1 /* Generic SSA value propagation engine. 2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 2, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING. If not, write to the Free 19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 20 02110-1301, USA. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "tm.h" 26 #include "tree.h" 27 #include "flags.h" 28 #include "rtl.h" 29 #include "tm_p.h" 30 #include "ggc.h" 31 #include "basic-block.h" 32 #include "output.h" 33 #include "expr.h" 34 #include "function.h" 35 #include "diagnostic.h" 36 #include "timevar.h" 37 #include "tree-dump.h" 38 #include "tree-flow.h" 39 #include "tree-pass.h" 40 #include "tree-ssa-propagate.h" 41 #include "langhooks.h" 42 #include "varray.h" 43 #include "vec.h" 44 45 /* This file implements a generic value propagation engine based on 46 the same propagation used by the SSA-CCP algorithm [1]. 47 48 Propagation is performed by simulating the execution of every 49 statement that produces the value being propagated. Simulation 50 proceeds as follows: 51 52 1- Initially, all edges of the CFG are marked not executable and 53 the CFG worklist is seeded with all the statements in the entry 54 basic block (block 0). 55 56 2- Every statement S is simulated with a call to the call-back 57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3 58 results: 59 60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of 61 interest and does not affect any of the work lists. 62 63 SSA_PROP_VARYING: The value produced by S cannot be determined 64 at compile time. Further simulation of S is not required. 65 If S is a conditional jump, all the outgoing edges for the 66 block are considered executable and added to the work 67 list. 68 69 SSA_PROP_INTERESTING: S produces a value that can be computed 70 at compile time. Its result can be propagated into the 71 statements that feed from S. Furthermore, if S is a 72 conditional jump, only the edge known to be taken is added 73 to the work list. Edges that are known not to execute are 74 never simulated. 75 76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The 77 return value from SSA_PROP_VISIT_PHI has the same semantics as 78 described in #2. 79 80 4- Three work lists are kept. Statements are only added to these 81 lists if they produce one of SSA_PROP_INTERESTING or 82 SSA_PROP_VARYING. 83 84 CFG_BLOCKS contains the list of blocks to be simulated. 85 Blocks are added to this list if their incoming edges are 86 found executable. 87 88 VARYING_SSA_EDGES contains the list of statements that feed 89 from statements that produce an SSA_PROP_VARYING result. 90 These are simulated first to speed up processing. 91 92 INTERESTING_SSA_EDGES contains the list of statements that 93 feed from statements that produce an SSA_PROP_INTERESTING 94 result. 95 96 5- Simulation terminates when all three work lists are drained. 97 98 Before calling ssa_propagate, it is important to clear 99 DONT_SIMULATE_AGAIN for all the statements in the program that 100 should be simulated. This initialization allows an implementation 101 to specify which statements should never be simulated. 102 103 It is also important to compute def-use information before calling 104 ssa_propagate. 105 106 References: 107 108 [1] Constant propagation with conditional branches, 109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 110 111 [2] Building an Optimizing Compiler, 112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. 113 114 [3] Advanced Compiler Design and Implementation, 115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ 116 117 /* Function pointers used to parameterize the propagation engine. */ 118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt; 119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi; 120 121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been 122 added to one of the SSA edges worklists. This flag is used to 123 avoid visiting statements unnecessarily when draining an SSA edge 124 worklist. If while simulating a basic block, we find a statement with 125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge 126 processing from visiting it again. */ 127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T) 128 129 /* A bitmap to keep track of executable blocks in the CFG. */ 130 static sbitmap executable_blocks; 131 132 /* Array of control flow edges on the worklist. */ 133 static VEC(basic_block,heap) *cfg_blocks; 134 135 static unsigned int cfg_blocks_num = 0; 136 static int cfg_blocks_tail; 137 static int cfg_blocks_head; 138 139 static sbitmap bb_in_list; 140 141 /* Worklist of SSA edges which will need reexamination as their 142 definition has changed. SSA edges are def-use edges in the SSA 143 web. For each D-U edge, we store the target statement or PHI node 144 U. */ 145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges; 146 147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the 148 list of SSA edges is split into two. One contains all SSA edges 149 who need to be reexamined because their lattice value changed to 150 varying (this worklist), and the other contains all other SSA edges 151 to be reexamined (INTERESTING_SSA_EDGES). 152 153 Since most values in the program are VARYING, the ideal situation 154 is to move them to that lattice value as quickly as possible. 155 Thus, it doesn't make sense to process any other type of lattice 156 value until all VARYING values are propagated fully, which is one 157 thing using the VARYING worklist achieves. In addition, if we 158 don't use a separate worklist for VARYING edges, we end up with 159 situations where lattice values move from 160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */ 161 static GTY(()) VEC(tree,gc) *varying_ssa_edges; 162 163 164 /* Return true if the block worklist empty. */ 165 166 static inline bool 167 cfg_blocks_empty_p (void) 168 { 169 return (cfg_blocks_num == 0); 170 } 171 172 173 /* Add a basic block to the worklist. The block must not be already 174 in the worklist, and it must not be the ENTRY or EXIT block. */ 175 176 static void 177 cfg_blocks_add (basic_block bb) 178 { 179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR); 180 gcc_assert (!TEST_BIT (bb_in_list, bb->index)); 181 182 if (cfg_blocks_empty_p ()) 183 { 184 cfg_blocks_tail = cfg_blocks_head = 0; 185 cfg_blocks_num = 1; 186 } 187 else 188 { 189 cfg_blocks_num++; 190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks)) 191 { 192 /* We have to grow the array now. Adjust to queue to occupy 193 the full space of the original array. We do not need to 194 initialize the newly allocated portion of the array 195 because we keep track of CFG_BLOCKS_HEAD and 196 CFG_BLOCKS_HEAD. */ 197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks); 198 cfg_blocks_head = 0; 199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail); 200 } 201 else 202 cfg_blocks_tail = ((cfg_blocks_tail + 1) 203 % VEC_length (basic_block, cfg_blocks)); 204 } 205 206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb); 207 SET_BIT (bb_in_list, bb->index); 208 } 209 210 211 /* Remove a block from the worklist. */ 212 213 static basic_block 214 cfg_blocks_get (void) 215 { 216 basic_block bb; 217 218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head); 219 220 gcc_assert (!cfg_blocks_empty_p ()); 221 gcc_assert (bb); 222 223 cfg_blocks_head = ((cfg_blocks_head + 1) 224 % VEC_length (basic_block, cfg_blocks)); 225 --cfg_blocks_num; 226 RESET_BIT (bb_in_list, bb->index); 227 228 return bb; 229 } 230 231 232 /* We have just defined a new value for VAR. If IS_VARYING is true, 233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add 234 them to INTERESTING_SSA_EDGES. */ 235 236 static void 237 add_ssa_edge (tree var, bool is_varying) 238 { 239 imm_use_iterator iter; 240 use_operand_p use_p; 241 242 FOR_EACH_IMM_USE_FAST (use_p, iter, var) 243 { 244 tree use_stmt = USE_STMT (use_p); 245 246 if (!DONT_SIMULATE_AGAIN (use_stmt) 247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt)) 248 { 249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1; 250 if (is_varying) 251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt); 252 else 253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt); 254 } 255 } 256 } 257 258 259 /* Add edge E to the control flow worklist. */ 260 261 static void 262 add_control_edge (edge e) 263 { 264 basic_block bb = e->dest; 265 if (bb == EXIT_BLOCK_PTR) 266 return; 267 268 /* If the edge had already been executed, skip it. */ 269 if (e->flags & EDGE_EXECUTABLE) 270 return; 271 272 e->flags |= EDGE_EXECUTABLE; 273 274 /* If the block is already in the list, we're done. */ 275 if (TEST_BIT (bb_in_list, bb->index)) 276 return; 277 278 cfg_blocks_add (bb); 279 280 if (dump_file && (dump_flags & TDF_DETAILS)) 281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n", 282 e->src->index, e->dest->index); 283 } 284 285 286 /* Simulate the execution of STMT and update the work lists accordingly. */ 287 288 static void 289 simulate_stmt (tree stmt) 290 { 291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING; 292 edge taken_edge = NULL; 293 tree output_name = NULL_TREE; 294 295 /* Don't bother visiting statements that are already 296 considered varying by the propagator. */ 297 if (DONT_SIMULATE_AGAIN (stmt)) 298 return; 299 300 if (TREE_CODE (stmt) == PHI_NODE) 301 { 302 val = ssa_prop_visit_phi (stmt); 303 output_name = PHI_RESULT (stmt); 304 } 305 else 306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name); 307 308 if (val == SSA_PROP_VARYING) 309 { 310 DONT_SIMULATE_AGAIN (stmt) = 1; 311 312 /* If the statement produced a new varying value, add the SSA 313 edges coming out of OUTPUT_NAME. */ 314 if (output_name) 315 add_ssa_edge (output_name, true); 316 317 /* If STMT transfers control out of its basic block, add 318 all outgoing edges to the work list. */ 319 if (stmt_ends_bb_p (stmt)) 320 { 321 edge e; 322 edge_iterator ei; 323 basic_block bb = bb_for_stmt (stmt); 324 FOR_EACH_EDGE (e, ei, bb->succs) 325 add_control_edge (e); 326 } 327 } 328 else if (val == SSA_PROP_INTERESTING) 329 { 330 /* If the statement produced new value, add the SSA edges coming 331 out of OUTPUT_NAME. */ 332 if (output_name) 333 add_ssa_edge (output_name, false); 334 335 /* If we know which edge is going to be taken out of this block, 336 add it to the CFG work list. */ 337 if (taken_edge) 338 add_control_edge (taken_edge); 339 } 340 } 341 342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to 343 drain. This pops statements off the given WORKLIST and processes 344 them until there are no more statements on WORKLIST. 345 We take a pointer to WORKLIST because it may be reallocated when an 346 SSA edge is added to it in simulate_stmt. */ 347 348 static void 349 process_ssa_edge_worklist (VEC(tree,gc) **worklist) 350 { 351 /* Drain the entire worklist. */ 352 while (VEC_length (tree, *worklist) > 0) 353 { 354 basic_block bb; 355 356 /* Pull the statement to simulate off the worklist. */ 357 tree stmt = VEC_pop (tree, *worklist); 358 359 /* If this statement was already visited by simulate_block, then 360 we don't need to visit it again here. */ 361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt)) 362 continue; 363 364 /* STMT is no longer in a worklist. */ 365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0; 366 367 if (dump_file && (dump_flags & TDF_DETAILS)) 368 { 369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): "); 370 print_generic_stmt (dump_file, stmt, dump_flags); 371 } 372 373 bb = bb_for_stmt (stmt); 374 375 /* PHI nodes are always visited, regardless of whether or not 376 the destination block is executable. Otherwise, visit the 377 statement only if its block is marked executable. */ 378 if (TREE_CODE (stmt) == PHI_NODE 379 || TEST_BIT (executable_blocks, bb->index)) 380 simulate_stmt (stmt); 381 } 382 } 383 384 385 /* Simulate the execution of BLOCK. Evaluate the statement associated 386 with each variable reference inside the block. */ 387 388 static void 389 simulate_block (basic_block block) 390 { 391 tree phi; 392 393 /* There is nothing to do for the exit block. */ 394 if (block == EXIT_BLOCK_PTR) 395 return; 396 397 if (dump_file && (dump_flags & TDF_DETAILS)) 398 fprintf (dump_file, "\nSimulating block %d\n", block->index); 399 400 /* Always simulate PHI nodes, even if we have simulated this block 401 before. */ 402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi)) 403 simulate_stmt (phi); 404 405 /* If this is the first time we've simulated this block, then we 406 must simulate each of its statements. */ 407 if (!TEST_BIT (executable_blocks, block->index)) 408 { 409 block_stmt_iterator j; 410 unsigned int normal_edge_count; 411 edge e, normal_edge; 412 edge_iterator ei; 413 414 /* Note that we have simulated this block. */ 415 SET_BIT (executable_blocks, block->index); 416 417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j)) 418 { 419 tree stmt = bsi_stmt (j); 420 421 /* If this statement is already in the worklist then 422 "cancel" it. The reevaluation implied by the worklist 423 entry will produce the same value we generate here and 424 thus reevaluating it again from the worklist is 425 pointless. */ 426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt)) 427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0; 428 429 simulate_stmt (stmt); 430 } 431 432 /* We can not predict when abnormal edges will be executed, so 433 once a block is considered executable, we consider any 434 outgoing abnormal edges as executable. 435 436 At the same time, if this block has only one successor that is 437 reached by non-abnormal edges, then add that successor to the 438 worklist. */ 439 normal_edge_count = 0; 440 normal_edge = NULL; 441 FOR_EACH_EDGE (e, ei, block->succs) 442 { 443 if (e->flags & EDGE_ABNORMAL) 444 add_control_edge (e); 445 else 446 { 447 normal_edge_count++; 448 normal_edge = e; 449 } 450 } 451 452 if (normal_edge_count == 1) 453 add_control_edge (normal_edge); 454 } 455 } 456 457 458 /* Initialize local data structures and work lists. */ 459 460 static void 461 ssa_prop_init (void) 462 { 463 edge e; 464 edge_iterator ei; 465 basic_block bb; 466 size_t i; 467 468 /* Worklists of SSA edges. */ 469 interesting_ssa_edges = VEC_alloc (tree, gc, 20); 470 varying_ssa_edges = VEC_alloc (tree, gc, 20); 471 472 executable_blocks = sbitmap_alloc (last_basic_block); 473 sbitmap_zero (executable_blocks); 474 475 bb_in_list = sbitmap_alloc (last_basic_block); 476 sbitmap_zero (bb_in_list); 477 478 if (dump_file && (dump_flags & TDF_DETAILS)) 479 dump_immediate_uses (dump_file); 480 481 cfg_blocks = VEC_alloc (basic_block, heap, 20); 482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20); 483 484 /* Initialize the values for every SSA_NAME. */ 485 for (i = 1; i < num_ssa_names; i++) 486 if (ssa_name (i)) 487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE; 488 489 /* Initially assume that every edge in the CFG is not executable. 490 (including the edges coming out of ENTRY_BLOCK_PTR). */ 491 FOR_ALL_BB (bb) 492 { 493 block_stmt_iterator si; 494 495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si)) 496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0; 497 498 FOR_EACH_EDGE (e, ei, bb->succs) 499 e->flags &= ~EDGE_EXECUTABLE; 500 } 501 502 /* Seed the algorithm by adding the successors of the entry block to the 503 edge worklist. */ 504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 505 add_control_edge (e); 506 } 507 508 509 /* Free allocated storage. */ 510 511 static void 512 ssa_prop_fini (void) 513 { 514 VEC_free (tree, gc, interesting_ssa_edges); 515 VEC_free (tree, gc, varying_ssa_edges); 516 VEC_free (basic_block, heap, cfg_blocks); 517 cfg_blocks = NULL; 518 sbitmap_free (bb_in_list); 519 sbitmap_free (executable_blocks); 520 } 521 522 523 /* Get the main expression from statement STMT. */ 524 525 tree 526 get_rhs (tree stmt) 527 { 528 enum tree_code code = TREE_CODE (stmt); 529 530 switch (code) 531 { 532 case RETURN_EXPR: 533 stmt = TREE_OPERAND (stmt, 0); 534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR) 535 return stmt; 536 /* FALLTHRU */ 537 538 case MODIFY_EXPR: 539 stmt = TREE_OPERAND (stmt, 1); 540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR) 541 return TREE_OPERAND (stmt, 0); 542 else 543 return stmt; 544 545 case COND_EXPR: 546 return COND_EXPR_COND (stmt); 547 case SWITCH_EXPR: 548 return SWITCH_COND (stmt); 549 case GOTO_EXPR: 550 return GOTO_DESTINATION (stmt); 551 case LABEL_EXPR: 552 return LABEL_EXPR_LABEL (stmt); 553 554 default: 555 return stmt; 556 } 557 } 558 559 560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid 561 GIMPLE expression no changes are done and the function returns 562 false. */ 563 564 bool 565 set_rhs (tree *stmt_p, tree expr) 566 { 567 tree stmt = *stmt_p, op; 568 enum tree_code code = TREE_CODE (expr); 569 stmt_ann_t ann; 570 tree var; 571 ssa_op_iter iter; 572 573 /* Verify the constant folded result is valid gimple. */ 574 switch (TREE_CODE_CLASS (code)) 575 { 576 case tcc_declaration: 577 if (!is_gimple_variable(expr)) 578 return false; 579 break; 580 581 case tcc_constant: 582 break; 583 584 case tcc_binary: 585 case tcc_comparison: 586 if (!is_gimple_val (TREE_OPERAND (expr, 0)) 587 || !is_gimple_val (TREE_OPERAND (expr, 1))) 588 return false; 589 break; 590 591 case tcc_unary: 592 if (!is_gimple_val (TREE_OPERAND (expr, 0))) 593 return false; 594 break; 595 case tcc_expression: 596 switch (code) 597 { 598 case ADDR_EXPR: 599 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF 600 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1))) 601 return false; 602 break; 603 604 case TRUTH_NOT_EXPR: 605 if (!is_gimple_val (TREE_OPERAND (expr, 0))) 606 return false; 607 break; 608 609 case TRUTH_AND_EXPR: 610 case TRUTH_XOR_EXPR: 611 case TRUTH_OR_EXPR: 612 if (!is_gimple_val (TREE_OPERAND (expr, 0)) 613 || !is_gimple_val (TREE_OPERAND (expr, 1))) 614 return false; 615 break; 616 617 case CALL_EXPR: 618 case EXC_PTR_EXPR: 619 case FILTER_EXPR: 620 break; 621 622 default: 623 return false; 624 } 625 break; 626 627 case tcc_exceptional: 628 switch (code) 629 { 630 case SSA_NAME: 631 break; 632 633 default: 634 return false; 635 } 636 break; 637 638 default: 639 return false; 640 } 641 642 if (EXPR_HAS_LOCATION (stmt) 643 && EXPR_P (expr) 644 && ! EXPR_HAS_LOCATION (expr) 645 && TREE_SIDE_EFFECTS (expr) 646 && TREE_CODE (expr) != LABEL_EXPR) 647 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt)); 648 649 switch (TREE_CODE (stmt)) 650 { 651 case RETURN_EXPR: 652 op = TREE_OPERAND (stmt, 0); 653 if (TREE_CODE (op) != MODIFY_EXPR) 654 { 655 TREE_OPERAND (stmt, 0) = expr; 656 break; 657 } 658 stmt = op; 659 /* FALLTHRU */ 660 661 case MODIFY_EXPR: 662 op = TREE_OPERAND (stmt, 1); 663 if (TREE_CODE (op) == WITH_SIZE_EXPR) 664 stmt = op; 665 TREE_OPERAND (stmt, 1) = expr; 666 break; 667 668 case COND_EXPR: 669 if (!is_gimple_condexpr (expr)) 670 return false; 671 COND_EXPR_COND (stmt) = expr; 672 break; 673 case SWITCH_EXPR: 674 SWITCH_COND (stmt) = expr; 675 break; 676 case GOTO_EXPR: 677 GOTO_DESTINATION (stmt) = expr; 678 break; 679 case LABEL_EXPR: 680 LABEL_EXPR_LABEL (stmt) = expr; 681 break; 682 683 default: 684 /* Replace the whole statement with EXPR. If EXPR has no side 685 effects, then replace *STMT_P with an empty statement. */ 686 ann = stmt_ann (stmt); 687 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt (); 688 (*stmt_p)->common.ann = (tree_ann_t) ann; 689 690 if (in_ssa_p 691 && TREE_SIDE_EFFECTS (expr)) 692 { 693 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new 694 replacement. */ 695 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS) 696 { 697 if (TREE_CODE (var) == SSA_NAME) 698 SSA_NAME_DEF_STMT (var) = *stmt_p; 699 } 700 } 701 break; 702 } 703 704 return true; 705 } 706 707 708 /* Entry point to the propagation engine. 709 710 VISIT_STMT is called for every statement visited. 711 VISIT_PHI is called for every PHI node visited. */ 712 713 void 714 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt, 715 ssa_prop_visit_phi_fn visit_phi) 716 { 717 ssa_prop_visit_stmt = visit_stmt; 718 ssa_prop_visit_phi = visit_phi; 719 720 ssa_prop_init (); 721 722 /* Iterate until the worklists are empty. */ 723 while (!cfg_blocks_empty_p () 724 || VEC_length (tree, interesting_ssa_edges) > 0 725 || VEC_length (tree, varying_ssa_edges) > 0) 726 { 727 if (!cfg_blocks_empty_p ()) 728 { 729 /* Pull the next block to simulate off the worklist. */ 730 basic_block dest_block = cfg_blocks_get (); 731 simulate_block (dest_block); 732 } 733 734 /* In order to move things to varying as quickly as 735 possible,process the VARYING_SSA_EDGES worklist first. */ 736 process_ssa_edge_worklist (&varying_ssa_edges); 737 738 /* Now process the INTERESTING_SSA_EDGES worklist. */ 739 process_ssa_edge_worklist (&interesting_ssa_edges); 740 } 741 742 ssa_prop_fini (); 743 } 744 745 746 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */ 747 748 tree 749 first_vdef (tree stmt) 750 { 751 ssa_op_iter iter; 752 tree op; 753 754 /* Simply return the first operand we arrive at. */ 755 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS) 756 return (op); 757 758 gcc_unreachable (); 759 } 760 761 762 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref' 763 is a non-volatile pointer dereference, a structure reference or a 764 reference to a single _DECL. Ignore volatile memory references 765 because they are not interesting for the optimizers. */ 766 767 bool 768 stmt_makes_single_load (tree stmt) 769 { 770 tree rhs; 771 772 if (TREE_CODE (stmt) != MODIFY_EXPR) 773 return false; 774 775 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE)) 776 return false; 777 778 rhs = TREE_OPERAND (stmt, 1); 779 STRIP_NOPS (rhs); 780 781 return (!TREE_THIS_VOLATILE (rhs) 782 && (DECL_P (rhs) 783 || REFERENCE_CLASS_P (rhs))); 784 } 785 786 787 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref' 788 is a non-volatile pointer dereference, a structure reference or a 789 reference to a single _DECL. Ignore volatile memory references 790 because they are not interesting for the optimizers. */ 791 792 bool 793 stmt_makes_single_store (tree stmt) 794 { 795 tree lhs; 796 797 if (TREE_CODE (stmt) != MODIFY_EXPR) 798 return false; 799 800 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)) 801 return false; 802 803 lhs = TREE_OPERAND (stmt, 0); 804 STRIP_NOPS (lhs); 805 806 return (!TREE_THIS_VOLATILE (lhs) 807 && (DECL_P (lhs) 808 || REFERENCE_CLASS_P (lhs))); 809 } 810 811 812 /* If STMT makes a single memory load and all the virtual use operands 813 have the same value in array VALUES, return it. Otherwise, return 814 NULL. */ 815 816 prop_value_t * 817 get_value_loaded_by (tree stmt, prop_value_t *values) 818 { 819 ssa_op_iter i; 820 tree vuse; 821 prop_value_t *prev_val = NULL; 822 prop_value_t *val = NULL; 823 824 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES) 825 { 826 val = &values[SSA_NAME_VERSION (vuse)]; 827 if (prev_val && prev_val->value != val->value) 828 return NULL; 829 prev_val = val; 830 } 831 832 return val; 833 } 834 835 836 /* Propagation statistics. */ 837 struct prop_stats_d 838 { 839 long num_const_prop; 840 long num_copy_prop; 841 long num_pred_folded; 842 }; 843 844 static struct prop_stats_d prop_stats; 845 846 /* Replace USE references in statement STMT with the values stored in 847 PROP_VALUE. Return true if at least one reference was replaced. If 848 REPLACED_ADDRESSES_P is given, it will be set to true if an address 849 constant was replaced. */ 850 851 bool 852 replace_uses_in (tree stmt, bool *replaced_addresses_p, 853 prop_value_t *prop_value) 854 { 855 bool replaced = false; 856 use_operand_p use; 857 ssa_op_iter iter; 858 859 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) 860 { 861 tree tuse = USE_FROM_PTR (use); 862 tree val = prop_value[SSA_NAME_VERSION (tuse)].value; 863 864 if (val == tuse || val == NULL_TREE) 865 continue; 866 867 if (TREE_CODE (stmt) == ASM_EXPR 868 && !may_propagate_copy_into_asm (tuse)) 869 continue; 870 871 if (!may_propagate_copy (tuse, val)) 872 continue; 873 874 if (TREE_CODE (val) != SSA_NAME) 875 prop_stats.num_const_prop++; 876 else 877 prop_stats.num_copy_prop++; 878 879 propagate_value (use, val); 880 881 replaced = true; 882 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p) 883 *replaced_addresses_p = true; 884 } 885 886 return replaced; 887 } 888 889 890 /* Replace the VUSE references in statement STMT with the values 891 stored in PROP_VALUE. Return true if a reference was replaced. If 892 REPLACED_ADDRESSES_P is given, it will be set to true if an address 893 constant was replaced. 894 895 Replacing VUSE operands is slightly more complex than replacing 896 regular USEs. We are only interested in two types of replacements 897 here: 898 899 1- If the value to be replaced is a constant or an SSA name for a 900 GIMPLE register, then we are making a copy/constant propagation 901 from a memory store. For instance, 902 903 # a_3 = V_MAY_DEF <a_2> 904 a.b = x_1; 905 ... 906 # VUSE <a_3> 907 y_4 = a.b; 908 909 This replacement is only possible iff STMT is an assignment 910 whose RHS is identical to the LHS of the statement that created 911 the VUSE(s) that we are replacing. Otherwise, we may do the 912 wrong replacement: 913 914 # a_3 = V_MAY_DEF <a_2> 915 # b_5 = V_MAY_DEF <b_4> 916 *p = 10; 917 ... 918 # VUSE <b_5> 919 x_8 = b; 920 921 Even though 'b_5' acquires the value '10' during propagation, 922 there is no way for the propagator to tell whether the 923 replacement is correct in every reached use, because values are 924 computed at definition sites. Therefore, when doing final 925 substitution of propagated values, we have to check each use 926 site. Since the RHS of STMT ('b') is different from the LHS of 927 the originating statement ('*p'), we cannot replace 'b' with 928 '10'. 929 930 Similarly, when merging values from PHI node arguments, 931 propagators need to take care not to merge the same values 932 stored in different locations: 933 934 if (...) 935 # a_3 = V_MAY_DEF <a_2> 936 a.b = 3; 937 else 938 # a_4 = V_MAY_DEF <a_2> 939 a.c = 3; 940 # a_5 = PHI <a_3, a_4> 941 942 It would be wrong to propagate '3' into 'a_5' because that 943 operation merges two stores to different memory locations. 944 945 946 2- If the value to be replaced is an SSA name for a virtual 947 register, then we simply replace each VUSE operand with its 948 value from PROP_VALUE. This is the same replacement done by 949 replace_uses_in. */ 950 951 static bool 952 replace_vuses_in (tree stmt, bool *replaced_addresses_p, 953 prop_value_t *prop_value) 954 { 955 bool replaced = false; 956 ssa_op_iter iter; 957 use_operand_p vuse; 958 959 if (stmt_makes_single_load (stmt)) 960 { 961 /* If STMT is an assignment whose RHS is a single memory load, 962 see if we are trying to propagate a constant or a GIMPLE 963 register (case #1 above). */ 964 prop_value_t *val = get_value_loaded_by (stmt, prop_value); 965 tree rhs = TREE_OPERAND (stmt, 1); 966 967 if (val 968 && val->value 969 && (is_gimple_reg (val->value) 970 || is_gimple_min_invariant (val->value)) 971 && simple_cst_equal (rhs, val->mem_ref) == 1) 972 973 { 974 /* If we are replacing a constant address, inform our 975 caller. */ 976 if (TREE_CODE (val->value) != SSA_NAME 977 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))) 978 && replaced_addresses_p) 979 *replaced_addresses_p = true; 980 981 /* We can only perform the substitution if the load is done 982 from the same memory location as the original store. 983 Since we already know that there are no intervening 984 stores between DEF_STMT and STMT, we only need to check 985 that the RHS of STMT is the same as the memory reference 986 propagated together with the value. */ 987 TREE_OPERAND (stmt, 1) = val->value; 988 989 if (TREE_CODE (val->value) != SSA_NAME) 990 prop_stats.num_const_prop++; 991 else 992 prop_stats.num_copy_prop++; 993 994 /* Since we have replaced the whole RHS of STMT, there 995 is no point in checking the other VUSEs, as they will 996 all have the same value. */ 997 return true; 998 } 999 } 1000 1001 /* Otherwise, the values for every VUSE operand must be other 1002 SSA_NAMEs that can be propagated into STMT. */ 1003 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES) 1004 { 1005 tree var = USE_FROM_PTR (vuse); 1006 tree val = prop_value[SSA_NAME_VERSION (var)].value; 1007 1008 if (val == NULL_TREE || var == val) 1009 continue; 1010 1011 /* Constants and copies propagated between real and virtual 1012 operands are only possible in the cases handled above. They 1013 should be ignored in any other context. */ 1014 if (is_gimple_min_invariant (val) || is_gimple_reg (val)) 1015 continue; 1016 1017 propagate_value (vuse, val); 1018 prop_stats.num_copy_prop++; 1019 replaced = true; 1020 } 1021 1022 return replaced; 1023 } 1024 1025 1026 /* Replace propagated values into all the arguments for PHI using the 1027 values from PROP_VALUE. */ 1028 1029 static void 1030 replace_phi_args_in (tree phi, prop_value_t *prop_value) 1031 { 1032 int i; 1033 bool replaced = false; 1034 tree prev_phi = NULL; 1035 1036 if (dump_file && (dump_flags & TDF_DETAILS)) 1037 prev_phi = unshare_expr (phi); 1038 1039 for (i = 0; i < PHI_NUM_ARGS (phi); i++) 1040 { 1041 tree arg = PHI_ARG_DEF (phi, i); 1042 1043 if (TREE_CODE (arg) == SSA_NAME) 1044 { 1045 tree val = prop_value[SSA_NAME_VERSION (arg)].value; 1046 1047 if (val && val != arg && may_propagate_copy (arg, val)) 1048 { 1049 if (TREE_CODE (val) != SSA_NAME) 1050 prop_stats.num_const_prop++; 1051 else 1052 prop_stats.num_copy_prop++; 1053 1054 propagate_value (PHI_ARG_DEF_PTR (phi, i), val); 1055 replaced = true; 1056 1057 /* If we propagated a copy and this argument flows 1058 through an abnormal edge, update the replacement 1059 accordingly. */ 1060 if (TREE_CODE (val) == SSA_NAME 1061 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL) 1062 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 1063 } 1064 } 1065 } 1066 1067 if (replaced && dump_file && (dump_flags & TDF_DETAILS)) 1068 { 1069 fprintf (dump_file, "Folded PHI node: "); 1070 print_generic_stmt (dump_file, prev_phi, TDF_SLIM); 1071 fprintf (dump_file, " into: "); 1072 print_generic_stmt (dump_file, phi, TDF_SLIM); 1073 fprintf (dump_file, "\n"); 1074 } 1075 } 1076 1077 1078 /* If STMT has a predicate whose value can be computed using the value 1079 range information computed by VRP, compute its value and return true. 1080 Otherwise, return false. */ 1081 1082 static bool 1083 fold_predicate_in (tree stmt) 1084 { 1085 tree *pred_p = NULL; 1086 bool modify_expr_p = false; 1087 tree val; 1088 1089 if (TREE_CODE (stmt) == MODIFY_EXPR 1090 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1))) 1091 { 1092 modify_expr_p = true; 1093 pred_p = &TREE_OPERAND (stmt, 1); 1094 } 1095 else if (TREE_CODE (stmt) == COND_EXPR) 1096 pred_p = &COND_EXPR_COND (stmt); 1097 else 1098 return false; 1099 1100 val = vrp_evaluate_conditional (*pred_p, stmt); 1101 if (val) 1102 { 1103 if (modify_expr_p) 1104 val = fold_convert (TREE_TYPE (*pred_p), val); 1105 1106 if (dump_file) 1107 { 1108 fprintf (dump_file, "Folding predicate "); 1109 print_generic_expr (dump_file, *pred_p, 0); 1110 fprintf (dump_file, " to "); 1111 print_generic_expr (dump_file, val, 0); 1112 fprintf (dump_file, "\n"); 1113 } 1114 1115 prop_stats.num_pred_folded++; 1116 *pred_p = val; 1117 return true; 1118 } 1119 1120 return false; 1121 } 1122 1123 1124 /* Perform final substitution and folding of propagated values. 1125 1126 PROP_VALUE[I] contains the single value that should be substituted 1127 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are 1128 substituted. 1129 1130 If USE_RANGES_P is true, statements that contain predicate 1131 expressions are evaluated with a call to vrp_evaluate_conditional. 1132 This will only give meaningful results when called from tree-vrp.c 1133 (the information used by vrp_evaluate_conditional is built by the 1134 VRP pass). */ 1135 1136 void 1137 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p) 1138 { 1139 basic_block bb; 1140 1141 if (prop_value == NULL && !use_ranges_p) 1142 return; 1143 1144 if (dump_file && (dump_flags & TDF_DETAILS)) 1145 fprintf (dump_file, "\nSubstituing values and folding statements\n\n"); 1146 1147 memset (&prop_stats, 0, sizeof (prop_stats)); 1148 1149 /* Substitute values in every statement of every basic block. */ 1150 FOR_EACH_BB (bb) 1151 { 1152 block_stmt_iterator i; 1153 tree phi; 1154 1155 /* Propagate known values into PHI nodes. */ 1156 if (prop_value) 1157 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) 1158 replace_phi_args_in (phi, prop_value); 1159 1160 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i)) 1161 { 1162 bool replaced_address, did_replace; 1163 tree prev_stmt = NULL; 1164 tree stmt = bsi_stmt (i); 1165 1166 /* Ignore ASSERT_EXPRs. They are used by VRP to generate 1167 range information for names and they are discarded 1168 afterwards. */ 1169 if (TREE_CODE (stmt) == MODIFY_EXPR 1170 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR) 1171 continue; 1172 1173 /* Replace the statement with its folded version and mark it 1174 folded. */ 1175 did_replace = false; 1176 replaced_address = false; 1177 if (dump_file && (dump_flags & TDF_DETAILS)) 1178 prev_stmt = unshare_expr (stmt); 1179 1180 /* If we have range information, see if we can fold 1181 predicate expressions. */ 1182 if (use_ranges_p) 1183 did_replace = fold_predicate_in (stmt); 1184 1185 if (prop_value) 1186 { 1187 /* Only replace real uses if we couldn't fold the 1188 statement using value range information (value range 1189 information is not collected on virtuals, so we only 1190 need to check this for real uses). */ 1191 if (!did_replace) 1192 did_replace |= replace_uses_in (stmt, &replaced_address, 1193 prop_value); 1194 1195 did_replace |= replace_vuses_in (stmt, &replaced_address, 1196 prop_value); 1197 } 1198 1199 /* If we made a replacement, fold and cleanup the statement. */ 1200 if (did_replace) 1201 { 1202 tree old_stmt = stmt; 1203 tree rhs; 1204 1205 fold_stmt (bsi_stmt_ptr (i)); 1206 stmt = bsi_stmt (i); 1207 1208 /* If we folded a builtin function, we'll likely 1209 need to rename VDEFs. */ 1210 mark_new_vars_to_rename (stmt); 1211 1212 /* If we cleaned up EH information from the statement, 1213 remove EH edges. */ 1214 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1215 tree_purge_dead_eh_edges (bb); 1216 1217 rhs = get_rhs (stmt); 1218 if (TREE_CODE (rhs) == ADDR_EXPR) 1219 recompute_tree_invariant_for_addr_expr (rhs); 1220 1221 if (dump_file && (dump_flags & TDF_DETAILS)) 1222 { 1223 fprintf (dump_file, "Folded statement: "); 1224 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM); 1225 fprintf (dump_file, " into: "); 1226 print_generic_stmt (dump_file, stmt, TDF_SLIM); 1227 fprintf (dump_file, "\n"); 1228 } 1229 } 1230 1231 /* Some statements may be simplified using ranges. For 1232 example, division may be replaced by shifts, modulo 1233 replaced with bitwise and, etc. Do this after 1234 substituting constants, folding, etc so that we're 1235 presented with a fully propagated, canonicalized 1236 statement. */ 1237 if (use_ranges_p) 1238 simplify_stmt_using_ranges (stmt); 1239 1240 } 1241 } 1242 1243 if (dump_file && (dump_flags & TDF_STATS)) 1244 { 1245 fprintf (dump_file, "Constants propagated: %6ld\n", 1246 prop_stats.num_const_prop); 1247 fprintf (dump_file, "Copies propagated: %6ld\n", 1248 prop_stats.num_copy_prop); 1249 fprintf (dump_file, "Predicates folded: %6ld\n", 1250 prop_stats.num_pred_folded); 1251 } 1252 } 1253 1254 #include "gt-tree-ssa-propagate.h" 1255