1*404b540aSrobert // Multimap implementation -*- C++ -*-
2*404b540aSrobert
3*404b540aSrobert // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
4*404b540aSrobert //
5*404b540aSrobert // This file is part of the GNU ISO C++ Library. This library is free
6*404b540aSrobert // software; you can redistribute it and/or modify it under the
7*404b540aSrobert // terms of the GNU General Public License as published by the
8*404b540aSrobert // Free Software Foundation; either version 2, or (at your option)
9*404b540aSrobert // any later version.
10*404b540aSrobert
11*404b540aSrobert // This library is distributed in the hope that it will be useful,
12*404b540aSrobert // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*404b540aSrobert // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14*404b540aSrobert // GNU General Public License for more details.
15*404b540aSrobert
16*404b540aSrobert // You should have received a copy of the GNU General Public License along
17*404b540aSrobert // with this library; see the file COPYING. If not, write to the Free
18*404b540aSrobert // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19*404b540aSrobert // USA.
20*404b540aSrobert
21*404b540aSrobert // As a special exception, you may use this file as part of a free software
22*404b540aSrobert // library without restriction. Specifically, if other files instantiate
23*404b540aSrobert // templates or use macros or inline functions from this file, or you compile
24*404b540aSrobert // this file and link it with other files to produce an executable, this
25*404b540aSrobert // file does not by itself cause the resulting executable to be covered by
26*404b540aSrobert // the GNU General Public License. This exception does not however
27*404b540aSrobert // invalidate any other reasons why the executable file might be covered by
28*404b540aSrobert // the GNU General Public License.
29*404b540aSrobert
30*404b540aSrobert /*
31*404b540aSrobert *
32*404b540aSrobert * Copyright (c) 1994
33*404b540aSrobert * Hewlett-Packard Company
34*404b540aSrobert *
35*404b540aSrobert * Permission to use, copy, modify, distribute and sell this software
36*404b540aSrobert * and its documentation for any purpose is hereby granted without fee,
37*404b540aSrobert * provided that the above copyright notice appear in all copies and
38*404b540aSrobert * that both that copyright notice and this permission notice appear
39*404b540aSrobert * in supporting documentation. Hewlett-Packard Company makes no
40*404b540aSrobert * representations about the suitability of this software for any
41*404b540aSrobert * purpose. It is provided "as is" without express or implied warranty.
42*404b540aSrobert *
43*404b540aSrobert *
44*404b540aSrobert * Copyright (c) 1996,1997
45*404b540aSrobert * Silicon Graphics Computer Systems, Inc.
46*404b540aSrobert *
47*404b540aSrobert * Permission to use, copy, modify, distribute and sell this software
48*404b540aSrobert * and its documentation for any purpose is hereby granted without fee,
49*404b540aSrobert * provided that the above copyright notice appear in all copies and
50*404b540aSrobert * that both that copyright notice and this permission notice appear
51*404b540aSrobert * in supporting documentation. Silicon Graphics makes no
52*404b540aSrobert * representations about the suitability of this software for any
53*404b540aSrobert * purpose. It is provided "as is" without express or implied warranty.
54*404b540aSrobert */
55*404b540aSrobert
56*404b540aSrobert /** @file stl_multimap.h
57*404b540aSrobert * This is an internal header file, included by other library headers.
58*404b540aSrobert * You should not attempt to use it directly.
59*404b540aSrobert */
60*404b540aSrobert
61*404b540aSrobert #ifndef _MULTIMAP_H
62*404b540aSrobert #define _MULTIMAP_H 1
63*404b540aSrobert
64*404b540aSrobert #include <bits/concept_check.h>
65*404b540aSrobert
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std,_GLIBCXX_STD)66*404b540aSrobert _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
67*404b540aSrobert
68*404b540aSrobert /**
69*404b540aSrobert * @brief A standard container made up of (key,value) pairs, which can be
70*404b540aSrobert * retrieved based on a key, in logarithmic time.
71*404b540aSrobert *
72*404b540aSrobert * @ingroup Containers
73*404b540aSrobert * @ingroup Assoc_containers
74*404b540aSrobert *
75*404b540aSrobert * Meets the requirements of a <a href="tables.html#65">container</a>, a
76*404b540aSrobert * <a href="tables.html#66">reversible container</a>, and an
77*404b540aSrobert * <a href="tables.html#69">associative container</a> (using equivalent
78*404b540aSrobert * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
79*404b540aSrobert * is T, and the value_type is std::pair<const Key,T>.
80*404b540aSrobert *
81*404b540aSrobert * Multimaps support bidirectional iterators.
82*404b540aSrobert *
83*404b540aSrobert * @if maint
84*404b540aSrobert * The private tree data is declared exactly the same way for map and
85*404b540aSrobert * multimap; the distinction is made entirely in how the tree functions are
86*404b540aSrobert * called (*_unique versus *_equal, same as the standard).
87*404b540aSrobert * @endif
88*404b540aSrobert */
89*404b540aSrobert template <typename _Key, typename _Tp,
90*404b540aSrobert typename _Compare = std::less<_Key>,
91*404b540aSrobert typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
92*404b540aSrobert class multimap
93*404b540aSrobert {
94*404b540aSrobert public:
95*404b540aSrobert typedef _Key key_type;
96*404b540aSrobert typedef _Tp mapped_type;
97*404b540aSrobert typedef std::pair<const _Key, _Tp> value_type;
98*404b540aSrobert typedef _Compare key_compare;
99*404b540aSrobert typedef _Alloc allocator_type;
100*404b540aSrobert
101*404b540aSrobert private:
102*404b540aSrobert // concept requirements
103*404b540aSrobert typedef typename _Alloc::value_type _Alloc_value_type;
104*404b540aSrobert __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
105*404b540aSrobert __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
106*404b540aSrobert _BinaryFunctionConcept)
107*404b540aSrobert __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
108*404b540aSrobert
109*404b540aSrobert public:
110*404b540aSrobert class value_compare
111*404b540aSrobert : public std::binary_function<value_type, value_type, bool>
112*404b540aSrobert {
113*404b540aSrobert friend class multimap<_Key, _Tp, _Compare, _Alloc>;
114*404b540aSrobert protected:
115*404b540aSrobert _Compare comp;
116*404b540aSrobert
117*404b540aSrobert value_compare(_Compare __c)
118*404b540aSrobert : comp(__c) { }
119*404b540aSrobert
120*404b540aSrobert public:
121*404b540aSrobert bool operator()(const value_type& __x, const value_type& __y) const
122*404b540aSrobert { return comp(__x.first, __y.first); }
123*404b540aSrobert };
124*404b540aSrobert
125*404b540aSrobert private:
126*404b540aSrobert /// @if maint This turns a red-black tree into a [multi]map. @endif
127*404b540aSrobert typedef typename _Alloc::template rebind<value_type>::other
128*404b540aSrobert _Pair_alloc_type;
129*404b540aSrobert
130*404b540aSrobert typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
131*404b540aSrobert key_compare, _Pair_alloc_type> _Rep_type;
132*404b540aSrobert /// @if maint The actual tree structure. @endif
133*404b540aSrobert _Rep_type _M_t;
134*404b540aSrobert
135*404b540aSrobert public:
136*404b540aSrobert // many of these are specified differently in ISO, but the following are
137*404b540aSrobert // "functionally equivalent"
138*404b540aSrobert typedef typename _Pair_alloc_type::pointer pointer;
139*404b540aSrobert typedef typename _Pair_alloc_type::const_pointer const_pointer;
140*404b540aSrobert typedef typename _Pair_alloc_type::reference reference;
141*404b540aSrobert typedef typename _Pair_alloc_type::const_reference const_reference;
142*404b540aSrobert typedef typename _Rep_type::iterator iterator;
143*404b540aSrobert typedef typename _Rep_type::const_iterator const_iterator;
144*404b540aSrobert typedef typename _Rep_type::size_type size_type;
145*404b540aSrobert typedef typename _Rep_type::difference_type difference_type;
146*404b540aSrobert typedef typename _Rep_type::reverse_iterator reverse_iterator;
147*404b540aSrobert typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
148*404b540aSrobert
149*404b540aSrobert // [23.3.2] construct/copy/destroy
150*404b540aSrobert // (get_allocator() is also listed in this section)
151*404b540aSrobert /**
152*404b540aSrobert * @brief Default constructor creates no elements.
153*404b540aSrobert */
154*404b540aSrobert multimap()
155*404b540aSrobert : _M_t(_Compare(), allocator_type()) { }
156*404b540aSrobert
157*404b540aSrobert // for some reason this was made a separate function
158*404b540aSrobert /**
159*404b540aSrobert * @brief Default constructor creates no elements.
160*404b540aSrobert */
161*404b540aSrobert explicit
162*404b540aSrobert multimap(const _Compare& __comp,
163*404b540aSrobert const allocator_type& __a = allocator_type())
164*404b540aSrobert : _M_t(__comp, __a) { }
165*404b540aSrobert
166*404b540aSrobert /**
167*404b540aSrobert * @brief %Multimap copy constructor.
168*404b540aSrobert * @param x A %multimap of identical element and allocator types.
169*404b540aSrobert *
170*404b540aSrobert * The newly-created %multimap uses a copy of the allocation object used
171*404b540aSrobert * by @a x.
172*404b540aSrobert */
173*404b540aSrobert multimap(const multimap& __x)
174*404b540aSrobert : _M_t(__x._M_t) { }
175*404b540aSrobert
176*404b540aSrobert /**
177*404b540aSrobert * @brief Builds a %multimap from a range.
178*404b540aSrobert * @param first An input iterator.
179*404b540aSrobert * @param last An input iterator.
180*404b540aSrobert *
181*404b540aSrobert * Create a %multimap consisting of copies of the elements from
182*404b540aSrobert * [first,last). This is linear in N if the range is already sorted,
183*404b540aSrobert * and NlogN otherwise (where N is distance(first,last)).
184*404b540aSrobert */
185*404b540aSrobert template <typename _InputIterator>
186*404b540aSrobert multimap(_InputIterator __first, _InputIterator __last)
187*404b540aSrobert : _M_t(_Compare(), allocator_type())
188*404b540aSrobert { _M_t._M_insert_equal(__first, __last); }
189*404b540aSrobert
190*404b540aSrobert /**
191*404b540aSrobert * @brief Builds a %multimap from a range.
192*404b540aSrobert * @param first An input iterator.
193*404b540aSrobert * @param last An input iterator.
194*404b540aSrobert * @param comp A comparison functor.
195*404b540aSrobert * @param a An allocator object.
196*404b540aSrobert *
197*404b540aSrobert * Create a %multimap consisting of copies of the elements from
198*404b540aSrobert * [first,last). This is linear in N if the range is already sorted,
199*404b540aSrobert * and NlogN otherwise (where N is distance(first,last)).
200*404b540aSrobert */
201*404b540aSrobert template <typename _InputIterator>
202*404b540aSrobert multimap(_InputIterator __first, _InputIterator __last,
203*404b540aSrobert const _Compare& __comp,
204*404b540aSrobert const allocator_type& __a = allocator_type())
205*404b540aSrobert : _M_t(__comp, __a)
206*404b540aSrobert { _M_t._M_insert_equal(__first, __last); }
207*404b540aSrobert
208*404b540aSrobert // FIXME There is no dtor declared, but we should have something generated
209*404b540aSrobert // by Doxygen. I don't know what tags to add to this paragraph to make
210*404b540aSrobert // that happen:
211*404b540aSrobert /**
212*404b540aSrobert * The dtor only erases the elements, and note that if the elements
213*404b540aSrobert * themselves are pointers, the pointed-to memory is not touched in any
214*404b540aSrobert * way. Managing the pointer is the user's responsibilty.
215*404b540aSrobert */
216*404b540aSrobert
217*404b540aSrobert /**
218*404b540aSrobert * @brief %Multimap assignment operator.
219*404b540aSrobert * @param x A %multimap of identical element and allocator types.
220*404b540aSrobert *
221*404b540aSrobert * All the elements of @a x are copied, but unlike the copy constructor,
222*404b540aSrobert * the allocator object is not copied.
223*404b540aSrobert */
224*404b540aSrobert multimap&
225*404b540aSrobert operator=(const multimap& __x)
226*404b540aSrobert {
227*404b540aSrobert _M_t = __x._M_t;
228*404b540aSrobert return *this;
229*404b540aSrobert }
230*404b540aSrobert
231*404b540aSrobert /// Get a copy of the memory allocation object.
232*404b540aSrobert allocator_type
233*404b540aSrobert get_allocator() const
234*404b540aSrobert { return _M_t.get_allocator(); }
235*404b540aSrobert
236*404b540aSrobert // iterators
237*404b540aSrobert /**
238*404b540aSrobert * Returns a read/write iterator that points to the first pair in the
239*404b540aSrobert * %multimap. Iteration is done in ascending order according to the
240*404b540aSrobert * keys.
241*404b540aSrobert */
242*404b540aSrobert iterator
243*404b540aSrobert begin()
244*404b540aSrobert { return _M_t.begin(); }
245*404b540aSrobert
246*404b540aSrobert /**
247*404b540aSrobert * Returns a read-only (constant) iterator that points to the first pair
248*404b540aSrobert * in the %multimap. Iteration is done in ascending order according to
249*404b540aSrobert * the keys.
250*404b540aSrobert */
251*404b540aSrobert const_iterator
252*404b540aSrobert begin() const
253*404b540aSrobert { return _M_t.begin(); }
254*404b540aSrobert
255*404b540aSrobert /**
256*404b540aSrobert * Returns a read/write iterator that points one past the last pair in
257*404b540aSrobert * the %multimap. Iteration is done in ascending order according to the
258*404b540aSrobert * keys.
259*404b540aSrobert */
260*404b540aSrobert iterator
261*404b540aSrobert end()
262*404b540aSrobert { return _M_t.end(); }
263*404b540aSrobert
264*404b540aSrobert /**
265*404b540aSrobert * Returns a read-only (constant) iterator that points one past the last
266*404b540aSrobert * pair in the %multimap. Iteration is done in ascending order according
267*404b540aSrobert * to the keys.
268*404b540aSrobert */
269*404b540aSrobert const_iterator
270*404b540aSrobert end() const
271*404b540aSrobert { return _M_t.end(); }
272*404b540aSrobert
273*404b540aSrobert /**
274*404b540aSrobert * Returns a read/write reverse iterator that points to the last pair in
275*404b540aSrobert * the %multimap. Iteration is done in descending order according to the
276*404b540aSrobert * keys.
277*404b540aSrobert */
278*404b540aSrobert reverse_iterator
279*404b540aSrobert rbegin()
280*404b540aSrobert { return _M_t.rbegin(); }
281*404b540aSrobert
282*404b540aSrobert /**
283*404b540aSrobert * Returns a read-only (constant) reverse iterator that points to the
284*404b540aSrobert * last pair in the %multimap. Iteration is done in descending order
285*404b540aSrobert * according to the keys.
286*404b540aSrobert */
287*404b540aSrobert const_reverse_iterator
288*404b540aSrobert rbegin() const
289*404b540aSrobert { return _M_t.rbegin(); }
290*404b540aSrobert
291*404b540aSrobert /**
292*404b540aSrobert * Returns a read/write reverse iterator that points to one before the
293*404b540aSrobert * first pair in the %multimap. Iteration is done in descending order
294*404b540aSrobert * according to the keys.
295*404b540aSrobert */
296*404b540aSrobert reverse_iterator
297*404b540aSrobert rend()
298*404b540aSrobert { return _M_t.rend(); }
299*404b540aSrobert
300*404b540aSrobert /**
301*404b540aSrobert * Returns a read-only (constant) reverse iterator that points to one
302*404b540aSrobert * before the first pair in the %multimap. Iteration is done in
303*404b540aSrobert * descending order according to the keys.
304*404b540aSrobert */
305*404b540aSrobert const_reverse_iterator
306*404b540aSrobert rend() const
307*404b540aSrobert { return _M_t.rend(); }
308*404b540aSrobert
309*404b540aSrobert // capacity
310*404b540aSrobert /** Returns true if the %multimap is empty. */
311*404b540aSrobert bool
312*404b540aSrobert empty() const
313*404b540aSrobert { return _M_t.empty(); }
314*404b540aSrobert
315*404b540aSrobert /** Returns the size of the %multimap. */
316*404b540aSrobert size_type
317*404b540aSrobert size() const
318*404b540aSrobert { return _M_t.size(); }
319*404b540aSrobert
320*404b540aSrobert /** Returns the maximum size of the %multimap. */
321*404b540aSrobert size_type
322*404b540aSrobert max_size() const
323*404b540aSrobert { return _M_t.max_size(); }
324*404b540aSrobert
325*404b540aSrobert // modifiers
326*404b540aSrobert /**
327*404b540aSrobert * @brief Inserts a std::pair into the %multimap.
328*404b540aSrobert * @param x Pair to be inserted (see std::make_pair for easy creation
329*404b540aSrobert * of pairs).
330*404b540aSrobert * @return An iterator that points to the inserted (key,value) pair.
331*404b540aSrobert *
332*404b540aSrobert * This function inserts a (key, value) pair into the %multimap.
333*404b540aSrobert * Contrary to a std::map the %multimap does not rely on unique keys and
334*404b540aSrobert * thus multiple pairs with the same key can be inserted.
335*404b540aSrobert *
336*404b540aSrobert * Insertion requires logarithmic time.
337*404b540aSrobert */
338*404b540aSrobert iterator
339*404b540aSrobert insert(const value_type& __x)
340*404b540aSrobert { return _M_t._M_insert_equal(__x); }
341*404b540aSrobert
342*404b540aSrobert /**
343*404b540aSrobert * @brief Inserts a std::pair into the %multimap.
344*404b540aSrobert * @param position An iterator that serves as a hint as to where the
345*404b540aSrobert * pair should be inserted.
346*404b540aSrobert * @param x Pair to be inserted (see std::make_pair for easy creation
347*404b540aSrobert * of pairs).
348*404b540aSrobert * @return An iterator that points to the inserted (key,value) pair.
349*404b540aSrobert *
350*404b540aSrobert * This function inserts a (key, value) pair into the %multimap.
351*404b540aSrobert * Contrary to a std::map the %multimap does not rely on unique keys and
352*404b540aSrobert * thus multiple pairs with the same key can be inserted.
353*404b540aSrobert * Note that the first parameter is only a hint and can potentially
354*404b540aSrobert * improve the performance of the insertion process. A bad hint would
355*404b540aSrobert * cause no gains in efficiency.
356*404b540aSrobert *
357*404b540aSrobert * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
358*404b540aSrobert * for more on "hinting".
359*404b540aSrobert *
360*404b540aSrobert * Insertion requires logarithmic time (if the hint is not taken).
361*404b540aSrobert */
362*404b540aSrobert iterator
363*404b540aSrobert insert(iterator __position, const value_type& __x)
364*404b540aSrobert { return _M_t._M_insert_equal(__position, __x); }
365*404b540aSrobert
366*404b540aSrobert /**
367*404b540aSrobert * @brief A template function that attemps to insert a range of elements.
368*404b540aSrobert * @param first Iterator pointing to the start of the range to be
369*404b540aSrobert * inserted.
370*404b540aSrobert * @param last Iterator pointing to the end of the range.
371*404b540aSrobert *
372*404b540aSrobert * Complexity similar to that of the range constructor.
373*404b540aSrobert */
374*404b540aSrobert template <typename _InputIterator>
375*404b540aSrobert void
376*404b540aSrobert insert(_InputIterator __first, _InputIterator __last)
377*404b540aSrobert { _M_t._M_insert_equal(__first, __last); }
378*404b540aSrobert
379*404b540aSrobert /**
380*404b540aSrobert * @brief Erases an element from a %multimap.
381*404b540aSrobert * @param position An iterator pointing to the element to be erased.
382*404b540aSrobert *
383*404b540aSrobert * This function erases an element, pointed to by the given iterator,
384*404b540aSrobert * from a %multimap. Note that this function only erases the element,
385*404b540aSrobert * and that if the element is itself a pointer, the pointed-to memory is
386*404b540aSrobert * not touched in any way. Managing the pointer is the user's
387*404b540aSrobert * responsibilty.
388*404b540aSrobert */
389*404b540aSrobert void
390*404b540aSrobert erase(iterator __position)
391*404b540aSrobert { _M_t.erase(__position); }
392*404b540aSrobert
393*404b540aSrobert /**
394*404b540aSrobert * @brief Erases elements according to the provided key.
395*404b540aSrobert * @param x Key of element to be erased.
396*404b540aSrobert * @return The number of elements erased.
397*404b540aSrobert *
398*404b540aSrobert * This function erases all elements located by the given key from a
399*404b540aSrobert * %multimap.
400*404b540aSrobert * Note that this function only erases the element, and that if
401*404b540aSrobert * the element is itself a pointer, the pointed-to memory is not touched
402*404b540aSrobert * in any way. Managing the pointer is the user's responsibilty.
403*404b540aSrobert */
404*404b540aSrobert size_type
405*404b540aSrobert erase(const key_type& __x)
406*404b540aSrobert { return _M_t.erase(__x); }
407*404b540aSrobert
408*404b540aSrobert /**
409*404b540aSrobert * @brief Erases a [first,last) range of elements from a %multimap.
410*404b540aSrobert * @param first Iterator pointing to the start of the range to be
411*404b540aSrobert * erased.
412*404b540aSrobert * @param last Iterator pointing to the end of the range to be erased.
413*404b540aSrobert *
414*404b540aSrobert * This function erases a sequence of elements from a %multimap.
415*404b540aSrobert * Note that this function only erases the elements, and that if
416*404b540aSrobert * the elements themselves are pointers, the pointed-to memory is not
417*404b540aSrobert * touched in any way. Managing the pointer is the user's responsibilty.
418*404b540aSrobert */
419*404b540aSrobert void
420*404b540aSrobert erase(iterator __first, iterator __last)
421*404b540aSrobert { _M_t.erase(__first, __last); }
422*404b540aSrobert
423*404b540aSrobert /**
424*404b540aSrobert * @brief Swaps data with another %multimap.
425*404b540aSrobert * @param x A %multimap of the same element and allocator types.
426*404b540aSrobert *
427*404b540aSrobert * This exchanges the elements between two multimaps in constant time.
428*404b540aSrobert * (It is only swapping a pointer, an integer, and an instance of
429*404b540aSrobert * the @c Compare type (which itself is often stateless and empty), so it
430*404b540aSrobert * should be quite fast.)
431*404b540aSrobert * Note that the global std::swap() function is specialized such that
432*404b540aSrobert * std::swap(m1,m2) will feed to this function.
433*404b540aSrobert */
434*404b540aSrobert void
435*404b540aSrobert swap(multimap& __x)
436*404b540aSrobert { _M_t.swap(__x._M_t); }
437*404b540aSrobert
438*404b540aSrobert /**
439*404b540aSrobert * Erases all elements in a %multimap. Note that this function only
440*404b540aSrobert * erases the elements, and that if the elements themselves are pointers,
441*404b540aSrobert * the pointed-to memory is not touched in any way. Managing the pointer
442*404b540aSrobert * is the user's responsibilty.
443*404b540aSrobert */
444*404b540aSrobert void
445*404b540aSrobert clear()
446*404b540aSrobert { _M_t.clear(); }
447*404b540aSrobert
448*404b540aSrobert // observers
449*404b540aSrobert /**
450*404b540aSrobert * Returns the key comparison object out of which the %multimap
451*404b540aSrobert * was constructed.
452*404b540aSrobert */
453*404b540aSrobert key_compare
454*404b540aSrobert key_comp() const
455*404b540aSrobert { return _M_t.key_comp(); }
456*404b540aSrobert
457*404b540aSrobert /**
458*404b540aSrobert * Returns a value comparison object, built from the key comparison
459*404b540aSrobert * object out of which the %multimap was constructed.
460*404b540aSrobert */
461*404b540aSrobert value_compare
462*404b540aSrobert value_comp() const
463*404b540aSrobert { return value_compare(_M_t.key_comp()); }
464*404b540aSrobert
465*404b540aSrobert // multimap operations
466*404b540aSrobert /**
467*404b540aSrobert * @brief Tries to locate an element in a %multimap.
468*404b540aSrobert * @param x Key of (key, value) pair to be located.
469*404b540aSrobert * @return Iterator pointing to sought-after element,
470*404b540aSrobert * or end() if not found.
471*404b540aSrobert *
472*404b540aSrobert * This function takes a key and tries to locate the element with which
473*404b540aSrobert * the key matches. If successful the function returns an iterator
474*404b540aSrobert * pointing to the sought after %pair. If unsuccessful it returns the
475*404b540aSrobert * past-the-end ( @c end() ) iterator.
476*404b540aSrobert */
477*404b540aSrobert iterator
478*404b540aSrobert find(const key_type& __x)
479*404b540aSrobert { return _M_t.find(__x); }
480*404b540aSrobert
481*404b540aSrobert /**
482*404b540aSrobert * @brief Tries to locate an element in a %multimap.
483*404b540aSrobert * @param x Key of (key, value) pair to be located.
484*404b540aSrobert * @return Read-only (constant) iterator pointing to sought-after
485*404b540aSrobert * element, or end() if not found.
486*404b540aSrobert *
487*404b540aSrobert * This function takes a key and tries to locate the element with which
488*404b540aSrobert * the key matches. If successful the function returns a constant
489*404b540aSrobert * iterator pointing to the sought after %pair. If unsuccessful it
490*404b540aSrobert * returns the past-the-end ( @c end() ) iterator.
491*404b540aSrobert */
492*404b540aSrobert const_iterator
493*404b540aSrobert find(const key_type& __x) const
494*404b540aSrobert { return _M_t.find(__x); }
495*404b540aSrobert
496*404b540aSrobert /**
497*404b540aSrobert * @brief Finds the number of elements with given key.
498*404b540aSrobert * @param x Key of (key, value) pairs to be located.
499*404b540aSrobert * @return Number of elements with specified key.
500*404b540aSrobert */
501*404b540aSrobert size_type
502*404b540aSrobert count(const key_type& __x) const
503*404b540aSrobert { return _M_t.count(__x); }
504*404b540aSrobert
505*404b540aSrobert /**
506*404b540aSrobert * @brief Finds the beginning of a subsequence matching given key.
507*404b540aSrobert * @param x Key of (key, value) pair to be located.
508*404b540aSrobert * @return Iterator pointing to first element equal to or greater
509*404b540aSrobert * than key, or end().
510*404b540aSrobert *
511*404b540aSrobert * This function returns the first element of a subsequence of elements
512*404b540aSrobert * that matches the given key. If unsuccessful it returns an iterator
513*404b540aSrobert * pointing to the first element that has a greater value than given key
514*404b540aSrobert * or end() if no such element exists.
515*404b540aSrobert */
516*404b540aSrobert iterator
517*404b540aSrobert lower_bound(const key_type& __x)
518*404b540aSrobert { return _M_t.lower_bound(__x); }
519*404b540aSrobert
520*404b540aSrobert /**
521*404b540aSrobert * @brief Finds the beginning of a subsequence matching given key.
522*404b540aSrobert * @param x Key of (key, value) pair to be located.
523*404b540aSrobert * @return Read-only (constant) iterator pointing to first element
524*404b540aSrobert * equal to or greater than key, or end().
525*404b540aSrobert *
526*404b540aSrobert * This function returns the first element of a subsequence of elements
527*404b540aSrobert * that matches the given key. If unsuccessful the iterator will point
528*404b540aSrobert * to the next greatest element or, if no such greater element exists, to
529*404b540aSrobert * end().
530*404b540aSrobert */
531*404b540aSrobert const_iterator
532*404b540aSrobert lower_bound(const key_type& __x) const
533*404b540aSrobert { return _M_t.lower_bound(__x); }
534*404b540aSrobert
535*404b540aSrobert /**
536*404b540aSrobert * @brief Finds the end of a subsequence matching given key.
537*404b540aSrobert * @param x Key of (key, value) pair to be located.
538*404b540aSrobert * @return Iterator pointing to the first element
539*404b540aSrobert * greater than key, or end().
540*404b540aSrobert */
541*404b540aSrobert iterator
542*404b540aSrobert upper_bound(const key_type& __x)
543*404b540aSrobert { return _M_t.upper_bound(__x); }
544*404b540aSrobert
545*404b540aSrobert /**
546*404b540aSrobert * @brief Finds the end of a subsequence matching given key.
547*404b540aSrobert * @param x Key of (key, value) pair to be located.
548*404b540aSrobert * @return Read-only (constant) iterator pointing to first iterator
549*404b540aSrobert * greater than key, or end().
550*404b540aSrobert */
551*404b540aSrobert const_iterator
552*404b540aSrobert upper_bound(const key_type& __x) const
553*404b540aSrobert { return _M_t.upper_bound(__x); }
554*404b540aSrobert
555*404b540aSrobert /**
556*404b540aSrobert * @brief Finds a subsequence matching given key.
557*404b540aSrobert * @param x Key of (key, value) pairs to be located.
558*404b540aSrobert * @return Pair of iterators that possibly points to the subsequence
559*404b540aSrobert * matching given key.
560*404b540aSrobert *
561*404b540aSrobert * This function is equivalent to
562*404b540aSrobert * @code
563*404b540aSrobert * std::make_pair(c.lower_bound(val),
564*404b540aSrobert * c.upper_bound(val))
565*404b540aSrobert * @endcode
566*404b540aSrobert * (but is faster than making the calls separately).
567*404b540aSrobert */
568*404b540aSrobert std::pair<iterator, iterator>
569*404b540aSrobert equal_range(const key_type& __x)
570*404b540aSrobert { return _M_t.equal_range(__x); }
571*404b540aSrobert
572*404b540aSrobert /**
573*404b540aSrobert * @brief Finds a subsequence matching given key.
574*404b540aSrobert * @param x Key of (key, value) pairs to be located.
575*404b540aSrobert * @return Pair of read-only (constant) iterators that possibly points
576*404b540aSrobert * to the subsequence matching given key.
577*404b540aSrobert *
578*404b540aSrobert * This function is equivalent to
579*404b540aSrobert * @code
580*404b540aSrobert * std::make_pair(c.lower_bound(val),
581*404b540aSrobert * c.upper_bound(val))
582*404b540aSrobert * @endcode
583*404b540aSrobert * (but is faster than making the calls separately).
584*404b540aSrobert */
585*404b540aSrobert std::pair<const_iterator, const_iterator>
586*404b540aSrobert equal_range(const key_type& __x) const
587*404b540aSrobert { return _M_t.equal_range(__x); }
588*404b540aSrobert
589*404b540aSrobert template <typename _K1, typename _T1, typename _C1, typename _A1>
590*404b540aSrobert friend bool
591*404b540aSrobert operator== (const multimap<_K1, _T1, _C1, _A1>&,
592*404b540aSrobert const multimap<_K1, _T1, _C1, _A1>&);
593*404b540aSrobert
594*404b540aSrobert template <typename _K1, typename _T1, typename _C1, typename _A1>
595*404b540aSrobert friend bool
596*404b540aSrobert operator< (const multimap<_K1, _T1, _C1, _A1>&,
597*404b540aSrobert const multimap<_K1, _T1, _C1, _A1>&);
598*404b540aSrobert };
599*404b540aSrobert
600*404b540aSrobert /**
601*404b540aSrobert * @brief Multimap equality comparison.
602*404b540aSrobert * @param x A %multimap.
603*404b540aSrobert * @param y A %multimap of the same type as @a x.
604*404b540aSrobert * @return True iff the size and elements of the maps are equal.
605*404b540aSrobert *
606*404b540aSrobert * This is an equivalence relation. It is linear in the size of the
607*404b540aSrobert * multimaps. Multimaps are considered equivalent if their sizes are equal,
608*404b540aSrobert * and if corresponding elements compare equal.
609*404b540aSrobert */
610*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
611*404b540aSrobert inline bool
612*404b540aSrobert operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
613*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
614*404b540aSrobert { return __x._M_t == __y._M_t; }
615*404b540aSrobert
616*404b540aSrobert /**
617*404b540aSrobert * @brief Multimap ordering relation.
618*404b540aSrobert * @param x A %multimap.
619*404b540aSrobert * @param y A %multimap of the same type as @a x.
620*404b540aSrobert * @return True iff @a x is lexicographically less than @a y.
621*404b540aSrobert *
622*404b540aSrobert * This is a total ordering relation. It is linear in the size of the
623*404b540aSrobert * multimaps. The elements must be comparable with @c <.
624*404b540aSrobert *
625*404b540aSrobert * See std::lexicographical_compare() for how the determination is made.
626*404b540aSrobert */
627*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
628*404b540aSrobert inline bool
629*404b540aSrobert operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
630*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
631*404b540aSrobert { return __x._M_t < __y._M_t; }
632*404b540aSrobert
633*404b540aSrobert /// Based on operator==
634*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
635*404b540aSrobert inline bool
636*404b540aSrobert operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
637*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
638*404b540aSrobert { return !(__x == __y); }
639*404b540aSrobert
640*404b540aSrobert /// Based on operator<
641*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
642*404b540aSrobert inline bool
643*404b540aSrobert operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
644*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
645*404b540aSrobert { return __y < __x; }
646*404b540aSrobert
647*404b540aSrobert /// Based on operator<
648*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
649*404b540aSrobert inline bool
650*404b540aSrobert operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
651*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
652*404b540aSrobert { return !(__y < __x); }
653*404b540aSrobert
654*404b540aSrobert /// Based on operator<
655*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
656*404b540aSrobert inline bool
657*404b540aSrobert operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
658*404b540aSrobert const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
659*404b540aSrobert { return !(__x < __y); }
660*404b540aSrobert
661*404b540aSrobert /// See std::multimap::swap().
662*404b540aSrobert template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
663*404b540aSrobert inline void
swap(multimap<_Key,_Tp,_Compare,_Alloc> & __x,multimap<_Key,_Tp,_Compare,_Alloc> & __y)664*404b540aSrobert swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
665*404b540aSrobert multimap<_Key, _Tp, _Compare, _Alloc>& __y)
666*404b540aSrobert { __x.swap(__y); }
667*404b540aSrobert
668*404b540aSrobert _GLIBCXX_END_NESTED_NAMESPACE
669*404b540aSrobert
670*404b540aSrobert #endif /* _MULTIMAP_H */
671