1*404b540aSrobert // List implementation -*- C++ -*- 2*404b540aSrobert 3*404b540aSrobert // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 4*404b540aSrobert // Free Software Foundation, Inc. 5*404b540aSrobert // 6*404b540aSrobert // This file is part of the GNU ISO C++ Library. This library is free 7*404b540aSrobert // software; you can redistribute it and/or modify it under the 8*404b540aSrobert // terms of the GNU General Public License as published by the 9*404b540aSrobert // Free Software Foundation; either version 2, or (at your option) 10*404b540aSrobert // any later version. 11*404b540aSrobert 12*404b540aSrobert // This library is distributed in the hope that it will be useful, 13*404b540aSrobert // but WITHOUT ANY WARRANTY; without even the implied warranty of 14*404b540aSrobert // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15*404b540aSrobert // GNU General Public License for more details. 16*404b540aSrobert 17*404b540aSrobert // You should have received a copy of the GNU General Public License along 18*404b540aSrobert // with this library; see the file COPYING. If not, write to the Free 19*404b540aSrobert // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 20*404b540aSrobert // USA. 21*404b540aSrobert 22*404b540aSrobert // As a special exception, you may use this file as part of a free software 23*404b540aSrobert // library without restriction. Specifically, if other files instantiate 24*404b540aSrobert // templates or use macros or inline functions from this file, or you compile 25*404b540aSrobert // this file and link it with other files to produce an executable, this 26*404b540aSrobert // file does not by itself cause the resulting executable to be covered by 27*404b540aSrobert // the GNU General Public License. This exception does not however 28*404b540aSrobert // invalidate any other reasons why the executable file might be covered by 29*404b540aSrobert // the GNU General Public License. 30*404b540aSrobert 31*404b540aSrobert /* 32*404b540aSrobert * 33*404b540aSrobert * Copyright (c) 1994 34*404b540aSrobert * Hewlett-Packard Company 35*404b540aSrobert * 36*404b540aSrobert * Permission to use, copy, modify, distribute and sell this software 37*404b540aSrobert * and its documentation for any purpose is hereby granted without fee, 38*404b540aSrobert * provided that the above copyright notice appear in all copies and 39*404b540aSrobert * that both that copyright notice and this permission notice appear 40*404b540aSrobert * in supporting documentation. Hewlett-Packard Company makes no 41*404b540aSrobert * representations about the suitability of this software for any 42*404b540aSrobert * purpose. It is provided "as is" without express or implied warranty. 43*404b540aSrobert * 44*404b540aSrobert * 45*404b540aSrobert * Copyright (c) 1996,1997 46*404b540aSrobert * Silicon Graphics Computer Systems, Inc. 47*404b540aSrobert * 48*404b540aSrobert * Permission to use, copy, modify, distribute and sell this software 49*404b540aSrobert * and its documentation for any purpose is hereby granted without fee, 50*404b540aSrobert * provided that the above copyright notice appear in all copies and 51*404b540aSrobert * that both that copyright notice and this permission notice appear 52*404b540aSrobert * in supporting documentation. Silicon Graphics makes no 53*404b540aSrobert * representations about the suitability of this software for any 54*404b540aSrobert * purpose. It is provided "as is" without express or implied warranty. 55*404b540aSrobert */ 56*404b540aSrobert 57*404b540aSrobert /** @file stl_list.h 58*404b540aSrobert * This is an internal header file, included by other library headers. 59*404b540aSrobert * You should not attempt to use it directly. 60*404b540aSrobert */ 61*404b540aSrobert 62*404b540aSrobert #ifndef _LIST_H 63*404b540aSrobert #define _LIST_H 1 64*404b540aSrobert 65*404b540aSrobert #include <bits/concept_check.h> 66*404b540aSrobert 67*404b540aSrobert _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD) 68*404b540aSrobert 69*404b540aSrobert // Supporting structures are split into common and templated types; the 70*404b540aSrobert // latter publicly inherits from the former in an effort to reduce code 71*404b540aSrobert // duplication. This results in some "needless" static_cast'ing later on, 72*404b540aSrobert // but it's all safe downcasting. 73*404b540aSrobert 74*404b540aSrobert /// @if maint Common part of a node in the %list. @endif 75*404b540aSrobert struct _List_node_base 76*404b540aSrobert { 77*404b540aSrobert _List_node_base* _M_next; ///< Self-explanatory 78*404b540aSrobert _List_node_base* _M_prev; ///< Self-explanatory 79*404b540aSrobert 80*404b540aSrobert static void 81*404b540aSrobert swap(_List_node_base& __x, _List_node_base& __y); 82*404b540aSrobert 83*404b540aSrobert void 84*404b540aSrobert transfer(_List_node_base * const __first, 85*404b540aSrobert _List_node_base * const __last); 86*404b540aSrobert 87*404b540aSrobert void 88*404b540aSrobert reverse(); 89*404b540aSrobert 90*404b540aSrobert void 91*404b540aSrobert hook(_List_node_base * const __position); 92*404b540aSrobert 93*404b540aSrobert void 94*404b540aSrobert unhook(); 95*404b540aSrobert }; 96*404b540aSrobert 97*404b540aSrobert /// @if maint An actual node in the %list. @endif 98*404b540aSrobert template<typename _Tp> 99*404b540aSrobert struct _List_node : public _List_node_base 100*404b540aSrobert { 101*404b540aSrobert _Tp _M_data; ///< User's data. 102*404b540aSrobert }; 103*404b540aSrobert 104*404b540aSrobert /** 105*404b540aSrobert * @brief A list::iterator. 106*404b540aSrobert * 107*404b540aSrobert * @if maint 108*404b540aSrobert * All the functions are op overloads. 109*404b540aSrobert * @endif 110*404b540aSrobert */ 111*404b540aSrobert template<typename _Tp> 112*404b540aSrobert struct _List_iterator 113*404b540aSrobert { 114*404b540aSrobert typedef _List_iterator<_Tp> _Self; 115*404b540aSrobert typedef _List_node<_Tp> _Node; 116*404b540aSrobert 117*404b540aSrobert typedef ptrdiff_t difference_type; 118*404b540aSrobert typedef std::bidirectional_iterator_tag iterator_category; 119*404b540aSrobert typedef _Tp value_type; 120*404b540aSrobert typedef _Tp* pointer; 121*404b540aSrobert typedef _Tp& reference; 122*404b540aSrobert _List_iterator_List_iterator123*404b540aSrobert _List_iterator() 124*404b540aSrobert : _M_node() { } 125*404b540aSrobert 126*404b540aSrobert explicit _List_iterator_List_iterator127*404b540aSrobert _List_iterator(_List_node_base* __x) 128*404b540aSrobert : _M_node(__x) { } 129*404b540aSrobert 130*404b540aSrobert // Must downcast from List_node_base to _List_node to get to _M_data. 131*404b540aSrobert reference 132*404b540aSrobert operator*() const 133*404b540aSrobert { return static_cast<_Node*>(_M_node)->_M_data; } 134*404b540aSrobert 135*404b540aSrobert pointer 136*404b540aSrobert operator->() const 137*404b540aSrobert { return &static_cast<_Node*>(_M_node)->_M_data; } 138*404b540aSrobert 139*404b540aSrobert _Self& 140*404b540aSrobert operator++() 141*404b540aSrobert { 142*404b540aSrobert _M_node = _M_node->_M_next; 143*404b540aSrobert return *this; 144*404b540aSrobert } 145*404b540aSrobert 146*404b540aSrobert _Self 147*404b540aSrobert operator++(int) 148*404b540aSrobert { 149*404b540aSrobert _Self __tmp = *this; 150*404b540aSrobert _M_node = _M_node->_M_next; 151*404b540aSrobert return __tmp; 152*404b540aSrobert } 153*404b540aSrobert 154*404b540aSrobert _Self& 155*404b540aSrobert operator--() 156*404b540aSrobert { 157*404b540aSrobert _M_node = _M_node->_M_prev; 158*404b540aSrobert return *this; 159*404b540aSrobert } 160*404b540aSrobert 161*404b540aSrobert _Self 162*404b540aSrobert operator--(int) 163*404b540aSrobert { 164*404b540aSrobert _Self __tmp = *this; 165*404b540aSrobert _M_node = _M_node->_M_prev; 166*404b540aSrobert return __tmp; 167*404b540aSrobert } 168*404b540aSrobert 169*404b540aSrobert bool 170*404b540aSrobert operator==(const _Self& __x) const 171*404b540aSrobert { return _M_node == __x._M_node; } 172*404b540aSrobert 173*404b540aSrobert bool 174*404b540aSrobert operator!=(const _Self& __x) const 175*404b540aSrobert { return _M_node != __x._M_node; } 176*404b540aSrobert 177*404b540aSrobert // The only member points to the %list element. 178*404b540aSrobert _List_node_base* _M_node; 179*404b540aSrobert }; 180*404b540aSrobert 181*404b540aSrobert /** 182*404b540aSrobert * @brief A list::const_iterator. 183*404b540aSrobert * 184*404b540aSrobert * @if maint 185*404b540aSrobert * All the functions are op overloads. 186*404b540aSrobert * @endif 187*404b540aSrobert */ 188*404b540aSrobert template<typename _Tp> 189*404b540aSrobert struct _List_const_iterator 190*404b540aSrobert { 191*404b540aSrobert typedef _List_const_iterator<_Tp> _Self; 192*404b540aSrobert typedef const _List_node<_Tp> _Node; 193*404b540aSrobert typedef _List_iterator<_Tp> iterator; 194*404b540aSrobert 195*404b540aSrobert typedef ptrdiff_t difference_type; 196*404b540aSrobert typedef std::bidirectional_iterator_tag iterator_category; 197*404b540aSrobert typedef _Tp value_type; 198*404b540aSrobert typedef const _Tp* pointer; 199*404b540aSrobert typedef const _Tp& reference; 200*404b540aSrobert _List_const_iterator_List_const_iterator201*404b540aSrobert _List_const_iterator() 202*404b540aSrobert : _M_node() { } 203*404b540aSrobert 204*404b540aSrobert explicit _List_const_iterator_List_const_iterator205*404b540aSrobert _List_const_iterator(const _List_node_base* __x) 206*404b540aSrobert : _M_node(__x) { } 207*404b540aSrobert _List_const_iterator_List_const_iterator208*404b540aSrobert _List_const_iterator(const iterator& __x) 209*404b540aSrobert : _M_node(__x._M_node) { } 210*404b540aSrobert 211*404b540aSrobert // Must downcast from List_node_base to _List_node to get to 212*404b540aSrobert // _M_data. 213*404b540aSrobert reference 214*404b540aSrobert operator*() const 215*404b540aSrobert { return static_cast<_Node*>(_M_node)->_M_data; } 216*404b540aSrobert 217*404b540aSrobert pointer 218*404b540aSrobert operator->() const 219*404b540aSrobert { return &static_cast<_Node*>(_M_node)->_M_data; } 220*404b540aSrobert 221*404b540aSrobert _Self& 222*404b540aSrobert operator++() 223*404b540aSrobert { 224*404b540aSrobert _M_node = _M_node->_M_next; 225*404b540aSrobert return *this; 226*404b540aSrobert } 227*404b540aSrobert 228*404b540aSrobert _Self 229*404b540aSrobert operator++(int) 230*404b540aSrobert { 231*404b540aSrobert _Self __tmp = *this; 232*404b540aSrobert _M_node = _M_node->_M_next; 233*404b540aSrobert return __tmp; 234*404b540aSrobert } 235*404b540aSrobert 236*404b540aSrobert _Self& 237*404b540aSrobert operator--() 238*404b540aSrobert { 239*404b540aSrobert _M_node = _M_node->_M_prev; 240*404b540aSrobert return *this; 241*404b540aSrobert } 242*404b540aSrobert 243*404b540aSrobert _Self 244*404b540aSrobert operator--(int) 245*404b540aSrobert { 246*404b540aSrobert _Self __tmp = *this; 247*404b540aSrobert _M_node = _M_node->_M_prev; 248*404b540aSrobert return __tmp; 249*404b540aSrobert } 250*404b540aSrobert 251*404b540aSrobert bool 252*404b540aSrobert operator==(const _Self& __x) const 253*404b540aSrobert { return _M_node == __x._M_node; } 254*404b540aSrobert 255*404b540aSrobert bool 256*404b540aSrobert operator!=(const _Self& __x) const 257*404b540aSrobert { return _M_node != __x._M_node; } 258*404b540aSrobert 259*404b540aSrobert // The only member points to the %list element. 260*404b540aSrobert const _List_node_base* _M_node; 261*404b540aSrobert }; 262*404b540aSrobert 263*404b540aSrobert template<typename _Val> 264*404b540aSrobert inline bool 265*404b540aSrobert operator==(const _List_iterator<_Val>& __x, 266*404b540aSrobert const _List_const_iterator<_Val>& __y) 267*404b540aSrobert { return __x._M_node == __y._M_node; } 268*404b540aSrobert 269*404b540aSrobert template<typename _Val> 270*404b540aSrobert inline bool 271*404b540aSrobert operator!=(const _List_iterator<_Val>& __x, 272*404b540aSrobert const _List_const_iterator<_Val>& __y) 273*404b540aSrobert { return __x._M_node != __y._M_node; } 274*404b540aSrobert 275*404b540aSrobert 276*404b540aSrobert /** 277*404b540aSrobert * @if maint 278*404b540aSrobert * See bits/stl_deque.h's _Deque_base for an explanation. 279*404b540aSrobert * @endif 280*404b540aSrobert */ 281*404b540aSrobert template<typename _Tp, typename _Alloc> 282*404b540aSrobert class _List_base 283*404b540aSrobert { 284*404b540aSrobert protected: 285*404b540aSrobert // NOTA BENE 286*404b540aSrobert // The stored instance is not actually of "allocator_type"'s 287*404b540aSrobert // type. Instead we rebind the type to 288*404b540aSrobert // Allocator<List_node<Tp>>, which according to [20.1.5]/4 289*404b540aSrobert // should probably be the same. List_node<Tp> is not the same 290*404b540aSrobert // size as Tp (it's two pointers larger), and specializations on 291*404b540aSrobert // Tp may go unused because List_node<Tp> is being bound 292*404b540aSrobert // instead. 293*404b540aSrobert // 294*404b540aSrobert // We put this to the test in the constructors and in 295*404b540aSrobert // get_allocator, where we use conversions between 296*404b540aSrobert // allocator_type and _Node_alloc_type. The conversion is 297*404b540aSrobert // required by table 32 in [20.1.5]. 298*404b540aSrobert typedef typename _Alloc::template rebind<_List_node<_Tp> >::other 299*404b540aSrobert _Node_alloc_type; 300*404b540aSrobert 301*404b540aSrobert typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; 302*404b540aSrobert 303*404b540aSrobert struct _List_impl 304*404b540aSrobert : public _Node_alloc_type 305*404b540aSrobert { 306*404b540aSrobert _List_node_base _M_node; 307*404b540aSrobert _List_impl_List_impl308*404b540aSrobert _List_impl(const _Node_alloc_type& __a) 309*404b540aSrobert : _Node_alloc_type(__a), _M_node() 310*404b540aSrobert { } 311*404b540aSrobert }; 312*404b540aSrobert 313*404b540aSrobert _List_impl _M_impl; 314*404b540aSrobert 315*404b540aSrobert _List_node<_Tp>* _M_get_node()316*404b540aSrobert _M_get_node() 317*404b540aSrobert { return _M_impl._Node_alloc_type::allocate(1); } 318*404b540aSrobert 319*404b540aSrobert void _M_put_node(_List_node<_Tp> * __p)320*404b540aSrobert _M_put_node(_List_node<_Tp>* __p) 321*404b540aSrobert { _M_impl._Node_alloc_type::deallocate(__p, 1); } 322*404b540aSrobert 323*404b540aSrobert public: 324*404b540aSrobert typedef _Alloc allocator_type; 325*404b540aSrobert 326*404b540aSrobert _Node_alloc_type& _M_get_Node_allocator()327*404b540aSrobert _M_get_Node_allocator() 328*404b540aSrobert { return *static_cast<_Node_alloc_type*>(&this->_M_impl); } 329*404b540aSrobert 330*404b540aSrobert const _Node_alloc_type& _M_get_Node_allocator()331*404b540aSrobert _M_get_Node_allocator() const 332*404b540aSrobert { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); } 333*404b540aSrobert 334*404b540aSrobert _Tp_alloc_type _M_get_Tp_allocator()335*404b540aSrobert _M_get_Tp_allocator() const 336*404b540aSrobert { return _Tp_alloc_type(_M_get_Node_allocator()); } 337*404b540aSrobert 338*404b540aSrobert allocator_type get_allocator()339*404b540aSrobert get_allocator() const 340*404b540aSrobert { return allocator_type(_M_get_Node_allocator()); } 341*404b540aSrobert _List_base(const allocator_type & __a)342*404b540aSrobert _List_base(const allocator_type& __a) 343*404b540aSrobert : _M_impl(__a) 344*404b540aSrobert { _M_init(); } 345*404b540aSrobert 346*404b540aSrobert // This is what actually destroys the list. ~_List_base()347*404b540aSrobert ~_List_base() 348*404b540aSrobert { _M_clear(); } 349*404b540aSrobert 350*404b540aSrobert void 351*404b540aSrobert _M_clear(); 352*404b540aSrobert 353*404b540aSrobert void _M_init()354*404b540aSrobert _M_init() 355*404b540aSrobert { 356*404b540aSrobert this->_M_impl._M_node._M_next = &this->_M_impl._M_node; 357*404b540aSrobert this->_M_impl._M_node._M_prev = &this->_M_impl._M_node; 358*404b540aSrobert } 359*404b540aSrobert }; 360*404b540aSrobert 361*404b540aSrobert /** 362*404b540aSrobert * @brief A standard container with linear time access to elements, 363*404b540aSrobert * and fixed time insertion/deletion at any point in the sequence. 364*404b540aSrobert * 365*404b540aSrobert * @ingroup Containers 366*404b540aSrobert * @ingroup Sequences 367*404b540aSrobert * 368*404b540aSrobert * Meets the requirements of a <a href="tables.html#65">container</a>, a 369*404b540aSrobert * <a href="tables.html#66">reversible container</a>, and a 370*404b540aSrobert * <a href="tables.html#67">sequence</a>, including the 371*404b540aSrobert * <a href="tables.html#68">optional sequence requirements</a> with the 372*404b540aSrobert * %exception of @c at and @c operator[]. 373*404b540aSrobert * 374*404b540aSrobert * This is a @e doubly @e linked %list. Traversal up and down the 375*404b540aSrobert * %list requires linear time, but adding and removing elements (or 376*404b540aSrobert * @e nodes) is done in constant time, regardless of where the 377*404b540aSrobert * change takes place. Unlike std::vector and std::deque, 378*404b540aSrobert * random-access iterators are not provided, so subscripting ( @c 379*404b540aSrobert * [] ) access is not allowed. For algorithms which only need 380*404b540aSrobert * sequential access, this lack makes no difference. 381*404b540aSrobert * 382*404b540aSrobert * Also unlike the other standard containers, std::list provides 383*404b540aSrobert * specialized algorithms %unique to linked lists, such as 384*404b540aSrobert * splicing, sorting, and in-place reversal. 385*404b540aSrobert * 386*404b540aSrobert * @if maint 387*404b540aSrobert * A couple points on memory allocation for list<Tp>: 388*404b540aSrobert * 389*404b540aSrobert * First, we never actually allocate a Tp, we allocate 390*404b540aSrobert * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure 391*404b540aSrobert * that after elements from %list<X,Alloc1> are spliced into 392*404b540aSrobert * %list<X,Alloc2>, destroying the memory of the second %list is a 393*404b540aSrobert * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away. 394*404b540aSrobert * 395*404b540aSrobert * Second, a %list conceptually represented as 396*404b540aSrobert * @code 397*404b540aSrobert * A <---> B <---> C <---> D 398*404b540aSrobert * @endcode 399*404b540aSrobert * is actually circular; a link exists between A and D. The %list 400*404b540aSrobert * class holds (as its only data member) a private list::iterator 401*404b540aSrobert * pointing to @e D, not to @e A! To get to the head of the %list, 402*404b540aSrobert * we start at the tail and move forward by one. When this member 403*404b540aSrobert * iterator's next/previous pointers refer to itself, the %list is 404*404b540aSrobert * %empty. @endif 405*404b540aSrobert */ 406*404b540aSrobert template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 407*404b540aSrobert class list : protected _List_base<_Tp, _Alloc> 408*404b540aSrobert { 409*404b540aSrobert // concept requirements 410*404b540aSrobert typedef typename _Alloc::value_type _Alloc_value_type; 411*404b540aSrobert __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 412*404b540aSrobert __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) 413*404b540aSrobert 414*404b540aSrobert typedef _List_base<_Tp, _Alloc> _Base; 415*404b540aSrobert typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; 416*404b540aSrobert 417*404b540aSrobert public: 418*404b540aSrobert typedef _Tp value_type; 419*404b540aSrobert typedef typename _Tp_alloc_type::pointer pointer; 420*404b540aSrobert typedef typename _Tp_alloc_type::const_pointer const_pointer; 421*404b540aSrobert typedef typename _Tp_alloc_type::reference reference; 422*404b540aSrobert typedef typename _Tp_alloc_type::const_reference const_reference; 423*404b540aSrobert typedef _List_iterator<_Tp> iterator; 424*404b540aSrobert typedef _List_const_iterator<_Tp> const_iterator; 425*404b540aSrobert typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 426*404b540aSrobert typedef std::reverse_iterator<iterator> reverse_iterator; 427*404b540aSrobert typedef size_t size_type; 428*404b540aSrobert typedef ptrdiff_t difference_type; 429*404b540aSrobert typedef _Alloc allocator_type; 430*404b540aSrobert 431*404b540aSrobert protected: 432*404b540aSrobert // Note that pointers-to-_Node's can be ctor-converted to 433*404b540aSrobert // iterator types. 434*404b540aSrobert typedef _List_node<_Tp> _Node; 435*404b540aSrobert 436*404b540aSrobert using _Base::_M_impl; 437*404b540aSrobert using _Base::_M_put_node; 438*404b540aSrobert using _Base::_M_get_node; 439*404b540aSrobert using _Base::_M_get_Tp_allocator; 440*404b540aSrobert using _Base::_M_get_Node_allocator; 441*404b540aSrobert 442*404b540aSrobert /** 443*404b540aSrobert * @if maint 444*404b540aSrobert * @param x An instance of user data. 445*404b540aSrobert * 446*404b540aSrobert * Allocates space for a new node and constructs a copy of @a x in it. 447*404b540aSrobert * @endif 448*404b540aSrobert */ 449*404b540aSrobert _Node* _M_create_node(const value_type & __x)450*404b540aSrobert _M_create_node(const value_type& __x) 451*404b540aSrobert { 452*404b540aSrobert _Node* __p = this->_M_get_node(); 453*404b540aSrobert try 454*404b540aSrobert { 455*404b540aSrobert _M_get_Tp_allocator().construct(&__p->_M_data, __x); 456*404b540aSrobert } 457*404b540aSrobert catch(...) 458*404b540aSrobert { 459*404b540aSrobert _M_put_node(__p); 460*404b540aSrobert __throw_exception_again; 461*404b540aSrobert } 462*404b540aSrobert return __p; 463*404b540aSrobert } 464*404b540aSrobert 465*404b540aSrobert public: 466*404b540aSrobert // [23.2.2.1] construct/copy/destroy 467*404b540aSrobert // (assign() and get_allocator() are also listed in this section) 468*404b540aSrobert /** 469*404b540aSrobert * @brief Default constructor creates no elements. 470*404b540aSrobert */ 471*404b540aSrobert explicit 472*404b540aSrobert list(const allocator_type& __a = allocator_type()) _Base(__a)473*404b540aSrobert : _Base(__a) { } 474*404b540aSrobert 475*404b540aSrobert /** 476*404b540aSrobert * @brief Create a %list with copies of an exemplar element. 477*404b540aSrobert * @param n The number of elements to initially create. 478*404b540aSrobert * @param value An element to copy. 479*404b540aSrobert * 480*404b540aSrobert * This constructor fills the %list with @a n copies of @a value. 481*404b540aSrobert */ 482*404b540aSrobert explicit 483*404b540aSrobert list(size_type __n, const value_type& __value = value_type(), 484*404b540aSrobert const allocator_type& __a = allocator_type()) _Base(__a)485*404b540aSrobert : _Base(__a) 486*404b540aSrobert { _M_fill_initialize(__n, __value); } 487*404b540aSrobert 488*404b540aSrobert /** 489*404b540aSrobert * @brief %List copy constructor. 490*404b540aSrobert * @param x A %list of identical element and allocator types. 491*404b540aSrobert * 492*404b540aSrobert * The newly-created %list uses a copy of the allocation object used 493*404b540aSrobert * by @a x. 494*404b540aSrobert */ list(const list & __x)495*404b540aSrobert list(const list& __x) 496*404b540aSrobert : _Base(__x._M_get_Node_allocator()) 497*404b540aSrobert { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); } 498*404b540aSrobert 499*404b540aSrobert /** 500*404b540aSrobert * @brief Builds a %list from a range. 501*404b540aSrobert * @param first An input iterator. 502*404b540aSrobert * @param last An input iterator. 503*404b540aSrobert * 504*404b540aSrobert * Create a %list consisting of copies of the elements from 505*404b540aSrobert * [@a first,@a last). This is linear in N (where N is 506*404b540aSrobert * distance(@a first,@a last)). 507*404b540aSrobert */ 508*404b540aSrobert template<typename _InputIterator> 509*404b540aSrobert list(_InputIterator __first, _InputIterator __last, 510*404b540aSrobert const allocator_type& __a = allocator_type()) _Base(__a)511*404b540aSrobert : _Base(__a) 512*404b540aSrobert { 513*404b540aSrobert // Check whether it's an integral type. If so, it's not an iterator. 514*404b540aSrobert typedef typename std::__is_integer<_InputIterator>::__type _Integral; 515*404b540aSrobert _M_initialize_dispatch(__first, __last, _Integral()); 516*404b540aSrobert } 517*404b540aSrobert 518*404b540aSrobert /** 519*404b540aSrobert * No explicit dtor needed as the _Base dtor takes care of 520*404b540aSrobert * things. The _Base dtor only erases the elements, and note 521*404b540aSrobert * that if the elements themselves are pointers, the pointed-to 522*404b540aSrobert * memory is not touched in any way. Managing the pointer is 523*404b540aSrobert * the user's responsibilty. 524*404b540aSrobert */ 525*404b540aSrobert 526*404b540aSrobert /** 527*404b540aSrobert * @brief %List assignment operator. 528*404b540aSrobert * @param x A %list of identical element and allocator types. 529*404b540aSrobert * 530*404b540aSrobert * All the elements of @a x are copied, but unlike the copy 531*404b540aSrobert * constructor, the allocator object is not copied. 532*404b540aSrobert */ 533*404b540aSrobert list& 534*404b540aSrobert operator=(const list& __x); 535*404b540aSrobert 536*404b540aSrobert /** 537*404b540aSrobert * @brief Assigns a given value to a %list. 538*404b540aSrobert * @param n Number of elements to be assigned. 539*404b540aSrobert * @param val Value to be assigned. 540*404b540aSrobert * 541*404b540aSrobert * This function fills a %list with @a n copies of the given 542*404b540aSrobert * value. Note that the assignment completely changes the %list 543*404b540aSrobert * and that the resulting %list's size is the same as the number 544*404b540aSrobert * of elements assigned. Old data may be lost. 545*404b540aSrobert */ 546*404b540aSrobert void assign(size_type __n,const value_type & __val)547*404b540aSrobert assign(size_type __n, const value_type& __val) 548*404b540aSrobert { _M_fill_assign(__n, __val); } 549*404b540aSrobert 550*404b540aSrobert /** 551*404b540aSrobert * @brief Assigns a range to a %list. 552*404b540aSrobert * @param first An input iterator. 553*404b540aSrobert * @param last An input iterator. 554*404b540aSrobert * 555*404b540aSrobert * This function fills a %list with copies of the elements in the 556*404b540aSrobert * range [@a first,@a last). 557*404b540aSrobert * 558*404b540aSrobert * Note that the assignment completely changes the %list and 559*404b540aSrobert * that the resulting %list's size is the same as the number of 560*404b540aSrobert * elements assigned. Old data may be lost. 561*404b540aSrobert */ 562*404b540aSrobert template<typename _InputIterator> 563*404b540aSrobert void assign(_InputIterator __first,_InputIterator __last)564*404b540aSrobert assign(_InputIterator __first, _InputIterator __last) 565*404b540aSrobert { 566*404b540aSrobert // Check whether it's an integral type. If so, it's not an iterator. 567*404b540aSrobert typedef typename std::__is_integer<_InputIterator>::__type _Integral; 568*404b540aSrobert _M_assign_dispatch(__first, __last, _Integral()); 569*404b540aSrobert } 570*404b540aSrobert 571*404b540aSrobert /// Get a copy of the memory allocation object. 572*404b540aSrobert allocator_type get_allocator()573*404b540aSrobert get_allocator() const 574*404b540aSrobert { return _Base::get_allocator(); } 575*404b540aSrobert 576*404b540aSrobert // iterators 577*404b540aSrobert /** 578*404b540aSrobert * Returns a read/write iterator that points to the first element in the 579*404b540aSrobert * %list. Iteration is done in ordinary element order. 580*404b540aSrobert */ 581*404b540aSrobert iterator begin()582*404b540aSrobert begin() 583*404b540aSrobert { return iterator(this->_M_impl._M_node._M_next); } 584*404b540aSrobert 585*404b540aSrobert /** 586*404b540aSrobert * Returns a read-only (constant) iterator that points to the 587*404b540aSrobert * first element in the %list. Iteration is done in ordinary 588*404b540aSrobert * element order. 589*404b540aSrobert */ 590*404b540aSrobert const_iterator begin()591*404b540aSrobert begin() const 592*404b540aSrobert { return const_iterator(this->_M_impl._M_node._M_next); } 593*404b540aSrobert 594*404b540aSrobert /** 595*404b540aSrobert * Returns a read/write iterator that points one past the last 596*404b540aSrobert * element in the %list. Iteration is done in ordinary element 597*404b540aSrobert * order. 598*404b540aSrobert */ 599*404b540aSrobert iterator end()600*404b540aSrobert end() 601*404b540aSrobert { return iterator(&this->_M_impl._M_node); } 602*404b540aSrobert 603*404b540aSrobert /** 604*404b540aSrobert * Returns a read-only (constant) iterator that points one past 605*404b540aSrobert * the last element in the %list. Iteration is done in ordinary 606*404b540aSrobert * element order. 607*404b540aSrobert */ 608*404b540aSrobert const_iterator end()609*404b540aSrobert end() const 610*404b540aSrobert { return const_iterator(&this->_M_impl._M_node); } 611*404b540aSrobert 612*404b540aSrobert /** 613*404b540aSrobert * Returns a read/write reverse iterator that points to the last 614*404b540aSrobert * element in the %list. Iteration is done in reverse element 615*404b540aSrobert * order. 616*404b540aSrobert */ 617*404b540aSrobert reverse_iterator rbegin()618*404b540aSrobert rbegin() 619*404b540aSrobert { return reverse_iterator(end()); } 620*404b540aSrobert 621*404b540aSrobert /** 622*404b540aSrobert * Returns a read-only (constant) reverse iterator that points to 623*404b540aSrobert * the last element in the %list. Iteration is done in reverse 624*404b540aSrobert * element order. 625*404b540aSrobert */ 626*404b540aSrobert const_reverse_iterator rbegin()627*404b540aSrobert rbegin() const 628*404b540aSrobert { return const_reverse_iterator(end()); } 629*404b540aSrobert 630*404b540aSrobert /** 631*404b540aSrobert * Returns a read/write reverse iterator that points to one 632*404b540aSrobert * before the first element in the %list. Iteration is done in 633*404b540aSrobert * reverse element order. 634*404b540aSrobert */ 635*404b540aSrobert reverse_iterator rend()636*404b540aSrobert rend() 637*404b540aSrobert { return reverse_iterator(begin()); } 638*404b540aSrobert 639*404b540aSrobert /** 640*404b540aSrobert * Returns a read-only (constant) reverse iterator that points to one 641*404b540aSrobert * before the first element in the %list. Iteration is done in reverse 642*404b540aSrobert * element order. 643*404b540aSrobert */ 644*404b540aSrobert const_reverse_iterator rend()645*404b540aSrobert rend() const 646*404b540aSrobert { return const_reverse_iterator(begin()); } 647*404b540aSrobert 648*404b540aSrobert // [23.2.2.2] capacity 649*404b540aSrobert /** 650*404b540aSrobert * Returns true if the %list is empty. (Thus begin() would equal 651*404b540aSrobert * end().) 652*404b540aSrobert */ 653*404b540aSrobert bool empty()654*404b540aSrobert empty() const 655*404b540aSrobert { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; } 656*404b540aSrobert 657*404b540aSrobert /** Returns the number of elements in the %list. */ 658*404b540aSrobert size_type size()659*404b540aSrobert size() const 660*404b540aSrobert { return std::distance(begin(), end()); } 661*404b540aSrobert 662*404b540aSrobert /** Returns the size() of the largest possible %list. */ 663*404b540aSrobert size_type max_size()664*404b540aSrobert max_size() const 665*404b540aSrobert { return _M_get_Tp_allocator().max_size(); } 666*404b540aSrobert 667*404b540aSrobert /** 668*404b540aSrobert * @brief Resizes the %list to the specified number of elements. 669*404b540aSrobert * @param new_size Number of elements the %list should contain. 670*404b540aSrobert * @param x Data with which new elements should be populated. 671*404b540aSrobert * 672*404b540aSrobert * This function will %resize the %list to the specified number 673*404b540aSrobert * of elements. If the number is smaller than the %list's 674*404b540aSrobert * current size the %list is truncated, otherwise the %list is 675*404b540aSrobert * extended and new elements are populated with given data. 676*404b540aSrobert */ 677*404b540aSrobert void 678*404b540aSrobert resize(size_type __new_size, value_type __x = value_type()); 679*404b540aSrobert 680*404b540aSrobert // element access 681*404b540aSrobert /** 682*404b540aSrobert * Returns a read/write reference to the data at the first 683*404b540aSrobert * element of the %list. 684*404b540aSrobert */ 685*404b540aSrobert reference front()686*404b540aSrobert front() 687*404b540aSrobert { return *begin(); } 688*404b540aSrobert 689*404b540aSrobert /** 690*404b540aSrobert * Returns a read-only (constant) reference to the data at the first 691*404b540aSrobert * element of the %list. 692*404b540aSrobert */ 693*404b540aSrobert const_reference front()694*404b540aSrobert front() const 695*404b540aSrobert { return *begin(); } 696*404b540aSrobert 697*404b540aSrobert /** 698*404b540aSrobert * Returns a read/write reference to the data at the last element 699*404b540aSrobert * of the %list. 700*404b540aSrobert */ 701*404b540aSrobert reference back()702*404b540aSrobert back() 703*404b540aSrobert { 704*404b540aSrobert iterator __tmp = end(); 705*404b540aSrobert --__tmp; 706*404b540aSrobert return *__tmp; 707*404b540aSrobert } 708*404b540aSrobert 709*404b540aSrobert /** 710*404b540aSrobert * Returns a read-only (constant) reference to the data at the last 711*404b540aSrobert * element of the %list. 712*404b540aSrobert */ 713*404b540aSrobert const_reference back()714*404b540aSrobert back() const 715*404b540aSrobert { 716*404b540aSrobert const_iterator __tmp = end(); 717*404b540aSrobert --__tmp; 718*404b540aSrobert return *__tmp; 719*404b540aSrobert } 720*404b540aSrobert 721*404b540aSrobert // [23.2.2.3] modifiers 722*404b540aSrobert /** 723*404b540aSrobert * @brief Add data to the front of the %list. 724*404b540aSrobert * @param x Data to be added. 725*404b540aSrobert * 726*404b540aSrobert * This is a typical stack operation. The function creates an 727*404b540aSrobert * element at the front of the %list and assigns the given data 728*404b540aSrobert * to it. Due to the nature of a %list this operation can be 729*404b540aSrobert * done in constant time, and does not invalidate iterators and 730*404b540aSrobert * references. 731*404b540aSrobert */ 732*404b540aSrobert void push_front(const value_type & __x)733*404b540aSrobert push_front(const value_type& __x) 734*404b540aSrobert { this->_M_insert(begin(), __x); } 735*404b540aSrobert 736*404b540aSrobert /** 737*404b540aSrobert * @brief Removes first element. 738*404b540aSrobert * 739*404b540aSrobert * This is a typical stack operation. It shrinks the %list by 740*404b540aSrobert * one. Due to the nature of a %list this operation can be done 741*404b540aSrobert * in constant time, and only invalidates iterators/references to 742*404b540aSrobert * the element being removed. 743*404b540aSrobert * 744*404b540aSrobert * Note that no data is returned, and if the first element's data 745*404b540aSrobert * is needed, it should be retrieved before pop_front() is 746*404b540aSrobert * called. 747*404b540aSrobert */ 748*404b540aSrobert void pop_front()749*404b540aSrobert pop_front() 750*404b540aSrobert { this->_M_erase(begin()); } 751*404b540aSrobert 752*404b540aSrobert /** 753*404b540aSrobert * @brief Add data to the end of the %list. 754*404b540aSrobert * @param x Data to be added. 755*404b540aSrobert * 756*404b540aSrobert * This is a typical stack operation. The function creates an 757*404b540aSrobert * element at the end of the %list and assigns the given data to 758*404b540aSrobert * it. Due to the nature of a %list this operation can be done 759*404b540aSrobert * in constant time, and does not invalidate iterators and 760*404b540aSrobert * references. 761*404b540aSrobert */ 762*404b540aSrobert void push_back(const value_type & __x)763*404b540aSrobert push_back(const value_type& __x) 764*404b540aSrobert { this->_M_insert(end(), __x); } 765*404b540aSrobert 766*404b540aSrobert /** 767*404b540aSrobert * @brief Removes last element. 768*404b540aSrobert * 769*404b540aSrobert * This is a typical stack operation. It shrinks the %list by 770*404b540aSrobert * one. Due to the nature of a %list this operation can be done 771*404b540aSrobert * in constant time, and only invalidates iterators/references to 772*404b540aSrobert * the element being removed. 773*404b540aSrobert * 774*404b540aSrobert * Note that no data is returned, and if the last element's data 775*404b540aSrobert * is needed, it should be retrieved before pop_back() is called. 776*404b540aSrobert */ 777*404b540aSrobert void pop_back()778*404b540aSrobert pop_back() 779*404b540aSrobert { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); } 780*404b540aSrobert 781*404b540aSrobert /** 782*404b540aSrobert * @brief Inserts given value into %list before specified iterator. 783*404b540aSrobert * @param position An iterator into the %list. 784*404b540aSrobert * @param x Data to be inserted. 785*404b540aSrobert * @return An iterator that points to the inserted data. 786*404b540aSrobert * 787*404b540aSrobert * This function will insert a copy of the given value before 788*404b540aSrobert * the specified location. Due to the nature of a %list this 789*404b540aSrobert * operation can be done in constant time, and does not 790*404b540aSrobert * invalidate iterators and references. 791*404b540aSrobert */ 792*404b540aSrobert iterator 793*404b540aSrobert insert(iterator __position, const value_type& __x); 794*404b540aSrobert 795*404b540aSrobert /** 796*404b540aSrobert * @brief Inserts a number of copies of given data into the %list. 797*404b540aSrobert * @param position An iterator into the %list. 798*404b540aSrobert * @param n Number of elements to be inserted. 799*404b540aSrobert * @param x Data to be inserted. 800*404b540aSrobert * 801*404b540aSrobert * This function will insert a specified number of copies of the 802*404b540aSrobert * given data before the location specified by @a position. 803*404b540aSrobert * 804*404b540aSrobert * This operation is linear in the number of elements inserted and 805*404b540aSrobert * does not invalidate iterators and references. 806*404b540aSrobert */ 807*404b540aSrobert void insert(iterator __position,size_type __n,const value_type & __x)808*404b540aSrobert insert(iterator __position, size_type __n, const value_type& __x) 809*404b540aSrobert { 810*404b540aSrobert list __tmp(__n, __x, _M_get_Node_allocator()); 811*404b540aSrobert splice(__position, __tmp); 812*404b540aSrobert } 813*404b540aSrobert 814*404b540aSrobert /** 815*404b540aSrobert * @brief Inserts a range into the %list. 816*404b540aSrobert * @param position An iterator into the %list. 817*404b540aSrobert * @param first An input iterator. 818*404b540aSrobert * @param last An input iterator. 819*404b540aSrobert * 820*404b540aSrobert * This function will insert copies of the data in the range [@a 821*404b540aSrobert * first,@a last) into the %list before the location specified by 822*404b540aSrobert * @a position. 823*404b540aSrobert * 824*404b540aSrobert * This operation is linear in the number of elements inserted and 825*404b540aSrobert * does not invalidate iterators and references. 826*404b540aSrobert */ 827*404b540aSrobert template<typename _InputIterator> 828*404b540aSrobert void insert(iterator __position,_InputIterator __first,_InputIterator __last)829*404b540aSrobert insert(iterator __position, _InputIterator __first, 830*404b540aSrobert _InputIterator __last) 831*404b540aSrobert { 832*404b540aSrobert list __tmp(__first, __last, _M_get_Node_allocator()); 833*404b540aSrobert splice(__position, __tmp); 834*404b540aSrobert } 835*404b540aSrobert 836*404b540aSrobert /** 837*404b540aSrobert * @brief Remove element at given position. 838*404b540aSrobert * @param position Iterator pointing to element to be erased. 839*404b540aSrobert * @return An iterator pointing to the next element (or end()). 840*404b540aSrobert * 841*404b540aSrobert * This function will erase the element at the given position and thus 842*404b540aSrobert * shorten the %list by one. 843*404b540aSrobert * 844*404b540aSrobert * Due to the nature of a %list this operation can be done in 845*404b540aSrobert * constant time, and only invalidates iterators/references to 846*404b540aSrobert * the element being removed. The user is also cautioned that 847*404b540aSrobert * this function only erases the element, and that if the element 848*404b540aSrobert * is itself a pointer, the pointed-to memory is not touched in 849*404b540aSrobert * any way. Managing the pointer is the user's responsibilty. 850*404b540aSrobert */ 851*404b540aSrobert iterator 852*404b540aSrobert erase(iterator __position); 853*404b540aSrobert 854*404b540aSrobert /** 855*404b540aSrobert * @brief Remove a range of elements. 856*404b540aSrobert * @param first Iterator pointing to the first element to be erased. 857*404b540aSrobert * @param last Iterator pointing to one past the last element to be 858*404b540aSrobert * erased. 859*404b540aSrobert * @return An iterator pointing to the element pointed to by @a last 860*404b540aSrobert * prior to erasing (or end()). 861*404b540aSrobert * 862*404b540aSrobert * This function will erase the elements in the range @a 863*404b540aSrobert * [first,last) and shorten the %list accordingly. 864*404b540aSrobert * 865*404b540aSrobert * This operation is linear time in the size of the range and only 866*404b540aSrobert * invalidates iterators/references to the element being removed. 867*404b540aSrobert * The user is also cautioned that this function only erases the 868*404b540aSrobert * elements, and that if the elements themselves are pointers, the 869*404b540aSrobert * pointed-to memory is not touched in any way. Managing the pointer 870*404b540aSrobert * is the user's responsibilty. 871*404b540aSrobert */ 872*404b540aSrobert iterator erase(iterator __first,iterator __last)873*404b540aSrobert erase(iterator __first, iterator __last) 874*404b540aSrobert { 875*404b540aSrobert while (__first != __last) 876*404b540aSrobert __first = erase(__first); 877*404b540aSrobert return __last; 878*404b540aSrobert } 879*404b540aSrobert 880*404b540aSrobert /** 881*404b540aSrobert * @brief Swaps data with another %list. 882*404b540aSrobert * @param x A %list of the same element and allocator types. 883*404b540aSrobert * 884*404b540aSrobert * This exchanges the elements between two lists in constant 885*404b540aSrobert * time. Note that the global std::swap() function is 886*404b540aSrobert * specialized such that std::swap(l1,l2) will feed to this 887*404b540aSrobert * function. 888*404b540aSrobert */ 889*404b540aSrobert void swap(list & __x)890*404b540aSrobert swap(list& __x) 891*404b540aSrobert { 892*404b540aSrobert _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); 893*404b540aSrobert 894*404b540aSrobert // _GLIBCXX_RESOLVE_LIB_DEFECTS 895*404b540aSrobert // 431. Swapping containers with unequal allocators. 896*404b540aSrobert std::__alloc_swap<typename _Base::_Node_alloc_type>:: 897*404b540aSrobert _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()); 898*404b540aSrobert } 899*404b540aSrobert 900*404b540aSrobert /** 901*404b540aSrobert * Erases all the elements. Note that this function only erases 902*404b540aSrobert * the elements, and that if the elements themselves are 903*404b540aSrobert * pointers, the pointed-to memory is not touched in any way. 904*404b540aSrobert * Managing the pointer is the user's responsibilty. 905*404b540aSrobert */ 906*404b540aSrobert void clear()907*404b540aSrobert clear() 908*404b540aSrobert { 909*404b540aSrobert _Base::_M_clear(); 910*404b540aSrobert _Base::_M_init(); 911*404b540aSrobert } 912*404b540aSrobert 913*404b540aSrobert // [23.2.2.4] list operations 914*404b540aSrobert /** 915*404b540aSrobert * @brief Insert contents of another %list. 916*404b540aSrobert * @param position Iterator referencing the element to insert before. 917*404b540aSrobert * @param x Source list. 918*404b540aSrobert * 919*404b540aSrobert * The elements of @a x are inserted in constant time in front of 920*404b540aSrobert * the element referenced by @a position. @a x becomes an empty 921*404b540aSrobert * list. 922*404b540aSrobert * 923*404b540aSrobert * Requires this != @a x. 924*404b540aSrobert */ 925*404b540aSrobert void splice(iterator __position,list & __x)926*404b540aSrobert splice(iterator __position, list& __x) 927*404b540aSrobert { 928*404b540aSrobert if (!__x.empty()) 929*404b540aSrobert { 930*404b540aSrobert _M_check_equal_allocators(__x); 931*404b540aSrobert 932*404b540aSrobert this->_M_transfer(__position, __x.begin(), __x.end()); 933*404b540aSrobert } 934*404b540aSrobert } 935*404b540aSrobert 936*404b540aSrobert /** 937*404b540aSrobert * @brief Insert element from another %list. 938*404b540aSrobert * @param position Iterator referencing the element to insert before. 939*404b540aSrobert * @param x Source list. 940*404b540aSrobert * @param i Iterator referencing the element to move. 941*404b540aSrobert * 942*404b540aSrobert * Removes the element in list @a x referenced by @a i and 943*404b540aSrobert * inserts it into the current list before @a position. 944*404b540aSrobert */ 945*404b540aSrobert void splice(iterator __position,list & __x,iterator __i)946*404b540aSrobert splice(iterator __position, list& __x, iterator __i) 947*404b540aSrobert { 948*404b540aSrobert iterator __j = __i; 949*404b540aSrobert ++__j; 950*404b540aSrobert if (__position == __i || __position == __j) 951*404b540aSrobert return; 952*404b540aSrobert 953*404b540aSrobert if (this != &__x) 954*404b540aSrobert _M_check_equal_allocators(__x); 955*404b540aSrobert 956*404b540aSrobert this->_M_transfer(__position, __i, __j); 957*404b540aSrobert } 958*404b540aSrobert 959*404b540aSrobert /** 960*404b540aSrobert * @brief Insert range from another %list. 961*404b540aSrobert * @param position Iterator referencing the element to insert before. 962*404b540aSrobert * @param x Source list. 963*404b540aSrobert * @param first Iterator referencing the start of range in x. 964*404b540aSrobert * @param last Iterator referencing the end of range in x. 965*404b540aSrobert * 966*404b540aSrobert * Removes elements in the range [first,last) and inserts them 967*404b540aSrobert * before @a position in constant time. 968*404b540aSrobert * 969*404b540aSrobert * Undefined if @a position is in [first,last). 970*404b540aSrobert */ 971*404b540aSrobert void splice(iterator __position,list & __x,iterator __first,iterator __last)972*404b540aSrobert splice(iterator __position, list& __x, iterator __first, iterator __last) 973*404b540aSrobert { 974*404b540aSrobert if (__first != __last) 975*404b540aSrobert { 976*404b540aSrobert if (this != &__x) 977*404b540aSrobert _M_check_equal_allocators(__x); 978*404b540aSrobert 979*404b540aSrobert this->_M_transfer(__position, __first, __last); 980*404b540aSrobert } 981*404b540aSrobert } 982*404b540aSrobert 983*404b540aSrobert /** 984*404b540aSrobert * @brief Remove all elements equal to value. 985*404b540aSrobert * @param value The value to remove. 986*404b540aSrobert * 987*404b540aSrobert * Removes every element in the list equal to @a value. 988*404b540aSrobert * Remaining elements stay in list order. Note that this 989*404b540aSrobert * function only erases the elements, and that if the elements 990*404b540aSrobert * themselves are pointers, the pointed-to memory is not 991*404b540aSrobert * touched in any way. Managing the pointer is the user's 992*404b540aSrobert * responsibilty. 993*404b540aSrobert */ 994*404b540aSrobert void 995*404b540aSrobert remove(const _Tp& __value); 996*404b540aSrobert 997*404b540aSrobert /** 998*404b540aSrobert * @brief Remove all elements satisfying a predicate. 999*404b540aSrobert * @param Predicate Unary predicate function or object. 1000*404b540aSrobert * 1001*404b540aSrobert * Removes every element in the list for which the predicate 1002*404b540aSrobert * returns true. Remaining elements stay in list order. Note 1003*404b540aSrobert * that this function only erases the elements, and that if the 1004*404b540aSrobert * elements themselves are pointers, the pointed-to memory is 1005*404b540aSrobert * not touched in any way. Managing the pointer is the user's 1006*404b540aSrobert * responsibilty. 1007*404b540aSrobert */ 1008*404b540aSrobert template<typename _Predicate> 1009*404b540aSrobert void 1010*404b540aSrobert remove_if(_Predicate); 1011*404b540aSrobert 1012*404b540aSrobert /** 1013*404b540aSrobert * @brief Remove consecutive duplicate elements. 1014*404b540aSrobert * 1015*404b540aSrobert * For each consecutive set of elements with the same value, 1016*404b540aSrobert * remove all but the first one. Remaining elements stay in 1017*404b540aSrobert * list order. Note that this function only erases the 1018*404b540aSrobert * elements, and that if the elements themselves are pointers, 1019*404b540aSrobert * the pointed-to memory is not touched in any way. Managing 1020*404b540aSrobert * the pointer is the user's responsibilty. 1021*404b540aSrobert */ 1022*404b540aSrobert void 1023*404b540aSrobert unique(); 1024*404b540aSrobert 1025*404b540aSrobert /** 1026*404b540aSrobert * @brief Remove consecutive elements satisfying a predicate. 1027*404b540aSrobert * @param BinaryPredicate Binary predicate function or object. 1028*404b540aSrobert * 1029*404b540aSrobert * For each consecutive set of elements [first,last) that 1030*404b540aSrobert * satisfy predicate(first,i) where i is an iterator in 1031*404b540aSrobert * [first,last), remove all but the first one. Remaining 1032*404b540aSrobert * elements stay in list order. Note that this function only 1033*404b540aSrobert * erases the elements, and that if the elements themselves are 1034*404b540aSrobert * pointers, the pointed-to memory is not touched in any way. 1035*404b540aSrobert * Managing the pointer is the user's responsibilty. 1036*404b540aSrobert */ 1037*404b540aSrobert template<typename _BinaryPredicate> 1038*404b540aSrobert void 1039*404b540aSrobert unique(_BinaryPredicate); 1040*404b540aSrobert 1041*404b540aSrobert /** 1042*404b540aSrobert * @brief Merge sorted lists. 1043*404b540aSrobert * @param x Sorted list to merge. 1044*404b540aSrobert * 1045*404b540aSrobert * Assumes that both @a x and this list are sorted according to 1046*404b540aSrobert * operator<(). Merges elements of @a x into this list in 1047*404b540aSrobert * sorted order, leaving @a x empty when complete. Elements in 1048*404b540aSrobert * this list precede elements in @a x that are equal. 1049*404b540aSrobert */ 1050*404b540aSrobert void 1051*404b540aSrobert merge(list& __x); 1052*404b540aSrobert 1053*404b540aSrobert /** 1054*404b540aSrobert * @brief Merge sorted lists according to comparison function. 1055*404b540aSrobert * @param x Sorted list to merge. 1056*404b540aSrobert * @param StrictWeakOrdering Comparison function definining 1057*404b540aSrobert * sort order. 1058*404b540aSrobert * 1059*404b540aSrobert * Assumes that both @a x and this list are sorted according to 1060*404b540aSrobert * StrictWeakOrdering. Merges elements of @a x into this list 1061*404b540aSrobert * in sorted order, leaving @a x empty when complete. Elements 1062*404b540aSrobert * in this list precede elements in @a x that are equivalent 1063*404b540aSrobert * according to StrictWeakOrdering(). 1064*404b540aSrobert */ 1065*404b540aSrobert template<typename _StrictWeakOrdering> 1066*404b540aSrobert void 1067*404b540aSrobert merge(list&, _StrictWeakOrdering); 1068*404b540aSrobert 1069*404b540aSrobert /** 1070*404b540aSrobert * @brief Reverse the elements in list. 1071*404b540aSrobert * 1072*404b540aSrobert * Reverse the order of elements in the list in linear time. 1073*404b540aSrobert */ 1074*404b540aSrobert void reverse()1075*404b540aSrobert reverse() 1076*404b540aSrobert { this->_M_impl._M_node.reverse(); } 1077*404b540aSrobert 1078*404b540aSrobert /** 1079*404b540aSrobert * @brief Sort the elements. 1080*404b540aSrobert * 1081*404b540aSrobert * Sorts the elements of this list in NlogN time. Equivalent 1082*404b540aSrobert * elements remain in list order. 1083*404b540aSrobert */ 1084*404b540aSrobert void 1085*404b540aSrobert sort(); 1086*404b540aSrobert 1087*404b540aSrobert /** 1088*404b540aSrobert * @brief Sort the elements according to comparison function. 1089*404b540aSrobert * 1090*404b540aSrobert * Sorts the elements of this list in NlogN time. Equivalent 1091*404b540aSrobert * elements remain in list order. 1092*404b540aSrobert */ 1093*404b540aSrobert template<typename _StrictWeakOrdering> 1094*404b540aSrobert void 1095*404b540aSrobert sort(_StrictWeakOrdering); 1096*404b540aSrobert 1097*404b540aSrobert protected: 1098*404b540aSrobert // Internal constructor functions follow. 1099*404b540aSrobert 1100*404b540aSrobert // Called by the range constructor to implement [23.1.1]/9 1101*404b540aSrobert template<typename _Integer> 1102*404b540aSrobert void _M_initialize_dispatch(_Integer __n,_Integer __x,__true_type)1103*404b540aSrobert _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 1104*404b540aSrobert { 1105*404b540aSrobert _M_fill_initialize(static_cast<size_type>(__n), 1106*404b540aSrobert static_cast<value_type>(__x)); 1107*404b540aSrobert } 1108*404b540aSrobert 1109*404b540aSrobert // Called by the range constructor to implement [23.1.1]/9 1110*404b540aSrobert template<typename _InputIterator> 1111*404b540aSrobert void _M_initialize_dispatch(_InputIterator __first,_InputIterator __last,__false_type)1112*404b540aSrobert _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 1113*404b540aSrobert __false_type) 1114*404b540aSrobert { 1115*404b540aSrobert for (; __first != __last; ++__first) 1116*404b540aSrobert push_back(*__first); 1117*404b540aSrobert } 1118*404b540aSrobert 1119*404b540aSrobert // Called by list(n,v,a), and the range constructor when it turns out 1120*404b540aSrobert // to be the same thing. 1121*404b540aSrobert void _M_fill_initialize(size_type __n,const value_type & __x)1122*404b540aSrobert _M_fill_initialize(size_type __n, const value_type& __x) 1123*404b540aSrobert { 1124*404b540aSrobert for (; __n > 0; --__n) 1125*404b540aSrobert push_back(__x); 1126*404b540aSrobert } 1127*404b540aSrobert 1128*404b540aSrobert 1129*404b540aSrobert // Internal assign functions follow. 1130*404b540aSrobert 1131*404b540aSrobert // Called by the range assign to implement [23.1.1]/9 1132*404b540aSrobert template<typename _Integer> 1133*404b540aSrobert void _M_assign_dispatch(_Integer __n,_Integer __val,__true_type)1134*404b540aSrobert _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 1135*404b540aSrobert { 1136*404b540aSrobert _M_fill_assign(static_cast<size_type>(__n), 1137*404b540aSrobert static_cast<value_type>(__val)); 1138*404b540aSrobert } 1139*404b540aSrobert 1140*404b540aSrobert // Called by the range assign to implement [23.1.1]/9 1141*404b540aSrobert template<typename _InputIterator> 1142*404b540aSrobert void 1143*404b540aSrobert _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 1144*404b540aSrobert __false_type); 1145*404b540aSrobert 1146*404b540aSrobert // Called by assign(n,t), and the range assign when it turns out 1147*404b540aSrobert // to be the same thing. 1148*404b540aSrobert void 1149*404b540aSrobert _M_fill_assign(size_type __n, const value_type& __val); 1150*404b540aSrobert 1151*404b540aSrobert 1152*404b540aSrobert // Moves the elements from [first,last) before position. 1153*404b540aSrobert void _M_transfer(iterator __position,iterator __first,iterator __last)1154*404b540aSrobert _M_transfer(iterator __position, iterator __first, iterator __last) 1155*404b540aSrobert { __position._M_node->transfer(__first._M_node, __last._M_node); } 1156*404b540aSrobert 1157*404b540aSrobert // Inserts new element at position given and with value given. 1158*404b540aSrobert void _M_insert(iterator __position,const value_type & __x)1159*404b540aSrobert _M_insert(iterator __position, const value_type& __x) 1160*404b540aSrobert { 1161*404b540aSrobert _Node* __tmp = _M_create_node(__x); 1162*404b540aSrobert __tmp->hook(__position._M_node); 1163*404b540aSrobert } 1164*404b540aSrobert 1165*404b540aSrobert // Erases element at position given. 1166*404b540aSrobert void _M_erase(iterator __position)1167*404b540aSrobert _M_erase(iterator __position) 1168*404b540aSrobert { 1169*404b540aSrobert __position._M_node->unhook(); 1170*404b540aSrobert _Node* __n = static_cast<_Node*>(__position._M_node); 1171*404b540aSrobert _M_get_Tp_allocator().destroy(&__n->_M_data); 1172*404b540aSrobert _M_put_node(__n); 1173*404b540aSrobert } 1174*404b540aSrobert 1175*404b540aSrobert // To implement the splice (and merge) bits of N1599. 1176*404b540aSrobert void _M_check_equal_allocators(list & __x)1177*404b540aSrobert _M_check_equal_allocators(list& __x) 1178*404b540aSrobert { 1179*404b540aSrobert if (_M_get_Node_allocator() != __x._M_get_Node_allocator()) 1180*404b540aSrobert __throw_runtime_error(__N("list::_M_check_equal_allocators")); 1181*404b540aSrobert } 1182*404b540aSrobert }; 1183*404b540aSrobert 1184*404b540aSrobert /** 1185*404b540aSrobert * @brief List equality comparison. 1186*404b540aSrobert * @param x A %list. 1187*404b540aSrobert * @param y A %list of the same type as @a x. 1188*404b540aSrobert * @return True iff the size and elements of the lists are equal. 1189*404b540aSrobert * 1190*404b540aSrobert * This is an equivalence relation. It is linear in the size of 1191*404b540aSrobert * the lists. Lists are considered equivalent if their sizes are 1192*404b540aSrobert * equal, and if corresponding elements compare equal. 1193*404b540aSrobert */ 1194*404b540aSrobert template<typename _Tp, typename _Alloc> 1195*404b540aSrobert inline bool 1196*404b540aSrobert operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1197*404b540aSrobert { 1198*404b540aSrobert typedef typename list<_Tp, _Alloc>::const_iterator const_iterator; 1199*404b540aSrobert const_iterator __end1 = __x.end(); 1200*404b540aSrobert const_iterator __end2 = __y.end(); 1201*404b540aSrobert 1202*404b540aSrobert const_iterator __i1 = __x.begin(); 1203*404b540aSrobert const_iterator __i2 = __y.begin(); 1204*404b540aSrobert while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) 1205*404b540aSrobert { 1206*404b540aSrobert ++__i1; 1207*404b540aSrobert ++__i2; 1208*404b540aSrobert } 1209*404b540aSrobert return __i1 == __end1 && __i2 == __end2; 1210*404b540aSrobert } 1211*404b540aSrobert 1212*404b540aSrobert /** 1213*404b540aSrobert * @brief List ordering relation. 1214*404b540aSrobert * @param x A %list. 1215*404b540aSrobert * @param y A %list of the same type as @a x. 1216*404b540aSrobert * @return True iff @a x is lexicographically less than @a y. 1217*404b540aSrobert * 1218*404b540aSrobert * This is a total ordering relation. It is linear in the size of the 1219*404b540aSrobert * lists. The elements must be comparable with @c <. 1220*404b540aSrobert * 1221*404b540aSrobert * See std::lexicographical_compare() for how the determination is made. 1222*404b540aSrobert */ 1223*404b540aSrobert template<typename _Tp, typename _Alloc> 1224*404b540aSrobert inline bool 1225*404b540aSrobert operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1226*404b540aSrobert { return std::lexicographical_compare(__x.begin(), __x.end(), 1227*404b540aSrobert __y.begin(), __y.end()); } 1228*404b540aSrobert 1229*404b540aSrobert /// Based on operator== 1230*404b540aSrobert template<typename _Tp, typename _Alloc> 1231*404b540aSrobert inline bool 1232*404b540aSrobert operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1233*404b540aSrobert { return !(__x == __y); } 1234*404b540aSrobert 1235*404b540aSrobert /// Based on operator< 1236*404b540aSrobert template<typename _Tp, typename _Alloc> 1237*404b540aSrobert inline bool 1238*404b540aSrobert operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1239*404b540aSrobert { return __y < __x; } 1240*404b540aSrobert 1241*404b540aSrobert /// Based on operator< 1242*404b540aSrobert template<typename _Tp, typename _Alloc> 1243*404b540aSrobert inline bool 1244*404b540aSrobert operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1245*404b540aSrobert { return !(__y < __x); } 1246*404b540aSrobert 1247*404b540aSrobert /// Based on operator< 1248*404b540aSrobert template<typename _Tp, typename _Alloc> 1249*404b540aSrobert inline bool 1250*404b540aSrobert operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 1251*404b540aSrobert { return !(__x < __y); } 1252*404b540aSrobert 1253*404b540aSrobert /// See std::list::swap(). 1254*404b540aSrobert template<typename _Tp, typename _Alloc> 1255*404b540aSrobert inline void swap(list<_Tp,_Alloc> & __x,list<_Tp,_Alloc> & __y)1256*404b540aSrobert swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y) 1257*404b540aSrobert { __x.swap(__y); } 1258*404b540aSrobert 1259*404b540aSrobert _GLIBCXX_END_NESTED_NAMESPACE 1260*404b540aSrobert 1261*404b540aSrobert #endif /* _LIST_H */ 1262*404b540aSrobert 1263