xref: /openbsd-src/bin/pax/tables.c (revision 8500990981f885cbe5e6a4958549cacc238b5ae6)
1 /*	$OpenBSD: tables.c,v 1.21 2003/08/16 17:31:55 deraadt Exp $	*/
2 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992 Keith Muller.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Keith Muller of the University of California, San Diego.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #ifndef lint
38 #if 0
39 static const char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
40 #else
41 static const char rcsid[] = "$OpenBSD: tables.c,v 1.21 2003/08/16 17:31:55 deraadt Exp $";
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/types.h>
46 #include <sys/time.h>
47 #include <sys/stat.h>
48 #include <sys/param.h>
49 #include <sys/fcntl.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <unistd.h>
53 #include <errno.h>
54 #include <stdlib.h>
55 #include "pax.h"
56 #include "tables.h"
57 #include "extern.h"
58 
59 /*
60  * Routines for controlling the contents of all the different databases pax
61  * keeps. Tables are dynamically created only when they are needed. The
62  * goal was speed and the ability to work with HUGE archives. The databases
63  * were kept simple, but do have complex rules for when the contents change.
64  * As of this writing, the posix library functions were more complex than
65  * needed for this application (pax databases have very short lifetimes and
66  * do not survive after pax is finished). Pax is required to handle very
67  * large archives. These database routines carefully combine memory usage and
68  * temporary file storage in ways which will not significantly impact runtime
69  * performance while allowing the largest possible archives to be handled.
70  * Trying to force the fit to the posix database routines was not considered
71  * time well spent.
72  */
73 
74 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75 static FTM **ftab = NULL;	/* file time table for updating arch */
76 static NAMT **ntab = NULL;	/* interactive rename storage table */
77 static DEVT **dtab = NULL;	/* device/inode mapping tables */
78 static ATDIR **atab = NULL;	/* file tree directory time reset table */
79 static int dirfd = -1;		/* storage for setting created dir time/mode */
80 static u_long dircnt;		/* entries in dir time/mode storage */
81 static int ffd = -1;		/* tmp file for file time table name storage */
82 
83 static DEVT *chk_dev(dev_t, int);
84 
85 /*
86  * hard link table routines
87  *
88  * The hard link table tries to detect hard links to files using the device and
89  * inode values. We do this when writing an archive, so we can tell the format
90  * write routine that this file is a hard link to another file. The format
91  * write routine then can store this file in whatever way it wants (as a hard
92  * link if the format supports that like tar, or ignore this info like cpio).
93  * (Actually a field in the format driver table tells us if the format wants
94  * hard link info. if not, we do not waste time looking for them). We also use
95  * the same table when reading an archive. In that situation, this table is
96  * used by the format read routine to detect hard links from stored dev and
97  * inode numbers (like cpio). This will allow pax to create a link when one
98  * can be detected by the archive format.
99  */
100 
101 /*
102  * lnk_start
103  *	Creates the hard link table.
104  * Return:
105  *	0 if created, -1 if failure
106  */
107 
108 int
109 lnk_start(void)
110 {
111 	if (ltab != NULL)
112 		return(0);
113  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
114 		paxwarn(1, "Cannot allocate memory for hard link table");
115 		return(-1);
116 	}
117 	return(0);
118 }
119 
120 /*
121  * chk_lnk()
122  *	Looks up entry in hard link hash table. If found, it copies the name
123  *	of the file it is linked to (we already saw that file) into ln_name.
124  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
125  *	database. (We have seen all the links to this file). If not found,
126  *	we add the file to the database if it has the potential for having
127  *	hard links to other files we may process (it has a link count > 1)
128  * Return:
129  *	if found returns 1; if not found returns 0; -1 on error
130  */
131 
132 int
133 chk_lnk(ARCHD *arcn)
134 {
135 	HRDLNK *pt;
136 	HRDLNK **ppt;
137 	u_int indx;
138 
139 	if (ltab == NULL)
140 		return(-1);
141 	/*
142 	 * ignore those nodes that cannot have hard links
143 	 */
144 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
145 		return(0);
146 
147 	/*
148 	 * hash inode number and look for this file
149 	 */
150 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
151 	if ((pt = ltab[indx]) != NULL) {
152 		/*
153 		 * it's hash chain in not empty, walk down looking for it
154 		 */
155 		ppt = &(ltab[indx]);
156 		while (pt != NULL) {
157 			if ((pt->ino == arcn->sb.st_ino) &&
158 			    (pt->dev == arcn->sb.st_dev))
159 				break;
160 			ppt = &(pt->fow);
161 			pt = pt->fow;
162 		}
163 
164 		if (pt != NULL) {
165 			/*
166 			 * found a link. set the node type and copy in the
167 			 * name of the file it is to link to. we need to
168 			 * handle hardlinks to regular files differently than
169 			 * other links.
170 			 */
171 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
172 				sizeof(arcn->ln_name));
173 			if (arcn->type == PAX_REG)
174 				arcn->type = PAX_HRG;
175 			else
176 				arcn->type = PAX_HLK;
177 
178 			/*
179 			 * if we have found all the links to this file, remove
180 			 * it from the database
181 			 */
182 			if (--pt->nlink <= 1) {
183 				*ppt = pt->fow;
184 				(void)free((char *)pt->name);
185 				(void)free((char *)pt);
186 			}
187 			return(1);
188 		}
189 	}
190 
191 	/*
192 	 * we never saw this file before. It has links so we add it to the
193 	 * front of this hash chain
194 	 */
195 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
196 		if ((pt->name = strdup(arcn->name)) != NULL) {
197 			pt->dev = arcn->sb.st_dev;
198 			pt->ino = arcn->sb.st_ino;
199 			pt->nlink = arcn->sb.st_nlink;
200 			pt->fow = ltab[indx];
201 			ltab[indx] = pt;
202 			return(0);
203 		}
204 		(void)free((char *)pt);
205 	}
206 
207 	paxwarn(1, "Hard link table out of memory");
208 	return(-1);
209 }
210 
211 /*
212  * purg_lnk
213  *	remove reference for a file that we may have added to the data base as
214  *	a potential source for hard links. We ended up not using the file, so
215  *	we do not want to accidently point another file at it later on.
216  */
217 
218 void
219 purg_lnk(ARCHD *arcn)
220 {
221 	HRDLNK *pt;
222 	HRDLNK **ppt;
223 	u_int indx;
224 
225 	if (ltab == NULL)
226 		return;
227 	/*
228 	 * do not bother to look if it could not be in the database
229 	 */
230 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
231 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
232 		return;
233 
234 	/*
235 	 * find the hash chain for this inode value, if empty return
236 	 */
237 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
238 	if ((pt = ltab[indx]) == NULL)
239 		return;
240 
241 	/*
242 	 * walk down the list looking for the inode/dev pair, unlink and
243 	 * free if found
244 	 */
245 	ppt = &(ltab[indx]);
246 	while (pt != NULL) {
247 		if ((pt->ino == arcn->sb.st_ino) &&
248 		    (pt->dev == arcn->sb.st_dev))
249 			break;
250 		ppt = &(pt->fow);
251 		pt = pt->fow;
252 	}
253 	if (pt == NULL)
254 		return;
255 
256 	/*
257 	 * remove and free it
258 	 */
259 	*ppt = pt->fow;
260 	(void)free((char *)pt->name);
261 	(void)free((char *)pt);
262 }
263 
264 /*
265  * lnk_end()
266  *	pull apart a existing link table so we can reuse it. We do this between
267  *	read and write phases of append with update. (The format may have
268  *	used the link table, and we need to start with a fresh table for the
269  *	write phase
270  */
271 
272 void
273 lnk_end(void)
274 {
275 	int i;
276 	HRDLNK *pt;
277 	HRDLNK *ppt;
278 
279 	if (ltab == NULL)
280 		return;
281 
282 	for (i = 0; i < L_TAB_SZ; ++i) {
283 		if (ltab[i] == NULL)
284 			continue;
285 		pt = ltab[i];
286 		ltab[i] = NULL;
287 
288 		/*
289 		 * free up each entry on this chain
290 		 */
291 		while (pt != NULL) {
292 			ppt = pt;
293 			pt = ppt->fow;
294 			(void)free((char *)ppt->name);
295 			(void)free((char *)ppt);
296 		}
297 	}
298 	return;
299 }
300 
301 /*
302  * modification time table routines
303  *
304  * The modification time table keeps track of last modification times for all
305  * files stored in an archive during a write phase when -u is set. We only
306  * add a file to the archive if it is newer than a file with the same name
307  * already stored on the archive (if there is no other file with the same
308  * name on the archive it is added). This applies to writes and appends.
309  * An append with an -u must read the archive and store the modification time
310  * for every file on that archive before starting the write phase. It is clear
311  * that this is one HUGE database. To save memory space, the actual file names
312  * are stored in a scratch file and indexed by an in-memory hash table. The
313  * hash table is indexed by hashing the file path. The nodes in the table store
314  * the length of the filename and the lseek offset within the scratch file
315  * where the actual name is stored. Since there are never any deletions from
316  * this table, fragmentation of the scratch file is never a issue. Lookups
317  * seem to not exhibit any locality at all (files in the database are rarely
318  * looked up more than once...), so caching is just a waste of memory. The
319  * only limitation is the amount of scratch file space available to store the
320  * path names.
321  */
322 
323 /*
324  * ftime_start()
325  *	create the file time hash table and open for read/write the scratch
326  *	file. (after created it is unlinked, so when we exit we leave
327  *	no witnesses).
328  * Return:
329  *	0 if the table and file was created ok, -1 otherwise
330  */
331 
332 int
333 ftime_start(void)
334 {
335 
336 	if (ftab != NULL)
337 		return(0);
338  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
339 		paxwarn(1, "Cannot allocate memory for file time table");
340 		return(-1);
341 	}
342 
343 	/*
344 	 * get random name and create temporary scratch file, unlink name
345 	 * so it will get removed on exit
346 	 */
347 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
348 	if ((ffd = mkstemp(tempfile)) < 0) {
349 		syswarn(1, errno, "Unable to create temporary file: %s",
350 		    tempfile);
351 		return(-1);
352 	}
353 	(void)unlink(tempfile);
354 
355 	return(0);
356 }
357 
358 /*
359  * chk_ftime()
360  *	looks up entry in file time hash table. If not found, the file is
361  *	added to the hash table and the file named stored in the scratch file.
362  *	If a file with the same name is found, the file times are compared and
363  *	the most recent file time is retained. If the new file was younger (or
364  *	was not in the database) the new file is selected for storage.
365  * Return:
366  *	0 if file should be added to the archive, 1 if it should be skipped,
367  *	-1 on error
368  */
369 
370 int
371 chk_ftime(ARCHD *arcn)
372 {
373 	FTM *pt;
374 	int namelen;
375 	u_int indx;
376 	char ckname[PAXPATHLEN+1];
377 
378 	/*
379 	 * no info, go ahead and add to archive
380 	 */
381 	if (ftab == NULL)
382 		return(0);
383 
384 	/*
385 	 * hash the pathname and look up in table
386 	 */
387 	namelen = arcn->nlen;
388 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
389 	if ((pt = ftab[indx]) != NULL) {
390 		/*
391 		 * the hash chain is not empty, walk down looking for match
392 		 * only read up the path names if the lengths match, speeds
393 		 * up the search a lot
394 		 */
395 		while (pt != NULL) {
396 			if (pt->namelen == namelen) {
397 				/*
398 				 * potential match, have to read the name
399 				 * from the scratch file.
400 				 */
401 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
402 					syswarn(1, errno,
403 					    "Failed ftime table seek");
404 					return(-1);
405 				}
406 				if (read(ffd, ckname, namelen) != namelen) {
407 					syswarn(1, errno,
408 					    "Failed ftime table read");
409 					return(-1);
410 				}
411 
412 				/*
413 				 * if the names match, we are done
414 				 */
415 				if (!strncmp(ckname, arcn->name, namelen))
416 					break;
417 			}
418 
419 			/*
420 			 * try the next entry on the chain
421 			 */
422 			pt = pt->fow;
423 		}
424 
425 		if (pt != NULL) {
426 			/*
427 			 * found the file, compare the times, save the newer
428 			 */
429 			if (arcn->sb.st_mtime > pt->mtime) {
430 				/*
431 				 * file is newer
432 				 */
433 				pt->mtime = arcn->sb.st_mtime;
434 				return(0);
435 			}
436 			/*
437 			 * file is older
438 			 */
439 			return(1);
440 		}
441 	}
442 
443 	/*
444 	 * not in table, add it
445 	 */
446 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
447 		/*
448 		 * add the name at the end of the scratch file, saving the
449 		 * offset. add the file to the head of the hash chain
450 		 */
451 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
452 			if (write(ffd, arcn->name, namelen) == namelen) {
453 				pt->mtime = arcn->sb.st_mtime;
454 				pt->namelen = namelen;
455 				pt->fow = ftab[indx];
456 				ftab[indx] = pt;
457 				return(0);
458 			}
459 			syswarn(1, errno, "Failed write to file time table");
460 		} else
461 			syswarn(1, errno, "Failed seek on file time table");
462 	} else
463 		paxwarn(1, "File time table ran out of memory");
464 
465 	if (pt != NULL)
466 		(void)free((char *)pt);
467 	return(-1);
468 }
469 
470 /*
471  * Interactive rename table routines
472  *
473  * The interactive rename table keeps track of the new names that the user
474  * assigns to files from tty input. Since this map is unique for each file
475  * we must store it in case there is a reference to the file later in archive
476  * (a link). Otherwise we will be unable to find the file we know was
477  * extracted. The remapping of these files is stored in a memory based hash
478  * table (it is assumed since input must come from /dev/tty, it is unlikely to
479  * be a very large table).
480  */
481 
482 /*
483  * name_start()
484  *	create the interactive rename table
485  * Return:
486  *	0 if successful, -1 otherwise
487  */
488 
489 int
490 name_start(void)
491 {
492 	if (ntab != NULL)
493 		return(0);
494  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
495 		paxwarn(1, "Cannot allocate memory for interactive rename table");
496 		return(-1);
497 	}
498 	return(0);
499 }
500 
501 /*
502  * add_name()
503  *	add the new name to old name mapping just created by the user.
504  *	If an old name mapping is found (there may be duplicate names on an
505  *	archive) only the most recent is kept.
506  * Return:
507  *	0 if added, -1 otherwise
508  */
509 
510 int
511 add_name(char *oname, int onamelen, char *nname)
512 {
513 	NAMT *pt;
514 	u_int indx;
515 
516 	if (ntab == NULL) {
517 		/*
518 		 * should never happen
519 		 */
520 		paxwarn(0, "No interactive rename table, links may fail");
521 		return(0);
522 	}
523 
524 	/*
525 	 * look to see if we have already mapped this file, if so we
526 	 * will update it
527 	 */
528 	indx = st_hash(oname, onamelen, N_TAB_SZ);
529 	if ((pt = ntab[indx]) != NULL) {
530 		/*
531 		 * look down the has chain for the file
532 		 */
533 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
534 			pt = pt->fow;
535 
536 		if (pt != NULL) {
537 			/*
538 			 * found an old mapping, replace it with the new one
539 			 * the user just input (if it is different)
540 			 */
541 			if (strcmp(nname, pt->nname) == 0)
542 				return(0);
543 
544 			(void)free((char *)pt->nname);
545 			if ((pt->nname = strdup(nname)) == NULL) {
546 				paxwarn(1, "Cannot update rename table");
547 				return(-1);
548 			}
549 			return(0);
550 		}
551 	}
552 
553 	/*
554 	 * this is a new mapping, add it to the table
555 	 */
556 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
557 		if ((pt->oname = strdup(oname)) != NULL) {
558 			if ((pt->nname = strdup(nname)) != NULL) {
559 				pt->fow = ntab[indx];
560 				ntab[indx] = pt;
561 				return(0);
562 			}
563 			(void)free((char *)pt->oname);
564 		}
565 		(void)free((char *)pt);
566 	}
567 	paxwarn(1, "Interactive rename table out of memory");
568 	return(-1);
569 }
570 
571 /*
572  * sub_name()
573  *	look up a link name to see if it points at a file that has been
574  *	remapped by the user. If found, the link is adjusted to contain the
575  *	new name (oname is the link to name)
576  */
577 
578 void
579 sub_name(char *oname, int *onamelen, size_t onamesize)
580 {
581 	NAMT *pt;
582 	u_int indx;
583 
584 	if (ntab == NULL)
585 		return;
586 	/*
587 	 * look the name up in the hash table
588 	 */
589 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
590 	if ((pt = ntab[indx]) == NULL)
591 		return;
592 
593 	while (pt != NULL) {
594 		/*
595 		 * walk down the hash chain looking for a match
596 		 */
597 		if (strcmp(oname, pt->oname) == 0) {
598 			/*
599 			 * found it, replace it with the new name
600 			 * and return (we know that oname has enough space)
601 			 */
602 			*onamelen = strlcpy(oname, pt->nname, onamesize);
603 			return;
604 		}
605 		pt = pt->fow;
606 	}
607 
608 	/*
609 	 * no match, just return
610 	 */
611 	return;
612 }
613 
614 /*
615  * device/inode mapping table routines
616  * (used with formats that store device and inodes fields)
617  *
618  * device/inode mapping tables remap the device field in a archive header. The
619  * device/inode fields are used to determine when files are hard links to each
620  * other. However these values have very little meaning outside of that. This
621  * database is used to solve one of two different problems.
622  *
623  * 1) when files are appended to an archive, while the new files may have hard
624  * links to each other, you cannot determine if they have hard links to any
625  * file already stored on the archive from a prior run of pax. We must assume
626  * that these inode/device pairs are unique only within a SINGLE run of pax
627  * (which adds a set of files to an archive). So we have to make sure the
628  * inode/dev pairs we add each time are always unique. We do this by observing
629  * while the inode field is very dense, the use of the dev field is fairly
630  * sparse. Within each run of pax, we remap any device number of a new archive
631  * member that has a device number used in a prior run and already stored in a
632  * file on the archive. During the read phase of the append, we store the
633  * device numbers used and mark them to not be used by any file during the
634  * write phase. If during write we go to use one of those old device numbers,
635  * we remap it to a new value.
636  *
637  * 2) Often the fields in the archive header used to store these values are
638  * too small to store the entire value. The result is an inode or device value
639  * which can be truncated. This really can foul up an archive. With truncation
640  * we end up creating links between files that are really not links (after
641  * truncation the inodes are the same value). We address that by detecting
642  * truncation and forcing a remap of the device field to split truncated
643  * inodes away from each other. Each truncation creates a pattern of bits that
644  * are removed. We use this pattern of truncated bits to partition the inodes
645  * on a single device to many different devices (each one represented by the
646  * truncated bit pattern). All inodes on the same device that have the same
647  * truncation pattern are mapped to the same new device. Two inodes that
648  * truncate to the same value clearly will always have different truncation
649  * bit patterns, so they will be split from away each other. When we spot
650  * device truncation we remap the device number to a non truncated value.
651  * (for more info see table.h for the data structures involved).
652  */
653 
654 /*
655  * dev_start()
656  *	create the device mapping table
657  * Return:
658  *	0 if successful, -1 otherwise
659  */
660 
661 int
662 dev_start(void)
663 {
664 	if (dtab != NULL)
665 		return(0);
666  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
667 		paxwarn(1, "Cannot allocate memory for device mapping table");
668 		return(-1);
669 	}
670 	return(0);
671 }
672 
673 /*
674  * add_dev()
675  *	add a device number to the table. this will force the device to be
676  *	remapped to a new value if it be used during a write phase. This
677  *	function is called during the read phase of an append to prohibit the
678  *	use of any device number already in the archive.
679  * Return:
680  *	0 if added ok, -1 otherwise
681  */
682 
683 int
684 add_dev(ARCHD *arcn)
685 {
686 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
687 		return(-1);
688 	return(0);
689 }
690 
691 /*
692  * chk_dev()
693  *	check for a device value in the device table. If not found and the add
694  *	flag is set, it is added. This does NOT assign any mapping values, just
695  *	adds the device number as one that need to be remapped. If this device
696  *	is already mapped, just return with a pointer to that entry.
697  * Return:
698  *	pointer to the entry for this device in the device map table. Null
699  *	if the add flag is not set and the device is not in the table (it is
700  *	not been seen yet). If add is set and the device cannot be added, null
701  *	is returned (indicates an error).
702  */
703 
704 static DEVT *
705 chk_dev(dev_t dev, int add)
706 {
707 	DEVT *pt;
708 	u_int indx;
709 
710 	if (dtab == NULL)
711 		return(NULL);
712 	/*
713 	 * look to see if this device is already in the table
714 	 */
715 	indx = ((unsigned)dev) % D_TAB_SZ;
716 	if ((pt = dtab[indx]) != NULL) {
717 		while ((pt != NULL) && (pt->dev != dev))
718 			pt = pt->fow;
719 
720 		/*
721 		 * found it, return a pointer to it
722 		 */
723 		if (pt != NULL)
724 			return(pt);
725 	}
726 
727 	/*
728 	 * not in table, we add it only if told to as this may just be a check
729 	 * to see if a device number is being used.
730 	 */
731 	if (add == 0)
732 		return(NULL);
733 
734 	/*
735 	 * allocate a node for this device and add it to the front of the hash
736 	 * chain. Note we do not assign remaps values here, so the pt->list
737 	 * list must be NULL.
738 	 */
739 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
740 		paxwarn(1, "Device map table out of memory");
741 		return(NULL);
742 	}
743 	pt->dev = dev;
744 	pt->list = NULL;
745 	pt->fow = dtab[indx];
746 	dtab[indx] = pt;
747 	return(pt);
748 }
749 /*
750  * map_dev()
751  *	given an inode and device storage mask (the mask has a 1 for each bit
752  *	the archive format is able to store in a header), we check for inode
753  *	and device truncation and remap the device as required. Device mapping
754  *	can also occur when during the read phase of append a device number was
755  *	seen (and was marked as do not use during the write phase). WE ASSUME
756  *	that unsigned longs are the same size or bigger than the fields used
757  *	for ino_t and dev_t. If not the types will have to be changed.
758  * Return:
759  *	0 if all ok, -1 otherwise.
760  */
761 
762 int
763 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
764 {
765 	DEVT *pt;
766 	DLIST *dpt;
767 	static dev_t lastdev = 0;	/* next device number to try */
768 	int trc_ino = 0;
769 	int trc_dev = 0;
770 	ino_t trunc_bits = 0;
771 	ino_t nino;
772 
773 	if (dtab == NULL)
774 		return(0);
775 	/*
776 	 * check for device and inode truncation, and extract the truncated
777 	 * bit pattern.
778 	 */
779 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
780 		++trc_dev;
781 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
782 		++trc_ino;
783 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
784 	}
785 
786 	/*
787 	 * see if this device is already being mapped, look up the device
788 	 * then find the truncation bit pattern which applies
789 	 */
790 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
791 		/*
792 		 * this device is already marked to be remapped
793 		 */
794 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
795 			if (dpt->trunc_bits == trunc_bits)
796 				break;
797 
798 		if (dpt != NULL) {
799 			/*
800 			 * we are being remapped for this device and pattern
801 			 * change the device number to be stored and return
802 			 */
803 			arcn->sb.st_dev = dpt->dev;
804 			arcn->sb.st_ino = nino;
805 			return(0);
806 		}
807 	} else {
808 		/*
809 		 * this device is not being remapped YET. if we do not have any
810 		 * form of truncation, we do not need a remap
811 		 */
812 		if (!trc_ino && !trc_dev)
813 			return(0);
814 
815 		/*
816 		 * we have truncation, have to add this as a device to remap
817 		 */
818 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
819 			goto bad;
820 
821 		/*
822 		 * if we just have a truncated inode, we have to make sure that
823 		 * all future inodes that do not truncate (they have the
824 		 * truncation pattern of all 0's) continue to map to the same
825 		 * device number. We probably have already written inodes with
826 		 * this device number to the archive with the truncation
827 		 * pattern of all 0's. So we add the mapping for all 0's to the
828 		 * same device number.
829 		 */
830 		if (!trc_dev && (trunc_bits != 0)) {
831 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
832 				goto bad;
833 			dpt->trunc_bits = 0;
834 			dpt->dev = arcn->sb.st_dev;
835 			dpt->fow = pt->list;
836 			pt->list = dpt;
837 		}
838 	}
839 
840 	/*
841 	 * look for a device number not being used. We must watch for wrap
842 	 * around on lastdev (so we do not get stuck looking forever!)
843 	 */
844 	while (++lastdev > 0) {
845 		if (chk_dev(lastdev, 0) != NULL)
846 			continue;
847 		/*
848 		 * found an unused value. If we have reached truncation point
849 		 * for this format we are hosed, so we give up. Otherwise we
850 		 * mark it as being used.
851 		 */
852 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
853 		    (chk_dev(lastdev, 1) == NULL))
854 			goto bad;
855 		break;
856 	}
857 
858 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
859 		goto bad;
860 
861 	/*
862 	 * got a new device number, store it under this truncation pattern.
863 	 * change the device number this file is being stored with.
864 	 */
865 	dpt->trunc_bits = trunc_bits;
866 	dpt->dev = lastdev;
867 	dpt->fow = pt->list;
868 	pt->list = dpt;
869 	arcn->sb.st_dev = lastdev;
870 	arcn->sb.st_ino = nino;
871 	return(0);
872 
873     bad:
874 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
875 	    arcn->name);
876 	paxwarn(0, "Archive may create improper hard links when extracted");
877 	return(0);
878 }
879 
880 /*
881  * directory access/mod time reset table routines (for directories READ by pax)
882  *
883  * The pax -t flag requires that access times of archive files be the same
884  * before being read by pax. For regular files, access time is restored after
885  * the file has been copied. This database provides the same functionality for
886  * directories read during file tree traversal. Restoring directory access time
887  * is more complex than files since directories may be read several times until
888  * all the descendants in their subtree are visited by fts. Directory access
889  * and modification times are stored during the fts pre-order visit (done
890  * before any descendants in the subtree are visited) and restored after the
891  * fts post-order visit (after all the descendants have been visited). In the
892  * case of premature exit from a subtree (like from the effects of -n), any
893  * directory entries left in this database are reset during final cleanup
894  * operations of pax. Entries are hashed by inode number for fast lookup.
895  */
896 
897 /*
898  * atdir_start()
899  *	create the directory access time database for directories READ by pax.
900  * Return:
901  *	0 is created ok, -1 otherwise.
902  */
903 
904 int
905 atdir_start(void)
906 {
907 	if (atab != NULL)
908 		return(0);
909  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
910 		paxwarn(1,"Cannot allocate space for directory access time table");
911 		return(-1);
912 	}
913 	return(0);
914 }
915 
916 
917 /*
918  * atdir_end()
919  *	walk through the directory access time table and reset the access time
920  *	of any directory who still has an entry left in the database. These
921  *	entries are for directories READ by pax
922  */
923 
924 void
925 atdir_end(void)
926 {
927 	ATDIR *pt;
928 	int i;
929 
930 	if (atab == NULL)
931 		return;
932 	/*
933 	 * for each non-empty hash table entry reset all the directories
934 	 * chained there.
935 	 */
936 	for (i = 0; i < A_TAB_SZ; ++i) {
937 		if ((pt = atab[i]) == NULL)
938 			continue;
939 		/*
940 		 * remember to force the times, set_ftime() looks at pmtime
941 		 * and patime, which only applies to things CREATED by pax,
942 		 * not read by pax. Read time reset is controlled by -t.
943 		 */
944 		for (; pt != NULL; pt = pt->fow)
945 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
946 	}
947 }
948 
949 /*
950  * add_atdir()
951  *	add a directory to the directory access time table. Table is hashed
952  *	and chained by inode number. This is for directories READ by pax
953  */
954 
955 void
956 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
957 {
958 	ATDIR *pt;
959 	u_int indx;
960 
961 	if (atab == NULL)
962 		return;
963 
964 	/*
965 	 * make sure this directory is not already in the table, if so just
966 	 * return (the older entry always has the correct time). The only
967 	 * way this will happen is when the same subtree can be traversed by
968 	 * different args to pax and the -n option is aborting fts out of a
969 	 * subtree before all the post-order visits have been made.
970 	 */
971 	indx = ((unsigned)ino) % A_TAB_SZ;
972 	if ((pt = atab[indx]) != NULL) {
973 		while (pt != NULL) {
974 			if ((pt->ino == ino) && (pt->dev == dev))
975 				break;
976 			pt = pt->fow;
977 		}
978 
979 		/*
980 		 * oops, already there. Leave it alone.
981 		 */
982 		if (pt != NULL)
983 			return;
984 	}
985 
986 	/*
987 	 * add it to the front of the hash chain
988 	 */
989 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
990 		if ((pt->name = strdup(fname)) != NULL) {
991 			pt->dev = dev;
992 			pt->ino = ino;
993 			pt->mtime = mtime;
994 			pt->atime = atime;
995 			pt->fow = atab[indx];
996 			atab[indx] = pt;
997 			return;
998 		}
999 		(void)free((char *)pt);
1000 	}
1001 
1002 	paxwarn(1, "Directory access time reset table ran out of memory");
1003 	return;
1004 }
1005 
1006 /*
1007  * get_atdir()
1008  *	look up a directory by inode and device number to obtain the access
1009  *	and modification time you want to set to. If found, the modification
1010  *	and access time parameters are set and the entry is removed from the
1011  *	table (as it is no longer needed). These are for directories READ by
1012  *	pax
1013  * Return:
1014  *	0 if found, -1 if not found.
1015  */
1016 
1017 int
1018 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1019 {
1020 	ATDIR *pt;
1021 	ATDIR **ppt;
1022 	u_int indx;
1023 
1024 	if (atab == NULL)
1025 		return(-1);
1026 	/*
1027 	 * hash by inode and search the chain for an inode and device match
1028 	 */
1029 	indx = ((unsigned)ino) % A_TAB_SZ;
1030 	if ((pt = atab[indx]) == NULL)
1031 		return(-1);
1032 
1033 	ppt = &(atab[indx]);
1034 	while (pt != NULL) {
1035 		if ((pt->ino == ino) && (pt->dev == dev))
1036 			break;
1037 		/*
1038 		 * no match, go to next one
1039 		 */
1040 		ppt = &(pt->fow);
1041 		pt = pt->fow;
1042 	}
1043 
1044 	/*
1045 	 * return if we did not find it.
1046 	 */
1047 	if (pt == NULL)
1048 		return(-1);
1049 
1050 	/*
1051 	 * found it. return the times and remove the entry from the table.
1052 	 */
1053 	*ppt = pt->fow;
1054 	*mtime = pt->mtime;
1055 	*atime = pt->atime;
1056 	(void)free((char *)pt->name);
1057 	(void)free((char *)pt);
1058 	return(0);
1059 }
1060 
1061 /*
1062  * directory access mode and time storage routines (for directories CREATED
1063  * by pax).
1064  *
1065  * Pax requires that extracted directories, by default, have their access/mod
1066  * times and permissions set to the values specified in the archive. During the
1067  * actions of extracting (and creating the destination subtree during -rw copy)
1068  * directories extracted may be modified after being created. Even worse is
1069  * that these directories may have been created with file permissions which
1070  * prohibits any descendants of these directories from being extracted. When
1071  * directories are created by pax, access rights may be added to permit the
1072  * creation of files in their subtree. Every time pax creates a directory, the
1073  * times and file permissions specified by the archive are stored. After all
1074  * files have been extracted (or copied), these directories have their times
1075  * and file modes reset to the stored values. The directory info is restored in
1076  * reverse order as entries were added to the data file from root to leaf. To
1077  * restore atime properly, we must go backwards. The data file consists of
1078  * records with two parts, the file name followed by a DIRDATA trailer. The
1079  * fixed sized trailer contains the size of the name plus the off_t location in
1080  * the file. To restore we work backwards through the file reading the trailer
1081  * then the file name.
1082  */
1083 
1084 /*
1085  * dir_start()
1086  *	set up the directory time and file mode storage for directories CREATED
1087  *	by pax.
1088  * Return:
1089  *	0 if ok, -1 otherwise
1090  */
1091 
1092 int
1093 dir_start(void)
1094 {
1095 
1096 	if (dirfd != -1)
1097 		return(0);
1098 
1099 	/*
1100 	 * unlink the file so it goes away at termination by itself
1101 	 */
1102 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1103 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1104 		(void)unlink(tempfile);
1105 		return(0);
1106 	}
1107 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1108 	    tempfile);
1109 	return(-1);
1110 }
1111 
1112 /*
1113  * add_dir()
1114  *	add the mode and times for a newly CREATED directory
1115  *	name is name of the directory, psb the stat buffer with the data in it,
1116  *	frc_mode is a flag that says whether to force the setting of the mode
1117  *	(ignoring the user set values for preserving file mode). Frc_mode is
1118  *	for the case where we created a file and found that the resulting
1119  *	directory was not writeable and the user asked for file modes to NOT
1120  *	be preserved. (we have to preserve what was created by default, so we
1121  *	have to force the setting at the end. this is stated explicitly in the
1122  *	pax spec)
1123  */
1124 
1125 void
1126 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1127 {
1128 	DIRDATA dblk;
1129 
1130 	if (dirfd < 0)
1131 		return;
1132 
1133 	/*
1134 	 * get current position (where file name will start) so we can store it
1135 	 * in the trailer
1136 	 */
1137 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1138 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1139 		return;
1140 	}
1141 
1142 	/*
1143 	 * write the file name followed by the trailer
1144 	 */
1145 	dblk.nlen = nlen + 1;
1146 	dblk.mode = psb->st_mode & 0xffff;
1147 	dblk.mtime = psb->st_mtime;
1148 	dblk.atime = psb->st_atime;
1149 	dblk.frc_mode = frc_mode;
1150 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1151 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1152 		++dircnt;
1153 		return;
1154 	}
1155 
1156 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1157 	return;
1158 }
1159 
1160 /*
1161  * proc_dir()
1162  *	process all file modes and times stored for directories CREATED
1163  *	by pax
1164  */
1165 
1166 void
1167 proc_dir(void)
1168 {
1169 	char name[PAXPATHLEN+1];
1170 	DIRDATA dblk;
1171 	u_long cnt;
1172 
1173 	if (dirfd < 0)
1174 		return;
1175 	/*
1176 	 * read backwards through the file and process each directory
1177 	 */
1178 	for (cnt = 0; cnt < dircnt; ++cnt) {
1179 		/*
1180 		 * read the trailer, then the file name, if this fails
1181 		 * just give up.
1182 		 */
1183 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1184 			break;
1185 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1186 			break;
1187 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1188 			break;
1189 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1190 			break;
1191 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1192 			break;
1193 
1194 		/*
1195 		 * frc_mode set, make sure we set the file modes even if
1196 		 * the user didn't ask for it (see file_subs.c for more info)
1197 		 */
1198 		if (pmode || dblk.frc_mode)
1199 			set_pmode(name, dblk.mode);
1200 		if (patime || pmtime)
1201 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1202 	}
1203 
1204 	(void)close(dirfd);
1205 	dirfd = -1;
1206 	if (cnt != dircnt)
1207 		paxwarn(1,"Unable to set mode and times for created directories");
1208 	return;
1209 }
1210 
1211 /*
1212  * database independent routines
1213  */
1214 
1215 /*
1216  * st_hash()
1217  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1218  *	end of file, as this provides far better distribution than any other
1219  *	part of the name. For performance reasons we only care about the last
1220  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1221  *	name). Was tested on 500,000 name file tree traversal from the root
1222  *	and gave almost a perfectly uniform distribution of keys when used with
1223  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1224  *	chars at a time and pads with 0 for last addition.
1225  * Return:
1226  *	the hash value of the string MOD (%) the table size.
1227  */
1228 
1229 u_int
1230 st_hash(char *name, int len, int tabsz)
1231 {
1232 	char *pt;
1233 	char *dest;
1234 	char *end;
1235 	int i;
1236 	u_int key = 0;
1237 	int steps;
1238 	int res;
1239 	u_int val;
1240 
1241 	/*
1242 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1243 	 * time here (remember these are pathnames, the tail is what will
1244 	 * spread out the keys)
1245 	 */
1246 	if (len > MAXKEYLEN) {
1247 		pt = &(name[len - MAXKEYLEN]);
1248 		len = MAXKEYLEN;
1249 	} else
1250 		pt = name;
1251 
1252 	/*
1253 	 * calculate the number of u_int size steps in the string and if
1254 	 * there is a runt to deal with
1255 	 */
1256 	steps = len/sizeof(u_int);
1257 	res = len % sizeof(u_int);
1258 
1259 	/*
1260 	 * add up the value of the string in unsigned integer sized pieces
1261 	 * too bad we cannot have unsigned int aligned strings, then we
1262 	 * could avoid the expensive copy.
1263 	 */
1264 	for (i = 0; i < steps; ++i) {
1265 		end = pt + sizeof(u_int);
1266 		dest = (char *)&val;
1267 		while (pt < end)
1268 			*dest++ = *pt++;
1269 		key += val;
1270 	}
1271 
1272 	/*
1273 	 * add in the runt padded with zero to the right
1274 	 */
1275 	if (res) {
1276 		val = 0;
1277 		end = pt + res;
1278 		dest = (char *)&val;
1279 		while (pt < end)
1280 			*dest++ = *pt++;
1281 		key += val;
1282 	}
1283 
1284 	/*
1285 	 * return the result mod the table size
1286 	 */
1287 	return(key % tabsz);
1288 }
1289