1 /* $OpenBSD: tables.c,v 1.55 2023/11/26 16:04:17 espie Exp $ */ 2 /* $NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $ */ 3 4 /*- 5 * Copyright (c) 1992 Keith Muller. 6 * Copyright (c) 1992, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * Keith Muller of the University of California, San Diego. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #include <sys/types.h> 38 #include <sys/stat.h> 39 #include <errno.h> 40 #include <fcntl.h> 41 #include <limits.h> 42 #include <signal.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <unistd.h> 47 48 #include "pax.h" 49 #include "extern.h" 50 static u_int st_hash(const char *, int, int); 51 52 /* 53 * Routines for controlling the contents of all the different databases pax 54 * keeps. Tables are dynamically created only when they are needed. The 55 * goal was speed and the ability to work with HUGE archives. The databases 56 * were kept simple, but do have complex rules for when the contents change. 57 * As of this writing, the posix library functions were more complex than 58 * needed for this application (pax databases have very short lifetimes and 59 * do not survive after pax is finished). Pax is required to handle very 60 * large archives. These database routines carefully combine memory usage and 61 * temporary file storage in ways which will not significantly impact runtime 62 * performance while allowing the largest possible archives to be handled. 63 * Trying to force the fit to the posix database routines was not considered 64 * time well spent. 65 */ 66 67 /* 68 * data structures and constants used by the different databases kept by pax 69 */ 70 71 /* 72 * Hash Table Sizes MUST BE PRIME, if set too small performance suffers. 73 * Probably safe to expect 500000 inodes per tape. Assuming good key 74 * distribution (inodes) chains of under 50 long (worst case) is ok. 75 */ 76 #define L_TAB_SZ 2503 /* hard link hash table size */ 77 #define F_TAB_SZ 50503 /* file time hash table size */ 78 #define N_TAB_SZ 541 /* interactive rename hash table */ 79 #define D_TAB_SZ 317 /* unique device mapping table */ 80 #define A_TAB_SZ 317 /* ftree dir access time reset table */ 81 #define SL_TAB_SZ 317 /* escape symlink tables */ 82 #define MAXKEYLEN 64 /* max number of chars for hash */ 83 #define DIRP_SIZE 64 /* initial size of created dir table */ 84 85 /* 86 * file hard link structure (hashed by dev/ino and chained) used to find the 87 * hard links in a file system or with some archive formats (cpio) 88 */ 89 typedef struct hrdlnk { 90 ino_t ino; /* files inode number */ 91 char *name; /* name of first file seen with this ino/dev */ 92 dev_t dev; /* files device number */ 93 u_long nlink; /* expected link count */ 94 struct hrdlnk *fow; 95 } HRDLNK; 96 97 /* 98 * Archive write update file time table (the -u, -C flag), hashed by filename. 99 * Filenames are stored in a scratch file at seek offset into the file. The 100 * file time (mod time) and the file name length (for a quick check) are 101 * stored in a hash table node. We were forced to use a scratch file because 102 * with -u, the mtime for every node in the archive must always be available 103 * to compare against (and this data can get REALLY large with big archives). 104 * By being careful to read only when we have a good chance of a match, the 105 * performance loss is not measurable (and the size of the archive we can 106 * handle is greatly increased). 107 */ 108 typedef struct ftm { 109 off_t seek; /* location in scratch file */ 110 struct timespec mtim; /* files last modification time */ 111 struct ftm *fow; 112 int namelen; /* file name length */ 113 } FTM; 114 115 /* 116 * Interactive rename table (-i flag), hashed by orig filename. 117 * We assume this will not be a large table as this mapping data can only be 118 * obtained through interactive input by the user. Nobody is going to type in 119 * changes for 500000 files? We use chaining to resolve collisions. 120 */ 121 122 typedef struct namt { 123 char *oname; /* old name */ 124 char *nname; /* new name typed in by the user */ 125 struct namt *fow; 126 } NAMT; 127 128 /* 129 * Unique device mapping tables. Some protocols (e.g. cpio) require that the 130 * <c_dev,c_ino> pair will uniquely identify a file in an archive unless they 131 * are links to the same file. Appending to archives can break this. For those 132 * protocols that have this requirement we map c_dev to a unique value not seen 133 * in the archive when we append. We also try to handle inode truncation with 134 * this table. (When the inode field in the archive header are too small, we 135 * remap the dev on writes to remove accidental collisions). 136 * 137 * The list is hashed by device number using chain collision resolution. Off of 138 * each DEVT are linked the various remaps for this device based on those bits 139 * in the inode which were truncated. For example if we are just remapping to 140 * avoid a device number during an update append, off the DEVT we would have 141 * only a single DLIST that has a truncation id of 0 (no inode bits were 142 * stripped for this device so far). When we spot inode truncation we create 143 * a new mapping based on the set of bits in the inode which were stripped off. 144 * so if the top four bits of the inode are stripped and they have a pattern of 145 * 0110...... (where . are those bits not truncated) we would have a mapping 146 * assigned for all inodes that has the same 0110.... pattern (with this dev 147 * number of course). This keeps the mapping sparse and should be able to store 148 * close to the limit of files which can be represented by the optimal 149 * combination of dev and inode bits, and without creating a fouled up archive. 150 * Note we also remap truncated devs in the same way (an exercise for the 151 * dedicated reader; always wanted to say that...:) 152 */ 153 154 typedef struct devt { 155 dev_t dev; /* the orig device number we now have to map */ 156 struct devt *fow; /* new device map list */ 157 struct dlist *list; /* map list based on inode truncation bits */ 158 } DEVT; 159 160 typedef struct dlist { 161 ino_t trunc_bits; /* truncation pattern for a specific map */ 162 dev_t dev; /* the new device id we use */ 163 struct dlist *fow; 164 } DLIST; 165 166 /* 167 * ftree directory access time reset table. When we are done with a 168 * subtree we reset the access and mod time of the directory when the tflag is 169 * set. Not really explicitly specified in the pax spec, but easy and fast to 170 * do (and this may have even been intended in the spec, it is not clear). 171 * table is hashed by inode with chaining. 172 */ 173 174 typedef struct atdir { 175 struct file_times ft; 176 struct atdir *fow; 177 } ATDIR; 178 179 /* 180 * created directory time and mode storage entry. After pax is finished during 181 * extraction or copy, we must reset directory access modes and times that 182 * may have been modified after creation (they no longer have the specified 183 * times and/or modes). We must reset time in the reverse order of creation, 184 * because entries are added from the top of the file tree to the bottom. 185 * We MUST reset times from leaf to root (it will not work the other 186 * direction). 187 */ 188 189 typedef struct dirdata { 190 struct file_times ft; 191 u_int16_t mode; /* file mode to restore */ 192 u_int16_t frc_mode; /* do we force mode settings? */ 193 } DIRDATA; 194 195 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 196 static FTM **ftab = NULL; /* file time table for updating arch */ 197 static NAMT **ntab = NULL; /* interactive rename storage table */ 198 #ifndef NOCPIO 199 static DEVT **dtab = NULL; /* device/inode mapping tables */ 200 #endif 201 static ATDIR **atab = NULL; /* file tree directory time reset table */ 202 static DIRDATA *dirp = NULL; /* storage for setting created dir time/mode */ 203 static size_t dirsize; /* size of dirp table */ 204 static size_t dircnt = 0; /* entries in dir time/mode storage */ 205 static int ffd = -1; /* tmp file for file time table name storage */ 206 207 /* 208 * hard link table routines 209 * 210 * The hard link table tries to detect hard links to files using the device and 211 * inode values. We do this when writing an archive, so we can tell the format 212 * write routine that this file is a hard link to another file. The format 213 * write routine then can store this file in whatever way it wants (as a hard 214 * link if the format supports that like tar, or ignore this info like cpio). 215 * (Actually a field in the format driver table tells us if the format wants 216 * hard link info. if not, we do not waste time looking for them). We also use 217 * the same table when reading an archive. In that situation, this table is 218 * used by the format read routine to detect hard links from stored dev and 219 * inode numbers (like cpio). This will allow pax to create a link when one 220 * can be detected by the archive format. 221 */ 222 223 /* 224 * lnk_start 225 * Creates the hard link table. 226 * Return: 227 * 0 if created, -1 if failure 228 */ 229 230 int 231 lnk_start(void) 232 { 233 if (ltab != NULL) 234 return(0); 235 if ((ltab = calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 236 paxwarn(1, "Cannot allocate memory for hard link table"); 237 return(-1); 238 } 239 return(0); 240 } 241 242 /* 243 * chk_lnk() 244 * Looks up entry in hard link hash table. If found, it copies the name 245 * of the file it is linked to (we already saw that file) into ln_name. 246 * lnkcnt is decremented and if goes to 1 the node is deleted from the 247 * database. (We have seen all the links to this file). If not found, 248 * we add the file to the database if it has the potential for having 249 * hard links to other files we may process (it has a link count > 1) 250 * Return: 251 * if found returns 1; if not found returns 0; -1 on error 252 */ 253 254 int 255 chk_lnk(ARCHD *arcn) 256 { 257 HRDLNK *pt; 258 HRDLNK **ppt; 259 u_int indx; 260 261 if (ltab == NULL) 262 return(-1); 263 /* 264 * ignore those nodes that cannot have hard links 265 */ 266 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 267 return(0); 268 269 /* 270 * hash inode number and look for this file 271 */ 272 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 273 if ((pt = ltab[indx]) != NULL) { 274 /* 275 * its hash chain in not empty, walk down looking for it 276 */ 277 ppt = &(ltab[indx]); 278 while (pt != NULL) { 279 if ((pt->ino == arcn->sb.st_ino) && 280 (pt->dev == arcn->sb.st_dev)) 281 break; 282 ppt = &(pt->fow); 283 pt = pt->fow; 284 } 285 286 if (pt != NULL) { 287 /* 288 * found a link. set the node type and copy in the 289 * name of the file it is to link to. we need to 290 * handle hardlinks to regular files differently than 291 * other links. 292 */ 293 arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name, 294 sizeof(arcn->ln_name)); 295 /* XXX truncate? */ 296 if ((size_t)arcn->nlen >= sizeof(arcn->name)) 297 arcn->nlen = sizeof(arcn->name) - 1; 298 if (arcn->type == PAX_REG) 299 arcn->type = PAX_HRG; 300 else 301 arcn->type = PAX_HLK; 302 303 /* 304 * if we have found all the links to this file, remove 305 * it from the database 306 */ 307 if (--pt->nlink <= 1) { 308 *ppt = pt->fow; 309 free(pt->name); 310 free(pt); 311 } 312 return(1); 313 } 314 } 315 316 /* 317 * we never saw this file before. It has links so we add it to the 318 * front of this hash chain 319 */ 320 if ((pt = malloc(sizeof(HRDLNK))) != NULL) { 321 if ((pt->name = strdup(arcn->name)) != NULL) { 322 pt->dev = arcn->sb.st_dev; 323 pt->ino = arcn->sb.st_ino; 324 pt->nlink = arcn->sb.st_nlink; 325 pt->fow = ltab[indx]; 326 ltab[indx] = pt; 327 return(0); 328 } 329 free(pt); 330 } 331 332 paxwarn(1, "Hard link table out of memory"); 333 return(-1); 334 } 335 336 /* 337 * purg_lnk 338 * remove reference for a file that we may have added to the data base as 339 * a potential source for hard links. We ended up not using the file, so 340 * we do not want to accidently point another file at it later on. 341 */ 342 343 void 344 purg_lnk(ARCHD *arcn) 345 { 346 HRDLNK *pt; 347 HRDLNK **ppt; 348 u_int indx; 349 350 if (ltab == NULL) 351 return; 352 /* 353 * do not bother to look if it could not be in the database 354 */ 355 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 356 PAX_IS_HARDLINK(arcn->type)) 357 return; 358 359 /* 360 * find the hash chain for this inode value, if empty return 361 */ 362 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 363 if ((pt = ltab[indx]) == NULL) 364 return; 365 366 /* 367 * walk down the list looking for the inode/dev pair, unlink and 368 * free if found 369 */ 370 ppt = &(ltab[indx]); 371 while (pt != NULL) { 372 if ((pt->ino == arcn->sb.st_ino) && 373 (pt->dev == arcn->sb.st_dev)) 374 break; 375 ppt = &(pt->fow); 376 pt = pt->fow; 377 } 378 if (pt == NULL) 379 return; 380 381 /* 382 * remove and free it 383 */ 384 *ppt = pt->fow; 385 free(pt->name); 386 free(pt); 387 } 388 389 /* 390 * lnk_end() 391 * pull apart a existing link table so we can reuse it. We do this between 392 * read and write phases of append with update. (The format may have 393 * used the link table, and we need to start with a fresh table for the 394 * write phase 395 */ 396 397 void 398 lnk_end(void) 399 { 400 int i; 401 HRDLNK *pt; 402 HRDLNK *ppt; 403 404 if (ltab == NULL) 405 return; 406 407 for (i = 0; i < L_TAB_SZ; ++i) { 408 if (ltab[i] == NULL) 409 continue; 410 pt = ltab[i]; 411 ltab[i] = NULL; 412 413 /* 414 * free up each entry on this chain 415 */ 416 while (pt != NULL) { 417 ppt = pt; 418 pt = ppt->fow; 419 free(ppt->name); 420 free(ppt); 421 } 422 } 423 } 424 425 /* 426 * modification time table routines 427 * 428 * The modification time table keeps track of last modification times for all 429 * files stored in an archive during a write phase when -u is set. We only 430 * add a file to the archive if it is newer than a file with the same name 431 * already stored on the archive (if there is no other file with the same 432 * name on the archive it is added). This applies to writes and appends. 433 * An append with an -u must read the archive and store the modification time 434 * for every file on that archive before starting the write phase. It is clear 435 * that this is one HUGE database. To save memory space, the actual file names 436 * are stored in a scratch file and indexed by an in-memory hash table. The 437 * hash table is indexed by hashing the file path. The nodes in the table store 438 * the length of the filename and the lseek offset within the scratch file 439 * where the actual name is stored. Since there are never any deletions from 440 * this table, fragmentation of the scratch file is never a issue. Lookups 441 * seem to not exhibit any locality at all (files in the database are rarely 442 * looked up more than once...), so caching is just a waste of memory. The 443 * only limitation is the amount of scratch file space available to store the 444 * path names. 445 */ 446 447 /* 448 * ftime_start() 449 * create the file time hash table and open for read/write the scratch 450 * file. (after created it is unlinked, so when we exit we leave 451 * no witnesses). 452 * Return: 453 * 0 if the table and file was created ok, -1 otherwise 454 */ 455 456 int 457 ftime_start(void) 458 { 459 460 if (ftab != NULL) 461 return(0); 462 if ((ftab = calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 463 paxwarn(1, "Cannot allocate memory for file time table"); 464 return(-1); 465 } 466 467 /* 468 * get random name and create temporary scratch file, unlink name 469 * so it will get removed on exit 470 */ 471 memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE)); 472 if ((ffd = mkstemp(tempfile)) == -1) { 473 syswarn(1, errno, "Unable to create temporary file: %s", 474 tempfile); 475 return(-1); 476 } 477 (void)unlink(tempfile); 478 479 return(0); 480 } 481 482 /* 483 * chk_ftime() 484 * looks up entry in file time hash table. If not found, the file is 485 * added to the hash table and the file named stored in the scratch file. 486 * If a file with the same name is found, the file times are compared and 487 * the most recent file time is retained. If the new file was younger (or 488 * was not in the database) the new file is selected for storage. 489 * Return: 490 * 0 if file should be added to the archive, 1 if it should be skipped, 491 * -1 on error 492 */ 493 494 int 495 chk_ftime(ARCHD *arcn) 496 { 497 FTM *pt; 498 int namelen; 499 u_int indx; 500 char ckname[PAXPATHLEN+1]; 501 502 /* 503 * no info, go ahead and add to archive 504 */ 505 if (ftab == NULL) 506 return(0); 507 508 /* 509 * hash the pathname and look up in table 510 */ 511 namelen = arcn->nlen; 512 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 513 if ((pt = ftab[indx]) != NULL) { 514 /* 515 * the hash chain is not empty, walk down looking for match 516 * only read up the path names if the lengths match, speeds 517 * up the search a lot 518 */ 519 while (pt != NULL) { 520 if (pt->namelen == namelen) { 521 /* 522 * potential match, have to read the name 523 * from the scratch file. 524 */ 525 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 526 syswarn(1, errno, 527 "Failed ftime table seek"); 528 return(-1); 529 } 530 if (read(ffd, ckname, namelen) != namelen) { 531 syswarn(1, errno, 532 "Failed ftime table read"); 533 return(-1); 534 } 535 536 /* 537 * if the names match, we are done 538 */ 539 if (!strncmp(ckname, arcn->name, namelen)) 540 break; 541 } 542 543 /* 544 * try the next entry on the chain 545 */ 546 pt = pt->fow; 547 } 548 549 if (pt != NULL) { 550 /* 551 * found the file, compare the times, save the newer 552 */ 553 if (timespeccmp(&arcn->sb.st_mtim, &pt->mtim, >)) { 554 /* 555 * file is newer 556 */ 557 pt->mtim = arcn->sb.st_mtim; 558 return(0); 559 } 560 /* 561 * file is older 562 */ 563 return(1); 564 } 565 } 566 567 /* 568 * not in table, add it 569 */ 570 if ((pt = malloc(sizeof(FTM))) != NULL) { 571 /* 572 * add the name at the end of the scratch file, saving the 573 * offset. add the file to the head of the hash chain 574 */ 575 if ((pt->seek = lseek(ffd, 0, SEEK_END)) >= 0) { 576 if (write(ffd, arcn->name, namelen) == namelen) { 577 pt->mtim = arcn->sb.st_mtim; 578 pt->namelen = namelen; 579 pt->fow = ftab[indx]; 580 ftab[indx] = pt; 581 return(0); 582 } 583 syswarn(1, errno, "Failed write to file time table"); 584 } else 585 syswarn(1, errno, "Failed seek on file time table"); 586 } else 587 paxwarn(1, "File time table ran out of memory"); 588 589 if (pt != NULL) 590 free(pt); 591 return(-1); 592 } 593 594 /* 595 * escaping (absolute or w/"..") symlink table routines 596 * 597 * By default, an archive shouldn't be able extract to outside of the 598 * current directory. What should we do if the archive contains a symlink 599 * whose value is either absolute or contains ".." components? What we'll 600 * do is initially create the path as an empty file (to block attempts to 601 * reference _through_ it) and instead record its path and desired 602 * final value and mode. Then once all the other archive 603 * members are created (but before the pass to set timestamps on 604 * directories) we'll process those records, replacing the placeholder with 605 * the correct symlink and setting them to the correct mode, owner, group, 606 * and timestamps. 607 * 608 * Note: we also need to handle hardlinks to symlinks (barf) as well as 609 * hardlinks whose target is replaced by a later entry in the archive (barf^2). 610 * 611 * So we track things by dev+ino of the placeholder file, associating with 612 * that the value and mode of the final symlink and a list of paths that 613 * should all be hardlinks of that. We'll 'store' the symlink's desired 614 * timestamps, owner, and group by setting them on the placeholder file. 615 * 616 * The operations are: 617 * a) create an escaping symlink: create the placeholder file and add an entry 618 * for the new link 619 * b) create a hardlink: do the link. If the target turns out to be a 620 * zero-length file whose dev+ino are in the symlink table, then add this 621 * path to the list of names for that link 622 * c) perform deferred processing: for each entry, check each associated path: 623 * if it's a zero-length file with the correct dev+ino then recreate it as 624 * the specified symlink or hardlink to the first such 625 */ 626 627 struct slpath { 628 char *sp_path; 629 struct slpath *sp_next; 630 }; 631 struct slinode { 632 ino_t sli_ino; 633 char *sli_value; 634 struct slpath sli_paths; 635 struct slinode *sli_fow; /* hash table chain */ 636 dev_t sli_dev; 637 mode_t sli_mode; 638 }; 639 640 static struct slinode **slitab = NULL; 641 642 /* 643 * sltab_start() 644 * create the hash table 645 * Return: 646 * 0 if the table and file was created ok, -1 otherwise 647 */ 648 649 int 650 sltab_start(void) 651 { 652 653 if ((slitab = calloc(SL_TAB_SZ, sizeof *slitab)) == NULL) { 654 syswarn(1, errno, "symlink table"); 655 return(-1); 656 } 657 658 return(0); 659 } 660 661 /* 662 * sltab_add_sym() 663 * Create the placeholder and tracking info for an escaping symlink. 664 * Return: 665 * 0 on success, -1 otherwise 666 */ 667 668 int 669 sltab_add_sym(const char *path0, const char *value0, mode_t mode) 670 { 671 struct stat sb; 672 struct slinode *s; 673 struct slpath *p; 674 char *path, *value; 675 u_int indx; 676 int fd; 677 678 /* create the placeholder */ 679 fd = open(path0, O_WRONLY | O_CREAT | O_EXCL | O_CLOEXEC, 0600); 680 if (fd == -1) 681 return (-1); 682 if (fstat(fd, &sb) == -1) { 683 unlink(path0); 684 close(fd); 685 return (-1); 686 } 687 close(fd); 688 689 if (havechd && *path0 != '/') { 690 if ((path = realpath(path0, NULL)) == NULL) { 691 syswarn(1, errno, "Cannot canonicalize %s", path0); 692 unlink(path0); 693 return (-1); 694 } 695 } else if ((path = strdup(path0)) == NULL) { 696 syswarn(1, errno, "defered symlink path"); 697 unlink(path0); 698 return (-1); 699 } 700 if ((value = strdup(value0)) == NULL) { 701 syswarn(1, errno, "defered symlink value"); 702 unlink(path); 703 free(path); 704 return (-1); 705 } 706 707 /* now check the hash table for conflicting entry */ 708 indx = (sb.st_ino ^ sb.st_dev) % SL_TAB_SZ; 709 for (s = slitab[indx]; s != NULL; s = s->sli_fow) { 710 if (s->sli_ino != sb.st_ino || s->sli_dev != sb.st_dev) 711 continue; 712 713 /* 714 * One of our placeholders got removed behind our back and 715 * we've reused the inode. Weird, but clean up the mess. 716 */ 717 free(s->sli_value); 718 free(s->sli_paths.sp_path); 719 p = s->sli_paths.sp_next; 720 while (p != NULL) { 721 struct slpath *next_p = p->sp_next; 722 723 free(p->sp_path); 724 free(p); 725 p = next_p; 726 } 727 goto set_value; 728 } 729 730 /* Normal case: create a new node */ 731 if ((s = malloc(sizeof *s)) == NULL) { 732 syswarn(1, errno, "defered symlink"); 733 unlink(path); 734 free(path); 735 free(value); 736 return (-1); 737 } 738 s->sli_ino = sb.st_ino; 739 s->sli_dev = sb.st_dev; 740 s->sli_fow = slitab[indx]; 741 slitab[indx] = s; 742 743 set_value: 744 s->sli_paths.sp_path = path; 745 s->sli_paths.sp_next = NULL; 746 s->sli_value = value; 747 s->sli_mode = mode; 748 return (0); 749 } 750 751 /* 752 * sltab_add_link() 753 * A hardlink was created; if it looks like a placeholder, handle the 754 * tracking. 755 * Return: 756 * 0 if things are ok, -1 if something went wrong 757 */ 758 759 int 760 sltab_add_link(const char *path, const struct stat *sb) 761 { 762 struct slinode *s; 763 struct slpath *p; 764 u_int indx; 765 766 if (!S_ISREG(sb->st_mode) || sb->st_size != 0) 767 return (1); 768 769 /* find the hash table entry for this hardlink */ 770 indx = (sb->st_ino ^ sb->st_dev) % SL_TAB_SZ; 771 for (s = slitab[indx]; s != NULL; s = s->sli_fow) { 772 if (s->sli_ino != sb->st_ino || s->sli_dev != sb->st_dev) 773 continue; 774 775 if ((p = malloc(sizeof *p)) == NULL) { 776 syswarn(1, errno, "deferred symlink hardlink"); 777 return (-1); 778 } 779 if (havechd && *path != '/') { 780 if ((p->sp_path = realpath(path, NULL)) == NULL) { 781 syswarn(1, errno, "Cannot canonicalize %s", 782 path); 783 free(p); 784 return (-1); 785 } 786 } else if ((p->sp_path = strdup(path)) == NULL) { 787 syswarn(1, errno, "defered symlink hardlink path"); 788 free(p); 789 return (-1); 790 } 791 792 /* link it in */ 793 p->sp_next = s->sli_paths.sp_next; 794 s->sli_paths.sp_next = p; 795 return (0); 796 } 797 798 /* not found */ 799 return (1); 800 } 801 802 803 static int 804 sltab_process_one(struct slinode *s, struct slpath *p, const char *first, 805 int in_sig) 806 { 807 struct stat sb; 808 char *path = p->sp_path; 809 mode_t mode; 810 int err; 811 812 /* 813 * is it the expected placeholder? This can fail legimately 814 * if the archive overwrote the link with another, later entry, 815 * so don't warn. 816 */ 817 if (stat(path, &sb) != 0 || !S_ISREG(sb.st_mode) || sb.st_size != 0 || 818 sb.st_ino != s->sli_ino || sb.st_dev != s->sli_dev) 819 return (0); 820 821 if (unlink(path) && errno != ENOENT) { 822 if (!in_sig) 823 syswarn(1, errno, "deferred symlink removal"); 824 return (0); 825 } 826 827 err = 0; 828 if (first != NULL) { 829 /* add another hardlink to the existing symlink */ 830 if (linkat(AT_FDCWD, first, AT_FDCWD, path, 0) == 0) 831 return (0); 832 833 /* 834 * Couldn't hardlink the symlink for some reason, so we'll 835 * try creating it as its own symlink, but save the error 836 * for reporting if that fails. 837 */ 838 err = errno; 839 } 840 841 if (symlink(s->sli_value, path)) { 842 if (!in_sig) { 843 const char *qualifier = ""; 844 if (err) 845 qualifier = " hardlink"; 846 else 847 err = errno; 848 849 syswarn(1, err, "deferred symlink%s: %s", 850 qualifier, path); 851 } 852 return (0); 853 } 854 855 /* success, so set the id, mode, and times */ 856 mode = s->sli_mode; 857 if (pids) { 858 /* if can't set the ids, force the set[ug]id bits off */ 859 if (set_ids(path, sb.st_uid, sb.st_gid)) 860 mode &= ~(SETBITS); 861 } 862 863 if (pmode) 864 set_pmode(path, mode); 865 866 if (patime || pmtime) 867 set_ftime(path, &sb.st_mtim, &sb.st_atim, 0); 868 869 /* 870 * If we tried to link to first but failed, then this new symlink 871 * might be a better one to try in the future. Guess from the errno. 872 */ 873 if (err == 0 || err == ENOENT || err == EMLINK || err == EOPNOTSUPP) 874 return (1); 875 return (0); 876 } 877 878 /* 879 * sltab_process() 880 * Do all the delayed process for escape symlinks 881 */ 882 883 void 884 sltab_process(int in_sig) 885 { 886 struct slinode *s; 887 struct slpath *p; 888 char *first; 889 u_int indx; 890 891 if (slitab == NULL) 892 return; 893 894 /* walk across the entire hash table */ 895 for (indx = 0; indx < SL_TAB_SZ; indx++) { 896 while ((s = slitab[indx]) != NULL) { 897 /* pop this entry */ 898 slitab[indx] = s->sli_fow; 899 900 first = NULL; 901 p = &s->sli_paths; 902 while (1) { 903 struct slpath *next_p; 904 905 if (sltab_process_one(s, p, first, in_sig)) { 906 if (!in_sig) 907 free(first); 908 first = p->sp_path; 909 } else if (!in_sig) 910 free(p->sp_path); 911 912 if ((next_p = p->sp_next) == NULL) 913 break; 914 *p = *next_p; 915 if (!in_sig) 916 free(next_p); 917 } 918 if (!in_sig) { 919 free(first); 920 free(s->sli_value); 921 free(s); 922 } 923 } 924 } 925 if (!in_sig) 926 free(slitab); 927 slitab = NULL; 928 } 929 930 931 /* 932 * Interactive rename table routines 933 * 934 * The interactive rename table keeps track of the new names that the user 935 * assigns to files from tty input. Since this map is unique for each file 936 * we must store it in case there is a reference to the file later in archive 937 * (a link). Otherwise we will be unable to find the file we know was 938 * extracted. The remapping of these files is stored in a memory based hash 939 * table (it is assumed since input must come from /dev/tty, it is unlikely to 940 * be a very large table). 941 */ 942 943 /* 944 * name_start() 945 * create the interactive rename table 946 * Return: 947 * 0 if successful, -1 otherwise 948 */ 949 950 int 951 name_start(void) 952 { 953 if (ntab != NULL) 954 return(0); 955 if ((ntab = calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 956 paxwarn(1, "Cannot allocate memory for interactive rename table"); 957 return(-1); 958 } 959 return(0); 960 } 961 962 /* 963 * add_name() 964 * add the new name to old name mapping just created by the user. 965 * If an old name mapping is found (there may be duplicate names on an 966 * archive) only the most recent is kept. 967 * Return: 968 * 0 if added, -1 otherwise 969 */ 970 971 int 972 add_name(char *oname, int onamelen, char *nname) 973 { 974 NAMT *pt; 975 u_int indx; 976 977 if (ntab == NULL) { 978 /* 979 * should never happen 980 */ 981 paxwarn(0, "No interactive rename table, links may fail"); 982 return(0); 983 } 984 985 /* 986 * look to see if we have already mapped this file, if so we 987 * will update it 988 */ 989 indx = st_hash(oname, onamelen, N_TAB_SZ); 990 if ((pt = ntab[indx]) != NULL) { 991 /* 992 * look down the has chain for the file 993 */ 994 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 995 pt = pt->fow; 996 997 if (pt != NULL) { 998 /* 999 * found an old mapping, replace it with the new one 1000 * the user just input (if it is different) 1001 */ 1002 if (strcmp(nname, pt->nname) == 0) 1003 return(0); 1004 1005 free(pt->nname); 1006 if ((pt->nname = strdup(nname)) == NULL) { 1007 paxwarn(1, "Cannot update rename table"); 1008 return(-1); 1009 } 1010 return(0); 1011 } 1012 } 1013 1014 /* 1015 * this is a new mapping, add it to the table 1016 */ 1017 if ((pt = malloc(sizeof(NAMT))) != NULL) { 1018 if ((pt->oname = strdup(oname)) != NULL) { 1019 if ((pt->nname = strdup(nname)) != NULL) { 1020 pt->fow = ntab[indx]; 1021 ntab[indx] = pt; 1022 return(0); 1023 } 1024 free(pt->oname); 1025 } 1026 free(pt); 1027 } 1028 paxwarn(1, "Interactive rename table out of memory"); 1029 return(-1); 1030 } 1031 1032 /* 1033 * sub_name() 1034 * look up a link name to see if it points at a file that has been 1035 * remapped by the user. If found, the link is adjusted to contain the 1036 * new name (oname is the link to name) 1037 */ 1038 1039 void 1040 sub_name(char *oname, int *onamelen, int onamesize) 1041 { 1042 NAMT *pt; 1043 u_int indx; 1044 1045 if (ntab == NULL) 1046 return; 1047 /* 1048 * look the name up in the hash table 1049 */ 1050 indx = st_hash(oname, *onamelen, N_TAB_SZ); 1051 if ((pt = ntab[indx]) == NULL) 1052 return; 1053 1054 while (pt != NULL) { 1055 /* 1056 * walk down the hash chain looking for a match 1057 */ 1058 if (strcmp(oname, pt->oname) == 0) { 1059 /* 1060 * found it, replace it with the new name 1061 * and return (we know that oname has enough space) 1062 */ 1063 *onamelen = strlcpy(oname, pt->nname, onamesize); 1064 if (*onamelen >= onamesize) 1065 *onamelen = onamesize - 1; /* XXX truncate? */ 1066 return; 1067 } 1068 pt = pt->fow; 1069 } 1070 1071 /* 1072 * no match, just return 1073 */ 1074 } 1075 1076 #ifndef NOCPIO 1077 /* 1078 * device/inode mapping table routines 1079 * (used with formats that store device and inodes fields) 1080 * 1081 * device/inode mapping tables remap the device field in a archive header. The 1082 * device/inode fields are used to determine when files are hard links to each 1083 * other. However these values have very little meaning outside of that. This 1084 * database is used to solve one of two different problems. 1085 * 1086 * 1) when files are appended to an archive, while the new files may have hard 1087 * links to each other, you cannot determine if they have hard links to any 1088 * file already stored on the archive from a prior run of pax. We must assume 1089 * that these inode/device pairs are unique only within a SINGLE run of pax 1090 * (which adds a set of files to an archive). So we have to make sure the 1091 * inode/dev pairs we add each time are always unique. We do this by observing 1092 * while the inode field is very dense, the use of the dev field is fairly 1093 * sparse. Within each run of pax, we remap any device number of a new archive 1094 * member that has a device number used in a prior run and already stored in a 1095 * file on the archive. During the read phase of the append, we store the 1096 * device numbers used and mark them to not be used by any file during the 1097 * write phase. If during write we go to use one of those old device numbers, 1098 * we remap it to a new value. 1099 * 1100 * 2) Often the fields in the archive header used to store these values are 1101 * too small to store the entire value. The result is an inode or device value 1102 * which can be truncated. This really can foul up an archive. With truncation 1103 * we end up creating links between files that are really not links (after 1104 * truncation the inodes are the same value). We address that by detecting 1105 * truncation and forcing a remap of the device field to split truncated 1106 * inodes away from each other. Each truncation creates a pattern of bits that 1107 * are removed. We use this pattern of truncated bits to partition the inodes 1108 * on a single device to many different devices (each one represented by the 1109 * truncated bit pattern). All inodes on the same device that have the same 1110 * truncation pattern are mapped to the same new device. Two inodes that 1111 * truncate to the same value clearly will always have different truncation 1112 * bit patterns, so they will be split from away each other. When we spot 1113 * device truncation we remap the device number to a non truncated value. 1114 * (for more info see table.h for the data structures involved). 1115 */ 1116 1117 static DEVT *chk_dev(dev_t, int); 1118 1119 /* 1120 * dev_start() 1121 * create the device mapping table 1122 * Return: 1123 * 0 if successful, -1 otherwise 1124 */ 1125 1126 int 1127 dev_start(void) 1128 { 1129 if (dtab != NULL) 1130 return(0); 1131 if ((dtab = calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 1132 paxwarn(1, "Cannot allocate memory for device mapping table"); 1133 return(-1); 1134 } 1135 return(0); 1136 } 1137 1138 /* 1139 * add_dev() 1140 * add a device number to the table. this will force the device to be 1141 * remapped to a new value if it be used during a write phase. This 1142 * function is called during the read phase of an append to prohibit the 1143 * use of any device number already in the archive. 1144 * Return: 1145 * 0 if added ok, -1 otherwise 1146 */ 1147 1148 int 1149 add_dev(ARCHD *arcn) 1150 { 1151 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 1152 return(-1); 1153 return(0); 1154 } 1155 1156 /* 1157 * chk_dev() 1158 * check for a device value in the device table. If not found and the add 1159 * flag is set, it is added. This does NOT assign any mapping values, just 1160 * adds the device number as one that need to be remapped. If this device 1161 * is already mapped, just return with a pointer to that entry. 1162 * Return: 1163 * pointer to the entry for this device in the device map table. Null 1164 * if the add flag is not set and the device is not in the table (it is 1165 * not been seen yet). If add is set and the device cannot be added, null 1166 * is returned (indicates an error). 1167 */ 1168 1169 static DEVT * 1170 chk_dev(dev_t dev, int add) 1171 { 1172 DEVT *pt; 1173 u_int indx; 1174 1175 if (dtab == NULL) 1176 return(NULL); 1177 /* 1178 * look to see if this device is already in the table 1179 */ 1180 indx = ((unsigned)dev) % D_TAB_SZ; 1181 if ((pt = dtab[indx]) != NULL) { 1182 while ((pt != NULL) && (pt->dev != dev)) 1183 pt = pt->fow; 1184 1185 /* 1186 * found it, return a pointer to it 1187 */ 1188 if (pt != NULL) 1189 return(pt); 1190 } 1191 1192 /* 1193 * not in table, we add it only if told to as this may just be a check 1194 * to see if a device number is being used. 1195 */ 1196 if (add == 0) 1197 return(NULL); 1198 1199 /* 1200 * allocate a node for this device and add it to the front of the hash 1201 * chain. Note we do not assign remaps values here, so the pt->list 1202 * list must be NULL. 1203 */ 1204 if ((pt = malloc(sizeof(DEVT))) == NULL) { 1205 paxwarn(1, "Device map table out of memory"); 1206 return(NULL); 1207 } 1208 pt->dev = dev; 1209 pt->list = NULL; 1210 pt->fow = dtab[indx]; 1211 dtab[indx] = pt; 1212 return(pt); 1213 } 1214 /* 1215 * map_dev() 1216 * given an inode and device storage mask (the mask has a 1 for each bit 1217 * the archive format is able to store in a header), we check for inode 1218 * and device truncation and remap the device as required. Device mapping 1219 * can also occur when during the read phase of append a device number was 1220 * seen (and was marked as do not use during the write phase). WE ASSUME 1221 * that unsigned longs are the same size or bigger than the fields used 1222 * for ino_t and dev_t. If not the types will have to be changed. 1223 * Return: 1224 * 0 if all ok, -1 otherwise. 1225 */ 1226 1227 int 1228 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask) 1229 { 1230 DEVT *pt; 1231 DLIST *dpt; 1232 static dev_t lastdev = 0; /* next device number to try */ 1233 int trc_ino = 0; 1234 int trc_dev = 0; 1235 ino_t trunc_bits = 0; 1236 ino_t nino; 1237 1238 if (dtab == NULL) 1239 return(0); 1240 /* 1241 * check for device and inode truncation, and extract the truncated 1242 * bit pattern. 1243 */ 1244 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 1245 ++trc_dev; 1246 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 1247 ++trc_ino; 1248 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 1249 } 1250 1251 /* 1252 * see if this device is already being mapped, look up the device 1253 * then find the truncation bit pattern which applies 1254 */ 1255 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 1256 /* 1257 * this device is already marked to be remapped 1258 */ 1259 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 1260 if (dpt->trunc_bits == trunc_bits) 1261 break; 1262 1263 if (dpt != NULL) { 1264 /* 1265 * we are being remapped for this device and pattern 1266 * change the device number to be stored and return 1267 */ 1268 arcn->sb.st_dev = dpt->dev; 1269 arcn->sb.st_ino = nino; 1270 return(0); 1271 } 1272 } else { 1273 /* 1274 * this device is not being remapped YET. if we do not have any 1275 * form of truncation, we do not need a remap 1276 */ 1277 if (!trc_ino && !trc_dev) 1278 return(0); 1279 1280 /* 1281 * we have truncation, have to add this as a device to remap 1282 */ 1283 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 1284 goto bad; 1285 1286 /* 1287 * if we just have a truncated inode, we have to make sure that 1288 * all future inodes that do not truncate (they have the 1289 * truncation pattern of all 0's) continue to map to the same 1290 * device number. We probably have already written inodes with 1291 * this device number to the archive with the truncation 1292 * pattern of all 0's. So we add the mapping for all 0's to the 1293 * same device number. 1294 */ 1295 if (!trc_dev && (trunc_bits != 0)) { 1296 if ((dpt = malloc(sizeof(DLIST))) == NULL) 1297 goto bad; 1298 dpt->trunc_bits = 0; 1299 dpt->dev = arcn->sb.st_dev; 1300 dpt->fow = pt->list; 1301 pt->list = dpt; 1302 } 1303 } 1304 1305 /* 1306 * look for a device number not being used. We must watch for wrap 1307 * around on lastdev (so we do not get stuck looking forever!) 1308 */ 1309 while (++lastdev > 0) { 1310 if (chk_dev(lastdev, 0) != NULL) 1311 continue; 1312 /* 1313 * found an unused value. If we have reached truncation point 1314 * for this format we are hosed, so we give up. Otherwise we 1315 * mark it as being used. 1316 */ 1317 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 1318 (chk_dev(lastdev, 1) == NULL)) 1319 goto bad; 1320 break; 1321 } 1322 1323 if ((lastdev <= 0) || ((dpt = malloc(sizeof(DLIST))) == NULL)) 1324 goto bad; 1325 1326 /* 1327 * got a new device number, store it under this truncation pattern. 1328 * change the device number this file is being stored with. 1329 */ 1330 dpt->trunc_bits = trunc_bits; 1331 dpt->dev = lastdev; 1332 dpt->fow = pt->list; 1333 pt->list = dpt; 1334 arcn->sb.st_dev = lastdev; 1335 arcn->sb.st_ino = nino; 1336 return(0); 1337 1338 bad: 1339 paxwarn(1, "Unable to fix truncated inode/device field when storing %s", 1340 arcn->name); 1341 paxwarn(0, "Archive may create improper hard links when extracted"); 1342 return(0); 1343 } 1344 #endif /* NOCPIO */ 1345 1346 /* 1347 * directory access/mod time reset table routines (for directories READ by pax) 1348 * 1349 * The pax -t flag requires that access times of archive files be the same 1350 * before being read by pax. For regular files, access time is restored after 1351 * the file has been copied. This database provides the same functionality for 1352 * directories read during file tree traversal. Restoring directory access time 1353 * is more complex than files since directories may be read several times until 1354 * all the descendants in their subtree are visited by fts. Directory access 1355 * and modification times are stored during the fts pre-order visit (done 1356 * before any descendants in the subtree are visited) and restored after the 1357 * fts post-order visit (after all the descendants have been visited). In the 1358 * case of premature exit from a subtree (like from the effects of -n), any 1359 * directory entries left in this database are reset during final cleanup 1360 * operations of pax. Entries are hashed by inode number for fast lookup. 1361 */ 1362 1363 /* 1364 * atdir_start() 1365 * create the directory access time database for directories READ by pax. 1366 * Return: 1367 * 0 is created ok, -1 otherwise. 1368 */ 1369 1370 int 1371 atdir_start(void) 1372 { 1373 if (atab != NULL) 1374 return(0); 1375 if ((atab = calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 1376 paxwarn(1,"Cannot allocate space for directory access time table"); 1377 return(-1); 1378 } 1379 return(0); 1380 } 1381 1382 1383 /* 1384 * atdir_end() 1385 * walk through the directory access time table and reset the access time 1386 * of any directory who still has an entry left in the database. These 1387 * entries are for directories READ by pax 1388 */ 1389 1390 void 1391 atdir_end(void) 1392 { 1393 ATDIR *pt; 1394 int i; 1395 1396 if (atab == NULL) 1397 return; 1398 /* 1399 * for each non-empty hash table entry reset all the directories 1400 * chained there. 1401 */ 1402 for (i = 0; i < A_TAB_SZ; ++i) { 1403 if ((pt = atab[i]) == NULL) 1404 continue; 1405 /* 1406 * remember to force the times, set_ftime() looks at pmtime 1407 * and patime, which only applies to things CREATED by pax, 1408 * not read by pax. Read time reset is controlled by -t. 1409 */ 1410 for (; pt != NULL; pt = pt->fow) 1411 set_attr(&pt->ft, 1, 0, 0, 0); 1412 } 1413 } 1414 1415 /* 1416 * add_atdir() 1417 * add a directory to the directory access time table. Table is hashed 1418 * and chained by inode number. This is for directories READ by pax 1419 */ 1420 1421 void 1422 add_atdir(char *fname, dev_t dev, ino_t ino, const struct timespec *mtimp, 1423 const struct timespec *atimp) 1424 { 1425 ATDIR *pt; 1426 sigset_t allsigs, savedsigs; 1427 u_int indx; 1428 1429 if (atab == NULL) 1430 return; 1431 1432 /* 1433 * make sure this directory is not already in the table, if so just 1434 * return (the older entry always has the correct time). The only 1435 * way this will happen is when the same subtree can be traversed by 1436 * different args to pax and the -n option is aborting fts out of a 1437 * subtree before all the post-order visits have been made. 1438 */ 1439 indx = ((unsigned)ino) % A_TAB_SZ; 1440 if ((pt = atab[indx]) != NULL) { 1441 while (pt != NULL) { 1442 if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev)) 1443 break; 1444 pt = pt->fow; 1445 } 1446 1447 /* 1448 * oops, already there. Leave it alone. 1449 */ 1450 if (pt != NULL) 1451 return; 1452 } 1453 1454 /* 1455 * add it to the front of the hash chain 1456 */ 1457 sigfillset(&allsigs); 1458 sigprocmask(SIG_BLOCK, &allsigs, &savedsigs); 1459 if ((pt = malloc(sizeof *pt)) != NULL) { 1460 if ((pt->ft.ft_name = strdup(fname)) != NULL) { 1461 pt->ft.ft_dev = dev; 1462 pt->ft.ft_ino = ino; 1463 pt->ft.ft_mtim = *mtimp; 1464 pt->ft.ft_atim = *atimp; 1465 pt->fow = atab[indx]; 1466 atab[indx] = pt; 1467 sigprocmask(SIG_SETMASK, &savedsigs, NULL); 1468 return; 1469 } 1470 free(pt); 1471 } 1472 1473 sigprocmask(SIG_SETMASK, &savedsigs, NULL); 1474 paxwarn(1, "Directory access time reset table ran out of memory"); 1475 } 1476 1477 /* 1478 * get_atdir() 1479 * look up a directory by inode and device number to obtain the access 1480 * and modification time you want to set to. If found, the modification 1481 * and access time parameters are set and the entry is removed from the 1482 * table (as it is no longer needed). These are for directories READ by 1483 * pax 1484 * Return: 1485 * 0 if found, -1 if not found. 1486 */ 1487 1488 int 1489 do_atdir(const char *name, dev_t dev, ino_t ino) 1490 { 1491 ATDIR *pt; 1492 ATDIR **ppt; 1493 sigset_t allsigs, savedsigs; 1494 u_int indx; 1495 1496 if (atab == NULL) 1497 return(-1); 1498 /* 1499 * hash by inode and search the chain for an inode and device match 1500 */ 1501 indx = ((unsigned)ino) % A_TAB_SZ; 1502 if ((pt = atab[indx]) == NULL) 1503 return(-1); 1504 1505 ppt = &(atab[indx]); 1506 while (pt != NULL) { 1507 if ((pt->ft.ft_ino == ino) && (pt->ft.ft_dev == dev)) 1508 break; 1509 /* 1510 * no match, go to next one 1511 */ 1512 ppt = &(pt->fow); 1513 pt = pt->fow; 1514 } 1515 1516 /* 1517 * return if we did not find it. 1518 */ 1519 if (pt == NULL || pt->ft.ft_name == NULL || 1520 strcmp(name, pt->ft.ft_name) == 0) 1521 return(-1); 1522 1523 /* 1524 * found it. set the times and remove the entry from the table. 1525 */ 1526 set_attr(&pt->ft, 1, 0, 0, 0); 1527 sigfillset(&allsigs); 1528 sigprocmask(SIG_BLOCK, &allsigs, &savedsigs); 1529 *ppt = pt->fow; 1530 sigprocmask(SIG_SETMASK, &savedsigs, NULL); 1531 free(pt->ft.ft_name); 1532 free(pt); 1533 return(0); 1534 } 1535 1536 /* 1537 * directory access mode and time storage routines (for directories CREATED 1538 * by pax). 1539 * 1540 * Pax requires that extracted directories, by default, have their access/mod 1541 * times and permissions set to the values specified in the archive. During the 1542 * actions of extracting (and creating the destination subtree during -rw copy) 1543 * directories extracted may be modified after being created. Even worse is 1544 * that these directories may have been created with file permissions which 1545 * prohibits any descendants of these directories from being extracted. When 1546 * directories are created by pax, access rights may be added to permit the 1547 * creation of files in their subtree. Every time pax creates a directory, the 1548 * times and file permissions specified by the archive are stored. After all 1549 * files have been extracted (or copied), these directories have their times 1550 * and file modes reset to the stored values. The directory info is restored in 1551 * reverse order as entries were added from root to leaf: to restore atime 1552 * properly, we must go backwards. 1553 */ 1554 1555 /* 1556 * dir_start() 1557 * set up the directory time and file mode storage for directories CREATED 1558 * by pax. 1559 * Return: 1560 * 0 if ok, -1 otherwise 1561 */ 1562 1563 int 1564 dir_start(void) 1565 { 1566 if (dirp != NULL) 1567 return(0); 1568 1569 dirsize = DIRP_SIZE; 1570 if ((dirp = reallocarray(NULL, dirsize, sizeof(DIRDATA))) == NULL) { 1571 paxwarn(1, "Unable to allocate memory for directory times"); 1572 return(-1); 1573 } 1574 return(0); 1575 } 1576 1577 /* 1578 * add_dir() 1579 * add the mode and times for a newly CREATED directory 1580 * name is name of the directory, psb the stat buffer with the data in it, 1581 * frc_mode is a flag that says whether to force the setting of the mode 1582 * (ignoring the user set values for preserving file mode). Frc_mode is 1583 * for the case where we created a file and found that the resulting 1584 * directory was not writeable and the user asked for file modes to NOT 1585 * be preserved. (we have to preserve what was created by default, so we 1586 * have to force the setting at the end. this is stated explicitly in the 1587 * pax spec) 1588 */ 1589 1590 void 1591 add_dir(char *name, struct stat *psb, int frc_mode) 1592 { 1593 DIRDATA *dblk; 1594 sigset_t allsigs, savedsigs; 1595 char realname[PATH_MAX], *rp; 1596 1597 if (dirp == NULL) 1598 return; 1599 1600 if (havechd && *name != '/') { 1601 if ((rp = realpath(name, realname)) == NULL) { 1602 paxwarn(1, "Cannot canonicalize %s", name); 1603 return; 1604 } 1605 name = rp; 1606 } 1607 if (dircnt == dirsize) { 1608 dblk = reallocarray(dirp, dirsize * 2, sizeof(DIRDATA)); 1609 if (dblk == NULL) { 1610 paxwarn(1, "Unable to store mode and times for created" 1611 " directory: %s", name); 1612 return; 1613 } 1614 sigprocmask(SIG_BLOCK, &allsigs, &savedsigs); 1615 dirp = dblk; 1616 dirsize *= 2; 1617 sigprocmask(SIG_SETMASK, &savedsigs, NULL); 1618 } 1619 dblk = &dirp[dircnt]; 1620 if ((dblk->ft.ft_name = strdup(name)) == NULL) { 1621 paxwarn(1, "Unable to store mode and times for created" 1622 " directory: %s", name); 1623 return; 1624 } 1625 dblk->ft.ft_mtim = psb->st_mtim; 1626 dblk->ft.ft_atim = psb->st_atim; 1627 dblk->ft.ft_ino = psb->st_ino; 1628 dblk->ft.ft_dev = psb->st_dev; 1629 dblk->mode = psb->st_mode & ABITS; 1630 dblk->frc_mode = frc_mode; 1631 sigprocmask(SIG_BLOCK, &allsigs, &savedsigs); 1632 ++dircnt; 1633 sigprocmask(SIG_SETMASK, &savedsigs, NULL); 1634 } 1635 1636 /* 1637 * delete_dir() 1638 * When we rmdir a directory, we may want to make sure we don't 1639 * later warn about being unable to set its mode and times. 1640 */ 1641 1642 void 1643 delete_dir(dev_t dev, ino_t ino) 1644 { 1645 DIRDATA *dblk; 1646 char *name; 1647 size_t i; 1648 1649 if (dirp == NULL) 1650 return; 1651 for (i = 0; i < dircnt; i++) { 1652 dblk = &dirp[i]; 1653 1654 if (dblk->ft.ft_name == NULL) 1655 continue; 1656 if (dblk->ft.ft_dev == dev && dblk->ft.ft_ino == ino) { 1657 name = dblk->ft.ft_name; 1658 dblk->ft.ft_name = NULL; 1659 free(name); 1660 break; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * proc_dir(int in_sig) 1667 * process all file modes and times stored for directories CREATED 1668 * by pax. If in_sig is set, we're in a signal handler and can't 1669 * free stuff. 1670 */ 1671 1672 void 1673 proc_dir(int in_sig) 1674 { 1675 DIRDATA *dblk; 1676 size_t cnt; 1677 1678 if (dirp == NULL) 1679 return; 1680 /* 1681 * read backwards through the file and process each directory 1682 */ 1683 cnt = dircnt; 1684 while (cnt-- > 0) { 1685 dblk = &dirp[cnt]; 1686 /* 1687 * If we remove a directory we created, we replace the 1688 * ft_name with NULL. Ignore those. 1689 */ 1690 if (dblk->ft.ft_name == NULL) 1691 continue; 1692 1693 /* 1694 * frc_mode set, make sure we set the file modes even if 1695 * the user didn't ask for it (see file_subs.c for more info) 1696 */ 1697 set_attr(&dblk->ft, 0, dblk->mode, pmode || dblk->frc_mode, 1698 in_sig); 1699 if (!in_sig) 1700 free(dblk->ft.ft_name); 1701 } 1702 1703 if (!in_sig) 1704 free(dirp); 1705 dirp = NULL; 1706 dircnt = 0; 1707 } 1708 1709 /* 1710 * database independent routines 1711 */ 1712 1713 /* 1714 * st_hash() 1715 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1716 * end of file, as this provides far better distribution than any other 1717 * part of the name. For performance reasons we only care about the last 1718 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1719 * name). Was tested on 500,000 name file tree traversal from the root 1720 * and gave almost a perfectly uniform distribution of keys when used with 1721 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1722 * chars at a time and pads with 0 for last addition. 1723 * Return: 1724 * the hash value of the string MOD (%) the table size. 1725 */ 1726 1727 static u_int 1728 st_hash(const char *name, int len, int tabsz) 1729 { 1730 const char *pt; 1731 char *dest; 1732 const char *end; 1733 int i; 1734 u_int key = 0; 1735 int steps; 1736 int res; 1737 u_int val; 1738 1739 /* 1740 * only look at the tail up to MAXKEYLEN, we do not need to waste 1741 * time here (remember these are pathnames, the tail is what will 1742 * spread out the keys) 1743 */ 1744 if (len > MAXKEYLEN) { 1745 pt = &(name[len - MAXKEYLEN]); 1746 len = MAXKEYLEN; 1747 } else 1748 pt = name; 1749 1750 /* 1751 * calculate the number of u_int size steps in the string and if 1752 * there is a runt to deal with 1753 */ 1754 steps = len/sizeof(u_int); 1755 res = len % sizeof(u_int); 1756 1757 /* 1758 * add up the value of the string in unsigned integer sized pieces 1759 * too bad we cannot have unsigned int aligned strings, then we 1760 * could avoid the expensive copy. 1761 */ 1762 for (i = 0; i < steps; ++i) { 1763 end = pt + sizeof(u_int); 1764 dest = (char *)&val; 1765 while (pt < end) 1766 *dest++ = *pt++; 1767 key += val; 1768 } 1769 1770 /* 1771 * add in the runt padded with zero to the right 1772 */ 1773 if (res) { 1774 val = 0; 1775 end = pt + res; 1776 dest = (char *)&val; 1777 while (pt < end) 1778 *dest++ = *pt++; 1779 key += val; 1780 } 1781 1782 /* 1783 * return the result mod the table size 1784 */ 1785 return(key % tabsz); 1786 } 1787