xref: /openbsd-src/bin/pax/tables.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: tables.c,v 1.25 2007/09/02 15:19:08 deraadt Exp $	*/
2 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992 Keith Muller.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Keith Muller of the University of California, San Diego.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #ifndef lint
38 #if 0
39 static const char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
40 #else
41 static const char rcsid[] = "$OpenBSD: tables.c,v 1.25 2007/09/02 15:19:08 deraadt Exp $";
42 #endif
43 #endif /* not lint */
44 
45 #include <sys/types.h>
46 #include <sys/time.h>
47 #include <sys/stat.h>
48 #include <sys/param.h>
49 #include <sys/fcntl.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <unistd.h>
53 #include <errno.h>
54 #include <stdlib.h>
55 #include "pax.h"
56 #include "tables.h"
57 #include "extern.h"
58 
59 /*
60  * Routines for controlling the contents of all the different databases pax
61  * keeps. Tables are dynamically created only when they are needed. The
62  * goal was speed and the ability to work with HUGE archives. The databases
63  * were kept simple, but do have complex rules for when the contents change.
64  * As of this writing, the posix library functions were more complex than
65  * needed for this application (pax databases have very short lifetimes and
66  * do not survive after pax is finished). Pax is required to handle very
67  * large archives. These database routines carefully combine memory usage and
68  * temporary file storage in ways which will not significantly impact runtime
69  * performance while allowing the largest possible archives to be handled.
70  * Trying to force the fit to the posix database routines was not considered
71  * time well spent.
72  */
73 
74 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75 static FTM **ftab = NULL;	/* file time table for updating arch */
76 static NAMT **ntab = NULL;	/* interactive rename storage table */
77 static DEVT **dtab = NULL;	/* device/inode mapping tables */
78 static ATDIR **atab = NULL;	/* file tree directory time reset table */
79 static DIRDATA *dirp = NULL;	/* storage for setting created dir time/mode */
80 static size_t dirsize;		/* size of dirp table */
81 static long dircnt = 0;		/* entries in dir time/mode storage */
82 static int ffd = -1;		/* tmp file for file time table name storage */
83 
84 static DEVT *chk_dev(dev_t, int);
85 
86 /*
87  * hard link table routines
88  *
89  * The hard link table tries to detect hard links to files using the device and
90  * inode values. We do this when writing an archive, so we can tell the format
91  * write routine that this file is a hard link to another file. The format
92  * write routine then can store this file in whatever way it wants (as a hard
93  * link if the format supports that like tar, or ignore this info like cpio).
94  * (Actually a field in the format driver table tells us if the format wants
95  * hard link info. if not, we do not waste time looking for them). We also use
96  * the same table when reading an archive. In that situation, this table is
97  * used by the format read routine to detect hard links from stored dev and
98  * inode numbers (like cpio). This will allow pax to create a link when one
99  * can be detected by the archive format.
100  */
101 
102 /*
103  * lnk_start
104  *	Creates the hard link table.
105  * Return:
106  *	0 if created, -1 if failure
107  */
108 
109 int
110 lnk_start(void)
111 {
112 	if (ltab != NULL)
113 		return(0);
114  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
115 		paxwarn(1, "Cannot allocate memory for hard link table");
116 		return(-1);
117 	}
118 	return(0);
119 }
120 
121 /*
122  * chk_lnk()
123  *	Looks up entry in hard link hash table. If found, it copies the name
124  *	of the file it is linked to (we already saw that file) into ln_name.
125  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
126  *	database. (We have seen all the links to this file). If not found,
127  *	we add the file to the database if it has the potential for having
128  *	hard links to other files we may process (it has a link count > 1)
129  * Return:
130  *	if found returns 1; if not found returns 0; -1 on error
131  */
132 
133 int
134 chk_lnk(ARCHD *arcn)
135 {
136 	HRDLNK *pt;
137 	HRDLNK **ppt;
138 	u_int indx;
139 
140 	if (ltab == NULL)
141 		return(-1);
142 	/*
143 	 * ignore those nodes that cannot have hard links
144 	 */
145 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
146 		return(0);
147 
148 	/*
149 	 * hash inode number and look for this file
150 	 */
151 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
152 	if ((pt = ltab[indx]) != NULL) {
153 		/*
154 		 * its hash chain in not empty, walk down looking for it
155 		 */
156 		ppt = &(ltab[indx]);
157 		while (pt != NULL) {
158 			if ((pt->ino == arcn->sb.st_ino) &&
159 			    (pt->dev == arcn->sb.st_dev))
160 				break;
161 			ppt = &(pt->fow);
162 			pt = pt->fow;
163 		}
164 
165 		if (pt != NULL) {
166 			/*
167 			 * found a link. set the node type and copy in the
168 			 * name of the file it is to link to. we need to
169 			 * handle hardlinks to regular files differently than
170 			 * other links.
171 			 */
172 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
173 				sizeof(arcn->ln_name));
174 			/* XXX truncate? */
175 			if (arcn->nlen >= sizeof(arcn->name))
176 				arcn->nlen = sizeof(arcn->name) - 1;
177 			if (arcn->type == PAX_REG)
178 				arcn->type = PAX_HRG;
179 			else
180 				arcn->type = PAX_HLK;
181 
182 			/*
183 			 * if we have found all the links to this file, remove
184 			 * it from the database
185 			 */
186 			if (--pt->nlink <= 1) {
187 				*ppt = pt->fow;
188 				(void)free((char *)pt->name);
189 				(void)free((char *)pt);
190 			}
191 			return(1);
192 		}
193 	}
194 
195 	/*
196 	 * we never saw this file before. It has links so we add it to the
197 	 * front of this hash chain
198 	 */
199 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
200 		if ((pt->name = strdup(arcn->name)) != NULL) {
201 			pt->dev = arcn->sb.st_dev;
202 			pt->ino = arcn->sb.st_ino;
203 			pt->nlink = arcn->sb.st_nlink;
204 			pt->fow = ltab[indx];
205 			ltab[indx] = pt;
206 			return(0);
207 		}
208 		(void)free((char *)pt);
209 	}
210 
211 	paxwarn(1, "Hard link table out of memory");
212 	return(-1);
213 }
214 
215 /*
216  * purg_lnk
217  *	remove reference for a file that we may have added to the data base as
218  *	a potential source for hard links. We ended up not using the file, so
219  *	we do not want to accidently point another file at it later on.
220  */
221 
222 void
223 purg_lnk(ARCHD *arcn)
224 {
225 	HRDLNK *pt;
226 	HRDLNK **ppt;
227 	u_int indx;
228 
229 	if (ltab == NULL)
230 		return;
231 	/*
232 	 * do not bother to look if it could not be in the database
233 	 */
234 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
235 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
236 		return;
237 
238 	/*
239 	 * find the hash chain for this inode value, if empty return
240 	 */
241 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
242 	if ((pt = ltab[indx]) == NULL)
243 		return;
244 
245 	/*
246 	 * walk down the list looking for the inode/dev pair, unlink and
247 	 * free if found
248 	 */
249 	ppt = &(ltab[indx]);
250 	while (pt != NULL) {
251 		if ((pt->ino == arcn->sb.st_ino) &&
252 		    (pt->dev == arcn->sb.st_dev))
253 			break;
254 		ppt = &(pt->fow);
255 		pt = pt->fow;
256 	}
257 	if (pt == NULL)
258 		return;
259 
260 	/*
261 	 * remove and free it
262 	 */
263 	*ppt = pt->fow;
264 	(void)free((char *)pt->name);
265 	(void)free((char *)pt);
266 }
267 
268 /*
269  * lnk_end()
270  *	pull apart a existing link table so we can reuse it. We do this between
271  *	read and write phases of append with update. (The format may have
272  *	used the link table, and we need to start with a fresh table for the
273  *	write phase
274  */
275 
276 void
277 lnk_end(void)
278 {
279 	int i;
280 	HRDLNK *pt;
281 	HRDLNK *ppt;
282 
283 	if (ltab == NULL)
284 		return;
285 
286 	for (i = 0; i < L_TAB_SZ; ++i) {
287 		if (ltab[i] == NULL)
288 			continue;
289 		pt = ltab[i];
290 		ltab[i] = NULL;
291 
292 		/*
293 		 * free up each entry on this chain
294 		 */
295 		while (pt != NULL) {
296 			ppt = pt;
297 			pt = ppt->fow;
298 			(void)free((char *)ppt->name);
299 			(void)free((char *)ppt);
300 		}
301 	}
302 	return;
303 }
304 
305 /*
306  * modification time table routines
307  *
308  * The modification time table keeps track of last modification times for all
309  * files stored in an archive during a write phase when -u is set. We only
310  * add a file to the archive if it is newer than a file with the same name
311  * already stored on the archive (if there is no other file with the same
312  * name on the archive it is added). This applies to writes and appends.
313  * An append with an -u must read the archive and store the modification time
314  * for every file on that archive before starting the write phase. It is clear
315  * that this is one HUGE database. To save memory space, the actual file names
316  * are stored in a scratch file and indexed by an in-memory hash table. The
317  * hash table is indexed by hashing the file path. The nodes in the table store
318  * the length of the filename and the lseek offset within the scratch file
319  * where the actual name is stored. Since there are never any deletions from
320  * this table, fragmentation of the scratch file is never a issue. Lookups
321  * seem to not exhibit any locality at all (files in the database are rarely
322  * looked up more than once...), so caching is just a waste of memory. The
323  * only limitation is the amount of scratch file space available to store the
324  * path names.
325  */
326 
327 /*
328  * ftime_start()
329  *	create the file time hash table and open for read/write the scratch
330  *	file. (after created it is unlinked, so when we exit we leave
331  *	no witnesses).
332  * Return:
333  *	0 if the table and file was created ok, -1 otherwise
334  */
335 
336 int
337 ftime_start(void)
338 {
339 
340 	if (ftab != NULL)
341 		return(0);
342  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
343 		paxwarn(1, "Cannot allocate memory for file time table");
344 		return(-1);
345 	}
346 
347 	/*
348 	 * get random name and create temporary scratch file, unlink name
349 	 * so it will get removed on exit
350 	 */
351 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
352 	if ((ffd = mkstemp(tempfile)) < 0) {
353 		syswarn(1, errno, "Unable to create temporary file: %s",
354 		    tempfile);
355 		return(-1);
356 	}
357 	(void)unlink(tempfile);
358 
359 	return(0);
360 }
361 
362 /*
363  * chk_ftime()
364  *	looks up entry in file time hash table. If not found, the file is
365  *	added to the hash table and the file named stored in the scratch file.
366  *	If a file with the same name is found, the file times are compared and
367  *	the most recent file time is retained. If the new file was younger (or
368  *	was not in the database) the new file is selected for storage.
369  * Return:
370  *	0 if file should be added to the archive, 1 if it should be skipped,
371  *	-1 on error
372  */
373 
374 int
375 chk_ftime(ARCHD *arcn)
376 {
377 	FTM *pt;
378 	int namelen;
379 	u_int indx;
380 	char ckname[PAXPATHLEN+1];
381 
382 	/*
383 	 * no info, go ahead and add to archive
384 	 */
385 	if (ftab == NULL)
386 		return(0);
387 
388 	/*
389 	 * hash the pathname and look up in table
390 	 */
391 	namelen = arcn->nlen;
392 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
393 	if ((pt = ftab[indx]) != NULL) {
394 		/*
395 		 * the hash chain is not empty, walk down looking for match
396 		 * only read up the path names if the lengths match, speeds
397 		 * up the search a lot
398 		 */
399 		while (pt != NULL) {
400 			if (pt->namelen == namelen) {
401 				/*
402 				 * potential match, have to read the name
403 				 * from the scratch file.
404 				 */
405 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
406 					syswarn(1, errno,
407 					    "Failed ftime table seek");
408 					return(-1);
409 				}
410 				if (read(ffd, ckname, namelen) != namelen) {
411 					syswarn(1, errno,
412 					    "Failed ftime table read");
413 					return(-1);
414 				}
415 
416 				/*
417 				 * if the names match, we are done
418 				 */
419 				if (!strncmp(ckname, arcn->name, namelen))
420 					break;
421 			}
422 
423 			/*
424 			 * try the next entry on the chain
425 			 */
426 			pt = pt->fow;
427 		}
428 
429 		if (pt != NULL) {
430 			/*
431 			 * found the file, compare the times, save the newer
432 			 */
433 			if (arcn->sb.st_mtime > pt->mtime) {
434 				/*
435 				 * file is newer
436 				 */
437 				pt->mtime = arcn->sb.st_mtime;
438 				return(0);
439 			}
440 			/*
441 			 * file is older
442 			 */
443 			return(1);
444 		}
445 	}
446 
447 	/*
448 	 * not in table, add it
449 	 */
450 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
451 		/*
452 		 * add the name at the end of the scratch file, saving the
453 		 * offset. add the file to the head of the hash chain
454 		 */
455 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
456 			if (write(ffd, arcn->name, namelen) == namelen) {
457 				pt->mtime = arcn->sb.st_mtime;
458 				pt->namelen = namelen;
459 				pt->fow = ftab[indx];
460 				ftab[indx] = pt;
461 				return(0);
462 			}
463 			syswarn(1, errno, "Failed write to file time table");
464 		} else
465 			syswarn(1, errno, "Failed seek on file time table");
466 	} else
467 		paxwarn(1, "File time table ran out of memory");
468 
469 	if (pt != NULL)
470 		(void)free((char *)pt);
471 	return(-1);
472 }
473 
474 /*
475  * Interactive rename table routines
476  *
477  * The interactive rename table keeps track of the new names that the user
478  * assigns to files from tty input. Since this map is unique for each file
479  * we must store it in case there is a reference to the file later in archive
480  * (a link). Otherwise we will be unable to find the file we know was
481  * extracted. The remapping of these files is stored in a memory based hash
482  * table (it is assumed since input must come from /dev/tty, it is unlikely to
483  * be a very large table).
484  */
485 
486 /*
487  * name_start()
488  *	create the interactive rename table
489  * Return:
490  *	0 if successful, -1 otherwise
491  */
492 
493 int
494 name_start(void)
495 {
496 	if (ntab != NULL)
497 		return(0);
498  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
499 		paxwarn(1, "Cannot allocate memory for interactive rename table");
500 		return(-1);
501 	}
502 	return(0);
503 }
504 
505 /*
506  * add_name()
507  *	add the new name to old name mapping just created by the user.
508  *	If an old name mapping is found (there may be duplicate names on an
509  *	archive) only the most recent is kept.
510  * Return:
511  *	0 if added, -1 otherwise
512  */
513 
514 int
515 add_name(char *oname, int onamelen, char *nname)
516 {
517 	NAMT *pt;
518 	u_int indx;
519 
520 	if (ntab == NULL) {
521 		/*
522 		 * should never happen
523 		 */
524 		paxwarn(0, "No interactive rename table, links may fail");
525 		return(0);
526 	}
527 
528 	/*
529 	 * look to see if we have already mapped this file, if so we
530 	 * will update it
531 	 */
532 	indx = st_hash(oname, onamelen, N_TAB_SZ);
533 	if ((pt = ntab[indx]) != NULL) {
534 		/*
535 		 * look down the has chain for the file
536 		 */
537 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
538 			pt = pt->fow;
539 
540 		if (pt != NULL) {
541 			/*
542 			 * found an old mapping, replace it with the new one
543 			 * the user just input (if it is different)
544 			 */
545 			if (strcmp(nname, pt->nname) == 0)
546 				return(0);
547 
548 			(void)free((char *)pt->nname);
549 			if ((pt->nname = strdup(nname)) == NULL) {
550 				paxwarn(1, "Cannot update rename table");
551 				return(-1);
552 			}
553 			return(0);
554 		}
555 	}
556 
557 	/*
558 	 * this is a new mapping, add it to the table
559 	 */
560 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
561 		if ((pt->oname = strdup(oname)) != NULL) {
562 			if ((pt->nname = strdup(nname)) != NULL) {
563 				pt->fow = ntab[indx];
564 				ntab[indx] = pt;
565 				return(0);
566 			}
567 			(void)free((char *)pt->oname);
568 		}
569 		(void)free((char *)pt);
570 	}
571 	paxwarn(1, "Interactive rename table out of memory");
572 	return(-1);
573 }
574 
575 /*
576  * sub_name()
577  *	look up a link name to see if it points at a file that has been
578  *	remapped by the user. If found, the link is adjusted to contain the
579  *	new name (oname is the link to name)
580  */
581 
582 void
583 sub_name(char *oname, int *onamelen, size_t onamesize)
584 {
585 	NAMT *pt;
586 	u_int indx;
587 
588 	if (ntab == NULL)
589 		return;
590 	/*
591 	 * look the name up in the hash table
592 	 */
593 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
594 	if ((pt = ntab[indx]) == NULL)
595 		return;
596 
597 	while (pt != NULL) {
598 		/*
599 		 * walk down the hash chain looking for a match
600 		 */
601 		if (strcmp(oname, pt->oname) == 0) {
602 			/*
603 			 * found it, replace it with the new name
604 			 * and return (we know that oname has enough space)
605 			 */
606 			*onamelen = strlcpy(oname, pt->nname, onamesize);
607 			if (*onamelen >= onamesize)
608 				*onamelen = onamesize - 1; /* XXX truncate? */
609 			return;
610 		}
611 		pt = pt->fow;
612 	}
613 
614 	/*
615 	 * no match, just return
616 	 */
617 	return;
618 }
619 
620 /*
621  * device/inode mapping table routines
622  * (used with formats that store device and inodes fields)
623  *
624  * device/inode mapping tables remap the device field in a archive header. The
625  * device/inode fields are used to determine when files are hard links to each
626  * other. However these values have very little meaning outside of that. This
627  * database is used to solve one of two different problems.
628  *
629  * 1) when files are appended to an archive, while the new files may have hard
630  * links to each other, you cannot determine if they have hard links to any
631  * file already stored on the archive from a prior run of pax. We must assume
632  * that these inode/device pairs are unique only within a SINGLE run of pax
633  * (which adds a set of files to an archive). So we have to make sure the
634  * inode/dev pairs we add each time are always unique. We do this by observing
635  * while the inode field is very dense, the use of the dev field is fairly
636  * sparse. Within each run of pax, we remap any device number of a new archive
637  * member that has a device number used in a prior run and already stored in a
638  * file on the archive. During the read phase of the append, we store the
639  * device numbers used and mark them to not be used by any file during the
640  * write phase. If during write we go to use one of those old device numbers,
641  * we remap it to a new value.
642  *
643  * 2) Often the fields in the archive header used to store these values are
644  * too small to store the entire value. The result is an inode or device value
645  * which can be truncated. This really can foul up an archive. With truncation
646  * we end up creating links between files that are really not links (after
647  * truncation the inodes are the same value). We address that by detecting
648  * truncation and forcing a remap of the device field to split truncated
649  * inodes away from each other. Each truncation creates a pattern of bits that
650  * are removed. We use this pattern of truncated bits to partition the inodes
651  * on a single device to many different devices (each one represented by the
652  * truncated bit pattern). All inodes on the same device that have the same
653  * truncation pattern are mapped to the same new device. Two inodes that
654  * truncate to the same value clearly will always have different truncation
655  * bit patterns, so they will be split from away each other. When we spot
656  * device truncation we remap the device number to a non truncated value.
657  * (for more info see table.h for the data structures involved).
658  */
659 
660 /*
661  * dev_start()
662  *	create the device mapping table
663  * Return:
664  *	0 if successful, -1 otherwise
665  */
666 
667 int
668 dev_start(void)
669 {
670 	if (dtab != NULL)
671 		return(0);
672  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
673 		paxwarn(1, "Cannot allocate memory for device mapping table");
674 		return(-1);
675 	}
676 	return(0);
677 }
678 
679 /*
680  * add_dev()
681  *	add a device number to the table. this will force the device to be
682  *	remapped to a new value if it be used during a write phase. This
683  *	function is called during the read phase of an append to prohibit the
684  *	use of any device number already in the archive.
685  * Return:
686  *	0 if added ok, -1 otherwise
687  */
688 
689 int
690 add_dev(ARCHD *arcn)
691 {
692 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
693 		return(-1);
694 	return(0);
695 }
696 
697 /*
698  * chk_dev()
699  *	check for a device value in the device table. If not found and the add
700  *	flag is set, it is added. This does NOT assign any mapping values, just
701  *	adds the device number as one that need to be remapped. If this device
702  *	is already mapped, just return with a pointer to that entry.
703  * Return:
704  *	pointer to the entry for this device in the device map table. Null
705  *	if the add flag is not set and the device is not in the table (it is
706  *	not been seen yet). If add is set and the device cannot be added, null
707  *	is returned (indicates an error).
708  */
709 
710 static DEVT *
711 chk_dev(dev_t dev, int add)
712 {
713 	DEVT *pt;
714 	u_int indx;
715 
716 	if (dtab == NULL)
717 		return(NULL);
718 	/*
719 	 * look to see if this device is already in the table
720 	 */
721 	indx = ((unsigned)dev) % D_TAB_SZ;
722 	if ((pt = dtab[indx]) != NULL) {
723 		while ((pt != NULL) && (pt->dev != dev))
724 			pt = pt->fow;
725 
726 		/*
727 		 * found it, return a pointer to it
728 		 */
729 		if (pt != NULL)
730 			return(pt);
731 	}
732 
733 	/*
734 	 * not in table, we add it only if told to as this may just be a check
735 	 * to see if a device number is being used.
736 	 */
737 	if (add == 0)
738 		return(NULL);
739 
740 	/*
741 	 * allocate a node for this device and add it to the front of the hash
742 	 * chain. Note we do not assign remaps values here, so the pt->list
743 	 * list must be NULL.
744 	 */
745 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
746 		paxwarn(1, "Device map table out of memory");
747 		return(NULL);
748 	}
749 	pt->dev = dev;
750 	pt->list = NULL;
751 	pt->fow = dtab[indx];
752 	dtab[indx] = pt;
753 	return(pt);
754 }
755 /*
756  * map_dev()
757  *	given an inode and device storage mask (the mask has a 1 for each bit
758  *	the archive format is able to store in a header), we check for inode
759  *	and device truncation and remap the device as required. Device mapping
760  *	can also occur when during the read phase of append a device number was
761  *	seen (and was marked as do not use during the write phase). WE ASSUME
762  *	that unsigned longs are the same size or bigger than the fields used
763  *	for ino_t and dev_t. If not the types will have to be changed.
764  * Return:
765  *	0 if all ok, -1 otherwise.
766  */
767 
768 int
769 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
770 {
771 	DEVT *pt;
772 	DLIST *dpt;
773 	static dev_t lastdev = 0;	/* next device number to try */
774 	int trc_ino = 0;
775 	int trc_dev = 0;
776 	ino_t trunc_bits = 0;
777 	ino_t nino;
778 
779 	if (dtab == NULL)
780 		return(0);
781 	/*
782 	 * check for device and inode truncation, and extract the truncated
783 	 * bit pattern.
784 	 */
785 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
786 		++trc_dev;
787 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
788 		++trc_ino;
789 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
790 	}
791 
792 	/*
793 	 * see if this device is already being mapped, look up the device
794 	 * then find the truncation bit pattern which applies
795 	 */
796 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
797 		/*
798 		 * this device is already marked to be remapped
799 		 */
800 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
801 			if (dpt->trunc_bits == trunc_bits)
802 				break;
803 
804 		if (dpt != NULL) {
805 			/*
806 			 * we are being remapped for this device and pattern
807 			 * change the device number to be stored and return
808 			 */
809 			arcn->sb.st_dev = dpt->dev;
810 			arcn->sb.st_ino = nino;
811 			return(0);
812 		}
813 	} else {
814 		/*
815 		 * this device is not being remapped YET. if we do not have any
816 		 * form of truncation, we do not need a remap
817 		 */
818 		if (!trc_ino && !trc_dev)
819 			return(0);
820 
821 		/*
822 		 * we have truncation, have to add this as a device to remap
823 		 */
824 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
825 			goto bad;
826 
827 		/*
828 		 * if we just have a truncated inode, we have to make sure that
829 		 * all future inodes that do not truncate (they have the
830 		 * truncation pattern of all 0's) continue to map to the same
831 		 * device number. We probably have already written inodes with
832 		 * this device number to the archive with the truncation
833 		 * pattern of all 0's. So we add the mapping for all 0's to the
834 		 * same device number.
835 		 */
836 		if (!trc_dev && (trunc_bits != 0)) {
837 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
838 				goto bad;
839 			dpt->trunc_bits = 0;
840 			dpt->dev = arcn->sb.st_dev;
841 			dpt->fow = pt->list;
842 			pt->list = dpt;
843 		}
844 	}
845 
846 	/*
847 	 * look for a device number not being used. We must watch for wrap
848 	 * around on lastdev (so we do not get stuck looking forever!)
849 	 */
850 	while (++lastdev > 0) {
851 		if (chk_dev(lastdev, 0) != NULL)
852 			continue;
853 		/*
854 		 * found an unused value. If we have reached truncation point
855 		 * for this format we are hosed, so we give up. Otherwise we
856 		 * mark it as being used.
857 		 */
858 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
859 		    (chk_dev(lastdev, 1) == NULL))
860 			goto bad;
861 		break;
862 	}
863 
864 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
865 		goto bad;
866 
867 	/*
868 	 * got a new device number, store it under this truncation pattern.
869 	 * change the device number this file is being stored with.
870 	 */
871 	dpt->trunc_bits = trunc_bits;
872 	dpt->dev = lastdev;
873 	dpt->fow = pt->list;
874 	pt->list = dpt;
875 	arcn->sb.st_dev = lastdev;
876 	arcn->sb.st_ino = nino;
877 	return(0);
878 
879     bad:
880 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
881 	    arcn->name);
882 	paxwarn(0, "Archive may create improper hard links when extracted");
883 	return(0);
884 }
885 
886 /*
887  * directory access/mod time reset table routines (for directories READ by pax)
888  *
889  * The pax -t flag requires that access times of archive files be the same
890  * before being read by pax. For regular files, access time is restored after
891  * the file has been copied. This database provides the same functionality for
892  * directories read during file tree traversal. Restoring directory access time
893  * is more complex than files since directories may be read several times until
894  * all the descendants in their subtree are visited by fts. Directory access
895  * and modification times are stored during the fts pre-order visit (done
896  * before any descendants in the subtree are visited) and restored after the
897  * fts post-order visit (after all the descendants have been visited). In the
898  * case of premature exit from a subtree (like from the effects of -n), any
899  * directory entries left in this database are reset during final cleanup
900  * operations of pax. Entries are hashed by inode number for fast lookup.
901  */
902 
903 /*
904  * atdir_start()
905  *	create the directory access time database for directories READ by pax.
906  * Return:
907  *	0 is created ok, -1 otherwise.
908  */
909 
910 int
911 atdir_start(void)
912 {
913 	if (atab != NULL)
914 		return(0);
915  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
916 		paxwarn(1,"Cannot allocate space for directory access time table");
917 		return(-1);
918 	}
919 	return(0);
920 }
921 
922 
923 /*
924  * atdir_end()
925  *	walk through the directory access time table and reset the access time
926  *	of any directory who still has an entry left in the database. These
927  *	entries are for directories READ by pax
928  */
929 
930 void
931 atdir_end(void)
932 {
933 	ATDIR *pt;
934 	int i;
935 
936 	if (atab == NULL)
937 		return;
938 	/*
939 	 * for each non-empty hash table entry reset all the directories
940 	 * chained there.
941 	 */
942 	for (i = 0; i < A_TAB_SZ; ++i) {
943 		if ((pt = atab[i]) == NULL)
944 			continue;
945 		/*
946 		 * remember to force the times, set_ftime() looks at pmtime
947 		 * and patime, which only applies to things CREATED by pax,
948 		 * not read by pax. Read time reset is controlled by -t.
949 		 */
950 		for (; pt != NULL; pt = pt->fow)
951 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
952 	}
953 }
954 
955 /*
956  * add_atdir()
957  *	add a directory to the directory access time table. Table is hashed
958  *	and chained by inode number. This is for directories READ by pax
959  */
960 
961 void
962 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
963 {
964 	ATDIR *pt;
965 	u_int indx;
966 
967 	if (atab == NULL)
968 		return;
969 
970 	/*
971 	 * make sure this directory is not already in the table, if so just
972 	 * return (the older entry always has the correct time). The only
973 	 * way this will happen is when the same subtree can be traversed by
974 	 * different args to pax and the -n option is aborting fts out of a
975 	 * subtree before all the post-order visits have been made.
976 	 */
977 	indx = ((unsigned)ino) % A_TAB_SZ;
978 	if ((pt = atab[indx]) != NULL) {
979 		while (pt != NULL) {
980 			if ((pt->ino == ino) && (pt->dev == dev))
981 				break;
982 			pt = pt->fow;
983 		}
984 
985 		/*
986 		 * oops, already there. Leave it alone.
987 		 */
988 		if (pt != NULL)
989 			return;
990 	}
991 
992 	/*
993 	 * add it to the front of the hash chain
994 	 */
995 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
996 		if ((pt->name = strdup(fname)) != NULL) {
997 			pt->dev = dev;
998 			pt->ino = ino;
999 			pt->mtime = mtime;
1000 			pt->atime = atime;
1001 			pt->fow = atab[indx];
1002 			atab[indx] = pt;
1003 			return;
1004 		}
1005 		(void)free((char *)pt);
1006 	}
1007 
1008 	paxwarn(1, "Directory access time reset table ran out of memory");
1009 	return;
1010 }
1011 
1012 /*
1013  * get_atdir()
1014  *	look up a directory by inode and device number to obtain the access
1015  *	and modification time you want to set to. If found, the modification
1016  *	and access time parameters are set and the entry is removed from the
1017  *	table (as it is no longer needed). These are for directories READ by
1018  *	pax
1019  * Return:
1020  *	0 if found, -1 if not found.
1021  */
1022 
1023 int
1024 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1025 {
1026 	ATDIR *pt;
1027 	ATDIR **ppt;
1028 	u_int indx;
1029 
1030 	if (atab == NULL)
1031 		return(-1);
1032 	/*
1033 	 * hash by inode and search the chain for an inode and device match
1034 	 */
1035 	indx = ((unsigned)ino) % A_TAB_SZ;
1036 	if ((pt = atab[indx]) == NULL)
1037 		return(-1);
1038 
1039 	ppt = &(atab[indx]);
1040 	while (pt != NULL) {
1041 		if ((pt->ino == ino) && (pt->dev == dev))
1042 			break;
1043 		/*
1044 		 * no match, go to next one
1045 		 */
1046 		ppt = &(pt->fow);
1047 		pt = pt->fow;
1048 	}
1049 
1050 	/*
1051 	 * return if we did not find it.
1052 	 */
1053 	if (pt == NULL)
1054 		return(-1);
1055 
1056 	/*
1057 	 * found it. return the times and remove the entry from the table.
1058 	 */
1059 	*ppt = pt->fow;
1060 	*mtime = pt->mtime;
1061 	*atime = pt->atime;
1062 	(void)free((char *)pt->name);
1063 	(void)free((char *)pt);
1064 	return(0);
1065 }
1066 
1067 /*
1068  * directory access mode and time storage routines (for directories CREATED
1069  * by pax).
1070  *
1071  * Pax requires that extracted directories, by default, have their access/mod
1072  * times and permissions set to the values specified in the archive. During the
1073  * actions of extracting (and creating the destination subtree during -rw copy)
1074  * directories extracted may be modified after being created. Even worse is
1075  * that these directories may have been created with file permissions which
1076  * prohibits any descendants of these directories from being extracted. When
1077  * directories are created by pax, access rights may be added to permit the
1078  * creation of files in their subtree. Every time pax creates a directory, the
1079  * times and file permissions specified by the archive are stored. After all
1080  * files have been extracted (or copied), these directories have their times
1081  * and file modes reset to the stored values. The directory info is restored in
1082  * reverse order as entries were added to the data file from root to leaf. To
1083  * restore atime properly, we must go backwards. The data file consists of
1084  * records with two parts, the file name followed by a DIRDATA trailer. The
1085  * fixed sized trailer contains the size of the name plus the off_t location in
1086  * the file. To restore we work backwards through the file reading the trailer
1087  * then the file name.
1088  */
1089 
1090 /*
1091  * dir_start()
1092  *	set up the directory time and file mode storage for directories CREATED
1093  *	by pax.
1094  * Return:
1095  *	0 if ok, -1 otherwise
1096  */
1097 
1098 int
1099 dir_start(void)
1100 {
1101 	if (dirp != NULL)
1102 		return(0);
1103 
1104 	dirsize = DIRP_SIZE;
1105 	if ((dirp = calloc(dirsize, sizeof(DIRDATA))) == NULL) {
1106 		paxwarn(1, "Unable to allocate memory for directory times");
1107 		return(-1);
1108 	}
1109 	return(0);
1110 }
1111 
1112 /*
1113  * add_dir()
1114  *	add the mode and times for a newly CREATED directory
1115  *	name is name of the directory, psb the stat buffer with the data in it,
1116  *	frc_mode is a flag that says whether to force the setting of the mode
1117  *	(ignoring the user set values for preserving file mode). Frc_mode is
1118  *	for the case where we created a file and found that the resulting
1119  *	directory was not writeable and the user asked for file modes to NOT
1120  *	be preserved. (we have to preserve what was created by default, so we
1121  *	have to force the setting at the end. this is stated explicitly in the
1122  *	pax spec)
1123  */
1124 
1125 void
1126 add_dir(char *name, struct stat *psb, int frc_mode)
1127 {
1128 	DIRDATA *dblk;
1129 	char realname[MAXPATHLEN], *rp;
1130 
1131 	if (dirp == NULL)
1132 		return;
1133 
1134 	if (havechd && *name != '/') {
1135 		if ((rp = realpath(name, realname)) == NULL) {
1136 			paxwarn(1, "Cannot canonicalize %s", name);
1137 			return;
1138 		}
1139 		name = rp;
1140 	}
1141 	if (dircnt == dirsize) {
1142 		dblk = realloc(dirp, 2 * dirsize * sizeof(DIRDATA));
1143 		if (dblk == NULL) {
1144 			paxwarn(1, "Unable to store mode and times for created"
1145 			    " directory: %s", name);
1146 			return;
1147 		}
1148 		dirp = dblk;
1149 		dirsize *= 2;
1150 	}
1151 	dblk = &dirp[dircnt];
1152 	if ((dblk->name = strdup(name)) == NULL) {
1153 		paxwarn(1, "Unable to store mode and times for created"
1154 		    " directory: %s", name);
1155 		return;
1156 	}
1157 	dblk->mode = psb->st_mode & 0xffff;
1158 	dblk->mtime = psb->st_mtime;
1159 	dblk->atime = psb->st_atime;
1160 	dblk->frc_mode = frc_mode;
1161 	++dircnt;
1162 }
1163 
1164 /*
1165  * proc_dir()
1166  *	process all file modes and times stored for directories CREATED
1167  *	by pax
1168  */
1169 
1170 void
1171 proc_dir(void)
1172 {
1173 	DIRDATA *dblk;
1174 	long cnt;
1175 
1176 	if (dirp == NULL)
1177 		return;
1178 	/*
1179 	 * read backwards through the file and process each directory
1180 	 */
1181 	cnt = dircnt;
1182 	while (--cnt >= 0) {
1183 		/*
1184 		 * frc_mode set, make sure we set the file modes even if
1185 		 * the user didn't ask for it (see file_subs.c for more info)
1186 		 */
1187 		dblk = &dirp[cnt];
1188 		if (pmode || dblk->frc_mode)
1189 			set_pmode(dblk->name, dblk->mode);
1190 		if (patime || pmtime)
1191 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1192 		free(dblk->name);
1193 	}
1194 
1195 	free(dirp);
1196 	dirp = NULL;
1197 	dircnt = 0;
1198 }
1199 
1200 /*
1201  * database independent routines
1202  */
1203 
1204 /*
1205  * st_hash()
1206  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1207  *	end of file, as this provides far better distribution than any other
1208  *	part of the name. For performance reasons we only care about the last
1209  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1210  *	name). Was tested on 500,000 name file tree traversal from the root
1211  *	and gave almost a perfectly uniform distribution of keys when used with
1212  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1213  *	chars at a time and pads with 0 for last addition.
1214  * Return:
1215  *	the hash value of the string MOD (%) the table size.
1216  */
1217 
1218 u_int
1219 st_hash(char *name, int len, int tabsz)
1220 {
1221 	char *pt;
1222 	char *dest;
1223 	char *end;
1224 	int i;
1225 	u_int key = 0;
1226 	int steps;
1227 	int res;
1228 	u_int val;
1229 
1230 	/*
1231 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1232 	 * time here (remember these are pathnames, the tail is what will
1233 	 * spread out the keys)
1234 	 */
1235 	if (len > MAXKEYLEN) {
1236 		pt = &(name[len - MAXKEYLEN]);
1237 		len = MAXKEYLEN;
1238 	} else
1239 		pt = name;
1240 
1241 	/*
1242 	 * calculate the number of u_int size steps in the string and if
1243 	 * there is a runt to deal with
1244 	 */
1245 	steps = len/sizeof(u_int);
1246 	res = len % sizeof(u_int);
1247 
1248 	/*
1249 	 * add up the value of the string in unsigned integer sized pieces
1250 	 * too bad we cannot have unsigned int aligned strings, then we
1251 	 * could avoid the expensive copy.
1252 	 */
1253 	for (i = 0; i < steps; ++i) {
1254 		end = pt + sizeof(u_int);
1255 		dest = (char *)&val;
1256 		while (pt < end)
1257 			*dest++ = *pt++;
1258 		key += val;
1259 	}
1260 
1261 	/*
1262 	 * add in the runt padded with zero to the right
1263 	 */
1264 	if (res) {
1265 		val = 0;
1266 		end = pt + res;
1267 		dest = (char *)&val;
1268 		while (pt < end)
1269 			*dest++ = *pt++;
1270 		key += val;
1271 	}
1272 
1273 	/*
1274 	 * return the result mod the table size
1275 	 */
1276 	return(key % tabsz);
1277 }
1278