xref: /openbsd-src/bin/pax/tables.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: tables.c,v 1.49 2016/08/26 04:23:44 guenther Exp $	*/
2 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992 Keith Muller.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Keith Muller of the University of California, San Diego.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <errno.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <signal.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <unistd.h>
47 
48 #include "pax.h"
49 #include "extern.h"
50 
51 /*
52  * Routines for controlling the contents of all the different databases pax
53  * keeps. Tables are dynamically created only when they are needed. The
54  * goal was speed and the ability to work with HUGE archives. The databases
55  * were kept simple, but do have complex rules for when the contents change.
56  * As of this writing, the posix library functions were more complex than
57  * needed for this application (pax databases have very short lifetimes and
58  * do not survive after pax is finished). Pax is required to handle very
59  * large archives. These database routines carefully combine memory usage and
60  * temporary file storage in ways which will not significantly impact runtime
61  * performance while allowing the largest possible archives to be handled.
62  * Trying to force the fit to the posix database routines was not considered
63  * time well spent.
64  */
65 
66 /*
67  * data structures and constants used by the different databases kept by pax
68  */
69 
70 /*
71  * Hash Table Sizes MUST BE PRIME, if set too small performance suffers.
72  * Probably safe to expect 500000 inodes per tape. Assuming good key
73  * distribution (inodes) chains of under 50 long (worst case) is ok.
74  */
75 #define L_TAB_SZ	2503		/* hard link hash table size */
76 #define F_TAB_SZ	50503		/* file time hash table size */
77 #define N_TAB_SZ	541		/* interactive rename hash table */
78 #define D_TAB_SZ	317		/* unique device mapping table */
79 #define A_TAB_SZ	317		/* ftree dir access time reset table */
80 #define SL_TAB_SZ	317		/* escape symlink tables */
81 #define MAXKEYLEN	64		/* max number of chars for hash */
82 #define DIRP_SIZE	64		/* initial size of created dir table */
83 
84 /*
85  * file hard link structure (hashed by dev/ino and chained) used to find the
86  * hard links in a file system or with some archive formats (cpio)
87  */
88 typedef struct hrdlnk {
89 	ino_t		ino;	/* files inode number */
90 	char		*name;	/* name of first file seen with this ino/dev */
91 	dev_t		dev;	/* files device number */
92 	u_long		nlink;	/* expected link count */
93 	struct hrdlnk	*fow;
94 } HRDLNK;
95 
96 /*
97  * Archive write update file time table (the -u, -C flag), hashed by filename.
98  * Filenames are stored in a scratch file at seek offset into the file. The
99  * file time (mod time) and the file name length (for a quick check) are
100  * stored in a hash table node. We were forced to use a scratch file because
101  * with -u, the mtime for every node in the archive must always be available
102  * to compare against (and this data can get REALLY large with big archives).
103  * By being careful to read only when we have a good chance of a match, the
104  * performance loss is not measurable (and the size of the archive we can
105  * handle is greatly increased).
106  */
107 typedef struct ftm {
108 	off_t		seek;		/* location in scratch file */
109 	struct timespec	mtim;		/* files last modification time */
110 	struct ftm	*fow;
111 	int		namelen;	/* file name length */
112 } FTM;
113 
114 /*
115  * Interactive rename table (-i flag), hashed by orig filename.
116  * We assume this will not be a large table as this mapping data can only be
117  * obtained through interactive input by the user. Nobody is going to type in
118  * changes for 500000 files? We use chaining to resolve collisions.
119  */
120 
121 typedef struct namt {
122 	char		*oname;		/* old name */
123 	char		*nname;		/* new name typed in by the user */
124 	struct namt	*fow;
125 } NAMT;
126 
127 /*
128  * Unique device mapping tables. Some protocols (e.g. cpio) require that the
129  * <c_dev,c_ino> pair will uniquely identify a file in an archive unless they
130  * are links to the same file. Appending to archives can break this. For those
131  * protocols that have this requirement we map c_dev to a unique value not seen
132  * in the archive when we append. We also try to handle inode truncation with
133  * this table. (When the inode field in the archive header are too small, we
134  * remap the dev on writes to remove accidental collisions).
135  *
136  * The list is hashed by device number using chain collision resolution. Off of
137  * each DEVT are linked the various remaps for this device based on those bits
138  * in the inode which were truncated. For example if we are just remapping to
139  * avoid a device number during an update append, off the DEVT we would have
140  * only a single DLIST that has a truncation id of 0 (no inode bits were
141  * stripped for this device so far). When we spot inode truncation we create
142  * a new mapping based on the set of bits in the inode which were stripped off.
143  * so if the top four bits of the inode are stripped and they have a pattern of
144  * 0110...... (where . are those bits not truncated) we would have a mapping
145  * assigned for all inodes that has the same 0110.... pattern (with this dev
146  * number of course). This keeps the mapping sparse and should be able to store
147  * close to the limit of files which can be represented by the optimal
148  * combination of dev and inode bits, and without creating a fouled up archive.
149  * Note we also remap truncated devs in the same way (an exercise for the
150  * dedicated reader; always wanted to say that...:)
151  */
152 
153 typedef struct devt {
154 	dev_t		dev;	/* the orig device number we now have to map */
155 	struct devt	*fow;	/* new device map list */
156 	struct dlist	*list;	/* map list based on inode truncation bits */
157 } DEVT;
158 
159 typedef struct dlist {
160 	ino_t trunc_bits;	/* truncation pattern for a specific map */
161 	dev_t dev;		/* the new device id we use */
162 	struct dlist *fow;
163 } DLIST;
164 
165 /*
166  * ftree directory access time reset table. When we are done with a
167  * subtree we reset the access and mod time of the directory when the tflag is
168  * set. Not really explicitly specified in the pax spec, but easy and fast to
169  * do (and this may have even been intended in the spec, it is not clear).
170  * table is hashed by inode with chaining.
171  */
172 
173 typedef struct atdir {
174 	struct file_times ft;
175 	struct atdir *fow;
176 } ATDIR;
177 
178 /*
179  * created directory time and mode storage entry. After pax is finished during
180  * extraction or copy, we must reset directory access modes and times that
181  * may have been modified after creation (they no longer have the specified
182  * times and/or modes). We must reset time in the reverse order of creation,
183  * because entries are added  from the top of the file tree to the bottom.
184  * We MUST reset times from leaf to root (it will not work the other
185  * direction).
186  */
187 
188 typedef struct dirdata {
189 	struct file_times ft;
190 	u_int16_t mode;		/* file mode to restore */
191 	u_int16_t frc_mode;	/* do we force mode settings? */
192 } DIRDATA;
193 
194 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
195 static FTM **ftab = NULL;	/* file time table for updating arch */
196 static NAMT **ntab = NULL;	/* interactive rename storage table */
197 static DEVT **dtab = NULL;	/* device/inode mapping tables */
198 static ATDIR **atab = NULL;	/* file tree directory time reset table */
199 static DIRDATA *dirp = NULL;	/* storage for setting created dir time/mode */
200 static size_t dirsize;		/* size of dirp table */
201 static size_t dircnt = 0;	/* entries in dir time/mode storage */
202 static int ffd = -1;		/* tmp file for file time table name storage */
203 
204 /*
205  * hard link table routines
206  *
207  * The hard link table tries to detect hard links to files using the device and
208  * inode values. We do this when writing an archive, so we can tell the format
209  * write routine that this file is a hard link to another file. The format
210  * write routine then can store this file in whatever way it wants (as a hard
211  * link if the format supports that like tar, or ignore this info like cpio).
212  * (Actually a field in the format driver table tells us if the format wants
213  * hard link info. if not, we do not waste time looking for them). We also use
214  * the same table when reading an archive. In that situation, this table is
215  * used by the format read routine to detect hard links from stored dev and
216  * inode numbers (like cpio). This will allow pax to create a link when one
217  * can be detected by the archive format.
218  */
219 
220 /*
221  * lnk_start
222  *	Creates the hard link table.
223  * Return:
224  *	0 if created, -1 if failure
225  */
226 
227 int
228 lnk_start(void)
229 {
230 	if (ltab != NULL)
231 		return(0);
232 	if ((ltab = calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
233 		paxwarn(1, "Cannot allocate memory for hard link table");
234 		return(-1);
235 	}
236 	return(0);
237 }
238 
239 /*
240  * chk_lnk()
241  *	Looks up entry in hard link hash table. If found, it copies the name
242  *	of the file it is linked to (we already saw that file) into ln_name.
243  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
244  *	database. (We have seen all the links to this file). If not found,
245  *	we add the file to the database if it has the potential for having
246  *	hard links to other files we may process (it has a link count > 1)
247  * Return:
248  *	if found returns 1; if not found returns 0; -1 on error
249  */
250 
251 int
252 chk_lnk(ARCHD *arcn)
253 {
254 	HRDLNK *pt;
255 	HRDLNK **ppt;
256 	u_int indx;
257 
258 	if (ltab == NULL)
259 		return(-1);
260 	/*
261 	 * ignore those nodes that cannot have hard links
262 	 */
263 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
264 		return(0);
265 
266 	/*
267 	 * hash inode number and look for this file
268 	 */
269 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
270 	if ((pt = ltab[indx]) != NULL) {
271 		/*
272 		 * its hash chain in not empty, walk down looking for it
273 		 */
274 		ppt = &(ltab[indx]);
275 		while (pt != NULL) {
276 			if ((pt->ino == arcn->sb.st_ino) &&
277 			    (pt->dev == arcn->sb.st_dev))
278 				break;
279 			ppt = &(pt->fow);
280 			pt = pt->fow;
281 		}
282 
283 		if (pt != NULL) {
284 			/*
285 			 * found a link. set the node type and copy in the
286 			 * name of the file it is to link to. we need to
287 			 * handle hardlinks to regular files differently than
288 			 * other links.
289 			 */
290 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
291 				sizeof(arcn->ln_name));
292 			/* XXX truncate? */
293 			if (arcn->nlen >= sizeof(arcn->name))
294 				arcn->nlen = sizeof(arcn->name) - 1;
295 			if (arcn->type == PAX_REG)
296 				arcn->type = PAX_HRG;
297 			else
298 				arcn->type = PAX_HLK;
299 
300 			/*
301 			 * if we have found all the links to this file, remove
302 			 * it from the database
303 			 */
304 			if (--pt->nlink <= 1) {
305 				*ppt = pt->fow;
306 				free(pt->name);
307 				free(pt);
308 			}
309 			return(1);
310 		}
311 	}
312 
313 	/*
314 	 * we never saw this file before. It has links so we add it to the
315 	 * front of this hash chain
316 	 */
317 	if ((pt = malloc(sizeof(HRDLNK))) != NULL) {
318 		if ((pt->name = strdup(arcn->name)) != NULL) {
319 			pt->dev = arcn->sb.st_dev;
320 			pt->ino = arcn->sb.st_ino;
321 			pt->nlink = arcn->sb.st_nlink;
322 			pt->fow = ltab[indx];
323 			ltab[indx] = pt;
324 			return(0);
325 		}
326 		free(pt);
327 	}
328 
329 	paxwarn(1, "Hard link table out of memory");
330 	return(-1);
331 }
332 
333 /*
334  * purg_lnk
335  *	remove reference for a file that we may have added to the data base as
336  *	a potential source for hard links. We ended up not using the file, so
337  *	we do not want to accidently point another file at it later on.
338  */
339 
340 void
341 purg_lnk(ARCHD *arcn)
342 {
343 	HRDLNK *pt;
344 	HRDLNK **ppt;
345 	u_int indx;
346 
347 	if (ltab == NULL)
348 		return;
349 	/*
350 	 * do not bother to look if it could not be in the database
351 	 */
352 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
353 	    PAX_IS_HARDLINK(arcn->type))
354 		return;
355 
356 	/*
357 	 * find the hash chain for this inode value, if empty return
358 	 */
359 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
360 	if ((pt = ltab[indx]) == NULL)
361 		return;
362 
363 	/*
364 	 * walk down the list looking for the inode/dev pair, unlink and
365 	 * free if found
366 	 */
367 	ppt = &(ltab[indx]);
368 	while (pt != NULL) {
369 		if ((pt->ino == arcn->sb.st_ino) &&
370 		    (pt->dev == arcn->sb.st_dev))
371 			break;
372 		ppt = &(pt->fow);
373 		pt = pt->fow;
374 	}
375 	if (pt == NULL)
376 		return;
377 
378 	/*
379 	 * remove and free it
380 	 */
381 	*ppt = pt->fow;
382 	free(pt->name);
383 	free(pt);
384 }
385 
386 /*
387  * lnk_end()
388  *	pull apart a existing link table so we can reuse it. We do this between
389  *	read and write phases of append with update. (The format may have
390  *	used the link table, and we need to start with a fresh table for the
391  *	write phase
392  */
393 
394 void
395 lnk_end(void)
396 {
397 	int i;
398 	HRDLNK *pt;
399 	HRDLNK *ppt;
400 
401 	if (ltab == NULL)
402 		return;
403 
404 	for (i = 0; i < L_TAB_SZ; ++i) {
405 		if (ltab[i] == NULL)
406 			continue;
407 		pt = ltab[i];
408 		ltab[i] = NULL;
409 
410 		/*
411 		 * free up each entry on this chain
412 		 */
413 		while (pt != NULL) {
414 			ppt = pt;
415 			pt = ppt->fow;
416 			free(ppt->name);
417 			free(ppt);
418 		}
419 	}
420 }
421 
422 /*
423  * modification time table routines
424  *
425  * The modification time table keeps track of last modification times for all
426  * files stored in an archive during a write phase when -u is set. We only
427  * add a file to the archive if it is newer than a file with the same name
428  * already stored on the archive (if there is no other file with the same
429  * name on the archive it is added). This applies to writes and appends.
430  * An append with an -u must read the archive and store the modification time
431  * for every file on that archive before starting the write phase. It is clear
432  * that this is one HUGE database. To save memory space, the actual file names
433  * are stored in a scratch file and indexed by an in-memory hash table. The
434  * hash table is indexed by hashing the file path. The nodes in the table store
435  * the length of the filename and the lseek offset within the scratch file
436  * where the actual name is stored. Since there are never any deletions from
437  * this table, fragmentation of the scratch file is never a issue. Lookups
438  * seem to not exhibit any locality at all (files in the database are rarely
439  * looked up more than once...), so caching is just a waste of memory. The
440  * only limitation is the amount of scratch file space available to store the
441  * path names.
442  */
443 
444 /*
445  * ftime_start()
446  *	create the file time hash table and open for read/write the scratch
447  *	file. (after created it is unlinked, so when we exit we leave
448  *	no witnesses).
449  * Return:
450  *	0 if the table and file was created ok, -1 otherwise
451  */
452 
453 int
454 ftime_start(void)
455 {
456 
457 	if (ftab != NULL)
458 		return(0);
459 	if ((ftab = calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
460 		paxwarn(1, "Cannot allocate memory for file time table");
461 		return(-1);
462 	}
463 
464 	/*
465 	 * get random name and create temporary scratch file, unlink name
466 	 * so it will get removed on exit
467 	 */
468 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
469 	if ((ffd = mkstemp(tempfile)) < 0) {
470 		syswarn(1, errno, "Unable to create temporary file: %s",
471 		    tempfile);
472 		return(-1);
473 	}
474 	(void)unlink(tempfile);
475 
476 	return(0);
477 }
478 
479 /*
480  * chk_ftime()
481  *	looks up entry in file time hash table. If not found, the file is
482  *	added to the hash table and the file named stored in the scratch file.
483  *	If a file with the same name is found, the file times are compared and
484  *	the most recent file time is retained. If the new file was younger (or
485  *	was not in the database) the new file is selected for storage.
486  * Return:
487  *	0 if file should be added to the archive, 1 if it should be skipped,
488  *	-1 on error
489  */
490 
491 int
492 chk_ftime(ARCHD *arcn)
493 {
494 	FTM *pt;
495 	int namelen;
496 	u_int indx;
497 	char ckname[PAXPATHLEN+1];
498 
499 	/*
500 	 * no info, go ahead and add to archive
501 	 */
502 	if (ftab == NULL)
503 		return(0);
504 
505 	/*
506 	 * hash the pathname and look up in table
507 	 */
508 	namelen = arcn->nlen;
509 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
510 	if ((pt = ftab[indx]) != NULL) {
511 		/*
512 		 * the hash chain is not empty, walk down looking for match
513 		 * only read up the path names if the lengths match, speeds
514 		 * up the search a lot
515 		 */
516 		while (pt != NULL) {
517 			if (pt->namelen == namelen) {
518 				/*
519 				 * potential match, have to read the name
520 				 * from the scratch file.
521 				 */
522 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
523 					syswarn(1, errno,
524 					    "Failed ftime table seek");
525 					return(-1);
526 				}
527 				if (read(ffd, ckname, namelen) != namelen) {
528 					syswarn(1, errno,
529 					    "Failed ftime table read");
530 					return(-1);
531 				}
532 
533 				/*
534 				 * if the names match, we are done
535 				 */
536 				if (!strncmp(ckname, arcn->name, namelen))
537 					break;
538 			}
539 
540 			/*
541 			 * try the next entry on the chain
542 			 */
543 			pt = pt->fow;
544 		}
545 
546 		if (pt != NULL) {
547 			/*
548 			 * found the file, compare the times, save the newer
549 			 */
550 			if (timespeccmp(&arcn->sb.st_mtim, &pt->mtim, >)) {
551 				/*
552 				 * file is newer
553 				 */
554 				pt->mtim = arcn->sb.st_mtim;
555 				return(0);
556 			}
557 			/*
558 			 * file is older
559 			 */
560 			return(1);
561 		}
562 	}
563 
564 	/*
565 	 * not in table, add it
566 	 */
567 	if ((pt = malloc(sizeof(FTM))) != NULL) {
568 		/*
569 		 * add the name at the end of the scratch file, saving the
570 		 * offset. add the file to the head of the hash chain
571 		 */
572 		if ((pt->seek = lseek(ffd, 0, SEEK_END)) >= 0) {
573 			if (write(ffd, arcn->name, namelen) == namelen) {
574 				pt->mtim = arcn->sb.st_mtim;
575 				pt->namelen = namelen;
576 				pt->fow = ftab[indx];
577 				ftab[indx] = pt;
578 				return(0);
579 			}
580 			syswarn(1, errno, "Failed write to file time table");
581 		} else
582 			syswarn(1, errno, "Failed seek on file time table");
583 	} else
584 		paxwarn(1, "File time table ran out of memory");
585 
586 	if (pt != NULL)
587 		free(pt);
588 	return(-1);
589 }
590 
591 /*
592  * escaping (absolute or w/"..") symlink table routines
593  *
594  * By default, an archive shouldn't be able extract to outside of the
595  * current directory.  What should we do if the archive contains a symlink
596  * whose value is either absolute or contains ".." components?  What we'll
597  * do is initially create the path as an empty file (to block attempts to
598  * reference _through_ it) and instead record its path and desired
599  * final value and mode.  Then once all the other archive
600  * members are created (but before the pass to set timestamps on
601  * directories) we'll process those records, replacing the placeholder with
602  * the correct symlink and setting them to the correct mode, owner, group,
603  * and timestamps.
604  *
605  * Note: we also need to handle hardlinks to symlinks (barf) as well as
606  * hardlinks whose target is replaced by a later entry in the archive (barf^2).
607  *
608  * So we track things by dev+ino of the placeholder file, associating with
609  * that the value and mode of the final symlink and a list of paths that
610  * should all be hardlinks of that.  We'll 'store' the symlink's desired
611  * timestamps, owner, and group by setting them on the placeholder file.
612  *
613  * The operations are:
614  * a) create an escaping symlink: create the placeholder file and add an entry
615  *    for the new link
616  * b) create a hardlink: do the link.  If the target turns out to be a
617  *    zero-length file whose dev+ino are in the symlink table, then add this
618  *    path to the list of names for that link
619  * c) perform deferred processing: for each entry, check each associated path:
620  *    if it's a zero-length file with the correct dev+ino then recreate it as
621  *    the specified symlink or hardlink to the first such
622  */
623 
624 struct slpath {
625 	char	*sp_path;
626 	struct	slpath *sp_next;
627 };
628 struct slinode {
629 	ino_t	sli_ino;
630 	char	*sli_value;
631 	struct	slpath sli_paths;
632 	struct	slinode *sli_fow;		/* hash table chain */
633 	dev_t	sli_dev;
634 	mode_t	sli_mode;
635 };
636 
637 static struct slinode **slitab = NULL;
638 
639 /*
640  * sltab_start()
641  *	create the hash table
642  * Return:
643  *	0 if the table and file was created ok, -1 otherwise
644  */
645 
646 int
647 sltab_start(void)
648 {
649 
650 	if ((slitab = calloc(SL_TAB_SZ, sizeof *slitab)) == NULL) {
651 		syswarn(1, errno, "symlink table");
652 		return(-1);
653 	}
654 
655 	return(0);
656 }
657 
658 /*
659  * sltab_add_sym()
660  *	Create the placeholder and tracking info for an escaping symlink.
661  * Return:
662  *	0 on success, -1 otherwise
663  */
664 
665 int
666 sltab_add_sym(const char *path0, const char *value0, mode_t mode)
667 {
668 	struct stat sb;
669 	struct slinode *s;
670 	struct slpath *p;
671 	char *path, *value;
672 	u_int indx;
673 	int fd;
674 
675 	/* create the placeholder */
676 	fd = open(path0, O_WRONLY | O_CREAT | O_EXCL | O_CLOEXEC, 0600);
677 	if (fd == -1)
678 		return (-1);
679 	if (fstat(fd, &sb) == -1) {
680 		unlink(path0);
681 		close(fd);
682 		return (-1);
683 	}
684 	close(fd);
685 
686 	if (havechd && *path0 != '/') {
687 		if ((path = realpath(path0, NULL)) == NULL) {
688 			syswarn(1, errno, "Cannot canonicalize %s", path0);
689 			unlink(path0);
690 			return (-1);
691 		}
692 	} else if ((path = strdup(path0)) == NULL) {
693 		syswarn(1, errno, "defered symlink path");
694 		unlink(path0);
695 		return (-1);
696 	}
697 	if ((value = strdup(value0)) == NULL) {
698 		syswarn(1, errno, "defered symlink value");
699 		unlink(path);
700 		free(path);
701 		return (-1);
702 	}
703 
704 	/* now check the hash table for conflicting entry */
705 	indx = (sb.st_ino ^ sb.st_dev) % SL_TAB_SZ;
706 	for (s = slitab[indx]; s != NULL; s = s->sli_fow) {
707 		if (s->sli_ino != sb.st_ino || s->sli_dev != sb.st_dev)
708 			continue;
709 
710 		/*
711 		 * One of our placeholders got removed behind our back and
712 		 * we've reused the inode.  Weird, but clean up the mess.
713 		 */
714 		free(s->sli_value);
715 		free(s->sli_paths.sp_path);
716 		p = s->sli_paths.sp_next;
717 		while (p != NULL) {
718 			struct slpath *next_p = p->sp_next;
719 
720 			free(p->sp_path);
721 			free(p);
722 			p = next_p;
723 		}
724 		goto set_value;
725 	}
726 
727 	/* Normal case: create a new node */
728 	if ((s = malloc(sizeof *s)) == NULL) {
729 		syswarn(1, errno, "defered symlink");
730 		unlink(path);
731 		free(path);
732 		free(value);
733 		return (-1);
734 	}
735 	s->sli_ino = sb.st_ino;
736 	s->sli_dev = sb.st_dev;
737 	s->sli_fow = slitab[indx];
738 	slitab[indx] = s;
739 
740 set_value:
741 	s->sli_paths.sp_path = path;
742 	s->sli_paths.sp_next = NULL;
743 	s->sli_value = value;
744 	s->sli_mode = mode;
745 	return (0);
746 }
747 
748 /*
749  * sltab_add_link()
750  *	A hardlink was created; if it looks like a placeholder, handle the
751  *	tracking.
752  * Return:
753  *	0 if things are ok, -1 if something went wrong
754  */
755 
756 int
757 sltab_add_link(const char *path, const struct stat *sb)
758 {
759 	struct slinode *s;
760 	struct slpath *p;
761 	u_int indx;
762 
763 	if (!S_ISREG(sb->st_mode) || sb->st_size != 0)
764 		return (1);
765 
766 	/* find the hash table entry for this hardlink */
767 	indx = (sb->st_ino ^ sb->st_dev) % SL_TAB_SZ;
768 	for (s = slitab[indx]; s != NULL; s = s->sli_fow) {
769 		if (s->sli_ino != sb->st_ino || s->sli_dev != sb->st_dev)
770 			continue;
771 
772 		if ((p = malloc(sizeof *p)) == NULL) {
773 			syswarn(1, errno, "deferred symlink hardlink");
774 			return (-1);
775 		}
776 		if (havechd && *path != '/') {
777 			if ((p->sp_path = realpath(path, NULL)) == NULL) {
778 				syswarn(1, errno, "Cannot canonicalize %s",
779 				    path);
780 				free(p);
781 				return (-1);
782 			}
783 		} else if ((p->sp_path = strdup(path)) == NULL) {
784 			syswarn(1, errno, "defered symlink hardlink path");
785 			free(p);
786 			return (-1);
787 		}
788 
789 		/* link it in */
790 		p->sp_next = s->sli_paths.sp_next;
791 		s->sli_paths.sp_next = p;
792 		return (0);
793 	}
794 
795 	/* not found */
796 	return (1);
797 }
798 
799 
800 static int
801 sltab_process_one(struct slinode *s, struct slpath *p, const char *first,
802     int in_sig)
803 {
804 	struct stat sb;
805 	char *path = p->sp_path;
806 	mode_t mode;
807 	int err;
808 
809 	/*
810 	 * is it the expected placeholder?  This can fail legimately
811 	 * if the archive overwrote the link with another, later entry,
812 	 * so don't warn.
813 	 */
814 	if (stat(path, &sb) != 0 || !S_ISREG(sb.st_mode) || sb.st_size != 0 ||
815 	    sb.st_ino != s->sli_ino || sb.st_dev != s->sli_dev)
816 		return (0);
817 
818 	if (unlink(path) && errno != ENOENT) {
819 		if (!in_sig)
820 			syswarn(1, errno, "deferred symlink removal");
821 		return (0);
822 	}
823 
824 	err = 0;
825 	if (first != NULL) {
826 		/* add another hardlink to the existing symlink */
827 		if (linkat(AT_FDCWD, first, AT_FDCWD, path, 0) == 0)
828 			return (0);
829 
830 		/*
831 		 * Couldn't hardlink the symlink for some reason, so we'll
832 		 * try creating it as its own symlink, but save the error
833 		 * for reporting if that fails.
834 		 */
835 		err = errno;
836 	}
837 
838 	if (symlink(s->sli_value, path)) {
839 		if (!in_sig) {
840 			const char *qualifier = "";
841 			if (err)
842 				qualifier = " hardlink";
843 			else
844 				err = errno;
845 
846 			syswarn(1, err, "deferred symlink%s: %s",
847 			    qualifier, path);
848 		}
849 		return (0);
850 	}
851 
852 	/* success, so set the id, mode, and times */
853 	mode = s->sli_mode;
854 	if (pids) {
855 		/* if can't set the ids, force the set[ug]id bits off */
856 		if (set_ids(path, sb.st_uid, sb.st_gid))
857 			mode &= ~(SETBITS);
858 	}
859 
860 	if (pmode)
861 		set_pmode(path, mode);
862 
863 	if (patime || pmtime)
864 		set_ftime(path, &sb.st_mtim, &sb.st_atim, 0);
865 
866 	/*
867 	 * If we tried to link to first but failed, then this new symlink
868 	 * might be a better one to try in the future.  Guess from the errno.
869 	 */
870 	if (err == 0 || err == ENOENT || err == EMLINK || err == EOPNOTSUPP)
871 		return (1);
872 	return (0);
873 }
874 
875 /*
876  * sltab_process()
877  *	Do all the delayed process for escape symlinks
878  */
879 
880 void
881 sltab_process(int in_sig)
882 {
883 	struct slinode *s;
884 	struct slpath *p;
885 	char *first;
886 	u_int indx;
887 
888 	if (slitab == NULL)
889 		return;
890 
891 	/* walk across the entire hash table */
892 	for (indx = 0; indx < SL_TAB_SZ; indx++) {
893 		while ((s = slitab[indx]) != NULL) {
894 			/* pop this entry */
895 			slitab[indx] = s->sli_fow;
896 
897 			first = NULL;
898 			p = &s->sli_paths;
899 			while (1) {
900 				struct slpath *next_p;
901 
902 				if (sltab_process_one(s, p, first, in_sig)) {
903 					if (!in_sig)
904 						free(first);
905 					first = p->sp_path;
906 				} else if (!in_sig)
907 					free(p->sp_path);
908 
909 				if ((next_p = p->sp_next) == NULL)
910 					break;
911 				*p = *next_p;
912 				if (!in_sig)
913 					free(next_p);
914 			}
915 			if (!in_sig) {
916 				free(first);
917 				free(s->sli_value);
918 				free(s);
919 			}
920 		}
921 	}
922 	if (!in_sig)
923 		free(slitab);
924 	slitab = NULL;
925 }
926 
927 
928 /*
929  * Interactive rename table routines
930  *
931  * The interactive rename table keeps track of the new names that the user
932  * assigns to files from tty input. Since this map is unique for each file
933  * we must store it in case there is a reference to the file later in archive
934  * (a link). Otherwise we will be unable to find the file we know was
935  * extracted. The remapping of these files is stored in a memory based hash
936  * table (it is assumed since input must come from /dev/tty, it is unlikely to
937  * be a very large table).
938  */
939 
940 /*
941  * name_start()
942  *	create the interactive rename table
943  * Return:
944  *	0 if successful, -1 otherwise
945  */
946 
947 int
948 name_start(void)
949 {
950 	if (ntab != NULL)
951 		return(0);
952 	if ((ntab = calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
953 		paxwarn(1, "Cannot allocate memory for interactive rename table");
954 		return(-1);
955 	}
956 	return(0);
957 }
958 
959 /*
960  * add_name()
961  *	add the new name to old name mapping just created by the user.
962  *	If an old name mapping is found (there may be duplicate names on an
963  *	archive) only the most recent is kept.
964  * Return:
965  *	0 if added, -1 otherwise
966  */
967 
968 int
969 add_name(char *oname, int onamelen, char *nname)
970 {
971 	NAMT *pt;
972 	u_int indx;
973 
974 	if (ntab == NULL) {
975 		/*
976 		 * should never happen
977 		 */
978 		paxwarn(0, "No interactive rename table, links may fail");
979 		return(0);
980 	}
981 
982 	/*
983 	 * look to see if we have already mapped this file, if so we
984 	 * will update it
985 	 */
986 	indx = st_hash(oname, onamelen, N_TAB_SZ);
987 	if ((pt = ntab[indx]) != NULL) {
988 		/*
989 		 * look down the has chain for the file
990 		 */
991 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
992 			pt = pt->fow;
993 
994 		if (pt != NULL) {
995 			/*
996 			 * found an old mapping, replace it with the new one
997 			 * the user just input (if it is different)
998 			 */
999 			if (strcmp(nname, pt->nname) == 0)
1000 				return(0);
1001 
1002 			free(pt->nname);
1003 			if ((pt->nname = strdup(nname)) == NULL) {
1004 				paxwarn(1, "Cannot update rename table");
1005 				return(-1);
1006 			}
1007 			return(0);
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * this is a new mapping, add it to the table
1013 	 */
1014 	if ((pt = malloc(sizeof(NAMT))) != NULL) {
1015 		if ((pt->oname = strdup(oname)) != NULL) {
1016 			if ((pt->nname = strdup(nname)) != NULL) {
1017 				pt->fow = ntab[indx];
1018 				ntab[indx] = pt;
1019 				return(0);
1020 			}
1021 			free(pt->oname);
1022 		}
1023 		free(pt);
1024 	}
1025 	paxwarn(1, "Interactive rename table out of memory");
1026 	return(-1);
1027 }
1028 
1029 /*
1030  * sub_name()
1031  *	look up a link name to see if it points at a file that has been
1032  *	remapped by the user. If found, the link is adjusted to contain the
1033  *	new name (oname is the link to name)
1034  */
1035 
1036 void
1037 sub_name(char *oname, int *onamelen, size_t onamesize)
1038 {
1039 	NAMT *pt;
1040 	u_int indx;
1041 
1042 	if (ntab == NULL)
1043 		return;
1044 	/*
1045 	 * look the name up in the hash table
1046 	 */
1047 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
1048 	if ((pt = ntab[indx]) == NULL)
1049 		return;
1050 
1051 	while (pt != NULL) {
1052 		/*
1053 		 * walk down the hash chain looking for a match
1054 		 */
1055 		if (strcmp(oname, pt->oname) == 0) {
1056 			/*
1057 			 * found it, replace it with the new name
1058 			 * and return (we know that oname has enough space)
1059 			 */
1060 			*onamelen = strlcpy(oname, pt->nname, onamesize);
1061 			if (*onamelen >= onamesize)
1062 				*onamelen = onamesize - 1; /* XXX truncate? */
1063 			return;
1064 		}
1065 		pt = pt->fow;
1066 	}
1067 
1068 	/*
1069 	 * no match, just return
1070 	 */
1071 }
1072 
1073 #ifndef NOCPIO
1074 /*
1075  * device/inode mapping table routines
1076  * (used with formats that store device and inodes fields)
1077  *
1078  * device/inode mapping tables remap the device field in a archive header. The
1079  * device/inode fields are used to determine when files are hard links to each
1080  * other. However these values have very little meaning outside of that. This
1081  * database is used to solve one of two different problems.
1082  *
1083  * 1) when files are appended to an archive, while the new files may have hard
1084  * links to each other, you cannot determine if they have hard links to any
1085  * file already stored on the archive from a prior run of pax. We must assume
1086  * that these inode/device pairs are unique only within a SINGLE run of pax
1087  * (which adds a set of files to an archive). So we have to make sure the
1088  * inode/dev pairs we add each time are always unique. We do this by observing
1089  * while the inode field is very dense, the use of the dev field is fairly
1090  * sparse. Within each run of pax, we remap any device number of a new archive
1091  * member that has a device number used in a prior run and already stored in a
1092  * file on the archive. During the read phase of the append, we store the
1093  * device numbers used and mark them to not be used by any file during the
1094  * write phase. If during write we go to use one of those old device numbers,
1095  * we remap it to a new value.
1096  *
1097  * 2) Often the fields in the archive header used to store these values are
1098  * too small to store the entire value. The result is an inode or device value
1099  * which can be truncated. This really can foul up an archive. With truncation
1100  * we end up creating links between files that are really not links (after
1101  * truncation the inodes are the same value). We address that by detecting
1102  * truncation and forcing a remap of the device field to split truncated
1103  * inodes away from each other. Each truncation creates a pattern of bits that
1104  * are removed. We use this pattern of truncated bits to partition the inodes
1105  * on a single device to many different devices (each one represented by the
1106  * truncated bit pattern). All inodes on the same device that have the same
1107  * truncation pattern are mapped to the same new device. Two inodes that
1108  * truncate to the same value clearly will always have different truncation
1109  * bit patterns, so they will be split from away each other. When we spot
1110  * device truncation we remap the device number to a non truncated value.
1111  * (for more info see table.h for the data structures involved).
1112  */
1113 
1114 static DEVT *chk_dev(dev_t, int);
1115 
1116 /*
1117  * dev_start()
1118  *	create the device mapping table
1119  * Return:
1120  *	0 if successful, -1 otherwise
1121  */
1122 
1123 int
1124 dev_start(void)
1125 {
1126 	if (dtab != NULL)
1127 		return(0);
1128 	if ((dtab = calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
1129 		paxwarn(1, "Cannot allocate memory for device mapping table");
1130 		return(-1);
1131 	}
1132 	return(0);
1133 }
1134 
1135 /*
1136  * add_dev()
1137  *	add a device number to the table. this will force the device to be
1138  *	remapped to a new value if it be used during a write phase. This
1139  *	function is called during the read phase of an append to prohibit the
1140  *	use of any device number already in the archive.
1141  * Return:
1142  *	0 if added ok, -1 otherwise
1143  */
1144 
1145 int
1146 add_dev(ARCHD *arcn)
1147 {
1148 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
1149 		return(-1);
1150 	return(0);
1151 }
1152 
1153 /*
1154  * chk_dev()
1155  *	check for a device value in the device table. If not found and the add
1156  *	flag is set, it is added. This does NOT assign any mapping values, just
1157  *	adds the device number as one that need to be remapped. If this device
1158  *	is already mapped, just return with a pointer to that entry.
1159  * Return:
1160  *	pointer to the entry for this device in the device map table. Null
1161  *	if the add flag is not set and the device is not in the table (it is
1162  *	not been seen yet). If add is set and the device cannot be added, null
1163  *	is returned (indicates an error).
1164  */
1165 
1166 static DEVT *
1167 chk_dev(dev_t dev, int add)
1168 {
1169 	DEVT *pt;
1170 	u_int indx;
1171 
1172 	if (dtab == NULL)
1173 		return(NULL);
1174 	/*
1175 	 * look to see if this device is already in the table
1176 	 */
1177 	indx = ((unsigned)dev) % D_TAB_SZ;
1178 	if ((pt = dtab[indx]) != NULL) {
1179 		while ((pt != NULL) && (pt->dev != dev))
1180 			pt = pt->fow;
1181 
1182 		/*
1183 		 * found it, return a pointer to it
1184 		 */
1185 		if (pt != NULL)
1186 			return(pt);
1187 	}
1188 
1189 	/*
1190 	 * not in table, we add it only if told to as this may just be a check
1191 	 * to see if a device number is being used.
1192 	 */
1193 	if (add == 0)
1194 		return(NULL);
1195 
1196 	/*
1197 	 * allocate a node for this device and add it to the front of the hash
1198 	 * chain. Note we do not assign remaps values here, so the pt->list
1199 	 * list must be NULL.
1200 	 */
1201 	if ((pt = malloc(sizeof(DEVT))) == NULL) {
1202 		paxwarn(1, "Device map table out of memory");
1203 		return(NULL);
1204 	}
1205 	pt->dev = dev;
1206 	pt->list = NULL;
1207 	pt->fow = dtab[indx];
1208 	dtab[indx] = pt;
1209 	return(pt);
1210 }
1211 /*
1212  * map_dev()
1213  *	given an inode and device storage mask (the mask has a 1 for each bit
1214  *	the archive format is able to store in a header), we check for inode
1215  *	and device truncation and remap the device as required. Device mapping
1216  *	can also occur when during the read phase of append a device number was
1217  *	seen (and was marked as do not use during the write phase). WE ASSUME
1218  *	that unsigned longs are the same size or bigger than the fields used
1219  *	for ino_t and dev_t. If not the types will have to be changed.
1220  * Return:
1221  *	0 if all ok, -1 otherwise.
1222  */
1223 
1224 int
1225 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
1226 {
1227 	DEVT *pt;
1228 	DLIST *dpt;
1229 	static dev_t lastdev = 0;	/* next device number to try */
1230 	int trc_ino = 0;
1231 	int trc_dev = 0;
1232 	ino_t trunc_bits = 0;
1233 	ino_t nino;
1234 
1235 	if (dtab == NULL)
1236 		return(0);
1237 	/*
1238 	 * check for device and inode truncation, and extract the truncated
1239 	 * bit pattern.
1240 	 */
1241 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
1242 		++trc_dev;
1243 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
1244 		++trc_ino;
1245 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
1246 	}
1247 
1248 	/*
1249 	 * see if this device is already being mapped, look up the device
1250 	 * then find the truncation bit pattern which applies
1251 	 */
1252 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
1253 		/*
1254 		 * this device is already marked to be remapped
1255 		 */
1256 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
1257 			if (dpt->trunc_bits == trunc_bits)
1258 				break;
1259 
1260 		if (dpt != NULL) {
1261 			/*
1262 			 * we are being remapped for this device and pattern
1263 			 * change the device number to be stored and return
1264 			 */
1265 			arcn->sb.st_dev = dpt->dev;
1266 			arcn->sb.st_ino = nino;
1267 			return(0);
1268 		}
1269 	} else {
1270 		/*
1271 		 * this device is not being remapped YET. if we do not have any
1272 		 * form of truncation, we do not need a remap
1273 		 */
1274 		if (!trc_ino && !trc_dev)
1275 			return(0);
1276 
1277 		/*
1278 		 * we have truncation, have to add this as a device to remap
1279 		 */
1280 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
1281 			goto bad;
1282 
1283 		/*
1284 		 * if we just have a truncated inode, we have to make sure that
1285 		 * all future inodes that do not truncate (they have the
1286 		 * truncation pattern of all 0's) continue to map to the same
1287 		 * device number. We probably have already written inodes with
1288 		 * this device number to the archive with the truncation
1289 		 * pattern of all 0's. So we add the mapping for all 0's to the
1290 		 * same device number.
1291 		 */
1292 		if (!trc_dev && (trunc_bits != 0)) {
1293 			if ((dpt = malloc(sizeof(DLIST))) == NULL)
1294 				goto bad;
1295 			dpt->trunc_bits = 0;
1296 			dpt->dev = arcn->sb.st_dev;
1297 			dpt->fow = pt->list;
1298 			pt->list = dpt;
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * look for a device number not being used. We must watch for wrap
1304 	 * around on lastdev (so we do not get stuck looking forever!)
1305 	 */
1306 	while (++lastdev > 0) {
1307 		if (chk_dev(lastdev, 0) != NULL)
1308 			continue;
1309 		/*
1310 		 * found an unused value. If we have reached truncation point
1311 		 * for this format we are hosed, so we give up. Otherwise we
1312 		 * mark it as being used.
1313 		 */
1314 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
1315 		    (chk_dev(lastdev, 1) == NULL))
1316 			goto bad;
1317 		break;
1318 	}
1319 
1320 	if ((lastdev <= 0) || ((dpt = malloc(sizeof(DLIST))) == NULL))
1321 		goto bad;
1322 
1323 	/*
1324 	 * got a new device number, store it under this truncation pattern.
1325 	 * change the device number this file is being stored with.
1326 	 */
1327 	dpt->trunc_bits = trunc_bits;
1328 	dpt->dev = lastdev;
1329 	dpt->fow = pt->list;
1330 	pt->list = dpt;
1331 	arcn->sb.st_dev = lastdev;
1332 	arcn->sb.st_ino = nino;
1333 	return(0);
1334 
1335     bad:
1336 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
1337 	    arcn->name);
1338 	paxwarn(0, "Archive may create improper hard links when extracted");
1339 	return(0);
1340 }
1341 #endif /* NOCPIO */
1342 
1343 /*
1344  * directory access/mod time reset table routines (for directories READ by pax)
1345  *
1346  * The pax -t flag requires that access times of archive files be the same
1347  * before being read by pax. For regular files, access time is restored after
1348  * the file has been copied. This database provides the same functionality for
1349  * directories read during file tree traversal. Restoring directory access time
1350  * is more complex than files since directories may be read several times until
1351  * all the descendants in their subtree are visited by fts. Directory access
1352  * and modification times are stored during the fts pre-order visit (done
1353  * before any descendants in the subtree are visited) and restored after the
1354  * fts post-order visit (after all the descendants have been visited). In the
1355  * case of premature exit from a subtree (like from the effects of -n), any
1356  * directory entries left in this database are reset during final cleanup
1357  * operations of pax. Entries are hashed by inode number for fast lookup.
1358  */
1359 
1360 /*
1361  * atdir_start()
1362  *	create the directory access time database for directories READ by pax.
1363  * Return:
1364  *	0 is created ok, -1 otherwise.
1365  */
1366 
1367 int
1368 atdir_start(void)
1369 {
1370 	if (atab != NULL)
1371 		return(0);
1372 	if ((atab = calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1373 		paxwarn(1,"Cannot allocate space for directory access time table");
1374 		return(-1);
1375 	}
1376 	return(0);
1377 }
1378 
1379 
1380 /*
1381  * atdir_end()
1382  *	walk through the directory access time table and reset the access time
1383  *	of any directory who still has an entry left in the database. These
1384  *	entries are for directories READ by pax
1385  */
1386 
1387 void
1388 atdir_end(void)
1389 {
1390 	ATDIR *pt;
1391 	int i;
1392 
1393 	if (atab == NULL)
1394 		return;
1395 	/*
1396 	 * for each non-empty hash table entry reset all the directories
1397 	 * chained there.
1398 	 */
1399 	for (i = 0; i < A_TAB_SZ; ++i) {
1400 		if ((pt = atab[i]) == NULL)
1401 			continue;
1402 		/*
1403 		 * remember to force the times, set_ftime() looks at pmtime
1404 		 * and patime, which only applies to things CREATED by pax,
1405 		 * not read by pax. Read time reset is controlled by -t.
1406 		 */
1407 		for (; pt != NULL; pt = pt->fow)
1408 			set_attr(&pt->ft, 1, 0, 0, 0);
1409 	}
1410 }
1411 
1412 /*
1413  * add_atdir()
1414  *	add a directory to the directory access time table. Table is hashed
1415  *	and chained by inode number. This is for directories READ by pax
1416  */
1417 
1418 void
1419 add_atdir(char *fname, dev_t dev, ino_t ino, const struct timespec *mtimp,
1420     const struct timespec *atimp)
1421 {
1422 	ATDIR *pt;
1423 	sigset_t allsigs, savedsigs;
1424 	u_int indx;
1425 
1426 	if (atab == NULL)
1427 		return;
1428 
1429 	/*
1430 	 * make sure this directory is not already in the table, if so just
1431 	 * return (the older entry always has the correct time). The only
1432 	 * way this will happen is when the same subtree can be traversed by
1433 	 * different args to pax and the -n option is aborting fts out of a
1434 	 * subtree before all the post-order visits have been made.
1435 	 */
1436 	indx = ((unsigned)ino) % A_TAB_SZ;
1437 	if ((pt = atab[indx]) != NULL) {
1438 		while (pt != NULL) {
1439 			if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev))
1440 				break;
1441 			pt = pt->fow;
1442 		}
1443 
1444 		/*
1445 		 * oops, already there. Leave it alone.
1446 		 */
1447 		if (pt != NULL)
1448 			return;
1449 	}
1450 
1451 	/*
1452 	 * add it to the front of the hash chain
1453 	 */
1454 	sigfillset(&allsigs);
1455 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1456 	if ((pt = malloc(sizeof *pt)) != NULL) {
1457 		if ((pt->ft.ft_name = strdup(fname)) != NULL) {
1458 			pt->ft.ft_dev = dev;
1459 			pt->ft.ft_ino = ino;
1460 			pt->ft.ft_mtim = *mtimp;
1461 			pt->ft.ft_atim = *atimp;
1462 			pt->fow = atab[indx];
1463 			atab[indx] = pt;
1464 			sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1465 			return;
1466 		}
1467 		free(pt);
1468 	}
1469 
1470 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1471 	paxwarn(1, "Directory access time reset table ran out of memory");
1472 }
1473 
1474 /*
1475  * get_atdir()
1476  *	look up a directory by inode and device number to obtain the access
1477  *	and modification time you want to set to. If found, the modification
1478  *	and access time parameters are set and the entry is removed from the
1479  *	table (as it is no longer needed). These are for directories READ by
1480  *	pax
1481  * Return:
1482  *	0 if found, -1 if not found.
1483  */
1484 
1485 int
1486 do_atdir(const char *name, dev_t dev, ino_t ino)
1487 {
1488 	ATDIR *pt;
1489 	ATDIR **ppt;
1490 	sigset_t allsigs, savedsigs;
1491 	u_int indx;
1492 
1493 	if (atab == NULL)
1494 		return(-1);
1495 	/*
1496 	 * hash by inode and search the chain for an inode and device match
1497 	 */
1498 	indx = ((unsigned)ino) % A_TAB_SZ;
1499 	if ((pt = atab[indx]) == NULL)
1500 		return(-1);
1501 
1502 	ppt = &(atab[indx]);
1503 	while (pt != NULL) {
1504 		if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev))
1505 			break;
1506 		/*
1507 		 * no match, go to next one
1508 		 */
1509 		ppt = &(pt->fow);
1510 		pt = pt->fow;
1511 	}
1512 
1513 	/*
1514 	 * return if we did not find it.
1515 	 */
1516 	if (pt == NULL || pt->ft.ft_name == NULL ||
1517 	    strcmp(name, pt->ft.ft_name) == 0)
1518 		return(-1);
1519 
1520 	/*
1521 	 * found it. set the times and remove the entry from the table.
1522 	 */
1523 	set_attr(&pt->ft, 1, 0, 0, 0);
1524 	sigfillset(&allsigs);
1525 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1526 	*ppt = pt->fow;
1527 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1528 	free(pt->ft.ft_name);
1529 	free(pt);
1530 	return(0);
1531 }
1532 
1533 /*
1534  * directory access mode and time storage routines (for directories CREATED
1535  * by pax).
1536  *
1537  * Pax requires that extracted directories, by default, have their access/mod
1538  * times and permissions set to the values specified in the archive. During the
1539  * actions of extracting (and creating the destination subtree during -rw copy)
1540  * directories extracted may be modified after being created. Even worse is
1541  * that these directories may have been created with file permissions which
1542  * prohibits any descendants of these directories from being extracted. When
1543  * directories are created by pax, access rights may be added to permit the
1544  * creation of files in their subtree. Every time pax creates a directory, the
1545  * times and file permissions specified by the archive are stored. After all
1546  * files have been extracted (or copied), these directories have their times
1547  * and file modes reset to the stored values. The directory info is restored in
1548  * reverse order as entries were added from root to leaf: to restore atime
1549  * properly, we must go backwards.
1550  */
1551 
1552 /*
1553  * dir_start()
1554  *	set up the directory time and file mode storage for directories CREATED
1555  *	by pax.
1556  * Return:
1557  *	0 if ok, -1 otherwise
1558  */
1559 
1560 int
1561 dir_start(void)
1562 {
1563 	if (dirp != NULL)
1564 		return(0);
1565 
1566 	dirsize = DIRP_SIZE;
1567 	if ((dirp = reallocarray(NULL, dirsize, sizeof(DIRDATA))) == NULL) {
1568 		paxwarn(1, "Unable to allocate memory for directory times");
1569 		return(-1);
1570 	}
1571 	return(0);
1572 }
1573 
1574 /*
1575  * add_dir()
1576  *	add the mode and times for a newly CREATED directory
1577  *	name is name of the directory, psb the stat buffer with the data in it,
1578  *	frc_mode is a flag that says whether to force the setting of the mode
1579  *	(ignoring the user set values for preserving file mode). Frc_mode is
1580  *	for the case where we created a file and found that the resulting
1581  *	directory was not writeable and the user asked for file modes to NOT
1582  *	be preserved. (we have to preserve what was created by default, so we
1583  *	have to force the setting at the end. this is stated explicitly in the
1584  *	pax spec)
1585  */
1586 
1587 void
1588 add_dir(char *name, struct stat *psb, int frc_mode)
1589 {
1590 	DIRDATA *dblk;
1591 	sigset_t allsigs, savedsigs;
1592 	char realname[PATH_MAX], *rp;
1593 
1594 	if (dirp == NULL)
1595 		return;
1596 
1597 	if (havechd && *name != '/') {
1598 		if ((rp = realpath(name, realname)) == NULL) {
1599 			paxwarn(1, "Cannot canonicalize %s", name);
1600 			return;
1601 		}
1602 		name = rp;
1603 	}
1604 	if (dircnt == dirsize) {
1605 		dblk = reallocarray(dirp, dirsize, 2 * sizeof(DIRDATA));
1606 		if (dblk == NULL) {
1607 			paxwarn(1, "Unable to store mode and times for created"
1608 			    " directory: %s", name);
1609 			return;
1610 		}
1611 		sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1612 		dirp = dblk;
1613 		dirsize *= 2;
1614 		sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1615 	}
1616 	dblk = &dirp[dircnt];
1617 	if ((dblk->ft.ft_name = strdup(name)) == NULL) {
1618 		paxwarn(1, "Unable to store mode and times for created"
1619 		    " directory: %s", name);
1620 		return;
1621 	}
1622 	dblk->ft.ft_mtim = psb->st_mtim;
1623 	dblk->ft.ft_atim = psb->st_atim;
1624 	dblk->ft.ft_ino = psb->st_ino;
1625 	dblk->ft.ft_dev = psb->st_dev;
1626 	dblk->mode = psb->st_mode & ABITS;
1627 	dblk->frc_mode = frc_mode;
1628 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1629 	++dircnt;
1630 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1631 }
1632 
1633 /*
1634  * delete_dir()
1635  *	When we rmdir a directory, we may want to make sure we don't
1636  *	later warn about being unable to set its mode and times.
1637  */
1638 
1639 void
1640 delete_dir(dev_t dev, ino_t ino)
1641 {
1642 	DIRDATA *dblk;
1643 	char *name;
1644 	size_t i;
1645 
1646 	if (dirp == NULL)
1647 		return;
1648 	for (i = 0; i < dircnt; i++) {
1649 		dblk = &dirp[i];
1650 
1651 		if (dblk->ft.ft_name == NULL)
1652 			continue;
1653 		if (dblk->ft.ft_dev == dev && dblk->ft.ft_ino == ino) {
1654 			name = dblk->ft.ft_name;
1655 			dblk->ft.ft_name = NULL;
1656 			free(name);
1657 			break;
1658 		}
1659 	}
1660 }
1661 
1662 /*
1663  * proc_dir(int in_sig)
1664  *	process all file modes and times stored for directories CREATED
1665  *	by pax.  If in_sig is set, we're in a signal handler and can't
1666  *	free stuff.
1667  */
1668 
1669 void
1670 proc_dir(int in_sig)
1671 {
1672 	DIRDATA *dblk;
1673 	size_t cnt;
1674 
1675 	if (dirp == NULL)
1676 		return;
1677 	/*
1678 	 * read backwards through the file and process each directory
1679 	 */
1680 	cnt = dircnt;
1681 	while (cnt-- > 0) {
1682 		dblk = &dirp[cnt];
1683 		/*
1684 		 * If we remove a directory we created, we replace the
1685 		 * ft_name with NULL.  Ignore those.
1686 		 */
1687 		if (dblk->ft.ft_name == NULL)
1688 			continue;
1689 
1690 		/*
1691 		 * frc_mode set, make sure we set the file modes even if
1692 		 * the user didn't ask for it (see file_subs.c for more info)
1693 		 */
1694 		set_attr(&dblk->ft, 0, dblk->mode, pmode || dblk->frc_mode,
1695 		    in_sig);
1696 		if (!in_sig)
1697 			free(dblk->ft.ft_name);
1698 	}
1699 
1700 	if (!in_sig)
1701 		free(dirp);
1702 	dirp = NULL;
1703 	dircnt = 0;
1704 }
1705 
1706 /*
1707  * database independent routines
1708  */
1709 
1710 /*
1711  * st_hash()
1712  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1713  *	end of file, as this provides far better distribution than any other
1714  *	part of the name. For performance reasons we only care about the last
1715  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1716  *	name). Was tested on 500,000 name file tree traversal from the root
1717  *	and gave almost a perfectly uniform distribution of keys when used with
1718  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1719  *	chars at a time and pads with 0 for last addition.
1720  * Return:
1721  *	the hash value of the string MOD (%) the table size.
1722  */
1723 
1724 u_int
1725 st_hash(const char *name, int len, int tabsz)
1726 {
1727 	const char *pt;
1728 	char *dest;
1729 	const char *end;
1730 	int i;
1731 	u_int key = 0;
1732 	int steps;
1733 	int res;
1734 	u_int val;
1735 
1736 	/*
1737 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1738 	 * time here (remember these are pathnames, the tail is what will
1739 	 * spread out the keys)
1740 	 */
1741 	if (len > MAXKEYLEN) {
1742 		pt = &(name[len - MAXKEYLEN]);
1743 		len = MAXKEYLEN;
1744 	} else
1745 		pt = name;
1746 
1747 	/*
1748 	 * calculate the number of u_int size steps in the string and if
1749 	 * there is a runt to deal with
1750 	 */
1751 	steps = len/sizeof(u_int);
1752 	res = len % sizeof(u_int);
1753 
1754 	/*
1755 	 * add up the value of the string in unsigned integer sized pieces
1756 	 * too bad we cannot have unsigned int aligned strings, then we
1757 	 * could avoid the expensive copy.
1758 	 */
1759 	for (i = 0; i < steps; ++i) {
1760 		end = pt + sizeof(u_int);
1761 		dest = (char *)&val;
1762 		while (pt < end)
1763 			*dest++ = *pt++;
1764 		key += val;
1765 	}
1766 
1767 	/*
1768 	 * add in the runt padded with zero to the right
1769 	 */
1770 	if (res) {
1771 		val = 0;
1772 		end = pt + res;
1773 		dest = (char *)&val;
1774 		while (pt < end)
1775 			*dest++ = *pt++;
1776 		key += val;
1777 	}
1778 
1779 	/*
1780 	 * return the result mod the table size
1781 	 */
1782 	return(key % tabsz);
1783 }
1784