xref: /openbsd-src/bin/pax/tables.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: tables.c,v 1.36 2014/07/14 06:00:22 guenther Exp $	*/
2 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992 Keith Muller.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Keith Muller of the University of California, San Diego.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/stat.h>
41 #include <sys/fcntl.h>
42 #include <signal.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <stdlib.h>
48 #include "pax.h"
49 #include "tables.h"
50 #include "extern.h"
51 
52 /*
53  * Routines for controlling the contents of all the different databases pax
54  * keeps. Tables are dynamically created only when they are needed. The
55  * goal was speed and the ability to work with HUGE archives. The databases
56  * were kept simple, but do have complex rules for when the contents change.
57  * As of this writing, the posix library functions were more complex than
58  * needed for this application (pax databases have very short lifetimes and
59  * do not survive after pax is finished). Pax is required to handle very
60  * large archives. These database routines carefully combine memory usage and
61  * temporary file storage in ways which will not significantly impact runtime
62  * performance while allowing the largest possible archives to be handled.
63  * Trying to force the fit to the posix database routines was not considered
64  * time well spent.
65  */
66 
67 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
68 static FTM **ftab = NULL;	/* file time table for updating arch */
69 static NAMT **ntab = NULL;	/* interactive rename storage table */
70 static DEVT **dtab = NULL;	/* device/inode mapping tables */
71 static ATDIR **atab = NULL;	/* file tree directory time reset table */
72 static DIRDATA *dirp = NULL;	/* storage for setting created dir time/mode */
73 static size_t dirsize;		/* size of dirp table */
74 static size_t dircnt = 0;	/* entries in dir time/mode storage */
75 static int ffd = -1;		/* tmp file for file time table name storage */
76 
77 static DEVT *chk_dev(dev_t, int);
78 
79 /*
80  * hard link table routines
81  *
82  * The hard link table tries to detect hard links to files using the device and
83  * inode values. We do this when writing an archive, so we can tell the format
84  * write routine that this file is a hard link to another file. The format
85  * write routine then can store this file in whatever way it wants (as a hard
86  * link if the format supports that like tar, or ignore this info like cpio).
87  * (Actually a field in the format driver table tells us if the format wants
88  * hard link info. if not, we do not waste time looking for them). We also use
89  * the same table when reading an archive. In that situation, this table is
90  * used by the format read routine to detect hard links from stored dev and
91  * inode numbers (like cpio). This will allow pax to create a link when one
92  * can be detected by the archive format.
93  */
94 
95 /*
96  * lnk_start
97  *	Creates the hard link table.
98  * Return:
99  *	0 if created, -1 if failure
100  */
101 
102 int
103 lnk_start(void)
104 {
105 	if (ltab != NULL)
106 		return(0);
107 	if ((ltab = calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
108 		paxwarn(1, "Cannot allocate memory for hard link table");
109 		return(-1);
110 	}
111 	return(0);
112 }
113 
114 /*
115  * chk_lnk()
116  *	Looks up entry in hard link hash table. If found, it copies the name
117  *	of the file it is linked to (we already saw that file) into ln_name.
118  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
119  *	database. (We have seen all the links to this file). If not found,
120  *	we add the file to the database if it has the potential for having
121  *	hard links to other files we may process (it has a link count > 1)
122  * Return:
123  *	if found returns 1; if not found returns 0; -1 on error
124  */
125 
126 int
127 chk_lnk(ARCHD *arcn)
128 {
129 	HRDLNK *pt;
130 	HRDLNK **ppt;
131 	u_int indx;
132 
133 	if (ltab == NULL)
134 		return(-1);
135 	/*
136 	 * ignore those nodes that cannot have hard links
137 	 */
138 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
139 		return(0);
140 
141 	/*
142 	 * hash inode number and look for this file
143 	 */
144 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
145 	if ((pt = ltab[indx]) != NULL) {
146 		/*
147 		 * its hash chain in not empty, walk down looking for it
148 		 */
149 		ppt = &(ltab[indx]);
150 		while (pt != NULL) {
151 			if ((pt->ino == arcn->sb.st_ino) &&
152 			    (pt->dev == arcn->sb.st_dev))
153 				break;
154 			ppt = &(pt->fow);
155 			pt = pt->fow;
156 		}
157 
158 		if (pt != NULL) {
159 			/*
160 			 * found a link. set the node type and copy in the
161 			 * name of the file it is to link to. we need to
162 			 * handle hardlinks to regular files differently than
163 			 * other links.
164 			 */
165 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
166 				sizeof(arcn->ln_name));
167 			/* XXX truncate? */
168 			if (arcn->nlen >= sizeof(arcn->name))
169 				arcn->nlen = sizeof(arcn->name) - 1;
170 			if (arcn->type == PAX_REG)
171 				arcn->type = PAX_HRG;
172 			else
173 				arcn->type = PAX_HLK;
174 
175 			/*
176 			 * if we have found all the links to this file, remove
177 			 * it from the database
178 			 */
179 			if (--pt->nlink <= 1) {
180 				*ppt = pt->fow;
181 				free(pt->name);
182 				free(pt);
183 			}
184 			return(1);
185 		}
186 	}
187 
188 	/*
189 	 * we never saw this file before. It has links so we add it to the
190 	 * front of this hash chain
191 	 */
192 	if ((pt = malloc(sizeof(HRDLNK))) != NULL) {
193 		if ((pt->name = strdup(arcn->name)) != NULL) {
194 			pt->dev = arcn->sb.st_dev;
195 			pt->ino = arcn->sb.st_ino;
196 			pt->nlink = arcn->sb.st_nlink;
197 			pt->fow = ltab[indx];
198 			ltab[indx] = pt;
199 			return(0);
200 		}
201 		free(pt);
202 	}
203 
204 	paxwarn(1, "Hard link table out of memory");
205 	return(-1);
206 }
207 
208 /*
209  * purg_lnk
210  *	remove reference for a file that we may have added to the data base as
211  *	a potential source for hard links. We ended up not using the file, so
212  *	we do not want to accidently point another file at it later on.
213  */
214 
215 void
216 purg_lnk(ARCHD *arcn)
217 {
218 	HRDLNK *pt;
219 	HRDLNK **ppt;
220 	u_int indx;
221 
222 	if (ltab == NULL)
223 		return;
224 	/*
225 	 * do not bother to look if it could not be in the database
226 	 */
227 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
228 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
229 		return;
230 
231 	/*
232 	 * find the hash chain for this inode value, if empty return
233 	 */
234 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
235 	if ((pt = ltab[indx]) == NULL)
236 		return;
237 
238 	/*
239 	 * walk down the list looking for the inode/dev pair, unlink and
240 	 * free if found
241 	 */
242 	ppt = &(ltab[indx]);
243 	while (pt != NULL) {
244 		if ((pt->ino == arcn->sb.st_ino) &&
245 		    (pt->dev == arcn->sb.st_dev))
246 			break;
247 		ppt = &(pt->fow);
248 		pt = pt->fow;
249 	}
250 	if (pt == NULL)
251 		return;
252 
253 	/*
254 	 * remove and free it
255 	 */
256 	*ppt = pt->fow;
257 	free(pt->name);
258 	free(pt);
259 }
260 
261 /*
262  * lnk_end()
263  *	pull apart a existing link table so we can reuse it. We do this between
264  *	read and write phases of append with update. (The format may have
265  *	used the link table, and we need to start with a fresh table for the
266  *	write phase
267  */
268 
269 void
270 lnk_end(void)
271 {
272 	int i;
273 	HRDLNK *pt;
274 	HRDLNK *ppt;
275 
276 	if (ltab == NULL)
277 		return;
278 
279 	for (i = 0; i < L_TAB_SZ; ++i) {
280 		if (ltab[i] == NULL)
281 			continue;
282 		pt = ltab[i];
283 		ltab[i] = NULL;
284 
285 		/*
286 		 * free up each entry on this chain
287 		 */
288 		while (pt != NULL) {
289 			ppt = pt;
290 			pt = ppt->fow;
291 			free(ppt->name);
292 			free(ppt);
293 		}
294 	}
295 }
296 
297 /*
298  * modification time table routines
299  *
300  * The modification time table keeps track of last modification times for all
301  * files stored in an archive during a write phase when -u is set. We only
302  * add a file to the archive if it is newer than a file with the same name
303  * already stored on the archive (if there is no other file with the same
304  * name on the archive it is added). This applies to writes and appends.
305  * An append with an -u must read the archive and store the modification time
306  * for every file on that archive before starting the write phase. It is clear
307  * that this is one HUGE database. To save memory space, the actual file names
308  * are stored in a scratch file and indexed by an in-memory hash table. The
309  * hash table is indexed by hashing the file path. The nodes in the table store
310  * the length of the filename and the lseek offset within the scratch file
311  * where the actual name is stored. Since there are never any deletions from
312  * this table, fragmentation of the scratch file is never a issue. Lookups
313  * seem to not exhibit any locality at all (files in the database are rarely
314  * looked up more than once...), so caching is just a waste of memory. The
315  * only limitation is the amount of scratch file space available to store the
316  * path names.
317  */
318 
319 /*
320  * ftime_start()
321  *	create the file time hash table and open for read/write the scratch
322  *	file. (after created it is unlinked, so when we exit we leave
323  *	no witnesses).
324  * Return:
325  *	0 if the table and file was created ok, -1 otherwise
326  */
327 
328 int
329 ftime_start(void)
330 {
331 
332 	if (ftab != NULL)
333 		return(0);
334 	if ((ftab = calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
335 		paxwarn(1, "Cannot allocate memory for file time table");
336 		return(-1);
337 	}
338 
339 	/*
340 	 * get random name and create temporary scratch file, unlink name
341 	 * so it will get removed on exit
342 	 */
343 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
344 	if ((ffd = mkstemp(tempfile)) < 0) {
345 		syswarn(1, errno, "Unable to create temporary file: %s",
346 		    tempfile);
347 		return(-1);
348 	}
349 	(void)unlink(tempfile);
350 
351 	return(0);
352 }
353 
354 /*
355  * chk_ftime()
356  *	looks up entry in file time hash table. If not found, the file is
357  *	added to the hash table and the file named stored in the scratch file.
358  *	If a file with the same name is found, the file times are compared and
359  *	the most recent file time is retained. If the new file was younger (or
360  *	was not in the database) the new file is selected for storage.
361  * Return:
362  *	0 if file should be added to the archive, 1 if it should be skipped,
363  *	-1 on error
364  */
365 
366 int
367 chk_ftime(ARCHD *arcn)
368 {
369 	FTM *pt;
370 	int namelen;
371 	u_int indx;
372 	char ckname[PAXPATHLEN+1];
373 
374 	/*
375 	 * no info, go ahead and add to archive
376 	 */
377 	if (ftab == NULL)
378 		return(0);
379 
380 	/*
381 	 * hash the pathname and look up in table
382 	 */
383 	namelen = arcn->nlen;
384 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
385 	if ((pt = ftab[indx]) != NULL) {
386 		/*
387 		 * the hash chain is not empty, walk down looking for match
388 		 * only read up the path names if the lengths match, speeds
389 		 * up the search a lot
390 		 */
391 		while (pt != NULL) {
392 			if (pt->namelen == namelen) {
393 				/*
394 				 * potential match, have to read the name
395 				 * from the scratch file.
396 				 */
397 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
398 					syswarn(1, errno,
399 					    "Failed ftime table seek");
400 					return(-1);
401 				}
402 				if (read(ffd, ckname, namelen) != namelen) {
403 					syswarn(1, errno,
404 					    "Failed ftime table read");
405 					return(-1);
406 				}
407 
408 				/*
409 				 * if the names match, we are done
410 				 */
411 				if (!strncmp(ckname, arcn->name, namelen))
412 					break;
413 			}
414 
415 			/*
416 			 * try the next entry on the chain
417 			 */
418 			pt = pt->fow;
419 		}
420 
421 		if (pt != NULL) {
422 			/*
423 			 * found the file, compare the times, save the newer
424 			 */
425 			if (arcn->sb.st_mtime > pt->mtime) {
426 				/*
427 				 * file is newer
428 				 */
429 				pt->mtime = arcn->sb.st_mtime;
430 				return(0);
431 			}
432 			/*
433 			 * file is older
434 			 */
435 			return(1);
436 		}
437 	}
438 
439 	/*
440 	 * not in table, add it
441 	 */
442 	if ((pt = malloc(sizeof(FTM))) != NULL) {
443 		/*
444 		 * add the name at the end of the scratch file, saving the
445 		 * offset. add the file to the head of the hash chain
446 		 */
447 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
448 			if (write(ffd, arcn->name, namelen) == namelen) {
449 				pt->mtime = arcn->sb.st_mtime;
450 				pt->namelen = namelen;
451 				pt->fow = ftab[indx];
452 				ftab[indx] = pt;
453 				return(0);
454 			}
455 			syswarn(1, errno, "Failed write to file time table");
456 		} else
457 			syswarn(1, errno, "Failed seek on file time table");
458 	} else
459 		paxwarn(1, "File time table ran out of memory");
460 
461 	if (pt != NULL)
462 		free(pt);
463 	return(-1);
464 }
465 
466 /*
467  * Interactive rename table routines
468  *
469  * The interactive rename table keeps track of the new names that the user
470  * assigns to files from tty input. Since this map is unique for each file
471  * we must store it in case there is a reference to the file later in archive
472  * (a link). Otherwise we will be unable to find the file we know was
473  * extracted. The remapping of these files is stored in a memory based hash
474  * table (it is assumed since input must come from /dev/tty, it is unlikely to
475  * be a very large table).
476  */
477 
478 /*
479  * name_start()
480  *	create the interactive rename table
481  * Return:
482  *	0 if successful, -1 otherwise
483  */
484 
485 int
486 name_start(void)
487 {
488 	if (ntab != NULL)
489 		return(0);
490 	if ((ntab = calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
491 		paxwarn(1, "Cannot allocate memory for interactive rename table");
492 		return(-1);
493 	}
494 	return(0);
495 }
496 
497 /*
498  * add_name()
499  *	add the new name to old name mapping just created by the user.
500  *	If an old name mapping is found (there may be duplicate names on an
501  *	archive) only the most recent is kept.
502  * Return:
503  *	0 if added, -1 otherwise
504  */
505 
506 int
507 add_name(char *oname, int onamelen, char *nname)
508 {
509 	NAMT *pt;
510 	u_int indx;
511 
512 	if (ntab == NULL) {
513 		/*
514 		 * should never happen
515 		 */
516 		paxwarn(0, "No interactive rename table, links may fail");
517 		return(0);
518 	}
519 
520 	/*
521 	 * look to see if we have already mapped this file, if so we
522 	 * will update it
523 	 */
524 	indx = st_hash(oname, onamelen, N_TAB_SZ);
525 	if ((pt = ntab[indx]) != NULL) {
526 		/*
527 		 * look down the has chain for the file
528 		 */
529 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
530 			pt = pt->fow;
531 
532 		if (pt != NULL) {
533 			/*
534 			 * found an old mapping, replace it with the new one
535 			 * the user just input (if it is different)
536 			 */
537 			if (strcmp(nname, pt->nname) == 0)
538 				return(0);
539 
540 			free(pt->nname);
541 			if ((pt->nname = strdup(nname)) == NULL) {
542 				paxwarn(1, "Cannot update rename table");
543 				return(-1);
544 			}
545 			return(0);
546 		}
547 	}
548 
549 	/*
550 	 * this is a new mapping, add it to the table
551 	 */
552 	if ((pt = malloc(sizeof(NAMT))) != NULL) {
553 		if ((pt->oname = strdup(oname)) != NULL) {
554 			if ((pt->nname = strdup(nname)) != NULL) {
555 				pt->fow = ntab[indx];
556 				ntab[indx] = pt;
557 				return(0);
558 			}
559 			free(pt->oname);
560 		}
561 		free(pt);
562 	}
563 	paxwarn(1, "Interactive rename table out of memory");
564 	return(-1);
565 }
566 
567 /*
568  * sub_name()
569  *	look up a link name to see if it points at a file that has been
570  *	remapped by the user. If found, the link is adjusted to contain the
571  *	new name (oname is the link to name)
572  */
573 
574 void
575 sub_name(char *oname, int *onamelen, size_t onamesize)
576 {
577 	NAMT *pt;
578 	u_int indx;
579 
580 	if (ntab == NULL)
581 		return;
582 	/*
583 	 * look the name up in the hash table
584 	 */
585 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
586 	if ((pt = ntab[indx]) == NULL)
587 		return;
588 
589 	while (pt != NULL) {
590 		/*
591 		 * walk down the hash chain looking for a match
592 		 */
593 		if (strcmp(oname, pt->oname) == 0) {
594 			/*
595 			 * found it, replace it with the new name
596 			 * and return (we know that oname has enough space)
597 			 */
598 			*onamelen = strlcpy(oname, pt->nname, onamesize);
599 			if (*onamelen >= onamesize)
600 				*onamelen = onamesize - 1; /* XXX truncate? */
601 			return;
602 		}
603 		pt = pt->fow;
604 	}
605 
606 	/*
607 	 * no match, just return
608 	 */
609 }
610 
611 /*
612  * device/inode mapping table routines
613  * (used with formats that store device and inodes fields)
614  *
615  * device/inode mapping tables remap the device field in a archive header. The
616  * device/inode fields are used to determine when files are hard links to each
617  * other. However these values have very little meaning outside of that. This
618  * database is used to solve one of two different problems.
619  *
620  * 1) when files are appended to an archive, while the new files may have hard
621  * links to each other, you cannot determine if they have hard links to any
622  * file already stored on the archive from a prior run of pax. We must assume
623  * that these inode/device pairs are unique only within a SINGLE run of pax
624  * (which adds a set of files to an archive). So we have to make sure the
625  * inode/dev pairs we add each time are always unique. We do this by observing
626  * while the inode field is very dense, the use of the dev field is fairly
627  * sparse. Within each run of pax, we remap any device number of a new archive
628  * member that has a device number used in a prior run and already stored in a
629  * file on the archive. During the read phase of the append, we store the
630  * device numbers used and mark them to not be used by any file during the
631  * write phase. If during write we go to use one of those old device numbers,
632  * we remap it to a new value.
633  *
634  * 2) Often the fields in the archive header used to store these values are
635  * too small to store the entire value. The result is an inode or device value
636  * which can be truncated. This really can foul up an archive. With truncation
637  * we end up creating links between files that are really not links (after
638  * truncation the inodes are the same value). We address that by detecting
639  * truncation and forcing a remap of the device field to split truncated
640  * inodes away from each other. Each truncation creates a pattern of bits that
641  * are removed. We use this pattern of truncated bits to partition the inodes
642  * on a single device to many different devices (each one represented by the
643  * truncated bit pattern). All inodes on the same device that have the same
644  * truncation pattern are mapped to the same new device. Two inodes that
645  * truncate to the same value clearly will always have different truncation
646  * bit patterns, so they will be split from away each other. When we spot
647  * device truncation we remap the device number to a non truncated value.
648  * (for more info see table.h for the data structures involved).
649  */
650 
651 /*
652  * dev_start()
653  *	create the device mapping table
654  * Return:
655  *	0 if successful, -1 otherwise
656  */
657 
658 int
659 dev_start(void)
660 {
661 	if (dtab != NULL)
662 		return(0);
663 	if ((dtab = calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
664 		paxwarn(1, "Cannot allocate memory for device mapping table");
665 		return(-1);
666 	}
667 	return(0);
668 }
669 
670 /*
671  * add_dev()
672  *	add a device number to the table. this will force the device to be
673  *	remapped to a new value if it be used during a write phase. This
674  *	function is called during the read phase of an append to prohibit the
675  *	use of any device number already in the archive.
676  * Return:
677  *	0 if added ok, -1 otherwise
678  */
679 
680 int
681 add_dev(ARCHD *arcn)
682 {
683 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
684 		return(-1);
685 	return(0);
686 }
687 
688 /*
689  * chk_dev()
690  *	check for a device value in the device table. If not found and the add
691  *	flag is set, it is added. This does NOT assign any mapping values, just
692  *	adds the device number as one that need to be remapped. If this device
693  *	is already mapped, just return with a pointer to that entry.
694  * Return:
695  *	pointer to the entry for this device in the device map table. Null
696  *	if the add flag is not set and the device is not in the table (it is
697  *	not been seen yet). If add is set and the device cannot be added, null
698  *	is returned (indicates an error).
699  */
700 
701 static DEVT *
702 chk_dev(dev_t dev, int add)
703 {
704 	DEVT *pt;
705 	u_int indx;
706 
707 	if (dtab == NULL)
708 		return(NULL);
709 	/*
710 	 * look to see if this device is already in the table
711 	 */
712 	indx = ((unsigned)dev) % D_TAB_SZ;
713 	if ((pt = dtab[indx]) != NULL) {
714 		while ((pt != NULL) && (pt->dev != dev))
715 			pt = pt->fow;
716 
717 		/*
718 		 * found it, return a pointer to it
719 		 */
720 		if (pt != NULL)
721 			return(pt);
722 	}
723 
724 	/*
725 	 * not in table, we add it only if told to as this may just be a check
726 	 * to see if a device number is being used.
727 	 */
728 	if (add == 0)
729 		return(NULL);
730 
731 	/*
732 	 * allocate a node for this device and add it to the front of the hash
733 	 * chain. Note we do not assign remaps values here, so the pt->list
734 	 * list must be NULL.
735 	 */
736 	if ((pt = malloc(sizeof(DEVT))) == NULL) {
737 		paxwarn(1, "Device map table out of memory");
738 		return(NULL);
739 	}
740 	pt->dev = dev;
741 	pt->list = NULL;
742 	pt->fow = dtab[indx];
743 	dtab[indx] = pt;
744 	return(pt);
745 }
746 /*
747  * map_dev()
748  *	given an inode and device storage mask (the mask has a 1 for each bit
749  *	the archive format is able to store in a header), we check for inode
750  *	and device truncation and remap the device as required. Device mapping
751  *	can also occur when during the read phase of append a device number was
752  *	seen (and was marked as do not use during the write phase). WE ASSUME
753  *	that unsigned longs are the same size or bigger than the fields used
754  *	for ino_t and dev_t. If not the types will have to be changed.
755  * Return:
756  *	0 if all ok, -1 otherwise.
757  */
758 
759 int
760 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
761 {
762 	DEVT *pt;
763 	DLIST *dpt;
764 	static dev_t lastdev = 0;	/* next device number to try */
765 	int trc_ino = 0;
766 	int trc_dev = 0;
767 	ino_t trunc_bits = 0;
768 	ino_t nino;
769 
770 	if (dtab == NULL)
771 		return(0);
772 	/*
773 	 * check for device and inode truncation, and extract the truncated
774 	 * bit pattern.
775 	 */
776 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
777 		++trc_dev;
778 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
779 		++trc_ino;
780 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
781 	}
782 
783 	/*
784 	 * see if this device is already being mapped, look up the device
785 	 * then find the truncation bit pattern which applies
786 	 */
787 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
788 		/*
789 		 * this device is already marked to be remapped
790 		 */
791 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
792 			if (dpt->trunc_bits == trunc_bits)
793 				break;
794 
795 		if (dpt != NULL) {
796 			/*
797 			 * we are being remapped for this device and pattern
798 			 * change the device number to be stored and return
799 			 */
800 			arcn->sb.st_dev = dpt->dev;
801 			arcn->sb.st_ino = nino;
802 			return(0);
803 		}
804 	} else {
805 		/*
806 		 * this device is not being remapped YET. if we do not have any
807 		 * form of truncation, we do not need a remap
808 		 */
809 		if (!trc_ino && !trc_dev)
810 			return(0);
811 
812 		/*
813 		 * we have truncation, have to add this as a device to remap
814 		 */
815 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
816 			goto bad;
817 
818 		/*
819 		 * if we just have a truncated inode, we have to make sure that
820 		 * all future inodes that do not truncate (they have the
821 		 * truncation pattern of all 0's) continue to map to the same
822 		 * device number. We probably have already written inodes with
823 		 * this device number to the archive with the truncation
824 		 * pattern of all 0's. So we add the mapping for all 0's to the
825 		 * same device number.
826 		 */
827 		if (!trc_dev && (trunc_bits != 0)) {
828 			if ((dpt = malloc(sizeof(DLIST))) == NULL)
829 				goto bad;
830 			dpt->trunc_bits = 0;
831 			dpt->dev = arcn->sb.st_dev;
832 			dpt->fow = pt->list;
833 			pt->list = dpt;
834 		}
835 	}
836 
837 	/*
838 	 * look for a device number not being used. We must watch for wrap
839 	 * around on lastdev (so we do not get stuck looking forever!)
840 	 */
841 	while (++lastdev > 0) {
842 		if (chk_dev(lastdev, 0) != NULL)
843 			continue;
844 		/*
845 		 * found an unused value. If we have reached truncation point
846 		 * for this format we are hosed, so we give up. Otherwise we
847 		 * mark it as being used.
848 		 */
849 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
850 		    (chk_dev(lastdev, 1) == NULL))
851 			goto bad;
852 		break;
853 	}
854 
855 	if ((lastdev <= 0) || ((dpt = malloc(sizeof(DLIST))) == NULL))
856 		goto bad;
857 
858 	/*
859 	 * got a new device number, store it under this truncation pattern.
860 	 * change the device number this file is being stored with.
861 	 */
862 	dpt->trunc_bits = trunc_bits;
863 	dpt->dev = lastdev;
864 	dpt->fow = pt->list;
865 	pt->list = dpt;
866 	arcn->sb.st_dev = lastdev;
867 	arcn->sb.st_ino = nino;
868 	return(0);
869 
870     bad:
871 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
872 	    arcn->name);
873 	paxwarn(0, "Archive may create improper hard links when extracted");
874 	return(0);
875 }
876 
877 /*
878  * directory access/mod time reset table routines (for directories READ by pax)
879  *
880  * The pax -t flag requires that access times of archive files be the same
881  * before being read by pax. For regular files, access time is restored after
882  * the file has been copied. This database provides the same functionality for
883  * directories read during file tree traversal. Restoring directory access time
884  * is more complex than files since directories may be read several times until
885  * all the descendants in their subtree are visited by fts. Directory access
886  * and modification times are stored during the fts pre-order visit (done
887  * before any descendants in the subtree are visited) and restored after the
888  * fts post-order visit (after all the descendants have been visited). In the
889  * case of premature exit from a subtree (like from the effects of -n), any
890  * directory entries left in this database are reset during final cleanup
891  * operations of pax. Entries are hashed by inode number for fast lookup.
892  */
893 
894 /*
895  * atdir_start()
896  *	create the directory access time database for directories READ by pax.
897  * Return:
898  *	0 is created ok, -1 otherwise.
899  */
900 
901 int
902 atdir_start(void)
903 {
904 	if (atab != NULL)
905 		return(0);
906 	if ((atab = calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
907 		paxwarn(1,"Cannot allocate space for directory access time table");
908 		return(-1);
909 	}
910 	return(0);
911 }
912 
913 
914 /*
915  * atdir_end()
916  *	walk through the directory access time table and reset the access time
917  *	of any directory who still has an entry left in the database. These
918  *	entries are for directories READ by pax
919  */
920 
921 void
922 atdir_end(void)
923 {
924 	ATDIR *pt;
925 	int i;
926 
927 	if (atab == NULL)
928 		return;
929 	/*
930 	 * for each non-empty hash table entry reset all the directories
931 	 * chained there.
932 	 */
933 	for (i = 0; i < A_TAB_SZ; ++i) {
934 		if ((pt = atab[i]) == NULL)
935 			continue;
936 		/*
937 		 * remember to force the times, set_ftime() looks at pmtime
938 		 * and patime, which only applies to things CREATED by pax,
939 		 * not read by pax. Read time reset is controlled by -t.
940 		 */
941 		for (; pt != NULL; pt = pt->fow)
942 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
943 	}
944 }
945 
946 /*
947  * add_atdir()
948  *	add a directory to the directory access time table. Table is hashed
949  *	and chained by inode number. This is for directories READ by pax
950  */
951 
952 void
953 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
954 {
955 	ATDIR *pt;
956 	sigset_t allsigs, savedsigs;
957 	u_int indx;
958 
959 	if (atab == NULL)
960 		return;
961 
962 	/*
963 	 * make sure this directory is not already in the table, if so just
964 	 * return (the older entry always has the correct time). The only
965 	 * way this will happen is when the same subtree can be traversed by
966 	 * different args to pax and the -n option is aborting fts out of a
967 	 * subtree before all the post-order visits have been made.
968 	 */
969 	indx = ((unsigned)ino) % A_TAB_SZ;
970 	if ((pt = atab[indx]) != NULL) {
971 		while (pt != NULL) {
972 			if ((pt->ino == ino) && (pt->dev == dev))
973 				break;
974 			pt = pt->fow;
975 		}
976 
977 		/*
978 		 * oops, already there. Leave it alone.
979 		 */
980 		if (pt != NULL)
981 			return;
982 	}
983 
984 	/*
985 	 * add it to the front of the hash chain
986 	 */
987 	sigfillset(&allsigs);
988 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
989 	if ((pt = malloc(sizeof *pt)) != NULL) {
990 		if ((pt->name = strdup(fname)) != NULL) {
991 			pt->dev = dev;
992 			pt->ino = ino;
993 			pt->mtime = mtime;
994 			pt->atime = atime;
995 			pt->fow = atab[indx];
996 			atab[indx] = pt;
997 			sigprocmask(SIG_SETMASK, &savedsigs, NULL);
998 			return;
999 		}
1000 		free(pt);
1001 	}
1002 
1003 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1004 	paxwarn(1, "Directory access time reset table ran out of memory");
1005 }
1006 
1007 /*
1008  * get_atdir()
1009  *	look up a directory by inode and device number to obtain the access
1010  *	and modification time you want to set to. If found, the modification
1011  *	and access time parameters are set and the entry is removed from the
1012  *	table (as it is no longer needed). These are for directories READ by
1013  *	pax
1014  * Return:
1015  *	0 if found, -1 if not found.
1016  */
1017 
1018 int
1019 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1020 {
1021 	ATDIR *pt;
1022 	ATDIR **ppt;
1023 	sigset_t allsigs, savedsigs;
1024 	u_int indx;
1025 
1026 	if (atab == NULL)
1027 		return(-1);
1028 	/*
1029 	 * hash by inode and search the chain for an inode and device match
1030 	 */
1031 	indx = ((unsigned)ino) % A_TAB_SZ;
1032 	if ((pt = atab[indx]) == NULL)
1033 		return(-1);
1034 
1035 	ppt = &(atab[indx]);
1036 	while (pt != NULL) {
1037 		if ((pt->ino == ino) && (pt->dev == dev))
1038 			break;
1039 		/*
1040 		 * no match, go to next one
1041 		 */
1042 		ppt = &(pt->fow);
1043 		pt = pt->fow;
1044 	}
1045 
1046 	/*
1047 	 * return if we did not find it.
1048 	 */
1049 	if (pt == NULL)
1050 		return(-1);
1051 
1052 	/*
1053 	 * found it. return the times and remove the entry from the table.
1054 	 */
1055 	sigfillset(&allsigs);
1056 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1057 	*ppt = pt->fow;
1058 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1059 	*mtime = pt->mtime;
1060 	*atime = pt->atime;
1061 	free(pt->name);
1062 	free(pt);
1063 	return(0);
1064 }
1065 
1066 /*
1067  * directory access mode and time storage routines (for directories CREATED
1068  * by pax).
1069  *
1070  * Pax requires that extracted directories, by default, have their access/mod
1071  * times and permissions set to the values specified in the archive. During the
1072  * actions of extracting (and creating the destination subtree during -rw copy)
1073  * directories extracted may be modified after being created. Even worse is
1074  * that these directories may have been created with file permissions which
1075  * prohibits any descendants of these directories from being extracted. When
1076  * directories are created by pax, access rights may be added to permit the
1077  * creation of files in their subtree. Every time pax creates a directory, the
1078  * times and file permissions specified by the archive are stored. After all
1079  * files have been extracted (or copied), these directories have their times
1080  * and file modes reset to the stored values. The directory info is restored in
1081  * reverse order as entries were added to the data file from root to leaf. To
1082  * restore atime properly, we must go backwards. The data file consists of
1083  * records with two parts, the file name followed by a DIRDATA trailer. The
1084  * fixed sized trailer contains the size of the name plus the off_t location in
1085  * the file. To restore we work backwards through the file reading the trailer
1086  * then the file name.
1087  */
1088 
1089 /*
1090  * dir_start()
1091  *	set up the directory time and file mode storage for directories CREATED
1092  *	by pax.
1093  * Return:
1094  *	0 if ok, -1 otherwise
1095  */
1096 
1097 int
1098 dir_start(void)
1099 {
1100 	if (dirp != NULL)
1101 		return(0);
1102 
1103 	dirsize = DIRP_SIZE;
1104 	if ((dirp = reallocarray(NULL, dirsize, sizeof(DIRDATA))) == NULL) {
1105 		paxwarn(1, "Unable to allocate memory for directory times");
1106 		return(-1);
1107 	}
1108 	return(0);
1109 }
1110 
1111 /*
1112  * add_dir()
1113  *	add the mode and times for a newly CREATED directory
1114  *	name is name of the directory, psb the stat buffer with the data in it,
1115  *	frc_mode is a flag that says whether to force the setting of the mode
1116  *	(ignoring the user set values for preserving file mode). Frc_mode is
1117  *	for the case where we created a file and found that the resulting
1118  *	directory was not writeable and the user asked for file modes to NOT
1119  *	be preserved. (we have to preserve what was created by default, so we
1120  *	have to force the setting at the end. this is stated explicitly in the
1121  *	pax spec)
1122  */
1123 
1124 void
1125 add_dir(char *name, struct stat *psb, int frc_mode)
1126 {
1127 	DIRDATA *dblk;
1128 	sigset_t allsigs, savedsigs;
1129 	char realname[MAXPATHLEN], *rp;
1130 
1131 	if (dirp == NULL)
1132 		return;
1133 
1134 	if (havechd && *name != '/') {
1135 		if ((rp = realpath(name, realname)) == NULL) {
1136 			paxwarn(1, "Cannot canonicalize %s", name);
1137 			return;
1138 		}
1139 		name = rp;
1140 	}
1141 	if (dircnt == dirsize) {
1142 		dblk = reallocarray(dirp, dirsize, 2 * sizeof(DIRDATA));
1143 		if (dblk == NULL) {
1144 			paxwarn(1, "Unable to store mode and times for created"
1145 			    " directory: %s", name);
1146 			return;
1147 		}
1148 		sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1149 		dirp = dblk;
1150 		dirsize *= 2;
1151 		sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1152 	}
1153 	dblk = &dirp[dircnt];
1154 	if ((dblk->name = strdup(name)) == NULL) {
1155 		paxwarn(1, "Unable to store mode and times for created"
1156 		    " directory: %s", name);
1157 		return;
1158 	}
1159 	dblk->mode = psb->st_mode & 0xffff;
1160 	dblk->mtime = psb->st_mtime;
1161 	dblk->atime = psb->st_atime;
1162 	dblk->frc_mode = frc_mode;
1163 	sigprocmask(SIG_BLOCK, &allsigs, &savedsigs);
1164 	++dircnt;
1165 	sigprocmask(SIG_SETMASK, &savedsigs, NULL);
1166 }
1167 
1168 /*
1169  * proc_dir(int in_sig)
1170  *	process all file modes and times stored for directories CREATED
1171  *	by pax.  If in_sig is set, we're in a signal handler and can't
1172  *	free stuff.
1173  */
1174 
1175 void
1176 proc_dir(int in_sig)
1177 {
1178 	DIRDATA *dblk;
1179 	size_t cnt;
1180 
1181 	if (dirp == NULL)
1182 		return;
1183 	/*
1184 	 * read backwards through the file and process each directory
1185 	 */
1186 	cnt = dircnt;
1187 	while (cnt-- > 0) {
1188 		/*
1189 		 * frc_mode set, make sure we set the file modes even if
1190 		 * the user didn't ask for it (see file_subs.c for more info)
1191 		 */
1192 		dblk = &dirp[cnt];
1193 		if (pmode || dblk->frc_mode)
1194 			set_pmode(dblk->name, dblk->mode);
1195 		if (patime || pmtime)
1196 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1197 		if (!in_sig)
1198 			free(dblk->name);
1199 	}
1200 
1201 	if (!in_sig)
1202 		free(dirp);
1203 	dirp = NULL;
1204 	dircnt = 0;
1205 }
1206 
1207 /*
1208  * database independent routines
1209  */
1210 
1211 /*
1212  * st_hash()
1213  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1214  *	end of file, as this provides far better distribution than any other
1215  *	part of the name. For performance reasons we only care about the last
1216  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1217  *	name). Was tested on 500,000 name file tree traversal from the root
1218  *	and gave almost a perfectly uniform distribution of keys when used with
1219  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1220  *	chars at a time and pads with 0 for last addition.
1221  * Return:
1222  *	the hash value of the string MOD (%) the table size.
1223  */
1224 
1225 u_int
1226 st_hash(const char *name, int len, int tabsz)
1227 {
1228 	const char *pt;
1229 	char *dest;
1230 	const char *end;
1231 	int i;
1232 	u_int key = 0;
1233 	int steps;
1234 	int res;
1235 	u_int val;
1236 
1237 	/*
1238 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1239 	 * time here (remember these are pathnames, the tail is what will
1240 	 * spread out the keys)
1241 	 */
1242 	if (len > MAXKEYLEN) {
1243 		pt = &(name[len - MAXKEYLEN]);
1244 		len = MAXKEYLEN;
1245 	} else
1246 		pt = name;
1247 
1248 	/*
1249 	 * calculate the number of u_int size steps in the string and if
1250 	 * there is a runt to deal with
1251 	 */
1252 	steps = len/sizeof(u_int);
1253 	res = len % sizeof(u_int);
1254 
1255 	/*
1256 	 * add up the value of the string in unsigned integer sized pieces
1257 	 * too bad we cannot have unsigned int aligned strings, then we
1258 	 * could avoid the expensive copy.
1259 	 */
1260 	for (i = 0; i < steps; ++i) {
1261 		end = pt + sizeof(u_int);
1262 		dest = (char *)&val;
1263 		while (pt < end)
1264 			*dest++ = *pt++;
1265 		key += val;
1266 	}
1267 
1268 	/*
1269 	 * add in the runt padded with zero to the right
1270 	 */
1271 	if (res) {
1272 		val = 0;
1273 		end = pt + res;
1274 		dest = (char *)&val;
1275 		while (pt < end)
1276 			*dest++ = *pt++;
1277 		key += val;
1278 	}
1279 
1280 	/*
1281 	 * return the result mod the table size
1282 	 */
1283 	return(key % tabsz);
1284 }
1285