1 /* $OpenBSD: tables.c,v 1.13 2001/05/16 03:04:58 mickey Exp $ */ 2 /* $NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $ */ 3 4 /*- 5 * Copyright (c) 1992 Keith Muller. 6 * Copyright (c) 1992, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * Keith Muller of the University of California, San Diego. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #ifndef lint 42 #if 0 43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 44 #else 45 static char rcsid[] = "$OpenBSD: tables.c,v 1.13 2001/05/16 03:04:58 mickey Exp $"; 46 #endif 47 #endif /* not lint */ 48 49 #include <sys/types.h> 50 #include <sys/time.h> 51 #include <sys/stat.h> 52 #include <sys/param.h> 53 #include <sys/fcntl.h> 54 #include <stdio.h> 55 #include <string.h> 56 #include <unistd.h> 57 #include <errno.h> 58 #include <stdlib.h> 59 #include "pax.h" 60 #include "tables.h" 61 #include "extern.h" 62 63 /* 64 * Routines for controlling the contents of all the different databases pax 65 * keeps. Tables are dynamically created only when they are needed. The 66 * goal was speed and the ability to work with HUGE archives. The databases 67 * were kept simple, but do have complex rules for when the contents change. 68 * As of this writing, the posix library functions were more complex than 69 * needed for this application (pax databases have very short lifetimes and 70 * do not survive after pax is finished). Pax is required to handle very 71 * large archives. These database routines carefully combine memory usage and 72 * temporary file storage in ways which will not significantly impact runtime 73 * performance while allowing the largest possible archives to be handled. 74 * Trying to force the fit to the posix databases routines was not considered 75 * time well spent. 76 */ 77 78 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 79 static FTM **ftab = NULL; /* file time table for updating arch */ 80 static NAMT **ntab = NULL; /* interactive rename storage table */ 81 static DEVT **dtab = NULL; /* device/inode mapping tables */ 82 static ATDIR **atab = NULL; /* file tree directory time reset table */ 83 static int dirfd = -1; /* storage for setting created dir time/mode */ 84 static u_long dircnt; /* entries in dir time/mode storage */ 85 static int ffd = -1; /* tmp file for file time table name storage */ 86 87 static DEVT *chk_dev __P((dev_t, int)); 88 89 /* 90 * hard link table routines 91 * 92 * The hard link table tries to detect hard links to files using the device and 93 * inode values. We do this when writing an archive, so we can tell the format 94 * write routine that this file is a hard link to another file. The format 95 * write routine then can store this file in whatever way it wants (as a hard 96 * link if the format supports that like tar, or ignore this info like cpio). 97 * (Actually a field in the format driver table tells us if the format wants 98 * hard link info. if not, we do not waste time looking for them). We also use 99 * the same table when reading an archive. In that situation, this table is 100 * used by the format read routine to detect hard links from stored dev and 101 * inode numbers (like cpio). This will allow pax to create a link when one 102 * can be detected by the archive format. 103 */ 104 105 /* 106 * lnk_start 107 * Creates the hard link table. 108 * Return: 109 * 0 if created, -1 if failure 110 */ 111 112 #ifdef __STDC__ 113 int 114 lnk_start(void) 115 #else 116 int 117 lnk_start() 118 #endif 119 { 120 if (ltab != NULL) 121 return(0); 122 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 123 paxwarn(1, "Cannot allocate memory for hard link table"); 124 return(-1); 125 } 126 return(0); 127 } 128 129 /* 130 * chk_lnk() 131 * Looks up entry in hard link hash table. If found, it copies the name 132 * of the file it is linked to (we already saw that file) into ln_name. 133 * lnkcnt is decremented and if goes to 1 the node is deleted from the 134 * database. (We have seen all the links to this file). If not found, 135 * we add the file to the database if it has the potential for having 136 * hard links to other files we may process (it has a link count > 1) 137 * Return: 138 * if found returns 1; if not found returns 0; -1 on error 139 */ 140 141 #ifdef __STDC__ 142 int 143 chk_lnk(register ARCHD *arcn) 144 #else 145 int 146 chk_lnk(arcn) 147 register ARCHD *arcn; 148 #endif 149 { 150 register HRDLNK *pt; 151 register HRDLNK **ppt; 152 register u_int indx; 153 154 if (ltab == NULL) 155 return(-1); 156 /* 157 * ignore those nodes that cannot have hard links 158 */ 159 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 160 return(0); 161 162 /* 163 * hash inode number and look for this file 164 */ 165 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 166 if ((pt = ltab[indx]) != NULL) { 167 /* 168 * it's hash chain in not empty, walk down looking for it 169 */ 170 ppt = &(ltab[indx]); 171 while (pt != NULL) { 172 if ((pt->ino == arcn->sb.st_ino) && 173 (pt->dev == arcn->sb.st_dev)) 174 break; 175 ppt = &(pt->fow); 176 pt = pt->fow; 177 } 178 179 if (pt != NULL) { 180 /* 181 * found a link. set the node type and copy in the 182 * name of the file it is to link to. we need to 183 * handle hardlinks to regular files differently than 184 * other links. 185 */ 186 arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name, 187 sizeof(arcn->ln_name)); 188 if (arcn->type == PAX_REG) 189 arcn->type = PAX_HRG; 190 else 191 arcn->type = PAX_HLK; 192 193 /* 194 * if we have found all the links to this file, remove 195 * it from the database 196 */ 197 if (--pt->nlink <= 1) { 198 *ppt = pt->fow; 199 (void)free((char *)pt->name); 200 (void)free((char *)pt); 201 } 202 return(1); 203 } 204 } 205 206 /* 207 * we never saw this file before. It has links so we add it to the 208 * front of this hash chain 209 */ 210 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 211 if ((pt->name = strdup(arcn->name)) != NULL) { 212 pt->dev = arcn->sb.st_dev; 213 pt->ino = arcn->sb.st_ino; 214 pt->nlink = arcn->sb.st_nlink; 215 pt->fow = ltab[indx]; 216 ltab[indx] = pt; 217 return(0); 218 } 219 (void)free((char *)pt); 220 } 221 222 paxwarn(1, "Hard link table out of memory"); 223 return(-1); 224 } 225 226 /* 227 * purg_lnk 228 * remove reference for a file that we may have added to the data base as 229 * a potential source for hard links. We ended up not using the file, so 230 * we do not want to accidently point another file at it later on. 231 */ 232 233 #ifdef __STDC__ 234 void 235 purg_lnk(register ARCHD *arcn) 236 #else 237 void 238 purg_lnk(arcn) 239 register ARCHD *arcn; 240 #endif 241 { 242 register HRDLNK *pt; 243 register HRDLNK **ppt; 244 register u_int indx; 245 246 if (ltab == NULL) 247 return; 248 /* 249 * do not bother to look if it could not be in the database 250 */ 251 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 252 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 253 return; 254 255 /* 256 * find the hash chain for this inode value, if empty return 257 */ 258 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 259 if ((pt = ltab[indx]) == NULL) 260 return; 261 262 /* 263 * walk down the list looking for the inode/dev pair, unlink and 264 * free if found 265 */ 266 ppt = &(ltab[indx]); 267 while (pt != NULL) { 268 if ((pt->ino == arcn->sb.st_ino) && 269 (pt->dev == arcn->sb.st_dev)) 270 break; 271 ppt = &(pt->fow); 272 pt = pt->fow; 273 } 274 if (pt == NULL) 275 return; 276 277 /* 278 * remove and free it 279 */ 280 *ppt = pt->fow; 281 (void)free((char *)pt->name); 282 (void)free((char *)pt); 283 } 284 285 /* 286 * lnk_end() 287 * pull apart a existing link table so we can reuse it. We do this between 288 * read and write phases of append with update. (The format may have 289 * used the link table, and we need to start with a fresh table for the 290 * write phase 291 */ 292 293 #ifdef __STDC__ 294 void 295 lnk_end(void) 296 #else 297 void 298 lnk_end() 299 #endif 300 { 301 register int i; 302 register HRDLNK *pt; 303 register HRDLNK *ppt; 304 305 if (ltab == NULL) 306 return; 307 308 for (i = 0; i < L_TAB_SZ; ++i) { 309 if (ltab[i] == NULL) 310 continue; 311 pt = ltab[i]; 312 ltab[i] = NULL; 313 314 /* 315 * free up each entry on this chain 316 */ 317 while (pt != NULL) { 318 ppt = pt; 319 pt = ppt->fow; 320 (void)free((char *)ppt->name); 321 (void)free((char *)ppt); 322 } 323 } 324 return; 325 } 326 327 /* 328 * modification time table routines 329 * 330 * The modification time table keeps track of last modification times for all 331 * files stored in an archive during a write phase when -u is set. We only 332 * add a file to the archive if it is newer than a file with the same name 333 * already stored on the archive (if there is no other file with the same 334 * name on the archive it is added). This applies to writes and appends. 335 * An append with an -u must read the archive and store the modification time 336 * for every file on that archive before starting the write phase. It is clear 337 * that this is one HUGE database. To save memory space, the actual file names 338 * are stored in a scatch file and indexed by an in memory hash table. The 339 * hash table is indexed by hashing the file path. The nodes in the table store 340 * the length of the filename and the lseek offset within the scratch file 341 * where the actual name is stored. Since there are never any deletions to this 342 * table, fragmentation of the scratch file is never a issue. Lookups seem to 343 * not exhibit any locality at all (files in the database are rarely 344 * looked up more than once...). So caching is just a waste of memory. The 345 * only limitation is the amount of scatch file space available to store the 346 * path names. 347 */ 348 349 /* 350 * ftime_start() 351 * create the file time hash table and open for read/write the scratch 352 * file. (after created it is unlinked, so when we exit we leave 353 * no witnesses). 354 * Return: 355 * 0 if the table and file was created ok, -1 otherwise 356 */ 357 358 #ifdef __STDC__ 359 int 360 ftime_start(void) 361 #else 362 int 363 ftime_start() 364 #endif 365 { 366 367 if (ftab != NULL) 368 return(0); 369 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 370 paxwarn(1, "Cannot allocate memory for file time table"); 371 return(-1); 372 } 373 374 /* 375 * get random name and create temporary scratch file, unlink name 376 * so it will get removed on exit 377 */ 378 memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE)); 379 if ((ffd = mkstemp(tempfile)) < 0) { 380 syswarn(1, errno, "Unable to create temporary file: %s", 381 tempfile); 382 return(-1); 383 } 384 (void)unlink(tempfile); 385 386 return(0); 387 } 388 389 /* 390 * chk_ftime() 391 * looks up entry in file time hash table. If not found, the file is 392 * added to the hash table and the file named stored in the scratch file. 393 * If a file with the same name is found, the file times are compared and 394 * the most recent file time is retained. If the new file was younger (or 395 * was not in the database) the new file is selected for storage. 396 * Return: 397 * 0 if file should be added to the archive, 1 if it should be skipped, 398 * -1 on error 399 */ 400 401 #ifdef __STDC__ 402 int 403 chk_ftime(register ARCHD *arcn) 404 #else 405 int 406 chk_ftime(arcn) 407 register ARCHD *arcn; 408 #endif 409 { 410 register FTM *pt; 411 register int namelen; 412 register u_int indx; 413 char ckname[PAXPATHLEN+1]; 414 415 /* 416 * no info, go ahead and add to archive 417 */ 418 if (ftab == NULL) 419 return(0); 420 421 /* 422 * hash the pathname and look up in table 423 */ 424 namelen = arcn->nlen; 425 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 426 if ((pt = ftab[indx]) != NULL) { 427 /* 428 * the hash chain is not empty, walk down looking for match 429 * only read up the path names if the lengths match, speeds 430 * up the search a lot 431 */ 432 while (pt != NULL) { 433 if (pt->namelen == namelen) { 434 /* 435 * potential match, have to read the name 436 * from the scratch file. 437 */ 438 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 439 syswarn(1, errno, 440 "Failed ftime table seek"); 441 return(-1); 442 } 443 if (read(ffd, ckname, namelen) != namelen) { 444 syswarn(1, errno, 445 "Failed ftime table read"); 446 return(-1); 447 } 448 449 /* 450 * if the names match, we are done 451 */ 452 if (!strncmp(ckname, arcn->name, namelen)) 453 break; 454 } 455 456 /* 457 * try the next entry on the chain 458 */ 459 pt = pt->fow; 460 } 461 462 if (pt != NULL) { 463 /* 464 * found the file, compare the times, save the newer 465 */ 466 if (arcn->sb.st_mtime > pt->mtime) { 467 /* 468 * file is newer 469 */ 470 pt->mtime = arcn->sb.st_mtime; 471 return(0); 472 } 473 /* 474 * file is older 475 */ 476 return(1); 477 } 478 } 479 480 /* 481 * not in table, add it 482 */ 483 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 484 /* 485 * add the name at the end of the scratch file, saving the 486 * offset. add the file to the head of the hash chain 487 */ 488 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 489 if (write(ffd, arcn->name, namelen) == namelen) { 490 pt->mtime = arcn->sb.st_mtime; 491 pt->namelen = namelen; 492 pt->fow = ftab[indx]; 493 ftab[indx] = pt; 494 return(0); 495 } 496 syswarn(1, errno, "Failed write to file time table"); 497 } else 498 syswarn(1, errno, "Failed seek on file time table"); 499 } else 500 paxwarn(1, "File time table ran out of memory"); 501 502 if (pt != NULL) 503 (void)free((char *)pt); 504 return(-1); 505 } 506 507 /* 508 * Interactive rename table routines 509 * 510 * The interactive rename table keeps track of the new names that the user 511 * assignes to files from tty input. Since this map is unique for each file 512 * we must store it in case there is a reference to the file later in archive 513 * (a link). Otherwise we will be unable to find the file we know was 514 * extracted. The remapping of these files is stored in a memory based hash 515 * table (it is assumed since input must come from /dev/tty, it is unlikely to 516 * be a very large table). 517 */ 518 519 /* 520 * name_start() 521 * create the interactive rename table 522 * Return: 523 * 0 if successful, -1 otherwise 524 */ 525 526 #ifdef __STDC__ 527 int 528 name_start(void) 529 #else 530 int 531 name_start() 532 #endif 533 { 534 if (ntab != NULL) 535 return(0); 536 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 537 paxwarn(1, "Cannot allocate memory for interactive rename table"); 538 return(-1); 539 } 540 return(0); 541 } 542 543 /* 544 * add_name() 545 * add the new name to old name mapping just created by the user. 546 * If an old name mapping is found (there may be duplicate names on an 547 * archive) only the most recent is kept. 548 * Return: 549 * 0 if added, -1 otherwise 550 */ 551 552 #ifdef __STDC__ 553 int 554 add_name(register char *oname, int onamelen, char *nname) 555 #else 556 int 557 add_name(oname, onamelen, nname) 558 register char *oname; 559 int onamelen; 560 char *nname; 561 #endif 562 { 563 register NAMT *pt; 564 register u_int indx; 565 566 if (ntab == NULL) { 567 /* 568 * should never happen 569 */ 570 paxwarn(0, "No interactive rename table, links may fail\n"); 571 return(0); 572 } 573 574 /* 575 * look to see if we have already mapped this file, if so we 576 * will update it 577 */ 578 indx = st_hash(oname, onamelen, N_TAB_SZ); 579 if ((pt = ntab[indx]) != NULL) { 580 /* 581 * look down the has chain for the file 582 */ 583 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 584 pt = pt->fow; 585 586 if (pt != NULL) { 587 /* 588 * found an old mapping, replace it with the new one 589 * the user just input (if it is different) 590 */ 591 if (strcmp(nname, pt->nname) == 0) 592 return(0); 593 594 (void)free((char *)pt->nname); 595 if ((pt->nname = strdup(nname)) == NULL) { 596 paxwarn(1, "Cannot update rename table"); 597 return(-1); 598 } 599 return(0); 600 } 601 } 602 603 /* 604 * this is a new mapping, add it to the table 605 */ 606 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 607 if ((pt->oname = strdup(oname)) != NULL) { 608 if ((pt->nname = strdup(nname)) != NULL) { 609 pt->fow = ntab[indx]; 610 ntab[indx] = pt; 611 return(0); 612 } 613 (void)free((char *)pt->oname); 614 } 615 (void)free((char *)pt); 616 } 617 paxwarn(1, "Interactive rename table out of memory"); 618 return(-1); 619 } 620 621 /* 622 * sub_name() 623 * look up a link name to see if it points at a file that has been 624 * remapped by the user. If found, the link is adjusted to contain the 625 * new name (oname is the link to name) 626 */ 627 628 #ifdef __STDC__ 629 void 630 sub_name(register char *oname, int *onamelen, size_t onamesize) 631 #else 632 void 633 sub_name(oname, onamelen, onamesize) 634 register char *oname; 635 int *onamelen; 636 size_t onamesize; 637 #endif 638 { 639 register NAMT *pt; 640 register u_int indx; 641 642 if (ntab == NULL) 643 return; 644 /* 645 * look the name up in the hash table 646 */ 647 indx = st_hash(oname, *onamelen, N_TAB_SZ); 648 if ((pt = ntab[indx]) == NULL) 649 return; 650 651 while (pt != NULL) { 652 /* 653 * walk down the hash chain looking for a match 654 */ 655 if (strcmp(oname, pt->oname) == 0) { 656 /* 657 * found it, replace it with the new name 658 * and return (we know that oname has enough space) 659 */ 660 *onamelen = strlcpy(oname, pt->nname, onamesize); 661 return; 662 } 663 pt = pt->fow; 664 } 665 666 /* 667 * no match, just return 668 */ 669 return; 670 } 671 672 /* 673 * device/inode mapping table routines 674 * (used with formats that store device and inodes fields) 675 * 676 * device/inode mapping tables remap the device field in a archive header. The 677 * device/inode fields are used to determine when files are hard links to each 678 * other. However these values have very little meaning outside of that. This 679 * database is used to solve one of two different problems. 680 * 681 * 1) when files are appended to an archive, while the new files may have hard 682 * links to each other, you cannot determine if they have hard links to any 683 * file already stored on the archive from a prior run of pax. We must assume 684 * that these inode/device pairs are unique only within a SINGLE run of pax 685 * (which adds a set of files to an archive). So we have to make sure the 686 * inode/dev pairs we add each time are always unique. We do this by observing 687 * while the inode field is very dense, the use of the dev field is fairly 688 * sparse. Within each run of pax, we remap any device number of a new archive 689 * member that has a device number used in a prior run and already stored in a 690 * file on the archive. During the read phase of the append, we store the 691 * device numbers used and mark them to not be used by any file during the 692 * write phase. If during write we go to use one of those old device numbers, 693 * we remap it to a new value. 694 * 695 * 2) Often the fields in the archive header used to store these values are 696 * too small to store the entire value. The result is an inode or device value 697 * which can be truncated. This really can foul up an archive. With truncation 698 * we end up creating links between files that are really not links (after 699 * truncation the inodes are the same value). We address that by detecting 700 * truncation and forcing a remap of the device field to split truncated 701 * inodes away from each other. Each truncation creates a pattern of bits that 702 * are removed. We use this pattern of truncated bits to partition the inodes 703 * on a single device to many different devices (each one represented by the 704 * truncated bit pattern). All inodes on the same device that have the same 705 * truncation pattern are mapped to the same new device. Two inodes that 706 * truncate to the same value clearly will always have different truncation 707 * bit patterns, so they will be split from away each other. When we spot 708 * device truncation we remap the device number to a non truncated value. 709 * (for more info see table.h for the data structures involved). 710 */ 711 712 /* 713 * dev_start() 714 * create the device mapping table 715 * Return: 716 * 0 if successful, -1 otherwise 717 */ 718 719 #ifdef __STDC__ 720 int 721 dev_start(void) 722 #else 723 int 724 dev_start() 725 #endif 726 { 727 if (dtab != NULL) 728 return(0); 729 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 730 paxwarn(1, "Cannot allocate memory for device mapping table"); 731 return(-1); 732 } 733 return(0); 734 } 735 736 /* 737 * add_dev() 738 * add a device number to the table. this will force the device to be 739 * remapped to a new value if it be used during a write phase. This 740 * function is called during the read phase of an append to prohibit the 741 * use of any device number already in the archive. 742 * Return: 743 * 0 if added ok, -1 otherwise 744 */ 745 746 #ifdef __STDC__ 747 int 748 add_dev(register ARCHD *arcn) 749 #else 750 int 751 add_dev(arcn) 752 register ARCHD *arcn; 753 #endif 754 { 755 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 756 return(-1); 757 return(0); 758 } 759 760 /* 761 * chk_dev() 762 * check for a device value in the device table. If not found and the add 763 * flag is set, it is added. This does NOT assign any mapping values, just 764 * adds the device number as one that need to be remapped. If this device 765 * is alread mapped, just return with a pointer to that entry. 766 * Return: 767 * pointer to the entry for this device in the device map table. Null 768 * if the add flag is not set and the device is not in the table (it is 769 * not been seen yet). If add is set and the device cannot be added, null 770 * is returned (indicates an error). 771 */ 772 773 #ifdef __STDC__ 774 static DEVT * 775 chk_dev(dev_t dev, int add) 776 #else 777 static DEVT * 778 chk_dev(dev, add) 779 dev_t dev; 780 int add; 781 #endif 782 { 783 register DEVT *pt; 784 register u_int indx; 785 786 if (dtab == NULL) 787 return(NULL); 788 /* 789 * look to see if this device is already in the table 790 */ 791 indx = ((unsigned)dev) % D_TAB_SZ; 792 if ((pt = dtab[indx]) != NULL) { 793 while ((pt != NULL) && (pt->dev != dev)) 794 pt = pt->fow; 795 796 /* 797 * found it, return a pointer to it 798 */ 799 if (pt != NULL) 800 return(pt); 801 } 802 803 /* 804 * not in table, we add it only if told to as this may just be a check 805 * to see if a device number is being used. 806 */ 807 if (add == 0) 808 return(NULL); 809 810 /* 811 * allocate a node for this device and add it to the front of the hash 812 * chain. Note we do not assign remaps values here, so the pt->list 813 * list must be NULL. 814 */ 815 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 816 paxwarn(1, "Device map table out of memory"); 817 return(NULL); 818 } 819 pt->dev = dev; 820 pt->list = NULL; 821 pt->fow = dtab[indx]; 822 dtab[indx] = pt; 823 return(pt); 824 } 825 /* 826 * map_dev() 827 * given an inode and device storage mask (the mask has a 1 for each bit 828 * the archive format is able to store in a header), we check for inode 829 * and device truncation and remap the device as required. Device mapping 830 * can also occur when during the read phase of append a device number was 831 * seen (and was marked as do not use during the write phase). WE ASSUME 832 * that unsigned longs are the same size or bigger than the fields used 833 * for ino_t and dev_t. If not the types will have to be changed. 834 * Return: 835 * 0 if all ok, -1 otherwise. 836 */ 837 838 #ifdef __STDC__ 839 int 840 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask) 841 #else 842 int 843 map_dev(arcn, dev_mask, ino_mask) 844 register ARCHD *arcn; 845 u_long dev_mask; 846 u_long ino_mask; 847 #endif 848 { 849 register DEVT *pt; 850 register DLIST *dpt; 851 static dev_t lastdev = 0; /* next device number to try */ 852 int trc_ino = 0; 853 int trc_dev = 0; 854 ino_t trunc_bits = 0; 855 ino_t nino; 856 857 if (dtab == NULL) 858 return(0); 859 /* 860 * check for device and inode truncation, and extract the truncated 861 * bit pattern. 862 */ 863 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 864 ++trc_dev; 865 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 866 ++trc_ino; 867 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 868 } 869 870 /* 871 * see if this device is already being mapped, look up the device 872 * then find the truncation bit pattern which applies 873 */ 874 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 875 /* 876 * this device is already marked to be remapped 877 */ 878 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 879 if (dpt->trunc_bits == trunc_bits) 880 break; 881 882 if (dpt != NULL) { 883 /* 884 * we are being remapped for this device and pattern 885 * change the device number to be stored and return 886 */ 887 arcn->sb.st_dev = dpt->dev; 888 arcn->sb.st_ino = nino; 889 return(0); 890 } 891 } else { 892 /* 893 * this device is not being remapped YET. if we do not have any 894 * form of truncation, we do not need a remap 895 */ 896 if (!trc_ino && !trc_dev) 897 return(0); 898 899 /* 900 * we have truncation, have to add this as a device to remap 901 */ 902 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 903 goto bad; 904 905 /* 906 * if we just have a truncated inode, we have to make sure that 907 * all future inodes that do not truncate (they have the 908 * truncation pattern of all 0's) continue to map to the same 909 * device number. We probably have already written inodes with 910 * this device number to the archive with the truncation 911 * pattern of all 0's. So we add the mapping for all 0's to the 912 * same device number. 913 */ 914 if (!trc_dev && (trunc_bits != 0)) { 915 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 916 goto bad; 917 dpt->trunc_bits = 0; 918 dpt->dev = arcn->sb.st_dev; 919 dpt->fow = pt->list; 920 pt->list = dpt; 921 } 922 } 923 924 /* 925 * look for a device number not being used. We must watch for wrap 926 * around on lastdev (so we do not get stuck looking forever!) 927 */ 928 while (++lastdev > 0) { 929 if (chk_dev(lastdev, 0) != NULL) 930 continue; 931 /* 932 * found an unused value. If we have reached truncation point 933 * for this format we are hosed, so we give up. Otherwise we 934 * mark it as being used. 935 */ 936 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 937 (chk_dev(lastdev, 1) == NULL)) 938 goto bad; 939 break; 940 } 941 942 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 943 goto bad; 944 945 /* 946 * got a new device number, store it under this truncation pattern. 947 * change the device number this file is being stored with. 948 */ 949 dpt->trunc_bits = trunc_bits; 950 dpt->dev = lastdev; 951 dpt->fow = pt->list; 952 pt->list = dpt; 953 arcn->sb.st_dev = lastdev; 954 arcn->sb.st_ino = nino; 955 return(0); 956 957 bad: 958 paxwarn(1, "Unable to fix truncated inode/device field when storing %s", 959 arcn->name); 960 paxwarn(0, "Archive may create improper hard links when extracted"); 961 return(0); 962 } 963 964 /* 965 * directory access/mod time reset table routines (for directories READ by pax) 966 * 967 * The pax -t flag requires that access times of archive files to be the same 968 * before being read by pax. For regular files, access time is restored after 969 * the file has been copied. This database provides the same functionality for 970 * directories read during file tree traversal. Restoring directory access time 971 * is more complex than files since directories may be read several times until 972 * all the descendants in their subtree are visited by fts. Directory access 973 * and modification times are stored during the fts pre-order visit (done 974 * before any descendants in the subtree is visited) and restored after the 975 * fts post-order visit (after all the descendants have been visited). In the 976 * case of premature exit from a subtree (like from the effects of -n), any 977 * directory entries left in this database are reset during final cleanup 978 * operations of pax. Entries are hashed by inode number for fast lookup. 979 */ 980 981 /* 982 * atdir_start() 983 * create the directory access time database for directories READ by pax. 984 * Return: 985 * 0 is created ok, -1 otherwise. 986 */ 987 988 #ifdef __STDC__ 989 int 990 atdir_start(void) 991 #else 992 int 993 atdir_start() 994 #endif 995 { 996 if (atab != NULL) 997 return(0); 998 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 999 paxwarn(1,"Cannot allocate space for directory access time table"); 1000 return(-1); 1001 } 1002 return(0); 1003 } 1004 1005 1006 /* 1007 * atdir_end() 1008 * walk through the directory access time table and reset the access time 1009 * of any directory who still has an entry left in the database. These 1010 * entries are for directories READ by pax 1011 */ 1012 1013 #ifdef __STDC__ 1014 void 1015 atdir_end(void) 1016 #else 1017 void 1018 atdir_end() 1019 #endif 1020 { 1021 register ATDIR *pt; 1022 register int i; 1023 1024 if (atab == NULL) 1025 return; 1026 /* 1027 * for each non-empty hash table entry reset all the directories 1028 * chained there. 1029 */ 1030 for (i = 0; i < A_TAB_SZ; ++i) { 1031 if ((pt = atab[i]) == NULL) 1032 continue; 1033 /* 1034 * remember to force the times, set_ftime() looks at pmtime 1035 * and patime, which only applies to things CREATED by pax, 1036 * not read by pax. Read time reset is controlled by -t. 1037 */ 1038 for (; pt != NULL; pt = pt->fow) 1039 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1040 } 1041 } 1042 1043 /* 1044 * add_atdir() 1045 * add a directory to the directory access time table. Table is hashed 1046 * and chained by inode number. This is for directories READ by pax 1047 */ 1048 1049 #ifdef __STDC__ 1050 void 1051 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1052 #else 1053 void 1054 add_atdir(fname, dev, ino, mtime, atime) 1055 char *fname; 1056 dev_t dev; 1057 ino_t ino; 1058 time_t mtime; 1059 time_t atime; 1060 #endif 1061 { 1062 register ATDIR *pt; 1063 register u_int indx; 1064 1065 if (atab == NULL) 1066 return; 1067 1068 /* 1069 * make sure this directory is not already in the table, if so just 1070 * return (the older entry always has the correct time). The only 1071 * way this will happen is when the same subtree can be traversed by 1072 * different args to pax and the -n option is aborting fts out of a 1073 * subtree before all the post-order visits have been made). 1074 */ 1075 indx = ((unsigned)ino) % A_TAB_SZ; 1076 if ((pt = atab[indx]) != NULL) { 1077 while (pt != NULL) { 1078 if ((pt->ino == ino) && (pt->dev == dev)) 1079 break; 1080 pt = pt->fow; 1081 } 1082 1083 /* 1084 * oops, already there. Leave it alone. 1085 */ 1086 if (pt != NULL) 1087 return; 1088 } 1089 1090 /* 1091 * add it to the front of the hash chain 1092 */ 1093 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1094 if ((pt->name = strdup(fname)) != NULL) { 1095 pt->dev = dev; 1096 pt->ino = ino; 1097 pt->mtime = mtime; 1098 pt->atime = atime; 1099 pt->fow = atab[indx]; 1100 atab[indx] = pt; 1101 return; 1102 } 1103 (void)free((char *)pt); 1104 } 1105 1106 paxwarn(1, "Directory access time reset table ran out of memory"); 1107 return; 1108 } 1109 1110 /* 1111 * get_atdir() 1112 * look up a directory by inode and device number to obtain the access 1113 * and modification time you want to set to. If found, the modification 1114 * and access time parameters are set and the entry is removed from the 1115 * table (as it is no longer needed). These are for directories READ by 1116 * pax 1117 * Return: 1118 * 0 if found, -1 if not found. 1119 */ 1120 1121 #ifdef __STDC__ 1122 int 1123 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1124 #else 1125 int 1126 get_atdir(dev, ino, mtime, atime) 1127 dev_t dev; 1128 ino_t ino; 1129 time_t *mtime; 1130 time_t *atime; 1131 #endif 1132 { 1133 register ATDIR *pt; 1134 register ATDIR **ppt; 1135 register u_int indx; 1136 1137 if (atab == NULL) 1138 return(-1); 1139 /* 1140 * hash by inode and search the chain for an inode and device match 1141 */ 1142 indx = ((unsigned)ino) % A_TAB_SZ; 1143 if ((pt = atab[indx]) == NULL) 1144 return(-1); 1145 1146 ppt = &(atab[indx]); 1147 while (pt != NULL) { 1148 if ((pt->ino == ino) && (pt->dev == dev)) 1149 break; 1150 /* 1151 * no match, go to next one 1152 */ 1153 ppt = &(pt->fow); 1154 pt = pt->fow; 1155 } 1156 1157 /* 1158 * return if we did not find it. 1159 */ 1160 if (pt == NULL) 1161 return(-1); 1162 1163 /* 1164 * found it. return the times and remove the entry from the table. 1165 */ 1166 *ppt = pt->fow; 1167 *mtime = pt->mtime; 1168 *atime = pt->atime; 1169 (void)free((char *)pt->name); 1170 (void)free((char *)pt); 1171 return(0); 1172 } 1173 1174 /* 1175 * directory access mode and time storage routines (for directories CREATED 1176 * by pax). 1177 * 1178 * Pax requires that extracted directories, by default, have their access/mod 1179 * times and permissions set to the values specified in the archive. During the 1180 * actions of extracting (and creating the destination subtree during -rw copy) 1181 * directories extracted may be modified after being created. Even worse is 1182 * that these directories may have been created with file permissions which 1183 * prohibits any descendants of these directories from being extracted. When 1184 * directories are created by pax, access rights may be added to permit the 1185 * creation of files in their subtree. Every time pax creates a directory, the 1186 * times and file permissions specified by the archive are stored. After all 1187 * files have been extracted (or copied), these directories have their times 1188 * and file modes reset to the stored values. The directory info is restored in 1189 * reverse order as entries were added to the data file from root to leaf. To 1190 * restore atime properly, we must go backwards. The data file consists of 1191 * records with two parts, the file name followed by a DIRDATA trailer. The 1192 * fixed sized trailer contains the size of the name plus the off_t location in 1193 * the file. To restore we work backwards through the file reading the trailer 1194 * then the file name. 1195 */ 1196 1197 /* 1198 * dir_start() 1199 * set up the directory time and file mode storage for directories CREATED 1200 * by pax. 1201 * Return: 1202 * 0 if ok, -1 otherwise 1203 */ 1204 1205 #ifdef __STDC__ 1206 int 1207 dir_start(void) 1208 #else 1209 int 1210 dir_start() 1211 #endif 1212 { 1213 1214 if (dirfd != -1) 1215 return(0); 1216 1217 /* 1218 * unlink the file so it goes away at termination by itself 1219 */ 1220 memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE)); 1221 if ((dirfd = mkstemp(tempfile)) >= 0) { 1222 (void)unlink(tempfile); 1223 return(0); 1224 } 1225 paxwarn(1, "Unable to create temporary file for directory times: %s", 1226 tempfile); 1227 return(-1); 1228 } 1229 1230 /* 1231 * add_dir() 1232 * add the mode and times for a newly CREATED directory 1233 * name is name of the directory, psb the stat buffer with the data in it, 1234 * frc_mode is a flag that says whether to force the setting of the mode 1235 * (ignoring the user set values for preserving file mode). Frc_mode is 1236 * for the case where we created a file and found that the resulting 1237 * directory was not writeable and the user asked for file modes to NOT 1238 * be preserved. (we have to preserve what was created by default, so we 1239 * have to force the setting at the end. this is stated explicitly in the 1240 * pax spec) 1241 */ 1242 1243 #ifdef __STDC__ 1244 void 1245 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1246 #else 1247 void 1248 add_dir(name, nlen, psb, frc_mode) 1249 char *name; 1250 int nlen; 1251 struct stat *psb; 1252 int frc_mode; 1253 #endif 1254 { 1255 DIRDATA dblk; 1256 1257 if (dirfd < 0) 1258 return; 1259 1260 /* 1261 * get current position (where file name will start) so we can store it 1262 * in the trailer 1263 */ 1264 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1265 paxwarn(1,"Unable to store mode and times for directory: %s",name); 1266 return; 1267 } 1268 1269 /* 1270 * write the file name followed by the trailer 1271 */ 1272 dblk.nlen = nlen + 1; 1273 dblk.mode = psb->st_mode & 0xffff; 1274 dblk.mtime = psb->st_mtime; 1275 dblk.atime = psb->st_atime; 1276 dblk.frc_mode = frc_mode; 1277 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1278 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1279 ++dircnt; 1280 return; 1281 } 1282 1283 paxwarn(1,"Unable to store mode and times for created directory: %s",name); 1284 return; 1285 } 1286 1287 /* 1288 * proc_dir() 1289 * process all file modes and times stored for directories CREATED 1290 * by pax 1291 */ 1292 1293 #ifdef __STDC__ 1294 void 1295 proc_dir(void) 1296 #else 1297 void 1298 proc_dir() 1299 #endif 1300 { 1301 char name[PAXPATHLEN+1]; 1302 DIRDATA dblk; 1303 u_long cnt; 1304 1305 if (dirfd < 0) 1306 return; 1307 /* 1308 * read backwards through the file and process each directory 1309 */ 1310 for (cnt = 0; cnt < dircnt; ++cnt) { 1311 /* 1312 * read the trailer, then the file name, if this fails 1313 * just give up. 1314 */ 1315 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1316 break; 1317 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1318 break; 1319 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1320 break; 1321 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1322 break; 1323 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1324 break; 1325 1326 /* 1327 * frc_mode set, make sure we set the file modes even if 1328 * the user didn't ask for it (see file_subs.c for more info) 1329 */ 1330 if (pmode || dblk.frc_mode) 1331 set_pmode(name, dblk.mode); 1332 if (patime || pmtime) 1333 set_ftime(name, dblk.mtime, dblk.atime, 0); 1334 } 1335 1336 (void)close(dirfd); 1337 dirfd = -1; 1338 if (cnt != dircnt) 1339 paxwarn(1,"Unable to set mode and times for created directories"); 1340 return; 1341 } 1342 1343 /* 1344 * database independent routines 1345 */ 1346 1347 /* 1348 * st_hash() 1349 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1350 * end of file, as this provides far better distribution than any other 1351 * part of the name. For performance reasons we only care about the last 1352 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1353 * name). Was tested on 500,000 name file tree traversal from the root 1354 * and gave almost a perfectly uniform distribution of keys when used with 1355 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1356 * chars at a time and pads with 0 for last addition. 1357 * Return: 1358 * the hash value of the string MOD (%) the table size. 1359 */ 1360 1361 #ifdef __STDC__ 1362 u_int 1363 st_hash(char *name, int len, int tabsz) 1364 #else 1365 u_int 1366 st_hash(name, len, tabsz) 1367 char *name; 1368 int len; 1369 int tabsz; 1370 #endif 1371 { 1372 register char *pt; 1373 register char *dest; 1374 register char *end; 1375 register int i; 1376 register u_int key = 0; 1377 register int steps; 1378 register int res; 1379 u_int val; 1380 1381 /* 1382 * only look at the tail up to MAXKEYLEN, we do not need to waste 1383 * time here (remember these are pathnames, the tail is what will 1384 * spread out the keys) 1385 */ 1386 if (len > MAXKEYLEN) { 1387 pt = &(name[len - MAXKEYLEN]); 1388 len = MAXKEYLEN; 1389 } else 1390 pt = name; 1391 1392 /* 1393 * calculate the number of u_int size steps in the string and if 1394 * there is a runt to deal with 1395 */ 1396 steps = len/sizeof(u_int); 1397 res = len % sizeof(u_int); 1398 1399 /* 1400 * add up the value of the string in unsigned integer sized pieces 1401 * too bad we cannot have unsigned int aligned strings, then we 1402 * could avoid the expensive copy. 1403 */ 1404 for (i = 0; i < steps; ++i) { 1405 end = pt + sizeof(u_int); 1406 dest = (char *)&val; 1407 while (pt < end) 1408 *dest++ = *pt++; 1409 key += val; 1410 } 1411 1412 /* 1413 * add in the runt padded with zero to the right 1414 */ 1415 if (res) { 1416 val = 0; 1417 end = pt + res; 1418 dest = (char *)&val; 1419 while (pt < end) 1420 *dest++ = *pt++; 1421 key += val; 1422 } 1423 1424 /* 1425 * return the result mod the table size 1426 */ 1427 return(key % tabsz); 1428 } 1429