2320 } 2321 2322 return Kind; 2323 } 2324 2325 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2326 for (auto *I : redecls()) { 2327 if (auto Expr = I->getInit()) { 2328 D = I; 2329 return Expr; 2330 } 2331 } 2332 return nullptr; 2333 } 2334 2335 bool VarDecl::hasInit() const { 2336 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2337 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2338 return false; 2339 2340 return !Init.isNull(); 2341 } 2342 2343 Expr *VarDecl::getInit() { 2344 if (!hasInit()) 2345 return nullptr; 2346 2347 if (auto *S = Init.dyn_cast<Stmt *>()) 2348 return cast<Expr>(S); 2349 2350 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2351 } 2352 2353 Stmt **VarDecl::getInitAddress() { 2354 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2355 return &ES->Value; 2356 2357 return Init.getAddrOfPtr1(); 2358 } 2359 2360 VarDecl *VarDecl::getInitializingDeclaration() { 2361 VarDecl *Def = nullptr; 2362 for (auto *I : redecls()) { 2363 if (I->hasInit()) 2364 return I; 2365 2366 if (I->isThisDeclarationADefinition()) { 2367 if (isStaticDataMember()) 2368 return I; 2369 Def = I; 2370 } 2371 } 2372 return Def; 2373 } 2374 2375 bool VarDecl::isOutOfLine() const { 2376 if (Decl::isOutOfLine()) 2377 return true; 2378 2379 if (!isStaticDataMember()) 2380 return false; 2381 2382 // If this static data member was instantiated from a static data member of 2383 // a class template, check whether that static data member was defined 2384 // out-of-line. 2385 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2386 return VD->isOutOfLine(); 2387 2388 return false; 2389 } 2390 2391 void VarDecl::setInit(Expr *I) { 2392 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2393 Eval->~EvaluatedStmt(); 2394 getASTContext().Deallocate(Eval); 2395 } 2396 2397 Init = I; 2398 } 2399 2400 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2401 const LangOptions &Lang = C.getLangOpts(); 2402 2403 // OpenCL permits const integral variables to be used in constant 2404 // expressions, like in C++98. 2405 if (!Lang.CPlusPlus && !Lang.OpenCL) 2406 return false; 2407 2408 // Function parameters are never usable in constant expressions. 2409 if (isa<ParmVarDecl>(this)) 2410 return false; 2411 2412 // The values of weak variables are never usable in constant expressions. 2413 if (isWeak()) 2414 return false; 2415 2416 // In C++11, any variable of reference type can be used in a constant 2417 // expression if it is initialized by a constant expression. 2418 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2419 return true; 2420 2421 // Only const objects can be used in constant expressions in C++. C++98 does 2422 // not require the variable to be non-volatile, but we consider this to be a 2423 // defect. 2424 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2425 return false; 2426 2427 // In C++, const, non-volatile variables of integral or enumeration types 2428 // can be used in constant expressions. 2429 if (getType()->isIntegralOrEnumerationType()) 2430 return true; 2431 2432 // Additionally, in C++11, non-volatile constexpr variables can be used in 2433 // constant expressions. 2434 return Lang.CPlusPlus11 && isConstexpr(); 2435 } 2436 2437 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2438 // C++2a [expr.const]p3: 2439 // A variable is usable in constant expressions after its initializing 2440 // declaration is encountered... 2441 const VarDecl *DefVD = nullptr; 2442 const Expr *Init = getAnyInitializer(DefVD); 2443 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2444 return false; 2445 // ... if it is a constexpr variable, or it is of reference type or of 2446 // const-qualified integral or enumeration type, ... 2447 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2448 return false; 2449 // ... and its initializer is a constant initializer. 2450 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2451 return false; 2452 // C++98 [expr.const]p1: 2453 // An integral constant-expression can involve only [...] const variables 2454 // or static data members of integral or enumeration types initialized with 2455 // [integer] constant expressions (dcl.init) 2456 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2457 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2458 return false; 2459 return true; 2460 } 2461 2462 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2463 /// form, which contains extra information on the evaluated value of the 2464 /// initializer. 2465 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2466 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2467 if (!Eval) { 2468 // Note: EvaluatedStmt contains an APValue, which usually holds 2469 // resources not allocated from the ASTContext. We need to do some 2470 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2471 // where we can detect whether there's anything to clean up or not. 2472 Eval = new (getASTContext()) EvaluatedStmt; 2473 Eval->Value = Init.get<Stmt *>(); 2474 Init = Eval; 2475 } 2476 return Eval; 2477 } 2478 2479 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2480 return Init.dyn_cast<EvaluatedStmt *>(); 2481 } 2482 2483 APValue *VarDecl::evaluateValue() const { 2484 SmallVector<PartialDiagnosticAt, 8> Notes; 2485 return evaluateValueImpl(Notes, hasConstantInitialization()); 2486 } 2487 2488 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes, 2489 bool IsConstantInitialization) const { 2490 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2491 2492 const auto *Init = cast<Expr>(Eval->Value); 2493 assert(!Init->isValueDependent()); 2494 2495 // We only produce notes indicating why an initializer is non-constant the 2496 // first time it is evaluated. FIXME: The notes won't always be emitted the 2497 // first time we try evaluation, so might not be produced at all. 2498 if (Eval->WasEvaluated) 2499 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2500 2501 if (Eval->IsEvaluating) { 2502 // FIXME: Produce a diagnostic for self-initialization. 2503 return nullptr; 2504 } 2505 2506 Eval->IsEvaluating = true; 2507 2508 ASTContext &Ctx = getASTContext(); 2509 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes, 2510 IsConstantInitialization); 2511 2512 // In C++11, this isn't a constant initializer if we produced notes. In that 2513 // case, we can't keep the result, because it may only be correct under the 2514 // assumption that the initializer is a constant context. 2515 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 && 2516 !Notes.empty()) 2517 Result = false; 2518 2519 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2520 // or that it's empty (so that there's nothing to clean up) if evaluation 2521 // failed. 2522 if (!Result) 2523 Eval->Evaluated = APValue(); 2524 else if (Eval->Evaluated.needsCleanup()) 2525 Ctx.addDestruction(&Eval->Evaluated); 2526 2527 Eval->IsEvaluating = false; 2528 Eval->WasEvaluated = true; 2529 2530 return Result ? &Eval->Evaluated : nullptr; 2531 } 2532 2533 APValue *VarDecl::getEvaluatedValue() const { 2534 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2535 if (Eval->WasEvaluated) 2536 return &Eval->Evaluated; 2537 2538 return nullptr; 2539 } 2540 2541 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2542 const Expr *Init = getInit(); 2543 assert(Init && "no initializer"); 2544 2545 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2546 if (!Eval->CheckedForICEInit) { 2547 Eval->CheckedForICEInit = true; 2548 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2549 } 2550 return Eval->HasICEInit; 2551 } 2552 2553 bool VarDecl::hasConstantInitialization() const { 2554 // In C, all globals (and only globals) have constant initialization. 2555 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2556 return true; 2557 2558 // In C++, it depends on whether the evaluation at the point of definition 2559 // was evaluatable as a constant initializer. 2560 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2561 return Eval->HasConstantInitialization; 2562 2563 return false; 2564 } 2565 2566 bool VarDecl::checkForConstantInitialization( 2567 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2568 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2569 // If we ask for the value before we know whether we have a constant 2570 // initializer, we can compute the wrong value (for example, due to 2571 // std::is_constant_evaluated()). 2572 assert(!Eval->WasEvaluated && 2573 "already evaluated var value before checking for constant init"); 2574 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2575 2576 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2577 2578 // Evaluate the initializer to check whether it's a constant expression. 2579 Eval->HasConstantInitialization = 2580 evaluateValueImpl(Notes, true) && Notes.empty(); 2581 2582 // If evaluation as a constant initializer failed, allow re-evaluation as a 2583 // non-constant initializer if we later find we want the value. 2584 if (!Eval->HasConstantInitialization) 2585 Eval->WasEvaluated = false; 2586 2587 return Eval->HasConstantInitialization; 2588 } 2589 2590 bool VarDecl::isParameterPack() const { 2591 return isa<PackExpansionType>(getType()); 2592 } 2593 2594 template<typename DeclT> 2595 static DeclT *getDefinitionOrSelf(DeclT *D) { 2596 assert(D); 2597 if (auto *Def = D->getDefinition()) 2598 return Def; 2599 return D; 2600 } 2601 2602 bool VarDecl::isEscapingByref() const { 2603 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2604 } 2605 2606 bool VarDecl::isNonEscapingByref() const { 2607 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2608 } 2609 2610 bool VarDecl::hasDependentAlignment() const { 2611 QualType T = getType(); 2612 return T->isDependentType() || T->isUndeducedType() || 2613 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2614 return AA->isAlignmentDependent(); 2615 }); 2616 } 2617 2618 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2619 const VarDecl *VD = this; 2620 2621 // If this is an instantiated member, walk back to the template from which 2622 // it was instantiated. 2623 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2624 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2625 VD = VD->getInstantiatedFromStaticDataMember(); 2626 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2627 VD = NewVD; 2628 } 2629 } 2630 2631 // If it's an instantiated variable template specialization, find the 2632 // template or partial specialization from which it was instantiated. 2633 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2634 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2635 auto From = VDTemplSpec->getInstantiatedFrom(); 2636 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2637 while (!VTD->isMemberSpecialization()) { 2638 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2639 if (!NewVTD) 2640 break; 2641 VTD = NewVTD; 2642 } 2643 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2644 } 2645 if (auto *VTPSD = 2646 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2647 while (!VTPSD->isMemberSpecialization()) { 2648 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2649 if (!NewVTPSD) 2650 break; 2651 VTPSD = NewVTPSD; 2652 } 2653 return getDefinitionOrSelf<VarDecl>(VTPSD); 2654 } 2655 } 2656 } 2657 2658 // If this is the pattern of a variable template, find where it was 2659 // instantiated from. FIXME: Is this necessary? 2660 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2661 while (!VarTemplate->isMemberSpecialization()) { 2662 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2663 if (!NewVT) 2664 break; 2665 VarTemplate = NewVT; 2666 } 2667 2668 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2669 } 2670 2671 if (VD == this) 2672 return nullptr; 2673 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2674 } 2675 2676 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2677 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2678 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2679 2680 return nullptr; 2681 } 2682 2683 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2684 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2685 return Spec->getSpecializationKind(); 2686 2687 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2688 return MSI->getTemplateSpecializationKind(); 2689 2690 return TSK_Undeclared; 2691 } 2692 2693 TemplateSpecializationKind 2694 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2695 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2696 return MSI->getTemplateSpecializationKind(); 2697 2698 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2699 return Spec->getSpecializationKind(); 2700 2701 return TSK_Undeclared; 2702 } 2703 2704 SourceLocation VarDecl::getPointOfInstantiation() const { 2705 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2706 return Spec->getPointOfInstantiation(); 2707 2708 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2709 return MSI->getPointOfInstantiation(); 2710 2711 return SourceLocation(); 2712 } 2713 2714 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2715 return getASTContext().getTemplateOrSpecializationInfo(this) 2716 .dyn_cast<VarTemplateDecl *>(); 2717 } 2718 2719 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2720 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2721 } 2722 2723 bool VarDecl::isKnownToBeDefined() const { 2724 const auto &LangOpts = getASTContext().getLangOpts(); 2725 // In CUDA mode without relocatable device code, variables of form 'extern 2726 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2727 // memory pool. These are never undefined variables, even if they appear 2728 // inside of an anon namespace or static function. 2729 // 2730 // With CUDA relocatable device code enabled, these variables don't get 2731 // special handling; they're treated like regular extern variables. 2732 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2733 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2734 isa<IncompleteArrayType>(getType())) 2735 return true; 2736 2737 return hasDefinition(); 2738 } 2739 2740 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2741 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2742 (!Ctx.getLangOpts().RegisterStaticDestructors && 2743 !hasAttr<AlwaysDestroyAttr>())); 2744 } 2745 2746 QualType::DestructionKind 2747 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2748 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2749 if (Eval->HasConstantDestruction) 2750 return QualType::DK_none; 2751 2752 if (isNoDestroy(Ctx)) 2753 return QualType::DK_none; 2754 2755 return getType().isDestructedType(); 2756 } 2757 2758 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const { 2759 assert(hasInit() && "Expect initializer to check for flexible array init"); 2760 auto *Ty = getType()->getAs<RecordType>(); 2761 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2762 return false; 2763 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2764 if (!List) 2765 return false; 2766 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2767 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2768 if (!InitTy) 2769 return false; 2770 return InitTy->getSize() != 0; 2771 } 2772 2773 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const { 2774 assert(hasInit() && "Expect initializer to check for flexible array init"); 2775 auto *Ty = getType()->getAs<RecordType>(); 2776 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2777 return CharUnits::Zero(); 2778 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2779 if (!List) 2780 return CharUnits::Zero(); 2781 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2782 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2783 if (!InitTy) 2784 return CharUnits::Zero(); 2785 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy); 2786 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl()); 2787 CharUnits FlexibleArrayOffset = 2788 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1)); 2789 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize()) 2790 return CharUnits::Zero(); 2791 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize(); 2792 } 2793 2794 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2795 if (isStaticDataMember()) 2796 // FIXME: Remove ? 2797 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2798 return getASTContext().getTemplateOrSpecializationInfo(this) 2799 .dyn_cast<MemberSpecializationInfo *>(); 2800 return nullptr; 2801 } 2802 2803 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2804 SourceLocation PointOfInstantiation) { 2805 assert((isa<VarTemplateSpecializationDecl>(this) || 2806 getMemberSpecializationInfo()) && 2807 "not a variable or static data member template specialization"); 2808 2809 if (VarTemplateSpecializationDecl *Spec = 2810 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2811 Spec->setSpecializationKind(TSK); 2812 if (TSK != TSK_ExplicitSpecialization && 2813 PointOfInstantiation.isValid() && 2814 Spec->getPointOfInstantiation().isInvalid()) { 2815 Spec->setPointOfInstantiation(PointOfInstantiation); 2816 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2817 L->InstantiationRequested(this); 2818 } 2819 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2820 MSI->setTemplateSpecializationKind(TSK); 2821 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2822 MSI->getPointOfInstantiation().isInvalid()) { 2823 MSI->setPointOfInstantiation(PointOfInstantiation); 2824 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2825 L->InstantiationRequested(this); 2826 } 2827 } 2828 } 2829 2830 void 2831 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2832 TemplateSpecializationKind TSK) { 2833 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2834 "Previous template or instantiation?"); 2835 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2836 } 2837 2838 //===----------------------------------------------------------------------===// 2839 // ParmVarDecl Implementation 2840 //===----------------------------------------------------------------------===// 2841 2842 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2843 SourceLocation StartLoc, 2844 SourceLocation IdLoc, IdentifierInfo *Id, 2845 QualType T, TypeSourceInfo *TInfo, 2846 StorageClass S, Expr *DefArg) { 2847 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2848 S, DefArg); 2849 } 2850 2851 QualType ParmVarDecl::getOriginalType() const { 2852 TypeSourceInfo *TSI = getTypeSourceInfo(); 2853 QualType T = TSI ? TSI->getType() : getType(); 2854 if (const auto *DT = dyn_cast<DecayedType>(T)) 2855 return DT->getOriginalType(); 2856 return T; 2857 } 2858 2859 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2860 return new (C, ID) 2861 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2862 nullptr, QualType(), nullptr, SC_None, nullptr); 2863 } 2864 2865 SourceRange ParmVarDecl::getSourceRange() const { 2866 if (!hasInheritedDefaultArg()) { 2867 SourceRange ArgRange = getDefaultArgRange(); 2868 if (ArgRange.isValid()) 2869 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2870 } 2871 2872 // DeclaratorDecl considers the range of postfix types as overlapping with the 2873 // declaration name, but this is not the case with parameters in ObjC methods. 2874 if (isa<ObjCMethodDecl>(getDeclContext())) 2875 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2876 2877 return DeclaratorDecl::getSourceRange(); 2878 } 2879 2880 bool ParmVarDecl::isDestroyedInCallee() const { 2881 // ns_consumed only affects code generation in ARC 2882 if (hasAttr<NSConsumedAttr>()) 2883 return getASTContext().getLangOpts().ObjCAutoRefCount; 2884 2885 // FIXME: isParamDestroyedInCallee() should probably imply 2886 // isDestructedType() 2887 auto *RT = getType()->getAs<RecordType>(); 2888 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2889 getType().isDestructedType()) 2890 return true; 2891 2892 return false; 2893 } 2894 2895 Expr *ParmVarDecl::getDefaultArg() { 2896 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2897 assert(!hasUninstantiatedDefaultArg() && 2898 "Default argument is not yet instantiated!"); 2899 2900 Expr *Arg = getInit(); 2901 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2902 return E->getSubExpr(); 2903 2904 return Arg; 2905 } 2906 2907 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2908 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2909 Init = defarg; 2910 } 2911 2912 SourceRange ParmVarDecl::getDefaultArgRange() const { 2913 switch (ParmVarDeclBits.DefaultArgKind) { 2914 case DAK_None: 2915 case DAK_Unparsed: 2916 // Nothing we can do here. 2917 return SourceRange(); 2918 2919 case DAK_Uninstantiated: 2920 return getUninstantiatedDefaultArg()->getSourceRange(); 2921 2922 case DAK_Normal: 2923 if (const Expr *E = getInit()) 2924 return E->getSourceRange(); 2925 2926 // Missing an actual expression, may be invalid. 2927 return SourceRange(); 2928 } 2929 llvm_unreachable("Invalid default argument kind."); 2930 } 2931 2932 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2933 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2934 Init = arg; 2935 } 2936 2937 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2938 assert(hasUninstantiatedDefaultArg() && 2939 "Wrong kind of initialization expression!"); 2940 return cast_or_null<Expr>(Init.get<Stmt *>()); 2941 } 2942 2943 bool ParmVarDecl::hasDefaultArg() const { 2944 // FIXME: We should just return false for DAK_None here once callers are 2945 // prepared for the case that we encountered an invalid default argument and 2946 // were unable to even build an invalid expression. 2947 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2948 !Init.isNull(); 2949 } 2950 2951 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2952 getASTContext().setParameterIndex(this, parameterIndex); 2953 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2954 } 2955 2956 unsigned ParmVarDecl::getParameterIndexLarge() const { 2957 return getASTContext().getParameterIndex(this); 2958 } 2959 2960 //===----------------------------------------------------------------------===// 2961 // FunctionDecl Implementation 2962 //===----------------------------------------------------------------------===// 2963 2964 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2965 SourceLocation StartLoc, 2966 const DeclarationNameInfo &NameInfo, QualType T, 2967 TypeSourceInfo *TInfo, StorageClass S, 2968 bool UsesFPIntrin, bool isInlineSpecified, 2969 ConstexprSpecKind ConstexprKind, 2970 Expr *TrailingRequiresClause) 2971 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2972 StartLoc), 2973 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2974 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2975 assert(T.isNull() || T->isFunctionType()); 2976 FunctionDeclBits.SClass = S; 2977 FunctionDeclBits.IsInline = isInlineSpecified; 2978 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2979 FunctionDeclBits.IsVirtualAsWritten = false; 2980 FunctionDeclBits.IsPure = false; 2981 FunctionDeclBits.HasInheritedPrototype = false; 2982 FunctionDeclBits.HasWrittenPrototype = true; 2983 FunctionDeclBits.IsDeleted = false; 2984 FunctionDeclBits.IsTrivial = false; 2985 FunctionDeclBits.IsTrivialForCall = false; 2986 FunctionDeclBits.IsDefaulted = false; 2987 FunctionDeclBits.IsExplicitlyDefaulted = false; 2988 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2989 FunctionDeclBits.IsIneligibleOrNotSelected = false; 2990 FunctionDeclBits.HasImplicitReturnZero = false; 2991 FunctionDeclBits.IsLateTemplateParsed = false; 2992 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2993 FunctionDeclBits.InstantiationIsPending = false; 2994 FunctionDeclBits.UsesSEHTry = false; 2995 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2996 FunctionDeclBits.HasSkippedBody = false; 2997 FunctionDeclBits.WillHaveBody = false; 2998 FunctionDeclBits.IsMultiVersion = false; 2999 FunctionDeclBits.IsCopyDeductionCandidate = false; 3000 FunctionDeclBits.HasODRHash = false; 3001 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false; 3002 if (TrailingRequiresClause) 3003 setTrailingRequiresClause(TrailingRequiresClause); 3004 } 3005 3006 void FunctionDecl::getNameForDiagnostic( 3007 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 3008 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 3009 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 3010 if (TemplateArgs) 3011 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 3012 } 3013 3014 bool FunctionDecl::isVariadic() const { 3015 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 3016 return FT->isVariadic(); 3017 return false; 3018 } 3019 3020 FunctionDecl::DefaultedFunctionInfo * 3021 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 3022 ArrayRef<DeclAccessPair> Lookups) { 3023 DefaultedFunctionInfo *Info = new (Context.Allocate( 3024 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 3025 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 3026 DefaultedFunctionInfo; 3027 Info->NumLookups = Lookups.size(); 3028 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 3029 Info->getTrailingObjects<DeclAccessPair>()); 3030 return Info; 3031 } 3032 3033 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 3034 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 3035 assert(!Body && "can't replace function body with defaulted function info"); 3036 3037 FunctionDeclBits.HasDefaultedFunctionInfo = true; 3038 DefaultedInfo = Info; 3039 } 3040 3041 FunctionDecl::DefaultedFunctionInfo * 3042 FunctionDecl::getDefaultedFunctionInfo() const { 3043 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 3044 } 3045 3046 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 3047 for (auto *I : redecls()) { 3048 if (I->doesThisDeclarationHaveABody()) { 3049 Definition = I; 3050 return true; 3051 } 3052 } 3053 3054 return false; 3055 } 3056 3057 bool FunctionDecl::hasTrivialBody() const { 3058 Stmt *S = getBody(); 3059 if (!S) { 3060 // Since we don't have a body for this function, we don't know if it's 3061 // trivial or not. 3062 return false; 3063 } 3064 3065 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 3066 return true; 3067 return false; 3068 } 3069 3070 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 3071 if (!getFriendObjectKind()) 3072 return false; 3073 3074 // Check for a friend function instantiated from a friend function 3075 // definition in a templated class. 3076 if (const FunctionDecl *InstantiatedFrom = 3077 getInstantiatedFromMemberFunction()) 3078 return InstantiatedFrom->getFriendObjectKind() && 3079 InstantiatedFrom->isThisDeclarationADefinition(); 3080 3081 // Check for a friend function template instantiated from a friend 3082 // function template definition in a templated class. 3083 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 3084 if (const FunctionTemplateDecl *InstantiatedFrom = 3085 Template->getInstantiatedFromMemberTemplate()) 3086 return InstantiatedFrom->getFriendObjectKind() && 3087 InstantiatedFrom->isThisDeclarationADefinition(); 3088 } 3089 3090 return false; 3091 } 3092 3093 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 3094 bool CheckForPendingFriendDefinition) const { 3095 for (const FunctionDecl *FD : redecls()) { 3096 if (FD->isThisDeclarationADefinition()) { 3097 Definition = FD; 3098 return true; 3099 } 3100 3101 // If this is a friend function defined in a class template, it does not 3102 // have a body until it is used, nevertheless it is a definition, see 3103 // [temp.inst]p2: 3104 // 3105 // ... for the purpose of determining whether an instantiated redeclaration 3106 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3107 // corresponds to a definition in the template is considered to be a 3108 // definition. 3109 // 3110 // The following code must produce redefinition error: 3111 // 3112 // template<typename T> struct C20 { friend void func_20() {} }; 3113 // C20<int> c20i; 3114 // void func_20() {} 3115 // 3116 if (CheckForPendingFriendDefinition && 3117 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3118 Definition = FD; 3119 return true; 3120 } 3121 } 3122 3123 return false; 3124 } 3125 3126 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3127 if (!hasBody(Definition)) 3128 return nullptr; 3129 3130 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3131 "definition should not have a body"); 3132 if (Definition->Body) 3133 return Definition->Body.get(getASTContext().getExternalSource()); 3134 3135 return nullptr; 3136 } 3137 3138 void FunctionDecl::setBody(Stmt *B) { 3139 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3140 Body = LazyDeclStmtPtr(B); 3141 if (B) 3142 EndRangeLoc = B->getEndLoc(); 3143 } 3144 3145 void FunctionDecl::setPure(bool P) { 3146 FunctionDeclBits.IsPure = P; 3147 if (P) 3148 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3149 Parent->markedVirtualFunctionPure(); 3150 } 3151 3152 template<std::size_t Len> 3153 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3154 IdentifierInfo *II = ND->getIdentifier(); 3155 return II && II->isStr(Str); 3156 } 3157 3158 bool FunctionDecl::isMain() const { 3159 const TranslationUnitDecl *tunit = 3160 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3161 return tunit && 3162 !tunit->getASTContext().getLangOpts().Freestanding && 3163 isNamed(this, "main"); 3164 } 3165 3166 bool FunctionDecl::isMSVCRTEntryPoint() const { 3167 const TranslationUnitDecl *TUnit = 3168 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3169 if (!TUnit) 3170 return false; 3171 3172 // Even though we aren't really targeting MSVCRT if we are freestanding, 3173 // semantic analysis for these functions remains the same. 3174 3175 // MSVCRT entry points only exist on MSVCRT targets. 3176 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3177 return false; 3178 3179 // Nameless functions like constructors cannot be entry points. 3180 if (!getIdentifier()) 3181 return false; 3182 3183 return llvm::StringSwitch<bool>(getName()) 3184 .Cases("main", // an ANSI console app 3185 "wmain", // a Unicode console App 3186 "WinMain", // an ANSI GUI app 3187 "wWinMain", // a Unicode GUI app 3188 "DllMain", // a DLL 3189 true) 3190 .Default(false); 3191 } 3192 3193 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3194 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3195 return false; 3196 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3197 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3198 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3199 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3200 return false; 3201 3202 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3203 return false; 3204 3205 const auto *proto = getType()->castAs<FunctionProtoType>(); 3206 if (proto->getNumParams() != 2 || proto->isVariadic()) 3207 return false; 3208 3209 ASTContext &Context = 3210 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3211 ->getASTContext(); 3212 3213 // The result type and first argument type are constant across all 3214 // these operators. The second argument must be exactly void*. 3215 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3216 } 3217 3218 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3219 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3220 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3221 return false; 3222 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3223 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3224 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3225 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3226 return false; 3227 3228 if (isa<CXXRecordDecl>(getDeclContext())) 3229 return false; 3230 3231 // This can only fail for an invalid 'operator new' declaration. 3232 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3233 return false; 3234 3235 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3236 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3237 return false; 3238 3239 // If this is a single-parameter function, it must be a replaceable global 3240 // allocation or deallocation function. 3241 if (FPT->getNumParams() == 1) 3242 return true; 3243 3244 unsigned Params = 1; 3245 QualType Ty = FPT->getParamType(Params); 3246 ASTContext &Ctx = getASTContext(); 3247 3248 auto Consume = [&] { 3249 ++Params; 3250 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3251 }; 3252 3253 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3254 bool IsSizedDelete = false; 3255 if (Ctx.getLangOpts().SizedDeallocation && 3256 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3257 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3258 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3259 IsSizedDelete = true; 3260 Consume(); 3261 } 3262 3263 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3264 // new/delete. 3265 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3266 Consume(); 3267 if (AlignmentParam) 3268 *AlignmentParam = Params; 3269 } 3270 3271 // Finally, if this is not a sized delete, the final parameter can 3272 // be a 'const std::nothrow_t&'. 3273 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3274 Ty = Ty->getPointeeType(); 3275 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3276 return false; 3277 if (Ty->isNothrowT()) { 3278 if (IsNothrow) 3279 *IsNothrow = true; 3280 Consume(); 3281 } 3282 } 3283 3284 return Params == FPT->getNumParams(); 3285 } 3286 3287 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3288 if (!getBuiltinID()) 3289 return false; 3290 3291 const FunctionDecl *Definition; 3292 return hasBody(Definition) && Definition->isInlineSpecified() && 3293 Definition->hasAttr<AlwaysInlineAttr>() && 3294 Definition->hasAttr<GNUInlineAttr>(); 3295 } 3296 3297 bool FunctionDecl::isDestroyingOperatorDelete() const { 3298 // C++ P0722: 3299 // Within a class C, a single object deallocation function with signature 3300 // (T, std::destroying_delete_t, <more params>) 3301 // is a destroying operator delete. 3302 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3303 getNumParams() < 2) 3304 return false; 3305 3306 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3307 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3308 RD->getIdentifier()->isStr("destroying_delete_t"); 3309 } 3310 3311 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3312 return getDeclLanguageLinkage(*this); 3313 } 3314 3315 bool FunctionDecl::isExternC() const { 3316 return isDeclExternC(*this); 3317 } 3318 3319 bool FunctionDecl::isInExternCContext() const { 3320 if (hasAttr<OpenCLKernelAttr>()) 3321 return true; 3322 return getLexicalDeclContext()->isExternCContext(); 3323 } 3324 3325 bool FunctionDecl::isInExternCXXContext() const { 3326 return getLexicalDeclContext()->isExternCXXContext(); 3327 } 3328 3329 bool FunctionDecl::isGlobal() const { 3330 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3331 return Method->isStatic(); 3332 3333 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3334 return false; 3335 3336 for (const DeclContext *DC = getDeclContext(); 3337 DC->isNamespace(); 3338 DC = DC->getParent()) { 3339 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3340 if (!Namespace->getDeclName()) 3341 return false; 3342 } 3343 } 3344 3345 return true; 3346 } 3347 3348 bool FunctionDecl::isNoReturn() const { 3349 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3350 hasAttr<C11NoReturnAttr>()) 3351 return true; 3352 3353 if (auto *FnTy = getType()->getAs<FunctionType>()) 3354 return FnTy->getNoReturnAttr(); 3355 3356 return false; 3357 } 3358 3359 3360 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3361 if (hasAttr<TargetAttr>()) 3362 return MultiVersionKind::Target; 3363 if (hasAttr<TargetVersionAttr>()) 3364 return MultiVersionKind::TargetVersion; 3365 if (hasAttr<CPUDispatchAttr>()) 3366 return MultiVersionKind::CPUDispatch; 3367 if (hasAttr<CPUSpecificAttr>()) 3368 return MultiVersionKind::CPUSpecific; 3369 if (hasAttr<TargetClonesAttr>()) 3370 return MultiVersionKind::TargetClones; 3371 return MultiVersionKind::None; 3372 } 3373 3374 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3375 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3376 } 3377 3378 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3379 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3380 } 3381 3382 bool FunctionDecl::isTargetMultiVersion() const { 3383 return isMultiVersion() && 3384 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>()); 3385 } 3386 3387 bool FunctionDecl::isTargetClonesMultiVersion() const { 3388 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3389 } 3390 3391 void 3392 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3393 redeclarable_base::setPreviousDecl(PrevDecl); 3394 3395 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3396 FunctionTemplateDecl *PrevFunTmpl 3397 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3398 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3399 FunTmpl->setPreviousDecl(PrevFunTmpl); 3400 } 3401 3402 if (PrevDecl && PrevDecl->isInlined()) 3403 setImplicitlyInline(true); 3404 } 3405 3406 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3407 3408 /// Returns a value indicating whether this function corresponds to a builtin 3409 /// function. 3410 /// 3411 /// The function corresponds to a built-in function if it is declared at 3412 /// translation scope or within an extern "C" block and its name matches with 3413 /// the name of a builtin. The returned value will be 0 for functions that do 3414 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3415 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3416 /// value. 3417 /// 3418 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3419 /// functions as their wrapped builtins. This shouldn't be done in general, but 3420 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3421 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3422 unsigned BuiltinID = 0; 3423 3424 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3425 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3426 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3427 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3428 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3429 BuiltinID = A->getID(); 3430 } 3431 3432 if (!BuiltinID) 3433 return 0; 3434 3435 // If the function is marked "overloadable", it has a different mangled name 3436 // and is not the C library function. 3437 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3438 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3439 return 0; 3440 3441 ASTContext &Context = getASTContext(); 3442 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3443 return BuiltinID; 3444 3445 // This function has the name of a known C library 3446 // function. Determine whether it actually refers to the C library 3447 // function or whether it just has the same name. 3448 3449 // If this is a static function, it's not a builtin. 3450 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3451 return 0; 3452 3453 // OpenCL v1.2 s6.9.f - The library functions defined in 3454 // the C99 standard headers are not available. 3455 if (Context.getLangOpts().OpenCL && 3456 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3457 return 0; 3458 3459 // CUDA does not have device-side standard library. printf and malloc are the 3460 // only special cases that are supported by device-side runtime. 3461 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3462 !hasAttr<CUDAHostAttr>() && 3463 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3464 return 0; 3465 3466 // As AMDGCN implementation of OpenMP does not have a device-side standard 3467 // library, none of the predefined library functions except printf and malloc 3468 // should be treated as a builtin i.e. 0 should be returned for them. 3469 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3470 Context.getLangOpts().OpenMPIsDevice && 3471 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3472 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3473 return 0; 3474 3475 return BuiltinID; 3476 } 3477 3478 /// getNumParams - Return the number of parameters this function must have 3479 /// based on its FunctionType. This is the length of the ParamInfo array 3480 /// after it has been created. 3481 unsigned FunctionDecl::getNumParams() const { 3482 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3483 return FPT ? FPT->getNumParams() : 0; 3484 } 3485 3486 void FunctionDecl::setParams(ASTContext &C, 3487 ArrayRef<ParmVarDecl *> NewParamInfo) { 3488 assert(!ParamInfo && "Already has param info!"); 3489 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3490 3491 // Zero params -> null pointer. 3492 if (!NewParamInfo.empty()) { 3493 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3494 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3495 } 3496 } 3497 3498 /// getMinRequiredArguments - Returns the minimum number of arguments 3499 /// needed to call this function. This may be fewer than the number of 3500 /// function parameters, if some of the parameters have default 3501 /// arguments (in C++) or are parameter packs (C++11). 3502 unsigned FunctionDecl::getMinRequiredArguments() const { 3503 if (!getASTContext().getLangOpts().CPlusPlus) 3504 return getNumParams(); 3505 3506 // Note that it is possible for a parameter with no default argument to 3507 // follow a parameter with a default argument. 3508 unsigned NumRequiredArgs = 0; 3509 unsigned MinParamsSoFar = 0; 3510 for (auto *Param : parameters()) { 3511 if (!Param->isParameterPack()) { 3512 ++MinParamsSoFar; 3513 if (!Param->hasDefaultArg()) 3514 NumRequiredArgs = MinParamsSoFar; 3515 } 3516 } 3517 return NumRequiredArgs; 3518 } 3519 3520 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3521 return getNumParams() == 1 || 3522 (getNumParams() > 1 && 3523 llvm::all_of(llvm::drop_begin(parameters()), 3524 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3525 } 3526 3527 /// The combination of the extern and inline keywords under MSVC forces 3528 /// the function to be required. 3529 /// 3530 /// Note: This function assumes that we will only get called when isInlined() 3531 /// would return true for this FunctionDecl. 3532 bool FunctionDecl::isMSExternInline() const { 3533 assert(isInlined() && "expected to get called on an inlined function!"); 3534 3535 const ASTContext &Context = getASTContext(); 3536 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3537 !hasAttr<DLLExportAttr>()) 3538 return false; 3539 3540 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3541 FD = FD->getPreviousDecl()) 3542 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3543 return true; 3544 3545 return false; 3546 } 3547 3548 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3549 if (Redecl->getStorageClass() != SC_Extern) 3550 return false; 3551 3552 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3553 FD = FD->getPreviousDecl()) 3554 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3555 return false; 3556 3557 return true; 3558 } 3559 3560 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3561 // Only consider file-scope declarations in this test. 3562 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3563 return false; 3564 3565 // Only consider explicit declarations; the presence of a builtin for a 3566 // libcall shouldn't affect whether a definition is externally visible. 3567 if (Redecl->isImplicit()) 3568 return false; 3569 3570 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3571 return true; // Not an inline definition 3572 3573 return false; 3574 } 3575 3576 /// For a function declaration in C or C++, determine whether this 3577 /// declaration causes the definition to be externally visible. 3578 /// 3579 /// For instance, this determines if adding the current declaration to the set 3580 /// of redeclarations of the given functions causes 3581 /// isInlineDefinitionExternallyVisible to change from false to true. 3582 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3583 assert(!doesThisDeclarationHaveABody() && 3584 "Must have a declaration without a body."); 3585 3586 ASTContext &Context = getASTContext(); 3587 3588 if (Context.getLangOpts().MSVCCompat) { 3589 const FunctionDecl *Definition; 3590 if (hasBody(Definition) && Definition->isInlined() && 3591 redeclForcesDefMSVC(this)) 3592 return true; 3593 } 3594 3595 if (Context.getLangOpts().CPlusPlus) 3596 return false; 3597 3598 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3599 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3600 // an externally visible definition. 3601 // 3602 // FIXME: What happens if gnu_inline gets added on after the first 3603 // declaration? 3604 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3605 return false; 3606 3607 const FunctionDecl *Prev = this; 3608 bool FoundBody = false; 3609 while ((Prev = Prev->getPreviousDecl())) { 3610 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3611 3612 if (Prev->doesThisDeclarationHaveABody()) { 3613 // If it's not the case that both 'inline' and 'extern' are 3614 // specified on the definition, then it is always externally visible. 3615 if (!Prev->isInlineSpecified() || 3616 Prev->getStorageClass() != SC_Extern) 3617 return false; 3618 } else if (Prev->isInlineSpecified() && 3619 Prev->getStorageClass() != SC_Extern) { 3620 return false; 3621 } 3622 } 3623 return FoundBody; 3624 } 3625 3626 // C99 6.7.4p6: 3627 // [...] If all of the file scope declarations for a function in a 3628 // translation unit include the inline function specifier without extern, 3629 // then the definition in that translation unit is an inline definition. 3630 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3631 return false; 3632 const FunctionDecl *Prev = this; 3633 bool FoundBody = false; 3634 while ((Prev = Prev->getPreviousDecl())) { 3635 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3636 if (RedeclForcesDefC99(Prev)) 3637 return false; 3638 } 3639 return FoundBody; 3640 } 3641 3642 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3643 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3644 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3645 : FunctionTypeLoc(); 3646 } 3647 3648 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3649 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3650 if (!FTL) 3651 return SourceRange(); 3652 3653 // Skip self-referential return types. 3654 const SourceManager &SM = getASTContext().getSourceManager(); 3655 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3656 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3657 if (RTRange.isInvalid() || Boundary.isInvalid() || 3658 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3659 return SourceRange(); 3660 3661 return RTRange; 3662 } 3663 3664 SourceRange FunctionDecl::getParametersSourceRange() const { 3665 unsigned NP = getNumParams(); 3666 SourceLocation EllipsisLoc = getEllipsisLoc(); 3667 3668 if (NP == 0 && EllipsisLoc.isInvalid()) 3669 return SourceRange(); 3670 3671 SourceLocation Begin = 3672 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3673 SourceLocation End = EllipsisLoc.isValid() 3674 ? EllipsisLoc 3675 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3676 3677 return SourceRange(Begin, End); 3678 } 3679 3680 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3681 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3682 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3683 } 3684 3685 /// For an inline function definition in C, or for a gnu_inline function 3686 /// in C++, determine whether the definition will be externally visible. 3687 /// 3688 /// Inline function definitions are always available for inlining optimizations. 3689 /// However, depending on the language dialect, declaration specifiers, and 3690 /// attributes, the definition of an inline function may or may not be 3691 /// "externally" visible to other translation units in the program. 3692 /// 3693 /// In C99, inline definitions are not externally visible by default. However, 3694 /// if even one of the global-scope declarations is marked "extern inline", the 3695 /// inline definition becomes externally visible (C99 6.7.4p6). 3696 /// 3697 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3698 /// definition, we use the GNU semantics for inline, which are nearly the 3699 /// opposite of C99 semantics. In particular, "inline" by itself will create 3700 /// an externally visible symbol, but "extern inline" will not create an 3701 /// externally visible symbol. 3702 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3703 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3704 hasAttr<AliasAttr>()) && 3705 "Must be a function definition"); 3706 assert(isInlined() && "Function must be inline"); 3707 ASTContext &Context = getASTContext(); 3708 3709 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3710 // Note: If you change the logic here, please change 3711 // doesDeclarationForceExternallyVisibleDefinition as well. 3712 // 3713 // If it's not the case that both 'inline' and 'extern' are 3714 // specified on the definition, then this inline definition is 3715 // externally visible. 3716 if (Context.getLangOpts().CPlusPlus) 3717 return false; 3718 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3719 return true; 3720 3721 // If any declaration is 'inline' but not 'extern', then this definition 3722 // is externally visible. 3723 for (auto *Redecl : redecls()) { 3724 if (Redecl->isInlineSpecified() && 3725 Redecl->getStorageClass() != SC_Extern) 3726 return true; 3727 } 3728 3729 return false; 3730 } 3731 3732 // The rest of this function is C-only. 3733 assert(!Context.getLangOpts().CPlusPlus && 3734 "should not use C inline rules in C++"); 3735 3736 // C99 6.7.4p6: 3737 // [...] If all of the file scope declarations for a function in a 3738 // translation unit include the inline function specifier without extern, 3739 // then the definition in that translation unit is an inline definition. 3740 for (auto *Redecl : redecls()) { 3741 if (RedeclForcesDefC99(Redecl)) 3742 return true; 3743 } 3744 3745 // C99 6.7.4p6: 3746 // An inline definition does not provide an external definition for the 3747 // function, and does not forbid an external definition in another 3748 // translation unit. 3749 return false; 3750 } 3751 3752 /// getOverloadedOperator - Which C++ overloaded operator this 3753 /// function represents, if any. 3754 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3755 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3756 return getDeclName().getCXXOverloadedOperator(); 3757 return OO_None; 3758 } 3759 3760 /// getLiteralIdentifier - The literal suffix identifier this function 3761 /// represents, if any. 3762 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3763 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3764 return getDeclName().getCXXLiteralIdentifier(); 3765 return nullptr; 3766 } 3767 3768 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3769 if (TemplateOrSpecialization.isNull()) 3770 return TK_NonTemplate; 3771 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) { 3772 if (isa<FunctionDecl>(ND)) 3773 return TK_DependentNonTemplate; 3774 assert(isa<FunctionTemplateDecl>(ND) && 3775 "No other valid types in NamedDecl"); 3776 return TK_FunctionTemplate; 3777 } 3778 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3779 return TK_MemberSpecialization; 3780 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3781 return TK_FunctionTemplateSpecialization; 3782 if (TemplateOrSpecialization.is 3783 <DependentFunctionTemplateSpecializationInfo*>()) 3784 return TK_DependentFunctionTemplateSpecialization; 3785 3786 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3787 } 3788 3789 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3790 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3791 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3792 3793 return nullptr; 3794 } 3795 3796 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3797 if (auto *MSI = 3798 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3799 return MSI; 3800 if (auto *FTSI = TemplateOrSpecialization 3801 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3802 return FTSI->getMemberSpecializationInfo(); 3803 return nullptr; 3804 } 3805 3806 void 3807 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3808 FunctionDecl *FD, 3809 TemplateSpecializationKind TSK) { 3810 assert(TemplateOrSpecialization.isNull() && 3811 "Member function is already a specialization"); 3812 MemberSpecializationInfo *Info 3813 = new (C) MemberSpecializationInfo(FD, TSK); 3814 TemplateOrSpecialization = Info; 3815 } 3816 3817 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3818 return dyn_cast_or_null<FunctionTemplateDecl>( 3819 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 3820 } 3821 3822 void FunctionDecl::setDescribedFunctionTemplate( 3823 FunctionTemplateDecl *Template) { 3824 assert(TemplateOrSpecialization.isNull() && 3825 "Member function is already a specialization"); 3826 TemplateOrSpecialization = Template; 3827 } 3828 3829 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) { 3830 assert(TemplateOrSpecialization.isNull() && 3831 "Function is already a specialization"); 3832 TemplateOrSpecialization = FD; 3833 } 3834 3835 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const { 3836 return dyn_cast_or_null<FunctionDecl>( 3837 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 3838 } 3839 3840 bool FunctionDecl::isImplicitlyInstantiable() const { 3841 // If the function is invalid, it can't be implicitly instantiated. 3842 if (isInvalidDecl()) 3843 return false; 3844 3845 switch (getTemplateSpecializationKindForInstantiation()) { 3846 case TSK_Undeclared: 3847 case TSK_ExplicitInstantiationDefinition: 3848 case TSK_ExplicitSpecialization: 3849 return false; 3850 3851 case TSK_ImplicitInstantiation: 3852 return true; 3853 3854 case TSK_ExplicitInstantiationDeclaration: 3855 // Handled below. 3856 break; 3857 } 3858 3859 // Find the actual template from which we will instantiate. 3860 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3861 bool HasPattern = false; 3862 if (PatternDecl) 3863 HasPattern = PatternDecl->hasBody(PatternDecl); 3864 3865 // C++0x [temp.explicit]p9: 3866 // Except for inline functions, other explicit instantiation declarations 3867 // have the effect of suppressing the implicit instantiation of the entity 3868 // to which they refer. 3869 if (!HasPattern || !PatternDecl) 3870 return true; 3871 3872 return PatternDecl->isInlined(); 3873 } 3874 3875 bool FunctionDecl::isTemplateInstantiation() const { 3876 // FIXME: Remove this, it's not clear what it means. (Which template 3877 // specialization kind?) 3878 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3879 } 3880 3881 FunctionDecl * 3882 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3883 // If this is a generic lambda call operator specialization, its 3884 // instantiation pattern is always its primary template's pattern 3885 // even if its primary template was instantiated from another 3886 // member template (which happens with nested generic lambdas). 3887 // Since a lambda's call operator's body is transformed eagerly, 3888 // we don't have to go hunting for a prototype definition template 3889 // (i.e. instantiated-from-member-template) to use as an instantiation 3890 // pattern. 3891 3892 if (isGenericLambdaCallOperatorSpecialization( 3893 dyn_cast<CXXMethodDecl>(this))) { 3894 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3895 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3896 } 3897 3898 // Check for a declaration of this function that was instantiated from a 3899 // friend definition. 3900 const FunctionDecl *FD = nullptr; 3901 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3902 FD = this; 3903 3904 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3905 if (ForDefinition && 3906 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3907 return nullptr; 3908 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3909 } 3910 3911 if (ForDefinition && 3912 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3913 return nullptr; 3914 3915 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3916 // If we hit a point where the user provided a specialization of this 3917 // template, we're done looking. 3918 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3919 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3920 if (!NewPrimary) 3921 break; 3922 Primary = NewPrimary; 3923 } 3924 3925 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3926 } 3927 3928 return nullptr; 3929 } 3930 3931 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3932 if (FunctionTemplateSpecializationInfo *Info 3933 = TemplateOrSpecialization 3934 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3935 return Info->getTemplate(); 3936 } 3937 return nullptr; 3938 } 3939 3940 FunctionTemplateSpecializationInfo * 3941 FunctionDecl::getTemplateSpecializationInfo() const { 3942 return TemplateOrSpecialization 3943 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3944 } 3945 3946 const TemplateArgumentList * 3947 FunctionDecl::getTemplateSpecializationArgs() const { 3948 if (FunctionTemplateSpecializationInfo *Info 3949 = TemplateOrSpecialization 3950 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3951 return Info->TemplateArguments; 3952 } 3953 return nullptr; 3954 } 3955 3956 const ASTTemplateArgumentListInfo * 3957 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3958 if (FunctionTemplateSpecializationInfo *Info 3959 = TemplateOrSpecialization 3960 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3961 return Info->TemplateArgumentsAsWritten; 3962 } 3963 return nullptr; 3964 } 3965 3966 void 3967 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3968 FunctionTemplateDecl *Template, 3969 const TemplateArgumentList *TemplateArgs, 3970 void *InsertPos, 3971 TemplateSpecializationKind TSK, 3972 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3973 SourceLocation PointOfInstantiation) { 3974 assert((TemplateOrSpecialization.isNull() || 3975 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3976 "Member function is already a specialization"); 3977 assert(TSK != TSK_Undeclared && 3978 "Must specify the type of function template specialization"); 3979 assert((TemplateOrSpecialization.isNull() || 3980 TSK == TSK_ExplicitSpecialization) && 3981 "Member specialization must be an explicit specialization"); 3982 FunctionTemplateSpecializationInfo *Info = 3983 FunctionTemplateSpecializationInfo::Create( 3984 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3985 PointOfInstantiation, 3986 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3987 TemplateOrSpecialization = Info; 3988 Template->addSpecialization(Info, InsertPos); 3989 } 3990 3991 void 3992 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3993 const UnresolvedSetImpl &Templates, 3994 const TemplateArgumentListInfo &TemplateArgs) { 3995 assert(TemplateOrSpecialization.isNull()); 3996 DependentFunctionTemplateSpecializationInfo *Info = 3997 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3998 TemplateArgs); 3999 TemplateOrSpecialization = Info; 4000 } 4001 4002 DependentFunctionTemplateSpecializationInfo * 4003 FunctionDecl::getDependentSpecializationInfo() const { 4004 return TemplateOrSpecialization 4005 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 4006 } 4007 4008 DependentFunctionTemplateSpecializationInfo * 4009 DependentFunctionTemplateSpecializationInfo::Create( 4010 ASTContext &Context, const UnresolvedSetImpl &Ts, 4011 const TemplateArgumentListInfo &TArgs) { 4012 void *Buffer = Context.Allocate( 4013 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 4014 TArgs.size(), Ts.size())); 4015 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 4016 } 4017 4018 DependentFunctionTemplateSpecializationInfo:: 4019 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 4020 const TemplateArgumentListInfo &TArgs) 4021 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 4022 NumTemplates = Ts.size(); 4023 NumArgs = TArgs.size(); 4024 4025 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 4026 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 4027 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 4028 4029 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 4030 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 4031 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 4032 } 4033 4034 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 4035 // For a function template specialization, query the specialization 4036 // information object. 4037 if (FunctionTemplateSpecializationInfo *FTSInfo = 4038 TemplateOrSpecialization 4039 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 4040 return FTSInfo->getTemplateSpecializationKind(); 4041 4042 if (MemberSpecializationInfo *MSInfo = 4043 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4044 return MSInfo->getTemplateSpecializationKind(); 4045 4046 return TSK_Undeclared; 4047 } 4048 4049 TemplateSpecializationKind 4050 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 4051 // This is the same as getTemplateSpecializationKind(), except that for a 4052 // function that is both a function template specialization and a member 4053 // specialization, we prefer the member specialization information. Eg: 4054 // 4055 // template<typename T> struct A { 4056 // template<typename U> void f() {} 4057 // template<> void f<int>() {} 4058 // }; 4059 // 4060 // For A<int>::f<int>(): 4061 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 4062 // * getTemplateSpecializationKindForInstantiation() will return 4063 // TSK_ImplicitInstantiation 4064 // 4065 // This reflects the facts that A<int>::f<int> is an explicit specialization 4066 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 4067 // from A::f<int> if a definition is needed. 4068 if (FunctionTemplateSpecializationInfo *FTSInfo = 4069 TemplateOrSpecialization 4070 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 4071 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 4072 return MSInfo->getTemplateSpecializationKind(); 4073 return FTSInfo->getTemplateSpecializationKind(); 4074 } 4075 4076 if (MemberSpecializationInfo *MSInfo = 4077 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4078 return MSInfo->getTemplateSpecializationKind(); 4079 4080 return TSK_Undeclared; 4081 } 4082 4083 void 4084 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4085 SourceLocation PointOfInstantiation) { 4086 if (FunctionTemplateSpecializationInfo *FTSInfo 4087 = TemplateOrSpecialization.dyn_cast< 4088 FunctionTemplateSpecializationInfo*>()) { 4089 FTSInfo->setTemplateSpecializationKind(TSK); 4090 if (TSK != TSK_ExplicitSpecialization && 4091 PointOfInstantiation.isValid() && 4092 FTSInfo->getPointOfInstantiation().isInvalid()) { 4093 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 4094 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4095 L->InstantiationRequested(this); 4096 } 4097 } else if (MemberSpecializationInfo *MSInfo 4098 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 4099 MSInfo->setTemplateSpecializationKind(TSK); 4100 if (TSK != TSK_ExplicitSpecialization && 4101 PointOfInstantiation.isValid() && 4102 MSInfo->getPointOfInstantiation().isInvalid()) { 4103 MSInfo->setPointOfInstantiation(PointOfInstantiation); 4104 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4105 L->InstantiationRequested(this); 4106 } 4107 } else 4108 llvm_unreachable("Function cannot have a template specialization kind"); 4109 } 4110 4111 SourceLocation FunctionDecl::getPointOfInstantiation() const { 4112 if (FunctionTemplateSpecializationInfo *FTSInfo 4113 = TemplateOrSpecialization.dyn_cast< 4114 FunctionTemplateSpecializationInfo*>()) 4115 return FTSInfo->getPointOfInstantiation(); 4116 if (MemberSpecializationInfo *MSInfo = 4117 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4118 return MSInfo->getPointOfInstantiation(); 4119 4120 return SourceLocation(); 4121 } 4122 4123 bool FunctionDecl::isOutOfLine() const { 4124 if (Decl::isOutOfLine()) 4125 return true; 4126 4127 // If this function was instantiated from a member function of a 4128 // class template, check whether that member function was defined out-of-line. 4129 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4130 const FunctionDecl *Definition; 4131 if (FD->hasBody(Definition)) 4132 return Definition->isOutOfLine(); 4133 } 4134 4135 // If this function was instantiated from a function template, 4136 // check whether that function template was defined out-of-line. 4137 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4138 const FunctionDecl *Definition; 4139 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4140 return Definition->isOutOfLine(); 4141 } 4142 4143 return false; 4144 } 4145 4146 SourceRange FunctionDecl::getSourceRange() const { 4147 return SourceRange(getOuterLocStart(), EndRangeLoc); 4148 } 4149 4150 unsigned FunctionDecl::getMemoryFunctionKind() const { 4151 IdentifierInfo *FnInfo = getIdentifier(); 4152 4153 if (!FnInfo) 4154 return 0; 4155 4156 // Builtin handling. 4157 switch (getBuiltinID()) { 4158 case Builtin::BI__builtin_memset: 4159 case Builtin::BI__builtin___memset_chk: 4160 case Builtin::BImemset: 4161 return Builtin::BImemset; 4162 4163 case Builtin::BI__builtin_memcpy: 4164 case Builtin::BI__builtin___memcpy_chk: 4165 case Builtin::BImemcpy: 4166 return Builtin::BImemcpy; 4167 4168 case Builtin::BI__builtin_mempcpy: 4169 case Builtin::BI__builtin___mempcpy_chk: 4170 case Builtin::BImempcpy: 4171 return Builtin::BImempcpy; 4172 4173 case Builtin::BI__builtin_memmove: 4174 case Builtin::BI__builtin___memmove_chk: 4175 case Builtin::BImemmove: 4176 return Builtin::BImemmove; 4177 4178 case Builtin::BIstrlcpy: 4179 case Builtin::BI__builtin___strlcpy_chk: 4180 return Builtin::BIstrlcpy; 4181 4182 case Builtin::BIstrlcat: 4183 case Builtin::BI__builtin___strlcat_chk: 4184 return Builtin::BIstrlcat; 4185 4186 case Builtin::BI__builtin_memcmp: 4187 case Builtin::BImemcmp: 4188 return Builtin::BImemcmp; 4189 4190 case Builtin::BI__builtin_bcmp: 4191 case Builtin::BIbcmp: 4192 return Builtin::BIbcmp; 4193 4194 case Builtin::BI__builtin_strncpy: 4195 case Builtin::BI__builtin___strncpy_chk: 4196 case Builtin::BIstrncpy: 4197 return Builtin::BIstrncpy; 4198 4199 case Builtin::BI__builtin_strncmp: 4200 case Builtin::BIstrncmp: 4201 return Builtin::BIstrncmp; 4202 4203 case Builtin::BI__builtin_strncasecmp: 4204 case Builtin::BIstrncasecmp: 4205 return Builtin::BIstrncasecmp; 4206 4207 case Builtin::BI__builtin_strncat: 4208 case Builtin::BI__builtin___strncat_chk: 4209 case Builtin::BIstrncat: 4210 return Builtin::BIstrncat; 4211 4212 case Builtin::BI__builtin_strndup: 4213 case Builtin::BIstrndup: 4214 return Builtin::BIstrndup; 4215 4216 case Builtin::BI__builtin_strlen: 4217 case Builtin::BIstrlen: 4218 return Builtin::BIstrlen; 4219 4220 case Builtin::BI__builtin_bzero: 4221 case Builtin::BIbzero: 4222 return Builtin::BIbzero; 4223 4224 case Builtin::BIfree: 4225 return Builtin::BIfree; 4226 4227 default: 4228 if (isExternC()) { 4229 if (FnInfo->isStr("memset")) 4230 return Builtin::BImemset; 4231 if (FnInfo->isStr("memcpy")) 4232 return Builtin::BImemcpy; 4233 if (FnInfo->isStr("mempcpy")) 4234 return Builtin::BImempcpy; 4235 if (FnInfo->isStr("memmove")) 4236 return Builtin::BImemmove; 4237 if (FnInfo->isStr("memcmp")) 4238 return Builtin::BImemcmp; 4239 if (FnInfo->isStr("bcmp")) 4240 return Builtin::BIbcmp; 4241 if (FnInfo->isStr("strncpy")) 4242 return Builtin::BIstrncpy; 4243 if (FnInfo->isStr("strncmp")) 4244 return Builtin::BIstrncmp; 4245 if (FnInfo->isStr("strncasecmp")) 4246 return Builtin::BIstrncasecmp; 4247 if (FnInfo->isStr("strncat")) 4248 return Builtin::BIstrncat; 4249 if (FnInfo->isStr("strndup")) 4250 return Builtin::BIstrndup; 4251 if (FnInfo->isStr("strlen")) 4252 return Builtin::BIstrlen; 4253 if (FnInfo->isStr("bzero")) 4254 return Builtin::BIbzero; 4255 } else if (isInStdNamespace()) { 4256 if (FnInfo->isStr("free")) 4257 return Builtin::BIfree; 4258 } 4259 break; 4260 } 4261 return 0; 4262 } 4263 4264 unsigned FunctionDecl::getODRHash() const { 4265 assert(hasODRHash()); 4266 return ODRHash; 4267 } 4268 4269 unsigned FunctionDecl::getODRHash() { 4270 if (hasODRHash()) 4271 return ODRHash; 4272 4273 if (auto *FT = getInstantiatedFromMemberFunction()) { 4274 setHasODRHash(true); 4275 ODRHash = FT->getODRHash(); 4276 return ODRHash; 4277 } 4278 4279 class ODRHash Hash; 4280 Hash.AddFunctionDecl(this); 4281 setHasODRHash(true); 4282 ODRHash = Hash.CalculateHash(); 4283 return ODRHash; 4284 } 4285 4286 //===----------------------------------------------------------------------===// 4287 // FieldDecl Implementation 4288 //===----------------------------------------------------------------------===// 4289 4290 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4291 SourceLocation StartLoc, SourceLocation IdLoc, 4292 IdentifierInfo *Id, QualType T, 4293 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4294 InClassInitStyle InitStyle) { 4295 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4296 BW, Mutable, InitStyle); 4297 } 4298 4299 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4300 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4301 SourceLocation(), nullptr, QualType(), nullptr, 4302 nullptr, false, ICIS_NoInit); 4303 } 4304 4305 bool FieldDecl::isAnonymousStructOrUnion() const { 4306 if (!isImplicit() || getDeclName()) 4307 return false; 4308 4309 if (const auto *Record = getType()->getAs<RecordType>()) 4310 return Record->getDecl()->isAnonymousStructOrUnion(); 4311 4312 return false; 4313 } 4314 4315 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4316 assert(isBitField() && "not a bitfield"); 4317 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4318 } 4319 4320 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4321 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4322 getBitWidthValue(Ctx) == 0; 4323 } 4324 4325 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4326 if (isZeroLengthBitField(Ctx)) 4327 return true; 4328 4329 // C++2a [intro.object]p7: 4330 // An object has nonzero size if it 4331 // -- is not a potentially-overlapping subobject, or 4332 if (!hasAttr<NoUniqueAddressAttr>()) 4333 return false; 4334 4335 // -- is not of class type, or 4336 const auto *RT = getType()->getAs<RecordType>(); 4337 if (!RT) 4338 return false; 4339 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4340 if (!RD) { 4341 assert(isInvalidDecl() && "valid field has incomplete type"); 4342 return false; 4343 } 4344 4345 // -- [has] virtual member functions or virtual base classes, or 4346 // -- has subobjects of nonzero size or bit-fields of nonzero length 4347 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4348 if (!CXXRD->isEmpty()) 4349 return false; 4350 4351 // Otherwise, [...] the circumstances under which the object has zero size 4352 // are implementation-defined. 4353 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4354 // ABI will do. 4355 return true; 4356 } 4357 4358 unsigned FieldDecl::getFieldIndex() const { 4359 const FieldDecl *Canonical = getCanonicalDecl(); 4360 if (Canonical != this) 4361 return Canonical->getFieldIndex(); 4362 4363 if (CachedFieldIndex) return CachedFieldIndex - 1; 4364 4365 unsigned Index = 0; 4366 const RecordDecl *RD = getParent()->getDefinition(); 4367 assert(RD && "requested index for field of struct with no definition"); 4368 4369 for (auto *Field : RD->fields()) { 4370 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4371 ++Index; 4372 } 4373 4374 assert(CachedFieldIndex && "failed to find field in parent"); 4375 return CachedFieldIndex - 1; 4376 } 4377 4378 SourceRange FieldDecl::getSourceRange() const { 4379 const Expr *FinalExpr = getInClassInitializer(); 4380 if (!FinalExpr) 4381 FinalExpr = getBitWidth(); 4382 if (FinalExpr) 4383 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4384 return DeclaratorDecl::getSourceRange(); 4385 } 4386 4387 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4388 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4389 "capturing type in non-lambda or captured record."); 4390 assert(InitStorage.getInt() == ISK_NoInit && 4391 InitStorage.getPointer() == nullptr && 4392 "bit width, initializer or captured type already set"); 4393 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4394 ISK_CapturedVLAType); 4395 } 4396 4397 //===----------------------------------------------------------------------===// 4398 // TagDecl Implementation 4399 //===----------------------------------------------------------------------===// 4400 4401 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4402 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4403 SourceLocation StartL) 4404 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4405 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4406 assert((DK != Enum || TK == TTK_Enum) && 4407 "EnumDecl not matched with TTK_Enum"); 4408 setPreviousDecl(PrevDecl); 4409 setTagKind(TK); 4410 setCompleteDefinition(false); 4411 setBeingDefined(false); 4412 setEmbeddedInDeclarator(false); 4413 setFreeStanding(false); 4414 setCompleteDefinitionRequired(false); 4415 TagDeclBits.IsThisDeclarationADemotedDefinition = false; 4416 } 4417 4418 SourceLocation TagDecl::getOuterLocStart() const { 4419 return getTemplateOrInnerLocStart(this); 4420 } 4421 4422 SourceRange TagDecl::getSourceRange() const { 4423 SourceLocation RBraceLoc = BraceRange.getEnd(); 4424 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4425 return SourceRange(getOuterLocStart(), E); 4426 } 4427 4428 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4429 4430 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4431 TypedefNameDeclOrQualifier = TDD; 4432 if (const Type *T = getTypeForDecl()) { 4433 (void)T; 4434 assert(T->isLinkageValid()); 4435 } 4436 assert(isLinkageValid()); 4437 } 4438 4439 void TagDecl::startDefinition() { 4440 setBeingDefined(true); 4441 4442 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4443 struct CXXRecordDecl::DefinitionData *Data = 4444 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4445 for (auto *I : redecls()) 4446 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4447 } 4448 } 4449 4450 void TagDecl::completeDefinition() { 4451 assert((!isa<CXXRecordDecl>(this) || 4452 cast<CXXRecordDecl>(this)->hasDefinition()) && 4453 "definition completed but not started"); 4454 4455 setCompleteDefinition(true); 4456 setBeingDefined(false); 4457 4458 if (ASTMutationListener *L = getASTMutationListener()) 4459 L->CompletedTagDefinition(this); 4460 } 4461 4462 TagDecl *TagDecl::getDefinition() const { 4463 if (isCompleteDefinition()) 4464 return const_cast<TagDecl *>(this); 4465 4466 // If it's possible for us to have an out-of-date definition, check now. 4467 if (mayHaveOutOfDateDef()) { 4468 if (IdentifierInfo *II = getIdentifier()) { 4469 if (II->isOutOfDate()) { 4470 updateOutOfDate(*II); 4471 } 4472 } 4473 } 4474 4475 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4476 return CXXRD->getDefinition(); 4477 4478 for (auto *R : redecls()) 4479 if (R->isCompleteDefinition()) 4480 return R; 4481 4482 return nullptr; 4483 } 4484 4485 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4486 if (QualifierLoc) { 4487 // Make sure the extended qualifier info is allocated. 4488 if (!hasExtInfo()) 4489 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4490 // Set qualifier info. 4491 getExtInfo()->QualifierLoc = QualifierLoc; 4492 } else { 4493 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4494 if (hasExtInfo()) { 4495 if (getExtInfo()->NumTemplParamLists == 0) { 4496 getASTContext().Deallocate(getExtInfo()); 4497 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4498 } 4499 else 4500 getExtInfo()->QualifierLoc = QualifierLoc; 4501 } 4502 } 4503 } 4504 4505 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const { 4506 DeclarationName Name = getDeclName(); 4507 // If the name is supposed to have an identifier but does not have one, then 4508 // the tag is anonymous and we should print it differently. 4509 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) { 4510 // If the caller wanted to print a qualified name, they've already printed 4511 // the scope. And if the caller doesn't want that, the scope information 4512 // is already printed as part of the type. 4513 PrintingPolicy Copy(Policy); 4514 Copy.SuppressScope = true; 4515 getASTContext().getTagDeclType(this).print(OS, Copy); 4516 return; 4517 } 4518 // Otherwise, do the normal printing. 4519 Name.print(OS, Policy); 4520 } 4521 4522 void TagDecl::setTemplateParameterListsInfo( 4523 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4524 assert(!TPLists.empty()); 4525 // Make sure the extended decl info is allocated. 4526 if (!hasExtInfo()) 4527 // Allocate external info struct. 4528 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4529 // Set the template parameter lists info. 4530 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4531 } 4532 4533 //===----------------------------------------------------------------------===// 4534 // EnumDecl Implementation 4535 //===----------------------------------------------------------------------===// 4536 4537 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4538 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4539 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4540 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4541 assert(Scoped || !ScopedUsingClassTag); 4542 IntegerType = nullptr; 4543 setNumPositiveBits(0); 4544 setNumNegativeBits(0); 4545 setScoped(Scoped); 4546 setScopedUsingClassTag(ScopedUsingClassTag); 4547 setFixed(Fixed); 4548 setHasODRHash(false); 4549 ODRHash = 0; 4550 } 4551 4552 void EnumDecl::anchor() {} 4553 4554 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4555 SourceLocation StartLoc, SourceLocation IdLoc, 4556 IdentifierInfo *Id, 4557 EnumDecl *PrevDecl, bool IsScoped, 4558 bool IsScopedUsingClassTag, bool IsFixed) { 4559 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4560 IsScoped, IsScopedUsingClassTag, IsFixed); 4561 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4562 C.getTypeDeclType(Enum, PrevDecl); 4563 return Enum; 4564 } 4565 4566 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4567 EnumDecl *Enum = 4568 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4569 nullptr, nullptr, false, false, false); 4570 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4571 return Enum; 4572 } 4573 4574 SourceRange EnumDecl::getIntegerTypeRange() const { 4575 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4576 return TI->getTypeLoc().getSourceRange(); 4577 return SourceRange(); 4578 } 4579 4580 void EnumDecl::completeDefinition(QualType NewType, 4581 QualType NewPromotionType, 4582 unsigned NumPositiveBits, 4583 unsigned NumNegativeBits) { 4584 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4585 if (!IntegerType) 4586 IntegerType = NewType.getTypePtr(); 4587 PromotionType = NewPromotionType; 4588 setNumPositiveBits(NumPositiveBits); 4589 setNumNegativeBits(NumNegativeBits); 4590 TagDecl::completeDefinition(); 4591 } 4592 4593 bool EnumDecl::isClosed() const { 4594 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4595 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4596 return true; 4597 } 4598 4599 bool EnumDecl::isClosedFlag() const { 4600 return isClosed() && hasAttr<FlagEnumAttr>(); 4601 } 4602 4603 bool EnumDecl::isClosedNonFlag() const { 4604 return isClosed() && !hasAttr<FlagEnumAttr>(); 4605 } 4606 4607 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4608 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4609 return MSI->getTemplateSpecializationKind(); 4610 4611 return TSK_Undeclared; 4612 } 4613 4614 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4615 SourceLocation PointOfInstantiation) { 4616 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4617 assert(MSI && "Not an instantiated member enumeration?"); 4618 MSI->setTemplateSpecializationKind(TSK); 4619 if (TSK != TSK_ExplicitSpecialization && 4620 PointOfInstantiation.isValid() && 4621 MSI->getPointOfInstantiation().isInvalid()) 4622 MSI->setPointOfInstantiation(PointOfInstantiation); 4623 } 4624 4625 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4626 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4627 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4628 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4629 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4630 ED = NewED; 4631 return getDefinitionOrSelf(ED); 4632 } 4633 } 4634 4635 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4636 "couldn't find pattern for enum instantiation"); 4637 return nullptr; 4638 } 4639 4640 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4641 if (SpecializationInfo) 4642 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4643 4644 return nullptr; 4645 } 4646 4647 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4648 TemplateSpecializationKind TSK) { 4649 assert(!SpecializationInfo && "Member enum is already a specialization"); 4650 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4651 } 4652 4653 unsigned EnumDecl::getODRHash() { 4654 if (hasODRHash()) 4655 return ODRHash; 4656 4657 class ODRHash Hash; 4658 Hash.AddEnumDecl(this); 4659 setHasODRHash(true); 4660 ODRHash = Hash.CalculateHash(); 4661 return ODRHash; 4662 } 4663 4664 SourceRange EnumDecl::getSourceRange() const { 4665 auto Res = TagDecl::getSourceRange(); 4666 // Set end-point to enum-base, e.g. enum foo : ^bar 4667 if (auto *TSI = getIntegerTypeSourceInfo()) { 4668 // TagDecl doesn't know about the enum base. 4669 if (!getBraceRange().getEnd().isValid()) 4670 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4671 } 4672 return Res; 4673 } 4674 4675 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const { 4676 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType()); 4677 unsigned NumNegativeBits = getNumNegativeBits(); 4678 unsigned NumPositiveBits = getNumPositiveBits(); 4679 4680 if (NumNegativeBits) { 4681 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 4682 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 4683 Min = -Max; 4684 } else { 4685 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 4686 Min = llvm::APInt::getZero(Bitwidth); 4687 } 4688 } 4689 4690 //===----------------------------------------------------------------------===// 4691 // RecordDecl Implementation 4692 //===----------------------------------------------------------------------===// 4693 4694 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4695 DeclContext *DC, SourceLocation StartLoc, 4696 SourceLocation IdLoc, IdentifierInfo *Id, 4697 RecordDecl *PrevDecl) 4698 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4699 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4700 setHasFlexibleArrayMember(false); 4701 setAnonymousStructOrUnion(false); 4702 setHasObjectMember(false); 4703 setHasVolatileMember(false); 4704 setHasLoadedFieldsFromExternalStorage(false); 4705 setNonTrivialToPrimitiveDefaultInitialize(false); 4706 setNonTrivialToPrimitiveCopy(false); 4707 setNonTrivialToPrimitiveDestroy(false); 4708 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4709 setHasNonTrivialToPrimitiveDestructCUnion(false); 4710 setHasNonTrivialToPrimitiveCopyCUnion(false); 4711 setParamDestroyedInCallee(false); 4712 setArgPassingRestrictions(APK_CanPassInRegs); 4713 setIsRandomized(false); 4714 setODRHash(0); 4715 } 4716 4717 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4718 SourceLocation StartLoc, SourceLocation IdLoc, 4719 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4720 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4721 StartLoc, IdLoc, Id, PrevDecl); 4722 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4723 4724 C.getTypeDeclType(R, PrevDecl); 4725 return R; 4726 } 4727 4728 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4729 RecordDecl *R = 4730 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4731 SourceLocation(), nullptr, nullptr); 4732 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4733 return R; 4734 } 4735 4736 bool RecordDecl::isInjectedClassName() const { 4737 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4738 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4739 } 4740 4741 bool RecordDecl::isLambda() const { 4742 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4743 return RD->isLambda(); 4744 return false; 4745 } 4746 4747 bool RecordDecl::isCapturedRecord() const { 4748 return hasAttr<CapturedRecordAttr>(); 4749 } 4750 4751 void RecordDecl::setCapturedRecord() { 4752 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4753 } 4754 4755 bool RecordDecl::isOrContainsUnion() const { 4756 if (isUnion()) 4757 return true; 4758 4759 if (const RecordDecl *Def = getDefinition()) { 4760 for (const FieldDecl *FD : Def->fields()) { 4761 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4762 if (RT && RT->getDecl()->isOrContainsUnion()) 4763 return true; 4764 } 4765 } 4766 4767 return false; 4768 } 4769 4770 RecordDecl::field_iterator RecordDecl::field_begin() const { 4771 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4772 LoadFieldsFromExternalStorage(); 4773 4774 return field_iterator(decl_iterator(FirstDecl)); 4775 } 4776 4777 /// completeDefinition - Notes that the definition of this type is now 4778 /// complete. 4779 void RecordDecl::completeDefinition() { 4780 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4781 TagDecl::completeDefinition(); 4782 4783 ASTContext &Ctx = getASTContext(); 4784 4785 // Layouts are dumped when computed, so if we are dumping for all complete 4786 // types, we need to force usage to get types that wouldn't be used elsewhere. 4787 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4788 (void)Ctx.getASTRecordLayout(this); 4789 } 4790 4791 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4792 /// This which can be turned on with an attribute, pragma, or the 4793 /// -mms-bitfields command-line option. 4794 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4795 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4796 } 4797 4798 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) { 4799 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false); 4800 LastDecl->NextInContextAndBits.setPointer(nullptr); 4801 setIsRandomized(true); 4802 } 4803 4804 void RecordDecl::LoadFieldsFromExternalStorage() const { 4805 ExternalASTSource *Source = getASTContext().getExternalSource(); 4806 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4807 4808 // Notify that we have a RecordDecl doing some initialization. 4809 ExternalASTSource::Deserializing TheFields(Source); 4810 4811 SmallVector<Decl*, 64> Decls; 4812 setHasLoadedFieldsFromExternalStorage(true); 4813 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4814 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4815 }, Decls); 4816 4817 #ifndef NDEBUG 4818 // Check that all decls we got were FieldDecls. 4819 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4820 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4821 #endif 4822 4823 if (Decls.empty()) 4824 return; 4825 4826 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4827 /*FieldsAlreadyLoaded=*/false); 4828 } 4829 4830 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4831 ASTContext &Context = getASTContext(); 4832 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4833 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4834 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4835 return false; 4836 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4837 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4838 // We may be able to relax some of these requirements. 4839 int ReasonToReject = -1; 4840 if (!CXXRD || CXXRD->isExternCContext()) 4841 ReasonToReject = 0; // is not C++. 4842 else if (CXXRD->hasAttr<PackedAttr>()) 4843 ReasonToReject = 1; // is packed. 4844 else if (CXXRD->isUnion()) 4845 ReasonToReject = 2; // is a union. 4846 else if (CXXRD->isTriviallyCopyable()) 4847 ReasonToReject = 3; // is trivially copyable. 4848 else if (CXXRD->hasTrivialDestructor()) 4849 ReasonToReject = 4; // has trivial destructor. 4850 else if (CXXRD->isStandardLayout()) 4851 ReasonToReject = 5; // is standard layout. 4852 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4853 "field-padding")) 4854 ReasonToReject = 6; // is in an excluded file. 4855 else if (NoSanitizeList.containsType( 4856 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4857 ReasonToReject = 7; // The type is excluded. 4858 4859 if (EmitRemark) { 4860 if (ReasonToReject >= 0) 4861 Context.getDiagnostics().Report( 4862 getLocation(), 4863 diag::remark_sanitize_address_insert_extra_padding_rejected) 4864 << getQualifiedNameAsString() << ReasonToReject; 4865 else 4866 Context.getDiagnostics().Report( 4867 getLocation(), 4868 diag::remark_sanitize_address_insert_extra_padding_accepted) 4869 << getQualifiedNameAsString(); 4870 } 4871 return ReasonToReject < 0; 4872 } 4873 4874 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4875 for (const auto *I : fields()) { 4876 if (I->getIdentifier()) 4877 return I; 4878 4879 if (const auto *RT = I->getType()->getAs<RecordType>()) 4880 if (const FieldDecl *NamedDataMember = 4881 RT->getDecl()->findFirstNamedDataMember()) 4882 return NamedDataMember; 4883 } 4884 4885 // We didn't find a named data member. 4886 return nullptr; 4887 } 4888 4889 unsigned RecordDecl::getODRHash() { 4890 if (hasODRHash()) 4891 return RecordDeclBits.ODRHash; 4892 4893 // Only calculate hash on first call of getODRHash per record. 4894 ODRHash Hash; 4895 Hash.AddRecordDecl(this); 4896 // For RecordDecl the ODRHash is stored in the remaining 26 4897 // bit of RecordDeclBits, adjust the hash to accomodate. 4898 setODRHash(Hash.CalculateHash() >> 6); 4899 return RecordDeclBits.ODRHash; 4900 } 4901 4902 //===----------------------------------------------------------------------===// 4903 // BlockDecl Implementation 4904 //===----------------------------------------------------------------------===// 4905 4906 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4907 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4908 setIsVariadic(false); 4909 setCapturesCXXThis(false); 4910 setBlockMissingReturnType(true); 4911 setIsConversionFromLambda(false); 4912 setDoesNotEscape(false); 4913 setCanAvoidCopyToHeap(false); 4914 } 4915 4916 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4917 assert(!ParamInfo && "Already has param info!"); 4918 4919 // Zero params -> null pointer. 4920 if (!NewParamInfo.empty()) { 4921 NumParams = NewParamInfo.size(); 4922 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4923 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4924 } 4925 } 4926 4927 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4928 bool CapturesCXXThis) { 4929 this->setCapturesCXXThis(CapturesCXXThis); 4930 this->NumCaptures = Captures.size(); 4931 4932 if (Captures.empty()) { 4933 this->Captures = nullptr; 4934 return; 4935 } 4936 4937 this->Captures = Captures.copy(Context).data(); 4938 } 4939 4940 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4941 for (const auto &I : captures()) 4942 // Only auto vars can be captured, so no redeclaration worries. 4943 if (I.getVariable() == variable) 4944 return true; 4945 4946 return false; 4947 } 4948 4949 SourceRange BlockDecl::getSourceRange() const { 4950 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4951 } 4952 4953 //===----------------------------------------------------------------------===// 4954 // Other Decl Allocation/Deallocation Method Implementations 4955 //===----------------------------------------------------------------------===// 4956 4957 void TranslationUnitDecl::anchor() {} 4958 4959 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4960 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4961 } 4962 4963 void PragmaCommentDecl::anchor() {} 4964 4965 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4966 TranslationUnitDecl *DC, 4967 SourceLocation CommentLoc, 4968 PragmaMSCommentKind CommentKind, 4969 StringRef Arg) { 4970 PragmaCommentDecl *PCD = 4971 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4972 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4973 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4974 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4975 return PCD; 4976 } 4977 4978 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4979 unsigned ID, 4980 unsigned ArgSize) { 4981 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4982 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4983 } 4984 4985 void PragmaDetectMismatchDecl::anchor() {} 4986 4987 PragmaDetectMismatchDecl * 4988 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4989 SourceLocation Loc, StringRef Name, 4990 StringRef Value) { 4991 size_t ValueStart = Name.size() + 1; 4992 PragmaDetectMismatchDecl *PDMD = 4993 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4994 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4995 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4996 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4997 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4998 Value.size()); 4999 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 5000 return PDMD; 5001 } 5002 5003 PragmaDetectMismatchDecl * 5004 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5005 unsigned NameValueSize) { 5006 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 5007 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 5008 } 5009 5010 void ExternCContextDecl::anchor() {} 5011 5012 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 5013 TranslationUnitDecl *DC) { 5014 return new (C, DC) ExternCContextDecl(DC); 5015 } 5016 5017 void LabelDecl::anchor() {} 5018 5019 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5020 SourceLocation IdentL, IdentifierInfo *II) { 5021 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 5022 } 5023 5024 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5025 SourceLocation IdentL, IdentifierInfo *II, 5026 SourceLocation GnuLabelL) { 5027 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 5028 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 5029 } 5030 5031 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5032 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 5033 SourceLocation()); 5034 } 5035 5036 void LabelDecl::setMSAsmLabel(StringRef Name) { 5037 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 5038 memcpy(Buffer, Name.data(), Name.size()); 5039 Buffer[Name.size()] = '\0'; 5040 MSAsmName = Buffer; 5041 } 5042 5043 void ValueDecl::anchor() {} 5044 5045 bool ValueDecl::isWeak() const { 5046 auto *MostRecent = getMostRecentDecl(); 5047 return MostRecent->hasAttr<WeakAttr>() || 5048 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 5049 } 5050 5051 bool ValueDecl::isInitCapture() const { 5052 if (auto *Var = llvm::dyn_cast<VarDecl>(this)) 5053 return Var->isInitCapture(); 5054 return false; 5055 } 5056 5057 void ImplicitParamDecl::anchor() {} 5058 5059 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 5060 SourceLocation IdLoc, 5061 IdentifierInfo *Id, QualType Type, 5062 ImplicitParamKind ParamKind) { 5063 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 5064 } 5065 5066 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 5067 ImplicitParamKind ParamKind) { 5068 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 5069 } 5070 5071 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 5072 unsigned ID) { 5073 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 5074 } 5075 5076 FunctionDecl * 5077 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 5078 const DeclarationNameInfo &NameInfo, QualType T, 5079 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 5080 bool isInlineSpecified, bool hasWrittenPrototype, 5081 ConstexprSpecKind ConstexprKind, 5082 Expr *TrailingRequiresClause) { 5083 FunctionDecl *New = new (C, DC) FunctionDecl( 5084 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 5085 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 5086 New->setHasWrittenPrototype(hasWrittenPrototype); 5087 return New; 5088 } 5089 5090 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5091 return new (C, ID) FunctionDecl( 5092 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 5093 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 5094 } 5095 5096 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5097 return new (C, DC) BlockDecl(DC, L); 5098 } 5099 5100 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5101 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 5102 } 5103 5104 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 5105 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 5106 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 5107 5108 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 5109 unsigned NumParams) { 5110 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5111 CapturedDecl(DC, NumParams); 5112 } 5113 5114 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5115 unsigned NumParams) { 5116 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5117 CapturedDecl(nullptr, NumParams); 5118 } 5119 5120 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 5121 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 5122 5123 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 5124 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 5125 5126 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 5127 SourceLocation L, 5128 IdentifierInfo *Id, QualType T, 5129 Expr *E, const llvm::APSInt &V) { 5130 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 5131 } 5132 5133 EnumConstantDecl * 5134 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5135 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 5136 QualType(), nullptr, llvm::APSInt()); 5137 } 5138 5139 void IndirectFieldDecl::anchor() {} 5140 5141 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 5142 SourceLocation L, DeclarationName N, 5143 QualType T, 5144 MutableArrayRef<NamedDecl *> CH) 5145 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 5146 ChainingSize(CH.size()) { 5147 // In C++, indirect field declarations conflict with tag declarations in the 5148 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 5149 if (C.getLangOpts().CPlusPlus) 5150 IdentifierNamespace |= IDNS_Tag; 5151 } 5152 5153 IndirectFieldDecl * 5154 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 5155 IdentifierInfo *Id, QualType T, 5156 llvm::MutableArrayRef<NamedDecl *> CH) { 5157 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 5158 } 5159 5160 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 5161 unsigned ID) { 5162 return new (C, ID) 5163 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(), 5164 QualType(), std::nullopt); 5165 } 5166 5167 SourceRange EnumConstantDecl::getSourceRange() const { 5168 SourceLocation End = getLocation(); 5169 if (Init) 5170 End = Init->getEndLoc(); 5171 return SourceRange(getLocation(), End); 5172 } 5173 5174 void TypeDecl::anchor() {} 5175 5176 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 5177 SourceLocation StartLoc, SourceLocation IdLoc, 5178 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 5179 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5180 } 5181 5182 void TypedefNameDecl::anchor() {} 5183 5184 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 5185 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 5186 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5187 auto *ThisTypedef = this; 5188 if (AnyRedecl && OwningTypedef) { 5189 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5190 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5191 } 5192 if (OwningTypedef == ThisTypedef) 5193 return TT->getDecl(); 5194 } 5195 5196 return nullptr; 5197 } 5198 5199 bool TypedefNameDecl::isTransparentTagSlow() const { 5200 auto determineIsTransparent = [&]() { 5201 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5202 if (auto *TD = TT->getDecl()) { 5203 if (TD->getName() != getName()) 5204 return false; 5205 SourceLocation TTLoc = getLocation(); 5206 SourceLocation TDLoc = TD->getLocation(); 5207 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5208 return false; 5209 SourceManager &SM = getASTContext().getSourceManager(); 5210 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5211 } 5212 } 5213 return false; 5214 }; 5215 5216 bool isTransparent = determineIsTransparent(); 5217 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5218 return isTransparent; 5219 } 5220 5221 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5222 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5223 nullptr, nullptr); 5224 } 5225 5226 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5227 SourceLocation StartLoc, 5228 SourceLocation IdLoc, IdentifierInfo *Id, 5229 TypeSourceInfo *TInfo) { 5230 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5231 } 5232 5233 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5234 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5235 SourceLocation(), nullptr, nullptr); 5236 } 5237 5238 SourceRange TypedefDecl::getSourceRange() const { 5239 SourceLocation RangeEnd = getLocation(); 5240 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5241 if (typeIsPostfix(TInfo->getType())) 5242 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5243 } 5244 return SourceRange(getBeginLoc(), RangeEnd); 5245 } 5246 5247 SourceRange TypeAliasDecl::getSourceRange() const { 5248 SourceLocation RangeEnd = getBeginLoc(); 5249 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5250 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5251 return SourceRange(getBeginLoc(), RangeEnd); 5252 } 5253 5254 void FileScopeAsmDecl::anchor() {} 5255 5256 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5257 StringLiteral *Str, 5258 SourceLocation AsmLoc, 5259 SourceLocation RParenLoc) { 5260 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5261 } 5262 5263 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5264 unsigned ID) { 5265 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5266 SourceLocation()); 5267 } 5268 5269 void TopLevelStmtDecl::anchor() {} 5270 5271 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) { 5272 assert(Statement); 5273 assert(C.getLangOpts().IncrementalExtensions && 5274 "Must be used only in incremental mode"); 5275 5276 SourceLocation BeginLoc = Statement->getBeginLoc(); 5277 DeclContext *DC = C.getTranslationUnitDecl(); 5278 5279 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement); 5280 } 5281 5282 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C, 5283 unsigned ID) { 5284 return new (C, ID) 5285 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr); 5286 } 5287 5288 SourceRange TopLevelStmtDecl::getSourceRange() const { 5289 return SourceRange(getLocation(), Statement->getEndLoc()); 5290 } 5291 5292 void EmptyDecl::anchor() {} 5293 5294 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5295 return new (C, DC) EmptyDecl(DC, L); 5296 } 5297 5298 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5299 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5300 } 5301 5302 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer, 5303 SourceLocation KwLoc, IdentifierInfo *ID, 5304 SourceLocation IDLoc, SourceLocation LBrace) 5305 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)), 5306 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc), 5307 IsCBuffer(CBuffer) {} 5308 5309 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C, 5310 DeclContext *LexicalParent, bool CBuffer, 5311 SourceLocation KwLoc, IdentifierInfo *ID, 5312 SourceLocation IDLoc, 5313 SourceLocation LBrace) { 5314 // For hlsl like this 5315 // cbuffer A { 5316 // cbuffer B { 5317 // } 5318 // } 5319 // compiler should treat it as 5320 // cbuffer A { 5321 // } 5322 // cbuffer B { 5323 // } 5324 // FIXME: support nested buffers if required for back-compat. 5325 DeclContext *DC = LexicalParent; 5326 HLSLBufferDecl *Result = 5327 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace); 5328 return Result; 5329 } 5330 5331 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5332 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr, 5333 SourceLocation(), SourceLocation()); 5334 } 5335 5336 //===----------------------------------------------------------------------===// 5337 // ImportDecl Implementation 5338 //===----------------------------------------------------------------------===// 5339 5340 /// Retrieve the number of module identifiers needed to name the given 5341 /// module. 5342 static unsigned getNumModuleIdentifiers(Module *Mod) { 5343 unsigned Result = 1; 5344 while (Mod->Parent) { 5345 Mod = Mod->Parent; 5346 ++Result; 5347 } 5348 return Result; 5349 } 5350 5351 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5352 Module *Imported, 5353 ArrayRef<SourceLocation> IdentifierLocs) 5354 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5355 NextLocalImportAndComplete(nullptr, true) { 5356 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5357 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5358 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5359 StoredLocs); 5360 } 5361 5362 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5363 Module *Imported, SourceLocation EndLoc) 5364 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5365 NextLocalImportAndComplete(nullptr, false) { 5366 *getTrailingObjects<SourceLocation>() = EndLoc; 5367 } 5368 5369 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5370 SourceLocation StartLoc, Module *Imported, 5371 ArrayRef<SourceLocation> IdentifierLocs) { 5372 return new (C, DC, 5373 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5374 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5375 } 5376 5377 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5378 SourceLocation StartLoc, 5379 Module *Imported, 5380 SourceLocation EndLoc) { 5381 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5382 ImportDecl(DC, StartLoc, Imported, EndLoc); 5383 Import->setImplicit(); 5384 return Import; 5385 } 5386 5387 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5388 unsigned NumLocations) { 5389 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5390 ImportDecl(EmptyShell()); 5391 } 5392 5393 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5394 if (!isImportComplete()) 5395 return std::nullopt; 5396 5397 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5398 return llvm::ArrayRef(StoredLocs, 5399 getNumModuleIdentifiers(getImportedModule())); 5400 } 5401 5402 SourceRange ImportDecl::getSourceRange() const { 5403 if (!isImportComplete()) 5404 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5405 5406 return SourceRange(getLocation(), getIdentifierLocs().back()); 5407 } 5408 5409 //===----------------------------------------------------------------------===// 5410 // ExportDecl Implementation 5411 //===----------------------------------------------------------------------===// 5412 5413 void ExportDecl::anchor() {} 5414 5415 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5416 SourceLocation ExportLoc) { 5417 return new (C, DC) ExportDecl(DC, ExportLoc); 5418 } 5419 5420 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5421 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5422 } 5423