xref: /onnv-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 10106:b235491976d3)
11772Sjl139090 /*
21772Sjl139090  * CDDL HEADER START
31772Sjl139090  *
41772Sjl139090  * The contents of this file are subject to the terms of the
51772Sjl139090  * Common Development and Distribution License (the "License").
61772Sjl139090  * You may not use this file except in compliance with the License.
71772Sjl139090  *
81772Sjl139090  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
91772Sjl139090  * or http://www.opensolaris.org/os/licensing.
101772Sjl139090  * See the License for the specific language governing permissions
111772Sjl139090  * and limitations under the License.
121772Sjl139090  *
131772Sjl139090  * When distributing Covered Code, include this CDDL HEADER in each
141772Sjl139090  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
151772Sjl139090  * If applicable, add the following below this CDDL HEADER, with the
161772Sjl139090  * fields enclosed by brackets "[]" replaced with your own identifying
171772Sjl139090  * information: Portions Copyright [yyyy] [name of copyright owner]
181772Sjl139090  *
191772Sjl139090  * CDDL HEADER END
201772Sjl139090  */
211772Sjl139090 /*
22*10106SJason.Beloro@Sun.COM  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
231772Sjl139090  * Use is subject to license terms.
241772Sjl139090  */
251772Sjl139090 
261772Sjl139090 #include <sys/cpuvar.h>
271772Sjl139090 #include <sys/systm.h>
281772Sjl139090 #include <sys/sysmacros.h>
291772Sjl139090 #include <sys/promif.h>
301772Sjl139090 #include <sys/platform_module.h>
311772Sjl139090 #include <sys/cmn_err.h>
321772Sjl139090 #include <sys/errno.h>
331772Sjl139090 #include <sys/machsystm.h>
341772Sjl139090 #include <sys/bootconf.h>
351772Sjl139090 #include <sys/nvpair.h>
361772Sjl139090 #include <sys/kobj.h>
371772Sjl139090 #include <sys/mem_cage.h>
381772Sjl139090 #include <sys/opl.h>
391772Sjl139090 #include <sys/scfd/scfostoescf.h>
401772Sjl139090 #include <sys/cpu_sgnblk_defs.h>
411772Sjl139090 #include <sys/utsname.h>
421772Sjl139090 #include <sys/ddi.h>
431772Sjl139090 #include <sys/sunndi.h>
441772Sjl139090 #include <sys/lgrp.h>
451772Sjl139090 #include <sys/memnode.h>
461772Sjl139090 #include <sys/sysmacros.h>
473914Spm145316 #include <sys/time.h>
483914Spm145316 #include <sys/cpu.h>
491772Sjl139090 #include <vm/vm_dep.h>
501772Sjl139090 
511772Sjl139090 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
522214Sav145390 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
532214Sav145390 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
542214Sav145390 int (*opl_get_mem_addr)(char *unum, char *sid,
552214Sav145390     uint64_t offset, uint64_t *paddr);
561772Sjl139090 
571772Sjl139090 /* Memory for fcode claims.  16k times # maximum possible IO units */
581772Sjl139090 #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
591772Sjl139090 int efcode_size = EFCODE_SIZE;
601772Sjl139090 
611772Sjl139090 #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
621772Sjl139090 
631772Sjl139090 /* Set the maximum number of boards for DR */
641772Sjl139090 int opl_boards = OPL_MAX_BOARDS;
651772Sjl139090 
661772Sjl139090 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
671772Sjl139090 
681772Sjl139090 extern int tsb_lgrp_affinity;
691772Sjl139090 
701772Sjl139090 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
711772Sjl139090 	(OPL_MAX_TSBS_PER_PCICH);
721772Sjl139090 
731772Sjl139090 pgcnt_t opl_startup_cage_size = 0;
741772Sjl139090 
755347Sjfrank /*
765347Sjfrank  * The length of the delay in seconds in communication with XSCF after
775347Sjfrank  * which the warning message will be logged.
785347Sjfrank  */
795347Sjfrank uint_t	xscf_connect_delay = 60 * 15;
805347Sjfrank 
812241Shuah static opl_model_info_t opl_models[] = {
823123Ssubhan 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
833123Ssubhan 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
843123Ssubhan 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
853123Ssubhan 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
863123Ssubhan 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
876297Sjl139090 	{ "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE },
882241Shuah };
892241Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
902241Shuah 
913123Ssubhan /*
923627Ssubhan  * opl_cur_model
933123Ssubhan  */
943627Ssubhan static	opl_model_info_t *opl_cur_model = NULL;
952241Shuah 
961772Sjl139090 static struct memlist *opl_memlist_per_board(struct memlist *ml);
975347Sjfrank static void post_xscf_msg(char *, int);
985347Sjfrank static void pass2xscf_thread();
991772Sjl139090 
1003914Spm145316 /*
1013914Spm145316  * Note FF/DC out-of-order instruction engine takes only a
1023914Spm145316  * single cycle to execute each spin loop
1033914Spm145316  * for comparison, Panther takes 6 cycles for same loop
1045834Spt157919  * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time
1055834Spt157919  * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C)
1065834Spt157919  * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep
1075834Spt157919  * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus
1085834Spt157919  * Listed values tuned for 2.15GHz to 2.64GHz systems
1093914Spm145316  * Value may change for future systems
1103914Spm145316  */
1115834Spt157919 #define	OPL_BOFF_SPIN 7
1125834Spt157919 #define	OPL_BOFF_SLEEP 4
1135834Spt157919 #define	OPL_BOFF_TM 1600
1145834Spt157919 #define	OPL_BOFF_MAX_SCALE 8
1153914Spm145316 
1165788Smv143129 #define	OPL_CLOCK_TICK_THRESHOLD	128
1175788Smv143129 #define	OPL_CLOCK_TICK_NCPUS		64
1185788Smv143129 
1195788Smv143129 extern int	clock_tick_threshold;
1205788Smv143129 extern int	clock_tick_ncpus;
1215788Smv143129 
1221772Sjl139090 int
1231772Sjl139090 set_platform_max_ncpus(void)
1241772Sjl139090 {
1251772Sjl139090 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
1261772Sjl139090 }
1271772Sjl139090 
1281772Sjl139090 int
1291772Sjl139090 set_platform_tsb_spares(void)
1301772Sjl139090 {
1311772Sjl139090 	return (MIN(opl_tsb_spares, MAX_UPA));
1321772Sjl139090 }
1331772Sjl139090 
1342241Shuah static void
1352241Shuah set_model_info()
1362241Shuah {
1373123Ssubhan 	extern int ts_dispatch_extended;
1382241Shuah 	char	name[MAXSYSNAME];
1392241Shuah 	int	i;
1402241Shuah 
1412241Shuah 	/*
1422241Shuah 	 * Get model name from the root node.
1432241Shuah 	 *
1442241Shuah 	 * We are using the prom device tree since, at this point,
1452241Shuah 	 * the Solaris device tree is not yet setup.
1462241Shuah 	 */
1472241Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
1482241Shuah 
1492241Shuah 	for (i = 0; i < opl_num_models; i++) {
1502241Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
1512241Shuah 			opl_cur_model = &opl_models[i];
1522241Shuah 			break;
1532241Shuah 		}
1542241Shuah 	}
1553123Ssubhan 
1565539Swh31274 	/*
1575539Swh31274 	 * If model not matched, it's an unknown model.
1586297Sjl139090 	 * Just return.  It will default to standard dispatch tables.
1595539Swh31274 	 */
1602241Shuah 	if (i == opl_num_models)
1615539Swh31274 		return;
1623123Ssubhan 
1633123Ssubhan 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
1645037Sjl139090 	    (ts_dispatch_extended == -1)) {
1653123Ssubhan 		/*
1663123Ssubhan 		 * Based on a platform model, select a dispatch table.
1673123Ssubhan 		 * Only DC2 and DC3 systems uses the alternate/extended
1683123Ssubhan 		 * TS dispatch table.
1696297Sjl139090 		 * IKKAKU, FF1, FF2 and DC1 systems use standard dispatch
1706297Sjl139090 		 * tables.
1713123Ssubhan 		 */
1723123Ssubhan 		ts_dispatch_extended = 1;
1733123Ssubhan 	}
1743123Ssubhan 
1752241Shuah }
1762241Shuah 
1772241Shuah static void
1782241Shuah set_max_mmu_ctxdoms()
1792241Shuah {
1802241Shuah 	extern uint_t	max_mmu_ctxdoms;
1812241Shuah 	int		max_boards;
1822241Shuah 
1832241Shuah 	/*
1842241Shuah 	 * From the model, get the maximum number of boards
1852241Shuah 	 * supported and set the value accordingly. If the model
1862241Shuah 	 * could not be determined or recognized, we assume the max value.
1872241Shuah 	 */
1882241Shuah 	if (opl_cur_model == NULL)
1892241Shuah 		max_boards = OPL_MAX_BOARDS;
1902241Shuah 	else
1912241Shuah 		max_boards = opl_cur_model->model_max_boards;
1922241Shuah 
1932241Shuah 	/*
1942241Shuah 	 * On OPL, cores and MMUs are one-to-one.
1952241Shuah 	 */
1962241Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
1972241Shuah }
1982241Shuah 
1991772Sjl139090 #pragma weak mmu_init_large_pages
2001772Sjl139090 
2011772Sjl139090 void
2021772Sjl139090 set_platform_defaults(void)
2031772Sjl139090 {
2041772Sjl139090 	extern char *tod_module_name;
2051772Sjl139090 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
2061772Sjl139090 	extern void mmu_init_large_pages(size_t);
2071772Sjl139090 
2081772Sjl139090 	/* Set the CPU signature function pointer */
2091772Sjl139090 	cpu_sgn_func = cpu_sgn_update;
2101772Sjl139090 
2111772Sjl139090 	/* Set appropriate tod module for OPL platform */
2121772Sjl139090 	ASSERT(tod_module_name == NULL);
2131772Sjl139090 	tod_module_name = "todopl";
2141772Sjl139090 
2151772Sjl139090 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
2162659Ssusans 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
2171772Sjl139090 		if (&mmu_init_large_pages)
2181772Sjl139090 			mmu_init_large_pages(mmu_ism_pagesize);
2191772Sjl139090 	}
2201772Sjl139090 
2211772Sjl139090 	tsb_lgrp_affinity = 1;
2222241Shuah 
2232241Shuah 	set_max_mmu_ctxdoms();
2241772Sjl139090 }
2251772Sjl139090 
2261772Sjl139090 /*
2271772Sjl139090  * Convert logical a board number to a physical one.
2281772Sjl139090  */
2291772Sjl139090 
2301772Sjl139090 #define	LSBPROP		"board#"
2311772Sjl139090 #define	PSBPROP		"physical-board#"
2321772Sjl139090 
2331772Sjl139090 int
2341772Sjl139090 opl_get_physical_board(int id)
2351772Sjl139090 {
2361772Sjl139090 	dev_info_t	*root_dip, *dip = NULL;
2371772Sjl139090 	char		*dname = NULL;
2381772Sjl139090 	int		circ;
2391772Sjl139090 
2401772Sjl139090 	pnode_t		pnode;
2411772Sjl139090 	char		pname[MAXSYSNAME] = {0};
2421772Sjl139090 
2431772Sjl139090 	int		lsb_id;	/* Logical System Board ID */
2441772Sjl139090 	int		psb_id;	/* Physical System Board ID */
2451772Sjl139090 
2461772Sjl139090 
2471772Sjl139090 	/*
2481772Sjl139090 	 * This function is called on early stage of bootup when the
2491772Sjl139090 	 * kernel device tree is not initialized yet, and also
2501772Sjl139090 	 * later on when the device tree is up. We want to try
2511772Sjl139090 	 * the fast track first.
2521772Sjl139090 	 */
2531772Sjl139090 	root_dip = ddi_root_node();
2541772Sjl139090 	if (root_dip) {
2551772Sjl139090 		/* Get from devinfo node */
2561772Sjl139090 		ndi_devi_enter(root_dip, &circ);
2571772Sjl139090 		for (dip = ddi_get_child(root_dip); dip;
2581772Sjl139090 		    dip = ddi_get_next_sibling(dip)) {
2591772Sjl139090 
2601772Sjl139090 			dname = ddi_node_name(dip);
2611772Sjl139090 			if (strncmp(dname, "pseudo-mc", 9) != 0)
2621772Sjl139090 				continue;
2631772Sjl139090 
2641772Sjl139090 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
2651772Sjl139090 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
2661772Sjl139090 				continue;
2671772Sjl139090 
2681772Sjl139090 			if (id == lsb_id) {
2691772Sjl139090 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
2701772Sjl139090 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
2711772Sjl139090 				    == -1) {
2721772Sjl139090 					ndi_devi_exit(root_dip, circ);
2731772Sjl139090 					return (-1);
2741772Sjl139090 				} else {
2751772Sjl139090 					ndi_devi_exit(root_dip, circ);
2761772Sjl139090 					return (psb_id);
2771772Sjl139090 				}
2781772Sjl139090 			}
2791772Sjl139090 		}
2801772Sjl139090 		ndi_devi_exit(root_dip, circ);
2811772Sjl139090 	}
2821772Sjl139090 
2831772Sjl139090 	/*
2841772Sjl139090 	 * We do not have the kernel device tree, or we did not
2851772Sjl139090 	 * find the node for some reason (let's say the kernel
2861772Sjl139090 	 * device tree was modified), let's try the OBP tree.
2871772Sjl139090 	 */
2881772Sjl139090 	pnode = prom_rootnode();
2891772Sjl139090 	for (pnode = prom_childnode(pnode); pnode;
2901772Sjl139090 	    pnode = prom_nextnode(pnode)) {
2911772Sjl139090 
2921772Sjl139090 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
2931772Sjl139090 		    (strncmp(pname, "pseudo-mc", 9) != 0))
2941772Sjl139090 			continue;
2951772Sjl139090 
2961772Sjl139090 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
2971772Sjl139090 			continue;
2981772Sjl139090 
2991772Sjl139090 		if (id == lsb_id) {
3001772Sjl139090 			if (prom_getprop(pnode, PSBPROP,
3011772Sjl139090 			    (caddr_t)&psb_id) == -1) {
3021772Sjl139090 				return (-1);
3031772Sjl139090 			} else {
3041772Sjl139090 				return (psb_id);
3051772Sjl139090 			}
3061772Sjl139090 		}
3071772Sjl139090 	}
3081772Sjl139090 
3091772Sjl139090 	return (-1);
3101772Sjl139090 }
3111772Sjl139090 
3121772Sjl139090 /*
3131772Sjl139090  * For OPL it's possible that memory from two or more successive boards
3141772Sjl139090  * will be contiguous across the boards, and therefore represented as a
3151772Sjl139090  * single chunk.
3161772Sjl139090  * This function splits such chunks down the board boundaries.
3171772Sjl139090  */
3181772Sjl139090 static struct memlist *
3191772Sjl139090 opl_memlist_per_board(struct memlist *ml)
3201772Sjl139090 {
3211772Sjl139090 	uint64_t ssize, low, high, boundary;
3221772Sjl139090 	struct memlist *head, *tail, *new;
3231772Sjl139090 
3241772Sjl139090 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
3251772Sjl139090 
3261772Sjl139090 	head = tail = NULL;
3271772Sjl139090 
3281772Sjl139090 	for (; ml; ml = ml->next) {
3291772Sjl139090 		low  = (uint64_t)ml->address;
3301772Sjl139090 		high = low+(uint64_t)(ml->size);
3311772Sjl139090 		while (low < high) {
3321772Sjl139090 			boundary = roundup(low+1, ssize);
3331772Sjl139090 			boundary = MIN(high, boundary);
3341772Sjl139090 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
3351772Sjl139090 			new->address = low;
3361772Sjl139090 			new->size = boundary - low;
3371772Sjl139090 			if (head == NULL)
3381772Sjl139090 				head = new;
3391772Sjl139090 			if (tail) {
3401772Sjl139090 				tail->next = new;
3411772Sjl139090 				new->prev = tail;
3421772Sjl139090 			}
3431772Sjl139090 			tail = new;
3441772Sjl139090 			low = boundary;
3451772Sjl139090 		}
3461772Sjl139090 	}
3471772Sjl139090 	return (head);
3481772Sjl139090 }
3491772Sjl139090 
3501772Sjl139090 void
3511772Sjl139090 set_platform_cage_params(void)
3521772Sjl139090 {
3531772Sjl139090 	extern pgcnt_t total_pages;
3541772Sjl139090 	extern struct memlist *phys_avail;
3551772Sjl139090 	struct memlist *ml, *tml;
3561772Sjl139090 
3571772Sjl139090 	if (kernel_cage_enable) {
3581772Sjl139090 		pgcnt_t preferred_cage_size;
3591772Sjl139090 
3605037Sjl139090 		preferred_cage_size = MAX(opl_startup_cage_size,
3615037Sjl139090 		    total_pages / 256);
3621772Sjl139090 
3631772Sjl139090 		ml = opl_memlist_per_board(phys_avail);
3641772Sjl139090 
3651772Sjl139090 		/*
3661772Sjl139090 		 * Note: we are assuming that post has load the
3671772Sjl139090 		 * whole show in to the high end of memory. Having
3681772Sjl139090 		 * taken this leap, we copy the whole of phys_avail
3691772Sjl139090 		 * the glist and arrange for the cage to grow
3701772Sjl139090 		 * downward (descending pfns).
3711772Sjl139090 		 */
3724266Sdp78419 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
3731772Sjl139090 
3741772Sjl139090 		/* free the memlist */
3751772Sjl139090 		do {
3761772Sjl139090 			tml = ml->next;
3771772Sjl139090 			kmem_free(ml, sizeof (struct memlist));
3781772Sjl139090 			ml = tml;
3791772Sjl139090 		} while (ml != NULL);
3801772Sjl139090 	}
3811772Sjl139090 
3821772Sjl139090 	if (kcage_on)
3831772Sjl139090 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
3841772Sjl139090 	else
3851772Sjl139090 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
3861772Sjl139090 }
3871772Sjl139090 
3881772Sjl139090 /*ARGSUSED*/
3891772Sjl139090 int
3901772Sjl139090 plat_cpu_poweron(struct cpu *cp)
3911772Sjl139090 {
3921772Sjl139090 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
3931772Sjl139090 
3941772Sjl139090 	opl_cpu_poweron =
3951772Sjl139090 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
3961772Sjl139090 
3971772Sjl139090 	if (opl_cpu_poweron == NULL)
3981772Sjl139090 		return (ENOTSUP);
3991772Sjl139090 	else
4001772Sjl139090 		return ((opl_cpu_poweron)(cp));
4011772Sjl139090 
4021772Sjl139090 }
4031772Sjl139090 
4041772Sjl139090 /*ARGSUSED*/
4051772Sjl139090 int
4061772Sjl139090 plat_cpu_poweroff(struct cpu *cp)
4071772Sjl139090 {
4081772Sjl139090 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
4091772Sjl139090 
4101772Sjl139090 	opl_cpu_poweroff =
4111772Sjl139090 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
4121772Sjl139090 
4131772Sjl139090 	if (opl_cpu_poweroff == NULL)
4141772Sjl139090 		return (ENOTSUP);
4151772Sjl139090 	else
4161772Sjl139090 		return ((opl_cpu_poweroff)(cp));
4171772Sjl139090 
4181772Sjl139090 }
4191772Sjl139090 
4201772Sjl139090 int
4211772Sjl139090 plat_max_boards(void)
4221772Sjl139090 {
4237206Swh31274 	/*
4247206Swh31274 	 * If the model cannot be determined, default to the max value.
4257206Swh31274 	 * Otherwise, Ikkaku model only supports 1 system board.
4267206Swh31274 	 */
4277206Swh31274 	if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU))
4287206Swh31274 		return (OPL_MAX_BOARDS_IKKAKU);
4297206Swh31274 	else
4307206Swh31274 		return (OPL_MAX_BOARDS);
4311772Sjl139090 }
4321772Sjl139090 
4331772Sjl139090 int
4341772Sjl139090 plat_max_cpu_units_per_board(void)
4351772Sjl139090 {
4361772Sjl139090 	return (OPL_MAX_CPU_PER_BOARD);
4371772Sjl139090 }
4381772Sjl139090 
4391772Sjl139090 int
4401772Sjl139090 plat_max_mem_units_per_board(void)
4411772Sjl139090 {
4421772Sjl139090 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
4431772Sjl139090 }
4441772Sjl139090 
4451772Sjl139090 int
4461772Sjl139090 plat_max_io_units_per_board(void)
4471772Sjl139090 {
4481772Sjl139090 	return (OPL_MAX_IO_UNITS_PER_BOARD);
4491772Sjl139090 }
4501772Sjl139090 
4511772Sjl139090 int
4521772Sjl139090 plat_max_cmp_units_per_board(void)
4531772Sjl139090 {
4541772Sjl139090 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
4551772Sjl139090 }
4561772Sjl139090 
4571772Sjl139090 int
4581772Sjl139090 plat_max_core_units_per_board(void)
4591772Sjl139090 {
4601772Sjl139090 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
4611772Sjl139090 }
4621772Sjl139090 
4631772Sjl139090 int
4641772Sjl139090 plat_pfn_to_mem_node(pfn_t pfn)
4651772Sjl139090 {
4661772Sjl139090 	return (pfn >> mem_node_pfn_shift);
4671772Sjl139090 }
4681772Sjl139090 
4691772Sjl139090 /* ARGSUSED */
4701772Sjl139090 void
4715648Ssetje plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
4721772Sjl139090 {
4731772Sjl139090 	size_t	elem;
4741772Sjl139090 	pfn_t	basepfn;
4751772Sjl139090 	pgcnt_t	npgs;
4761772Sjl139090 	uint64_t	boundary, ssize;
4771772Sjl139090 	uint64_t	low, high;
4781772Sjl139090 
4791772Sjl139090 	/*
4801772Sjl139090 	 * OPL mem slices are always aligned on a 256GB boundary.
4811772Sjl139090 	 */
4821772Sjl139090 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
4831772Sjl139090 	mem_node_physalign = 0;
4841772Sjl139090 
4851772Sjl139090 	/*
4861772Sjl139090 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
4871772Sjl139090 	 */
4881772Sjl139090 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
4895648Ssetje 	for (elem = 0; elem < nelems; list++, elem++) {
4905648Ssetje 		low  = list->addr;
4915648Ssetje 		high = low + list->size;
4921772Sjl139090 		while (low < high) {
4931772Sjl139090 			boundary = roundup(low+1, ssize);
4941772Sjl139090 			boundary = MIN(high, boundary);
4951772Sjl139090 			basepfn = btop(low);
4961772Sjl139090 			npgs = btop(boundary - low);
4971772Sjl139090 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
4981772Sjl139090 			low = boundary;
4991772Sjl139090 		}
5001772Sjl139090 	}
5011772Sjl139090 }
5021772Sjl139090 
5031772Sjl139090 /*
5041772Sjl139090  * Find the CPU associated with a slice at boot-time.
5051772Sjl139090  */
5061772Sjl139090 void
5071772Sjl139090 plat_fill_mc(pnode_t nodeid)
5081772Sjl139090 {
5091772Sjl139090 	int board;
5101772Sjl139090 	int memnode;
5111772Sjl139090 	struct {
5121772Sjl139090 		uint64_t	addr;
5131772Sjl139090 		uint64_t	size;
5141772Sjl139090 	} mem_range;
5151772Sjl139090 
5161772Sjl139090 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
5171772Sjl139090 		panic("Can not find board# property in mc node %x", nodeid);
5181772Sjl139090 	}
5191772Sjl139090 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
5201772Sjl139090 		panic("Can not find sb-mem-ranges property in mc node %x",
5215037Sjl139090 		    nodeid);
5221772Sjl139090 	}
5231772Sjl139090 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
5241772Sjl139090 	plat_assign_lgrphand_to_mem_node(board, memnode);
5251772Sjl139090 }
5261772Sjl139090 
5271772Sjl139090 /*
5281772Sjl139090  * Return the platform handle for the lgroup containing the given CPU
5291772Sjl139090  *
5301772Sjl139090  * For OPL, lgroup platform handle == board #.
5311772Sjl139090  */
5321772Sjl139090 
5331772Sjl139090 extern int mpo_disabled;
5341772Sjl139090 extern lgrp_handle_t lgrp_default_handle;
5351772Sjl139090 
5361772Sjl139090 lgrp_handle_t
5371772Sjl139090 plat_lgrp_cpu_to_hand(processorid_t id)
5381772Sjl139090 {
5391772Sjl139090 	lgrp_handle_t plathand;
5401772Sjl139090 
5411772Sjl139090 	/*
5421772Sjl139090 	 * Return the real platform handle for the CPU until
5431772Sjl139090 	 * such time as we know that MPO should be disabled.
5441772Sjl139090 	 * At that point, we set the "mpo_disabled" flag to true,
5451772Sjl139090 	 * and from that point on, return the default handle.
5461772Sjl139090 	 *
5471772Sjl139090 	 * By the time we know that MPO should be disabled, the
5481772Sjl139090 	 * first CPU will have already been added to a leaf
5491772Sjl139090 	 * lgroup, but that's ok. The common lgroup code will
5501772Sjl139090 	 * double check that the boot CPU is in the correct place,
5511772Sjl139090 	 * and in the case where mpo should be disabled, will move
5521772Sjl139090 	 * it to the root if necessary.
5531772Sjl139090 	 */
5541772Sjl139090 	if (mpo_disabled) {
5551772Sjl139090 		/* If MPO is disabled, return the default (UMA) handle */
5561772Sjl139090 		plathand = lgrp_default_handle;
5571772Sjl139090 	} else
5581772Sjl139090 		plathand = (lgrp_handle_t)LSB_ID(id);
5591772Sjl139090 	return (plathand);
5601772Sjl139090 }
5611772Sjl139090 
5621772Sjl139090 /*
5631772Sjl139090  * Platform specific lgroup initialization
5641772Sjl139090  */
5651772Sjl139090 void
5661772Sjl139090 plat_lgrp_init(void)
5671772Sjl139090 {
5681772Sjl139090 	extern uint32_t lgrp_expand_proc_thresh;
5691772Sjl139090 	extern uint32_t lgrp_expand_proc_diff;
5706641Spm145316 	const uint_t m = LGRP_LOADAVG_THREAD_MAX;
5711772Sjl139090 
5721772Sjl139090 	/*
5731772Sjl139090 	 * Set tuneables for the OPL architecture
5741772Sjl139090 	 *
5756641Spm145316 	 * lgrp_expand_proc_thresh is the threshold load on the set of
5766641Spm145316 	 * lgroups a process is currently using on before considering
5776641Spm145316 	 * adding another lgroup to the set.  For Oly-C and Jupiter
5786641Spm145316 	 * systems, there are four sockets per lgroup. Setting
5796641Spm145316 	 * lgrp_expand_proc_thresh to add lgroups when the load reaches
5806641Spm145316 	 * four threads will spread the load when it exceeds one thread
5816641Spm145316 	 * per socket, optimizing memory bandwidth and L2 cache space.
5826641Spm145316 	 *
5836641Spm145316 	 * lgrp_expand_proc_diff determines how much less another lgroup
5846641Spm145316 	 * must be loaded before shifting the start location of a thread
5856641Spm145316 	 * to it.
5866641Spm145316 	 *
5876641Spm145316 	 * lgrp_loadavg_tolerance is the threshold where two lgroups are
5886641Spm145316 	 * considered to have different loads.  It is set to be less than
5896641Spm145316 	 * 1% so that even a small residual load will be considered different
5906641Spm145316 	 * from no residual load.
5911772Sjl139090 	 *
5926641Spm145316 	 * We note loadavg values are not precise.
5936641Spm145316 	 * Every 1/10 of a second loadavg values are reduced by 5%.
5946641Spm145316 	 * This adjustment can come in the middle of the lgroup selection
5956641Spm145316 	 * process, and for larger parallel apps with many threads can
5966641Spm145316 	 * frequently occur between the start of the second thread
5976641Spm145316 	 * placement and the finish of the last thread placement.
5986641Spm145316 	 * We also must be careful to not use too small of a threshold
5996641Spm145316 	 * since the cumulative decay for 1 second idle time is 40%.
6006641Spm145316 	 * That is, the residual load from completed threads will still
6016641Spm145316 	 * be 60% one second after the proc goes idle or 8% after 5 seconds.
6021772Sjl139090 	 *
6036641Spm145316 	 * To allow for lag time in loadavg calculations
6046641Spm145316 	 * remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX
6056641Spm145316 	 * local thresh  = 0.75 * LGRP_LOADAVG_THREAD_MAX
6066641Spm145316 	 * tolerance	 = 0.0078 * LGRP_LOADAVG_THREAD_MAX
6076641Spm145316 	 *
6086641Spm145316 	 * The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX
6096641Spm145316 	 * as the equivalent of a load of 1. To make the code more compact,
6106641Spm145316 	 * we set m = LGRP_LOADAVG_THREAD_MAX.
6111772Sjl139090 	 */
6126641Spm145316 	lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2);
6136641Spm145316 	lgrp_expand_proc_diff = (m >> 1) + (m >> 2);
6146641Spm145316 	lgrp_loadavg_tolerance = (m >> 7);
6151772Sjl139090 }
6161772Sjl139090 
6171772Sjl139090 /*
6181772Sjl139090  * Platform notification of lgroup (re)configuration changes
6191772Sjl139090  */
6201772Sjl139090 /*ARGSUSED*/
6211772Sjl139090 void
6221772Sjl139090 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
6231772Sjl139090 {
6241772Sjl139090 	update_membounds_t *umb;
6251772Sjl139090 	lgrp_config_mem_rename_t lmr;
6261772Sjl139090 	int sbd, tbd;
6271772Sjl139090 	lgrp_handle_t hand, shand, thand;
6281772Sjl139090 	int mnode, snode, tnode;
6291772Sjl139090 	pfn_t start, end;
6301772Sjl139090 
6311772Sjl139090 	if (mpo_disabled)
6321772Sjl139090 		return;
6331772Sjl139090 
6341772Sjl139090 	switch (evt) {
6351772Sjl139090 
6361772Sjl139090 	case LGRP_CONFIG_MEM_ADD:
6371772Sjl139090 		/*
6381772Sjl139090 		 * Establish the lgroup handle to memnode translation.
6391772Sjl139090 		 */
6401772Sjl139090 		umb = (update_membounds_t *)arg;
6411772Sjl139090 
6421772Sjl139090 		hand = umb->u_board;
6431772Sjl139090 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
6441772Sjl139090 		plat_assign_lgrphand_to_mem_node(hand, mnode);
6451772Sjl139090 
6461772Sjl139090 		break;
6471772Sjl139090 
6481772Sjl139090 	case LGRP_CONFIG_MEM_DEL:
6491772Sjl139090 		/*
6501772Sjl139090 		 * Special handling for possible memory holes.
6511772Sjl139090 		 */
6521772Sjl139090 		umb = (update_membounds_t *)arg;
6531772Sjl139090 		hand = umb->u_board;
6541772Sjl139090 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
6551772Sjl139090 			if (mem_node_config[mnode].exists) {
6561772Sjl139090 				start = mem_node_config[mnode].physbase;
6571772Sjl139090 				end = mem_node_config[mnode].physmax;
658*10106SJason.Beloro@Sun.COM 				mem_node_del_slice(start, end);
6591772Sjl139090 			}
6601772Sjl139090 		}
6611772Sjl139090 
6621772Sjl139090 		break;
6631772Sjl139090 
6641772Sjl139090 	case LGRP_CONFIG_MEM_RENAME:
6651772Sjl139090 		/*
6661772Sjl139090 		 * During a DR copy-rename operation, all of the memory
6671772Sjl139090 		 * on one board is moved to another board -- but the
6681772Sjl139090 		 * addresses/pfns and memnodes don't change. This means
6691772Sjl139090 		 * the memory has changed locations without changing identity.
6701772Sjl139090 		 *
6711772Sjl139090 		 * Source is where we are copying from and target is where we
6721772Sjl139090 		 * are copying to.  After source memnode is copied to target
6731772Sjl139090 		 * memnode, the physical addresses of the target memnode are
6741772Sjl139090 		 * renamed to match what the source memnode had.  Then target
6751772Sjl139090 		 * memnode can be removed and source memnode can take its
6761772Sjl139090 		 * place.
6771772Sjl139090 		 *
6781772Sjl139090 		 * To do this, swap the lgroup handle to memnode mappings for
6791772Sjl139090 		 * the boards, so target lgroup will have source memnode and
6801772Sjl139090 		 * source lgroup will have empty target memnode which is where
6811772Sjl139090 		 * its memory will go (if any is added to it later).
6821772Sjl139090 		 *
6831772Sjl139090 		 * Then source memnode needs to be removed from its lgroup
6841772Sjl139090 		 * and added to the target lgroup where the memory was living
6851772Sjl139090 		 * but under a different name/memnode.  The memory was in the
6861772Sjl139090 		 * target memnode and now lives in the source memnode with
6871772Sjl139090 		 * different physical addresses even though it is the same
6881772Sjl139090 		 * memory.
6891772Sjl139090 		 */
6901772Sjl139090 		sbd = arg & 0xffff;
6911772Sjl139090 		tbd = (arg & 0xffff0000) >> 16;
6921772Sjl139090 		shand = sbd;
6931772Sjl139090 		thand = tbd;
6941772Sjl139090 		snode = plat_lgrphand_to_mem_node(shand);
6951772Sjl139090 		tnode = plat_lgrphand_to_mem_node(thand);
6961772Sjl139090 
6971772Sjl139090 		/*
6981772Sjl139090 		 * Special handling for possible memory holes.
6991772Sjl139090 		 */
7001772Sjl139090 		if (tnode != -1 && mem_node_config[tnode].exists) {
7013354Sjl139090 			start = mem_node_config[tnode].physbase;
7023354Sjl139090 			end = mem_node_config[tnode].physmax;
703*10106SJason.Beloro@Sun.COM 			mem_node_del_slice(start, end);
7041772Sjl139090 		}
7051772Sjl139090 
7061772Sjl139090 		plat_assign_lgrphand_to_mem_node(thand, snode);
7071772Sjl139090 		plat_assign_lgrphand_to_mem_node(shand, tnode);
7081772Sjl139090 
7091772Sjl139090 		lmr.lmem_rename_from = shand;
7101772Sjl139090 		lmr.lmem_rename_to = thand;
7111772Sjl139090 
7121772Sjl139090 		/*
7131772Sjl139090 		 * Remove source memnode of copy rename from its lgroup
7141772Sjl139090 		 * and add it to its new target lgroup
7151772Sjl139090 		 */
7161772Sjl139090 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
7171772Sjl139090 		    (uintptr_t)&lmr);
7181772Sjl139090 
7191772Sjl139090 		break;
7201772Sjl139090 
7211772Sjl139090 	default:
7221772Sjl139090 		break;
7231772Sjl139090 	}
7241772Sjl139090 }
7251772Sjl139090 
7261772Sjl139090 /*
7271772Sjl139090  * Return latency between "from" and "to" lgroups
7281772Sjl139090  *
7291772Sjl139090  * This latency number can only be used for relative comparison
7301772Sjl139090  * between lgroups on the running system, cannot be used across platforms,
7311772Sjl139090  * and may not reflect the actual latency.  It is platform and implementation
7321772Sjl139090  * specific, so platform gets to decide its value.  It would be nice if the
7331772Sjl139090  * number was at least proportional to make comparisons more meaningful though.
7341772Sjl139090  * NOTE: The numbers below are supposed to be load latencies for uncached
7351772Sjl139090  * memory divided by 10.
7361772Sjl139090  *
7371772Sjl139090  */
7381772Sjl139090 int
7391772Sjl139090 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
7401772Sjl139090 {
7411772Sjl139090 	/*
7421772Sjl139090 	 * Return min remote latency when there are more than two lgroups
7431772Sjl139090 	 * (root and child) and getting latency between two different lgroups
7441772Sjl139090 	 * or root is involved
7451772Sjl139090 	 */
7461772Sjl139090 	if (lgrp_optimizations() && (from != to ||
7471772Sjl139090 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
7482491Shyw 		return (42);
7491772Sjl139090 	else
7502491Shyw 		return (35);
7511772Sjl139090 }
7521772Sjl139090 
7531772Sjl139090 /*
7541772Sjl139090  * Return platform handle for root lgroup
7551772Sjl139090  */
7561772Sjl139090 lgrp_handle_t
7571772Sjl139090 plat_lgrp_root_hand(void)
7581772Sjl139090 {
7591772Sjl139090 	if (mpo_disabled)
7601772Sjl139090 		return (lgrp_default_handle);
7611772Sjl139090 
7621772Sjl139090 	return (LGRP_DEFAULT_HANDLE);
7631772Sjl139090 }
7641772Sjl139090 
7651772Sjl139090 /*ARGSUSED*/
7661772Sjl139090 void
7671772Sjl139090 plat_freelist_process(int mnode)
7681772Sjl139090 {
7691772Sjl139090 }
7701772Sjl139090 
7711772Sjl139090 void
7721772Sjl139090 load_platform_drivers(void)
7731772Sjl139090 {
7741772Sjl139090 	(void) i_ddi_attach_pseudo_node("dr");
7751772Sjl139090 }
7761772Sjl139090 
7771772Sjl139090 /*
7781772Sjl139090  * No platform drivers on this platform
7791772Sjl139090  */
7801772Sjl139090 char *platform_module_list[] = {
7811772Sjl139090 	(char *)0
7821772Sjl139090 };
7831772Sjl139090 
7841772Sjl139090 /*ARGSUSED*/
7851772Sjl139090 void
7861772Sjl139090 plat_tod_fault(enum tod_fault_type tod_bad)
7871772Sjl139090 {
7881772Sjl139090 }
7891772Sjl139090 
7901772Sjl139090 /*ARGSUSED*/
7911772Sjl139090 void
7921772Sjl139090 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
7931772Sjl139090 {
7941772Sjl139090 	static void (*scf_panic_callback)(int);
7951772Sjl139090 	static void (*scf_shutdown_callback)(int);
7961772Sjl139090 
7971772Sjl139090 	/*
7981772Sjl139090 	 * This is for notifing system panic/shutdown to SCF.
7991772Sjl139090 	 * In case of shutdown and panic, SCF call back
8001772Sjl139090 	 * function should be called.
8011772Sjl139090 	 *  <SCF call back functions>
8021772Sjl139090 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
8031772Sjl139090 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
8041772Sjl139090 	 * cpuid should be -1 and state should be SIGST_EXIT.
8051772Sjl139090 	 */
8061772Sjl139090 	if (state == SIGST_EXIT && cpuid == -1) {
8071772Sjl139090 
8081772Sjl139090 		/*
8091772Sjl139090 		 * find the symbol for the SCF panic callback routine in driver
8101772Sjl139090 		 */
8111772Sjl139090 		if (scf_panic_callback == NULL)
8121772Sjl139090 			scf_panic_callback = (void (*)(int))
8135037Sjl139090 			    modgetsymvalue("scf_panic_callb", 0);
8141772Sjl139090 		if (scf_shutdown_callback == NULL)
8151772Sjl139090 			scf_shutdown_callback = (void (*)(int))
8165037Sjl139090 			    modgetsymvalue("scf_shutdown_callb", 0);
8171772Sjl139090 
8181772Sjl139090 		switch (sub_state) {
8191772Sjl139090 		case SIGSUBST_PANIC:
8201772Sjl139090 			if (scf_panic_callback == NULL) {
8211772Sjl139090 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
8221772Sjl139090 				    "scf_panic_callb not found\n");
8231772Sjl139090 				return;
8241772Sjl139090 			}
8251772Sjl139090 			scf_panic_callback(SIGSUBST_PANIC);
8261772Sjl139090 			break;
8271772Sjl139090 
8281772Sjl139090 		case SIGSUBST_HALT:
8291772Sjl139090 			if (scf_shutdown_callback == NULL) {
8301772Sjl139090 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
8311772Sjl139090 				    "scf_shutdown_callb not found\n");
8321772Sjl139090 				return;
8331772Sjl139090 			}
8341772Sjl139090 			scf_shutdown_callback(SIGSUBST_HALT);
8351772Sjl139090 			break;
8361772Sjl139090 
8371772Sjl139090 		case SIGSUBST_ENVIRON:
8381772Sjl139090 			if (scf_shutdown_callback == NULL) {
8391772Sjl139090 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
8401772Sjl139090 				    "scf_shutdown_callb not found\n");
8411772Sjl139090 				return;
8421772Sjl139090 			}
8431772Sjl139090 			scf_shutdown_callback(SIGSUBST_ENVIRON);
8441772Sjl139090 			break;
8451772Sjl139090 
8461772Sjl139090 		case SIGSUBST_REBOOT:
8471772Sjl139090 			if (scf_shutdown_callback == NULL) {
8481772Sjl139090 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
8491772Sjl139090 				    "scf_shutdown_callb not found\n");
8501772Sjl139090 				return;
8511772Sjl139090 			}
8521772Sjl139090 			scf_shutdown_callback(SIGSUBST_REBOOT);
8531772Sjl139090 			break;
8541772Sjl139090 		}
8551772Sjl139090 	}
8561772Sjl139090 }
8571772Sjl139090 
8581772Sjl139090 /*ARGSUSED*/
8591772Sjl139090 int
8601772Sjl139090 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
8611772Sjl139090 	int flt_in_memory, ushort_t flt_status,
8621772Sjl139090 	char *buf, int buflen, int *lenp)
8631772Sjl139090 {
8641772Sjl139090 	/*
8651772Sjl139090 	 * check if it's a Memory error.
8661772Sjl139090 	 */
8671772Sjl139090 	if (flt_in_memory) {
8681772Sjl139090 		if (opl_get_mem_unum != NULL) {
8695037Sjl139090 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
8705037Sjl139090 			    buflen, lenp));
8711772Sjl139090 		} else {
8721772Sjl139090 			return (ENOTSUP);
8731772Sjl139090 		}
8741772Sjl139090 	} else {
8751772Sjl139090 		return (ENOTSUP);
8761772Sjl139090 	}
8771772Sjl139090 }
8781772Sjl139090 
8791772Sjl139090 /*ARGSUSED*/
8801772Sjl139090 int
8811772Sjl139090 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
8821772Sjl139090 {
8832214Sav145390 	int	ret = 0;
8845347Sjfrank 	int	sb;
8853123Ssubhan 	int	plen;
8861772Sjl139090 
8871772Sjl139090 	sb = opl_get_physical_board(LSB_ID(cpuid));
8881772Sjl139090 	if (sb == -1) {
8891772Sjl139090 		return (ENXIO);
8901772Sjl139090 	}
8911772Sjl139090 
8923627Ssubhan 	/*
8933627Ssubhan 	 * opl_cur_model is assigned here
8943627Ssubhan 	 */
8953627Ssubhan 	if (opl_cur_model == NULL) {
8963627Ssubhan 		set_model_info();
8975539Swh31274 
8985539Swh31274 		/*
8995539Swh31274 		 * if not matched, return
9005539Swh31274 		 */
9015539Swh31274 		if (opl_cur_model == NULL)
9025539Swh31274 			return (ENODEV);
9033627Ssubhan 	}
9043627Ssubhan 
9053123Ssubhan 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
9063123Ssubhan 
9073123Ssubhan 	switch (opl_cur_model->model_type) {
9083123Ssubhan 	case FF1:
9092214Sav145390 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
9102214Sav145390 		    CHIP_ID(cpuid) / 2);
9112214Sav145390 		break;
9122214Sav145390 
9133123Ssubhan 	case FF2:
9142214Sav145390 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
9152808Sav145390 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
9162214Sav145390 		break;
9172214Sav145390 
9183123Ssubhan 	case DC1:
9193123Ssubhan 	case DC2:
9203123Ssubhan 	case DC3:
9212214Sav145390 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
9222214Sav145390 		    CHIP_ID(cpuid));
9232214Sav145390 		break;
9242214Sav145390 
9256297Sjl139090 	case IKKAKU:
9266297Sjl139090 		plen = snprintf(buf, buflen, "/%s", "MBU_A");
9276297Sjl139090 		break;
9286297Sjl139090 
9292214Sav145390 	default:
9302214Sav145390 		/* This should never happen */
9312214Sav145390 		return (ENODEV);
9322214Sav145390 	}
9332214Sav145390 
9342214Sav145390 	if (plen >= buflen) {
9352214Sav145390 		ret = ENOSPC;
9361772Sjl139090 	} else {
9371772Sjl139090 		if (lenp)
9381772Sjl139090 			*lenp = strlen(buf);
9391772Sjl139090 	}
9402214Sav145390 	return (ret);
9411772Sjl139090 }
9421772Sjl139090 
9431772Sjl139090 void
9441772Sjl139090 plat_nodename_set(void)
9451772Sjl139090 {
9465347Sjfrank 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
9471772Sjl139090 }
9481772Sjl139090 
9491772Sjl139090 caddr_t	efcode_vaddr = NULL;
9501772Sjl139090 
9511772Sjl139090 /*
9521772Sjl139090  * Preallocate enough memory for fcode claims.
9531772Sjl139090  */
9541772Sjl139090 
9551772Sjl139090 caddr_t
9561772Sjl139090 efcode_alloc(caddr_t alloc_base)
9571772Sjl139090 {
9581772Sjl139090 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
9591772Sjl139090 	    MMU_PAGESIZE);
9601772Sjl139090 	caddr_t vaddr;
9611772Sjl139090 
9621772Sjl139090 	/*
9631772Sjl139090 	 * allocate the physical memory for the Oberon fcode.
9641772Sjl139090 	 */
9651772Sjl139090 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
9661772Sjl139090 	    efcode_size, MMU_PAGESIZE)) == NULL)
9671772Sjl139090 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
9681772Sjl139090 
9691772Sjl139090 	efcode_vaddr = vaddr;
9701772Sjl139090 
9711772Sjl139090 	return (efcode_alloc_base + efcode_size);
9721772Sjl139090 }
9731772Sjl139090 
9741772Sjl139090 caddr_t
9751772Sjl139090 plat_startup_memlist(caddr_t alloc_base)
9761772Sjl139090 {
9771772Sjl139090 	caddr_t tmp_alloc_base;
9781772Sjl139090 
9791772Sjl139090 	tmp_alloc_base = efcode_alloc(alloc_base);
9801772Sjl139090 	tmp_alloc_base =
9811772Sjl139090 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
9821772Sjl139090 	return (tmp_alloc_base);
9831772Sjl139090 }
9841772Sjl139090 
9855834Spt157919 /* need to forward declare these */
9865834Spt157919 static void plat_lock_delay(uint_t);
9875834Spt157919 
9881772Sjl139090 void
9891772Sjl139090 startup_platform(void)
9901772Sjl139090 {
9915788Smv143129 	if (clock_tick_threshold == 0)
9925788Smv143129 		clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD;
9935788Smv143129 	if (clock_tick_ncpus == 0)
9945788Smv143129 		clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS;
9955834Spt157919 	mutex_lock_delay = plat_lock_delay;
9965834Spt157919 	mutex_cap_factor = OPL_BOFF_MAX_SCALE;
9971772Sjl139090 }
9982214Sav145390 
9995923Sjfrank static uint_t
10005923Sjfrank get_mmu_id(processorid_t cpuid)
10015923Sjfrank {
10025923Sjfrank 	int pb = opl_get_physical_board(LSB_ID(cpuid));
10035923Sjfrank 
10045923Sjfrank 	if (pb == -1) {
10055923Sjfrank 		cmn_err(CE_PANIC,
10065923Sjfrank 		    "opl_get_physical_board failed (cpu %d LSB %u)",
10075923Sjfrank 		    cpuid, LSB_ID(cpuid));
10085923Sjfrank 	}
10095923Sjfrank 	return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) *
10105923Sjfrank 	    OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid);
10115923Sjfrank }
10125923Sjfrank 
10132241Shuah void
10142241Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
10152241Shuah {
10162241Shuah 	int	impl;
10172241Shuah 
10182241Shuah 	impl = cpunodes[cpuid].implementation;
10195037Sjl139090 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
10205923Sjfrank 		info->mmu_idx = get_mmu_id(cpuid);
10212241Shuah 		info->mmu_nctxs = 8192;
10222241Shuah 	} else {
10232241Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
10242241Shuah 	}
10252241Shuah }
10262241Shuah 
10272214Sav145390 int
10282214Sav145390 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
10292214Sav145390 {
10302214Sav145390 	if (opl_get_mem_sid == NULL) {
10312214Sav145390 		return (ENOTSUP);
10322214Sav145390 	}
10332214Sav145390 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
10342214Sav145390 }
10352214Sav145390 
10362214Sav145390 int
10372214Sav145390 plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
10382214Sav145390 {
10392214Sav145390 	if (opl_get_mem_offset == NULL) {
10402214Sav145390 		return (ENOTSUP);
10412214Sav145390 	}
10422214Sav145390 	return (opl_get_mem_offset(paddr, offp));
10432214Sav145390 }
10442214Sav145390 
10452214Sav145390 int
10462214Sav145390 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
10472214Sav145390 {
10482214Sav145390 	if (opl_get_mem_addr == NULL) {
10492214Sav145390 		return (ENOTSUP);
10502214Sav145390 	}
10512214Sav145390 	return (opl_get_mem_addr(unum, sid, offset, addrp));
10522214Sav145390 }
10533914Spm145316 
10543914Spm145316 void
10555834Spt157919 plat_lock_delay(uint_t backoff)
10563914Spm145316 {
10573914Spm145316 	int i;
10585834Spt157919 	uint_t cnt, remcnt;
10593914Spm145316 	int ctr;
10605834Spt157919 	hrtime_t delay_start, rem_delay;
10613914Spm145316 	/*
10623914Spm145316 	 * Platform specific lock delay code for OPL
10633914Spm145316 	 *
10643914Spm145316 	 * Using staged linear increases in the delay.
10653914Spm145316 	 * The sleep instruction is the preferred method of delay,
10663914Spm145316 	 * but is too large of granularity for the initial backoff.
10673914Spm145316 	 */
10683914Spm145316 
10695834Spt157919 	if (backoff < 100) {
10703914Spm145316 		/*
10713914Spm145316 		 * If desired backoff is long enough,
10723914Spm145316 		 * use sleep for most of it
10733914Spm145316 		 */
10745834Spt157919 		for (cnt = backoff;
10755834Spt157919 		    cnt >= OPL_BOFF_SLEEP;
10765037Sjl139090 		    cnt -= OPL_BOFF_SLEEP) {
10773914Spm145316 			cpu_smt_pause();
10783914Spm145316 		}
10793914Spm145316 		/*
10803914Spm145316 		 * spin for small remainder of backoff
10813914Spm145316 		 */
10823914Spm145316 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
10835834Spt157919 			mutex_delay_default();
10843914Spm145316 		}
10853914Spm145316 	} else {
10865834Spt157919 		/* backoff is large.  Fill it by sleeping */
10876592Sck142721 		delay_start = gethrtime_waitfree();
10885834Spt157919 		cnt = backoff / OPL_BOFF_SLEEP;
10893914Spm145316 		/*
10903914Spm145316 		 * use sleep instructions for delay
10913914Spm145316 		 */
10923914Spm145316 		for (i = 0; i < cnt; i++) {
10933914Spm145316 			cpu_smt_pause();
10943914Spm145316 		}
10953914Spm145316 
10963914Spm145316 		/*
10973914Spm145316 		 * Note: if the other strand executes a sleep instruction,
10983914Spm145316 		 * then the sleep ends immediately with a minimum time of
10993914Spm145316 		 * 42 clocks.  We check gethrtime to insure we have
11003914Spm145316 		 * waited long enough.  And we include both a short
11015834Spt157919 		 * spin loop and a sleep for repeated delay times.
11023914Spm145316 		 */
11033914Spm145316 
11046592Sck142721 		rem_delay = gethrtime_waitfree() - delay_start;
11055834Spt157919 		while (rem_delay < cnt * OPL_BOFF_TM) {
11065834Spt157919 			remcnt = cnt - (rem_delay / OPL_BOFF_TM);
11075834Spt157919 			for (i = 0; i < remcnt; i++) {
11085834Spt157919 				cpu_smt_pause();
11095834Spt157919 				for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
11105834Spt157919 					mutex_delay_default();
11115834Spt157919 				}
11123914Spm145316 			}
11136592Sck142721 			rem_delay = gethrtime_waitfree() - delay_start;
11143914Spm145316 		}
11153914Spm145316 	}
11163914Spm145316 }
11175347Sjfrank 
11185347Sjfrank /*
11195347Sjfrank  * The following code implements asynchronous call to XSCF to setup the
11205347Sjfrank  * domain node name.
11215347Sjfrank  */
11225347Sjfrank 
11235347Sjfrank #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
11245347Sjfrank 
11255347Sjfrank /*
11265347Sjfrank  * The following three macros define the all operations on the request
11275347Sjfrank  * list we are using here, and hide the details of the list
11285347Sjfrank  * implementation from the code.
11295347Sjfrank  */
11305347Sjfrank #define	PUSH(m) \
11315347Sjfrank 	{ \
11325347Sjfrank 		(m)->next = ctl_msg.head; \
11335347Sjfrank 		(m)->prev = NULL; \
11345347Sjfrank 		if ((m)->next != NULL) \
11355347Sjfrank 			(m)->next->prev = (m); \
11365347Sjfrank 		ctl_msg.head = (m); \
11375347Sjfrank 	}
11385347Sjfrank 
11395347Sjfrank #define	REMOVE(m) \
11405347Sjfrank 	{ \
11415347Sjfrank 		if ((m)->prev != NULL) \
11425347Sjfrank 			(m)->prev->next = (m)->next; \
11435347Sjfrank 		else \
11445347Sjfrank 			ctl_msg.head = (m)->next; \
11455347Sjfrank 		if ((m)->next != NULL) \
11465347Sjfrank 			(m)->next->prev = (m)->prev; \
11475347Sjfrank 	}
11485347Sjfrank 
11495347Sjfrank #define	FREE_THE_TAIL(head) \
11505347Sjfrank 	{ \
11515347Sjfrank 		nm_msg_t *n_msg, *m; \
11525347Sjfrank 		m = (head)->next; \
11535347Sjfrank 		(head)->next = NULL; \
11545347Sjfrank 		while (m != NULL) { \
11555347Sjfrank 			n_msg = m->next; \
11565347Sjfrank 			FREE_MSG(m); \
11575347Sjfrank 			m = n_msg; \
11585347Sjfrank 		} \
11595347Sjfrank 	}
11605347Sjfrank 
11615347Sjfrank #define	SCF_PUTINFO(f, s, p) \
11625347Sjfrank 	f(KEY_ESCF, 0x01, 0, s, p)
11635347Sjfrank 
11645347Sjfrank #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
11655347Sjfrank 					    (m)->len, (m)->data)) == 0)
11665347Sjfrank 
11675347Sjfrank /*
11685347Sjfrank  * The value of the following macro loosely depends on the
11695347Sjfrank  * value of the "device busy" timeout used in the SCF driver.
11705347Sjfrank  * (See pass2xscf_thread()).
11715347Sjfrank  */
11725347Sjfrank #define	SCF_DEVBUSY_DELAY	10
11735347Sjfrank 
11745347Sjfrank /*
11755347Sjfrank  * The default number of attempts to contact the scf driver
11765347Sjfrank  * if we cannot fetch any information about the timeout value
11775347Sjfrank  * it uses.
11785347Sjfrank  */
11795347Sjfrank 
11805347Sjfrank #define	REPEATS		4
11815347Sjfrank 
11825347Sjfrank typedef struct nm_msg {
11835347Sjfrank 	struct nm_msg *next;
11845347Sjfrank 	struct nm_msg *prev;
11855347Sjfrank 	int len;
11865347Sjfrank 	char data[1];
11875347Sjfrank } nm_msg_t;
11885347Sjfrank 
11895347Sjfrank #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
11905347Sjfrank 
11915347Sjfrank static struct ctlmsg {
11925347Sjfrank 	nm_msg_t	*head;
11935347Sjfrank 	nm_msg_t	*now_serving;
11945347Sjfrank 	kmutex_t	nm_lock;
11955347Sjfrank 	kthread_t	*nmt;
11965347Sjfrank 	int		cnt;
11975347Sjfrank 	int (*scf_service_function)(uint32_t, uint8_t,
11985347Sjfrank 				    uint32_t, uint32_t, void *);
11995347Sjfrank } ctl_msg;
12005347Sjfrank 
12015347Sjfrank static void
12025347Sjfrank post_xscf_msg(char *dp, int len)
12035347Sjfrank {
12045347Sjfrank 	nm_msg_t *msg;
12055347Sjfrank 
12065347Sjfrank 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
12075347Sjfrank 
12085347Sjfrank 	bcopy(dp, msg->data, len);
12095347Sjfrank 	msg->len = len;
12105347Sjfrank 
12115347Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
12125347Sjfrank 	if (ctl_msg.nmt == NULL) {
12135347Sjfrank 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
12145347Sjfrank 		    NULL, 0, &p0, TS_RUN, minclsyspri);
12155347Sjfrank 	}
12165347Sjfrank 
12175347Sjfrank 	PUSH(msg);
12185347Sjfrank 	ctl_msg.cnt++;
12195347Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
12205347Sjfrank }
12215347Sjfrank 
12225347Sjfrank static void
12235347Sjfrank pass2xscf_thread()
12245347Sjfrank {
12255347Sjfrank 	nm_msg_t *msg;
12265347Sjfrank 	int ret;
12275347Sjfrank 	uint_t i, msg_sent, xscf_driver_delay;
12285347Sjfrank 	static uint_t repeat_cnt;
12295347Sjfrank 	uint_t *scf_wait_cnt;
12305347Sjfrank 
12315347Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
12325347Sjfrank 
12335347Sjfrank 	/*
12345347Sjfrank 	 * Find the address of the SCF put routine if it's not done yet.
12355347Sjfrank 	 */
12365347Sjfrank 	if (ctl_msg.scf_service_function == NULL) {
12375347Sjfrank 		if ((ctl_msg.scf_service_function =
12385347Sjfrank 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
12395347Sjfrank 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
12405347Sjfrank 			cmn_err(CE_NOTE, "pass2xscf_thread: "
12415347Sjfrank 			    "scf_service_putinfo not found\n");
12425347Sjfrank 			ctl_msg.nmt = NULL;
12435347Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
12445347Sjfrank 			return;
12455347Sjfrank 		}
12465347Sjfrank 	}
12475347Sjfrank 
12485347Sjfrank 	/*
12495347Sjfrank 	 * Calculate the number of attempts to connect XSCF based on the
12505347Sjfrank 	 * scf driver delay (which is
12515347Sjfrank 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
12525347Sjfrank 	 * of xscf_connect_delay (the total number of seconds to wait
12535347Sjfrank 	 * till xscf get ready.)
12545347Sjfrank 	 */
12555347Sjfrank 	if (repeat_cnt == 0) {
12565347Sjfrank 		if ((scf_wait_cnt =
12575347Sjfrank 		    (uint_t *)
12585347Sjfrank 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
12595347Sjfrank 			repeat_cnt = REPEATS;
12605347Sjfrank 		} else {
12615347Sjfrank 
12625347Sjfrank 			xscf_driver_delay = *scf_wait_cnt *
12635347Sjfrank 			    SCF_DEVBUSY_DELAY;
12645347Sjfrank 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
12655347Sjfrank 		}
12665347Sjfrank 	}
12675347Sjfrank 
12685347Sjfrank 	while (ctl_msg.cnt != 0) {
12695347Sjfrank 
12705347Sjfrank 		/*
12715347Sjfrank 		 * Take the very last request from the queue,
12725347Sjfrank 		 */
12735347Sjfrank 		ctl_msg.now_serving = ctl_msg.head;
12745347Sjfrank 		ASSERT(ctl_msg.now_serving != NULL);
12755347Sjfrank 
12765347Sjfrank 		/*
12775347Sjfrank 		 * and discard all the others if any.
12785347Sjfrank 		 */
12795347Sjfrank 		FREE_THE_TAIL(ctl_msg.now_serving);
12805347Sjfrank 		ctl_msg.cnt = 1;
12815347Sjfrank 		mutex_exit(&ctl_msg.nm_lock);
12825347Sjfrank 
12835347Sjfrank 		/*
12845347Sjfrank 		 * Pass the name to XSCF. Note please, we do not hold the
12855347Sjfrank 		 * mutex while we are doing this.
12865347Sjfrank 		 */
12875347Sjfrank 		msg_sent = 0;
12885347Sjfrank 		for (i = 0; i < repeat_cnt; i++) {
12895347Sjfrank 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
12905347Sjfrank 				msg_sent = 1;
12915347Sjfrank 				break;
12925347Sjfrank 			} else {
12935347Sjfrank 				if (ret != EBUSY) {
12945347Sjfrank 					cmn_err(CE_NOTE, "pass2xscf_thread:"
12955347Sjfrank 					    " unexpected return code"
12965347Sjfrank 					    " from scf_service_putinfo():"
12975347Sjfrank 					    " %d\n", ret);
12985347Sjfrank 				}
12995347Sjfrank 			}
13005347Sjfrank 		}
13015347Sjfrank 
13025347Sjfrank 		if (msg_sent) {
13035347Sjfrank 
13045347Sjfrank 			/*
13055347Sjfrank 			 * Remove the request from the list
13065347Sjfrank 			 */
13075347Sjfrank 			mutex_enter(&ctl_msg.nm_lock);
13085347Sjfrank 			msg = ctl_msg.now_serving;
13095347Sjfrank 			ctl_msg.now_serving = NULL;
13105347Sjfrank 			REMOVE(msg);
13115347Sjfrank 			ctl_msg.cnt--;
13125347Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
13135347Sjfrank 			FREE_MSG(msg);
13145347Sjfrank 		} else {
13155347Sjfrank 
13165347Sjfrank 			/*
13175347Sjfrank 			 * If while we have tried to communicate with
13185347Sjfrank 			 * XSCF there were any other requests we are
13195347Sjfrank 			 * going to drop this one and take the latest
13205347Sjfrank 			 * one.  Otherwise we will try to pass this one
13215347Sjfrank 			 * again.
13225347Sjfrank 			 */
13235347Sjfrank 			cmn_err(CE_NOTE,
13245347Sjfrank 			    "pass2xscf_thread: "
13255347Sjfrank 			    "scf_service_putinfo "
13265347Sjfrank 			    "not responding\n");
13275347Sjfrank 		}
13285347Sjfrank 		mutex_enter(&ctl_msg.nm_lock);
13295347Sjfrank 	}
13305347Sjfrank 
13315347Sjfrank 	/*
13325347Sjfrank 	 * The request queue is empty, exit.
13335347Sjfrank 	 */
13345347Sjfrank 	ctl_msg.nmt = NULL;
13355347Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
13365347Sjfrank }
1337