15084Sjohnlev /* 25084Sjohnlev * CDDL HEADER START 35084Sjohnlev * 45084Sjohnlev * The contents of this file are subject to the terms of the 55084Sjohnlev * Common Development and Distribution License (the "License"). 65084Sjohnlev * You may not use this file except in compliance with the License. 75084Sjohnlev * 85084Sjohnlev * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 95084Sjohnlev * or http://www.opensolaris.org/os/licensing. 105084Sjohnlev * See the License for the specific language governing permissions 115084Sjohnlev * and limitations under the License. 125084Sjohnlev * 135084Sjohnlev * When distributing Covered Code, include this CDDL HEADER in each 145084Sjohnlev * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 155084Sjohnlev * If applicable, add the following below this CDDL HEADER, with the 165084Sjohnlev * fields enclosed by brackets "[]" replaced with your own identifying 175084Sjohnlev * information: Portions Copyright [yyyy] [name of copyright owner] 185084Sjohnlev * 195084Sjohnlev * CDDL HEADER END 205084Sjohnlev */ 215084Sjohnlev 225084Sjohnlev /* 236144Srab * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 245084Sjohnlev * Use is subject to license terms. 255084Sjohnlev */ 265084Sjohnlev 275084Sjohnlev #pragma ident "%Z%%M% %I% %E% SMI" 285084Sjohnlev 295084Sjohnlev #include <sys/types.h> 305084Sjohnlev #include <sys/clock.h> 315084Sjohnlev #include <sys/psm.h> 325084Sjohnlev #include <sys/archsystm.h> 335084Sjohnlev #include <sys/machsystm.h> 345084Sjohnlev #include <sys/compress.h> 355084Sjohnlev #include <sys/modctl.h> 365084Sjohnlev #include <sys/trap.h> 375084Sjohnlev #include <sys/panic.h> 385084Sjohnlev #include <sys/regset.h> 395084Sjohnlev #include <sys/frame.h> 405084Sjohnlev #include <sys/kobj.h> 415084Sjohnlev #include <sys/apic.h> 425084Sjohnlev #include <sys/dumphdr.h> 435084Sjohnlev #include <sys/mem.h> 445084Sjohnlev #include <sys/x86_archext.h> 455084Sjohnlev #include <sys/xpv_panic.h> 465084Sjohnlev #include <sys/boot_console.h> 475084Sjohnlev #include <sys/bootsvcs.h> 485084Sjohnlev #include <sys/consdev.h> 495084Sjohnlev #include <vm/hat_pte.h> 505084Sjohnlev #include <vm/hat_i86.h> 515084Sjohnlev 525084Sjohnlev /* XXX: need to add a PAE version too, if we ever support both PAE and non */ 535084Sjohnlev #if defined(__i386) 545084Sjohnlev #define XPV_FILENAME "/boot/xen-syms" 555084Sjohnlev #else 565084Sjohnlev #define XPV_FILENAME "/boot/amd64/xen-syms" 575084Sjohnlev #endif 585084Sjohnlev #define XPV_MODNAME "xpv" 595084Sjohnlev 605084Sjohnlev int xpv_panicking = 0; 615084Sjohnlev 625084Sjohnlev struct module *xpv_module; 635084Sjohnlev struct modctl *xpv_modctl; 645084Sjohnlev 655084Sjohnlev #define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \ 665084Sjohnlev (((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l))) 675084Sjohnlev 685084Sjohnlev /* Pointer to the xpv_panic_info structure handed to us by Xen. */ 695084Sjohnlev static struct panic_info *xpv_panic_info = NULL; 705084Sjohnlev 715084Sjohnlev /* Timer support */ 725084Sjohnlev #define NSEC_SHIFT 5 735084Sjohnlev #define T_XPV_TIMER 0xd1 745084Sjohnlev #define XPV_TIMER_INTERVAL 1000 /* 1000 microseconds */ 755084Sjohnlev static uint32_t *xpv_apicadr = NULL; 765084Sjohnlev static uint_t nsec_scale; 775084Sjohnlev 785084Sjohnlev /* IDT support */ 795084Sjohnlev #pragma align 16(xpv_panic_idt) 805084Sjohnlev static gate_desc_t xpv_panic_idt[NIDT]; /* interrupt descriptor table */ 815084Sjohnlev 825084Sjohnlev /* Xen pagetables mapped into our HAT's ptable windows */ 835084Sjohnlev static pfn_t ptable_pfn[MAX_NUM_LEVEL]; 845084Sjohnlev 855084Sjohnlev /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */ 865084Sjohnlev static int xpv_dump_pages; 875084Sjohnlev 885084Sjohnlev /* 896144Srab * There are up to two large swathes of RAM that we don't want to include 906144Srab * in the dump: those that comprise the Xen version of segkpm. On 32-bit 916144Srab * systems there is no such region of memory. On 64-bit systems, there 926144Srab * should be just a single contiguous region that corresponds to all of 936144Srab * physical memory. The tricky bit is that Xen's heap sometimes lives in 946144Srab * the middle of their segkpm, and is mapped using only kpm-like addresses. 956144Srab * In that case, we need to skip the swathes before and after Xen's heap. 966144Srab */ 976144Srab uintptr_t kpm1_low = 0; 986144Srab uintptr_t kpm1_high = 0; 996144Srab uintptr_t kpm2_low = 0; 1006144Srab uintptr_t kpm2_high = 0; 1016144Srab 1026144Srab /* 1035084Sjohnlev * Some commonly used values that we don't want to recompute over and over. 1045084Sjohnlev */ 1055084Sjohnlev static int xpv_panic_nptes[MAX_NUM_LEVEL]; 1065084Sjohnlev static ulong_t xpv_panic_cr3; 1075084Sjohnlev static uintptr_t xpv_end; 1085084Sjohnlev 1095084Sjohnlev static void xpv_panic_console_print(const char *fmt, ...); 1105084Sjohnlev static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print; 1115084Sjohnlev 1125084Sjohnlev #define CONSOLE_BUF_SIZE 256 1135084Sjohnlev static char console_buffer[CONSOLE_BUF_SIZE]; 1145084Sjohnlev static boolean_t use_polledio; 1155084Sjohnlev 1165084Sjohnlev static void 1175084Sjohnlev xpv_panic_putc(int m) 1185084Sjohnlev { 1195084Sjohnlev struct cons_polledio *c = cons_polledio; 1205084Sjohnlev 1215084Sjohnlev /* This really shouldn't happen */ 1225084Sjohnlev if (console == CONS_HYPERVISOR) 1235084Sjohnlev return; 1245084Sjohnlev 1255084Sjohnlev if (use_polledio == B_TRUE) 1265084Sjohnlev c->cons_polledio_putchar(c->cons_polledio_argument, m); 1275084Sjohnlev else 1285084Sjohnlev bcons_putchar(m); 1295084Sjohnlev } 1305084Sjohnlev 1315084Sjohnlev static void 1325084Sjohnlev xpv_panic_puts(char *msg) 1335084Sjohnlev { 1345084Sjohnlev char *m; 1355084Sjohnlev 1365084Sjohnlev dump_timeleft = dump_timeout; 1375084Sjohnlev for (m = msg; *m; m++) 1385084Sjohnlev xpv_panic_putc((int)*m); 1395084Sjohnlev } 1405084Sjohnlev 1415084Sjohnlev static void 1425084Sjohnlev xpv_panic_console_print(const char *fmt, ...) 1435084Sjohnlev { 1445084Sjohnlev va_list ap; 1455084Sjohnlev 1465084Sjohnlev va_start(ap, fmt); 1475084Sjohnlev (void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap); 1485084Sjohnlev va_end(ap); 1495084Sjohnlev 1505084Sjohnlev xpv_panic_puts(console_buffer); 1515084Sjohnlev } 1525084Sjohnlev 1535084Sjohnlev static void 1545084Sjohnlev xpv_panic_map(int level, pfn_t pfn) 1555084Sjohnlev { 1565084Sjohnlev x86pte_t pte, *pteptr; 1575084Sjohnlev 1585084Sjohnlev /* 1595084Sjohnlev * The provided pfn represents a level 'level' page table. Map it 1605084Sjohnlev * into the 'level' slot in the list of page table windows. 1615084Sjohnlev */ 1625084Sjohnlev pteptr = (x86pte_t *)PWIN_PTE_VA(level); 1635084Sjohnlev pte = pfn_to_pa(pfn) | PT_VALID; 1645084Sjohnlev 1655084Sjohnlev XPV_ALLOW_PAGETABLE_UPDATES(); 1665084Sjohnlev if (mmu.pae_hat) 1675084Sjohnlev *pteptr = pte; 1685084Sjohnlev else 1695084Sjohnlev *(x86pte32_t *)pteptr = pte; 1705084Sjohnlev XPV_DISALLOW_PAGETABLE_UPDATES(); 1715084Sjohnlev 1725084Sjohnlev mmu_tlbflush_entry(PWIN_VA(level)); 1735084Sjohnlev } 1745084Sjohnlev 1755084Sjohnlev /* 1765084Sjohnlev * Walk the page tables to find the pfn mapped by the given va. 1775084Sjohnlev */ 1785084Sjohnlev static pfn_t 1795084Sjohnlev xpv_va_walk(uintptr_t *vaddr) 1805084Sjohnlev { 1815084Sjohnlev int l, idx; 1825084Sjohnlev pfn_t pfn; 1835084Sjohnlev x86pte_t pte; 1845084Sjohnlev x86pte_t *ptep; 1855084Sjohnlev uintptr_t va = *vaddr; 1865084Sjohnlev uintptr_t scan_va; 1875084Sjohnlev caddr_t ptable_window; 1885084Sjohnlev static pfn_t toplevel_pfn; 1895084Sjohnlev static uintptr_t lastva; 1905084Sjohnlev 1915084Sjohnlev /* 1925084Sjohnlev * If we do anything other than a simple scan through memory, don't 1935084Sjohnlev * trust the mapped page tables. 1945084Sjohnlev */ 1955084Sjohnlev if (va != lastva + MMU_PAGESIZE) 1965084Sjohnlev for (l = mmu.max_level; l >= 0; l--) 1975084Sjohnlev ptable_pfn[l] = PFN_INVALID; 1985084Sjohnlev 1995084Sjohnlev toplevel_pfn = mmu_btop(xpv_panic_cr3); 2005084Sjohnlev 2015084Sjohnlev while (va < xpv_end && va >= *vaddr) { 2025084Sjohnlev /* Find the lowest table with any entry for va */ 2035084Sjohnlev pfn = toplevel_pfn; 2045084Sjohnlev for (l = mmu.max_level; l >= 0; l--) { 2055084Sjohnlev if (ptable_pfn[l] != pfn) { 2065084Sjohnlev xpv_panic_map(l, pfn); 2075084Sjohnlev ptable_pfn[l] = pfn; 2085084Sjohnlev } 2095084Sjohnlev 2105084Sjohnlev /* 2115084Sjohnlev * Search this pagetable for any mapping to an 2125084Sjohnlev * address >= va. 2135084Sjohnlev */ 2145084Sjohnlev ptable_window = PWIN_VA(l); 2155084Sjohnlev if (l == mmu.max_level && mmu.pae_hat) 2165084Sjohnlev ptable_window += 2175084Sjohnlev (xpv_panic_cr3 & MMU_PAGEOFFSET); 2185084Sjohnlev 2195084Sjohnlev idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1); 2205084Sjohnlev scan_va = va; 2215084Sjohnlev while (idx < xpv_panic_nptes[l] && scan_va < xpv_end && 2225084Sjohnlev scan_va >= *vaddr) { 2235084Sjohnlev ptep = (x86pte_t *)(ptable_window + 2245084Sjohnlev (idx << mmu.pte_size_shift)); 2255084Sjohnlev pte = GET_PTE(ptep); 2265084Sjohnlev if (pte & PTE_VALID) 2275084Sjohnlev break; 2285084Sjohnlev idx++; 2295084Sjohnlev scan_va += mmu.level_size[l]; 2305084Sjohnlev } 2315084Sjohnlev 2325084Sjohnlev /* 2335084Sjohnlev * If there are no valid mappings in this table, we 2345084Sjohnlev * can skip to the end of the VA range it covers. 2355084Sjohnlev */ 2365084Sjohnlev if (idx == xpv_panic_nptes[l]) { 2375084Sjohnlev va = NEXT_ENTRY_VA(va, l + 1); 2385084Sjohnlev break; 2395084Sjohnlev } 2405084Sjohnlev 2416144Srab va = scan_va; 2426144Srab /* 2436144Srab * See if we've hit the end of the range. 2446144Srab */ 2456144Srab if (va >= xpv_end || va < *vaddr) 2466144Srab break; 2476144Srab 2485084Sjohnlev /* 2495084Sjohnlev * If this mapping is for a pagetable, we drop down 2505084Sjohnlev * to the next level in the hierarchy and look for 2515084Sjohnlev * a mapping in it. 2525084Sjohnlev */ 2535084Sjohnlev pfn = PTE2MFN(pte, l); 2545084Sjohnlev if (!PTE_ISPAGE(pte, l)) 2555084Sjohnlev continue; 2565084Sjohnlev 2575084Sjohnlev /* 2585084Sjohnlev * The APIC page is magic. Nothing to see here; 2595084Sjohnlev * move along. 2605084Sjohnlev */ 2615084Sjohnlev if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) == 2625084Sjohnlev (va & MMU_PAGEMASK)) { 2635084Sjohnlev va += MMU_PAGESIZE; 2645084Sjohnlev break; 2655084Sjohnlev } 2665084Sjohnlev 2676144Srab /* 2686144Srab * See if the address is within one of the two 2696144Srab * kpm-like regions we want to skip. 2706144Srab */ 2716144Srab if (va >= kpm1_low && va < kpm1_high) { 2726144Srab va = kpm1_high; 2736144Srab break; 2746144Srab } 2756144Srab if (va >= kpm2_low && va < kpm2_high) { 2766144Srab va = kpm2_high; 2775084Sjohnlev break; 2785084Sjohnlev } 2795084Sjohnlev 2805084Sjohnlev /* 2815084Sjohnlev * The Xen panic code only handles small pages. If 2825084Sjohnlev * this mapping is for a large page, we need to 2835084Sjohnlev * identify the consituent page that covers the 2845084Sjohnlev * specific VA we were looking for. 2855084Sjohnlev */ 2865084Sjohnlev if (l > 0) { 2875084Sjohnlev if (l > 1) 2885084Sjohnlev panic("Xen panic can't cope with " 2895084Sjohnlev "giant pages."); 2905084Sjohnlev idx = (va >> LEVEL_SHIFT(0)) & 2915084Sjohnlev (xpv_panic_nptes[0] - 1); 2925084Sjohnlev pfn += idx; 2935084Sjohnlev } 2945084Sjohnlev 2955084Sjohnlev *vaddr = va; 2965084Sjohnlev lastva = va; 2975084Sjohnlev return (pfn | PFN_IS_FOREIGN_MFN); 2985084Sjohnlev } 2995084Sjohnlev } 3005084Sjohnlev return (PFN_INVALID); 3015084Sjohnlev } 3025084Sjohnlev 3035084Sjohnlev /* 3045084Sjohnlev * Walk through the Xen VA space, finding pages that are mapped in. 3055084Sjohnlev * 3065084Sjohnlev * These pages all have MFNs rather than PFNs, meaning they may be outside 3075084Sjohnlev * the physical address space the kernel knows about, or they may collide 3085084Sjohnlev * with PFNs the kernel is using. 3095084Sjohnlev * 3105084Sjohnlev * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs 3115084Sjohnlev * to avoid collisions doesn't work. The pages need to be written to disk 3125084Sjohnlev * in PFN-order or savecore gets confused. We can't allocate memory to 3135084Sjohnlev * contruct a sorted pfn->VA reverse mapping, so we have to write the pages 3145084Sjohnlev * to disk in VA order. 3155084Sjohnlev * 3165084Sjohnlev * To square this circle, we simply make up PFNs for each of Xen's pages. 3175084Sjohnlev * We assign each mapped page a fake PFN in ascending order. These fake 3185084Sjohnlev * PFNs each have the FOREIGN bit set, ensuring that they fall outside the 3195084Sjohnlev * range of Solaris PFNs written by the kernel. 3205084Sjohnlev */ 3215084Sjohnlev int 3225084Sjohnlev dump_xpv_addr() 3235084Sjohnlev { 3245084Sjohnlev uintptr_t va; 3255084Sjohnlev mem_vtop_t mem_vtop; 3265084Sjohnlev 3275084Sjohnlev xpv_dump_pages = 0; 3285084Sjohnlev va = xen_virt_start; 3295084Sjohnlev 3305084Sjohnlev while (xpv_va_walk(&va) != PFN_INVALID) { 3315084Sjohnlev mem_vtop.m_as = &kas; 3325084Sjohnlev mem_vtop.m_va = (void *)va; 3335084Sjohnlev mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 3345084Sjohnlev 3355084Sjohnlev dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 3365084Sjohnlev xpv_dump_pages++; 3375084Sjohnlev 3385084Sjohnlev va += MMU_PAGESIZE; 3395084Sjohnlev } 3405084Sjohnlev 3415084Sjohnlev /* 3425084Sjohnlev * Add the shared_info page. This page actually ends up in the 3435084Sjohnlev * dump twice: once for the Xen va and once for the Solaris va. 3445084Sjohnlev * This isn't ideal, but we don't know the address Xen is using for 3455084Sjohnlev * the page, so we can't share it. 3465084Sjohnlev */ 3475084Sjohnlev mem_vtop.m_as = &kas; 3485084Sjohnlev mem_vtop.m_va = HYPERVISOR_shared_info; 3495084Sjohnlev mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 3505084Sjohnlev dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 3515084Sjohnlev xpv_dump_pages++; 3525084Sjohnlev 3535084Sjohnlev return (xpv_dump_pages); 3545084Sjohnlev } 3555084Sjohnlev 3565084Sjohnlev void 3575084Sjohnlev dump_xpv_pfn() 3585084Sjohnlev { 3595084Sjohnlev pfn_t pfn; 3605084Sjohnlev int cnt; 3615084Sjohnlev 3625084Sjohnlev for (cnt = 0; cnt < xpv_dump_pages; cnt++) { 3635084Sjohnlev pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN; 3645084Sjohnlev dumpvp_write(&pfn, sizeof (pfn)); 3655084Sjohnlev } 3665084Sjohnlev } 3675084Sjohnlev 3685084Sjohnlev int 3695084Sjohnlev dump_xpv_data(void *dump_cbuf) 3705084Sjohnlev { 3715084Sjohnlev uintptr_t va; 3725084Sjohnlev uint32_t csize; 3735084Sjohnlev int cnt = 0; 3745084Sjohnlev 3755084Sjohnlev /* 3765084Sjohnlev * XXX: we should probably run this data through a UE check. The 3775084Sjohnlev * catch is that the UE code relies on on_trap() and getpfnum() 3785084Sjohnlev * working. 3795084Sjohnlev */ 3805084Sjohnlev va = xen_virt_start; 3815084Sjohnlev 3825084Sjohnlev while (xpv_va_walk(&va) != PFN_INVALID) { 3835084Sjohnlev csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE); 3845084Sjohnlev dumpvp_write(&csize, sizeof (uint32_t)); 3855084Sjohnlev dumpvp_write(dump_cbuf, csize); 3865084Sjohnlev if (dump_ioerr) { 3875084Sjohnlev dumphdr->dump_flags &= ~DF_COMPLETE; 3885084Sjohnlev return (cnt); 3895084Sjohnlev } 3905084Sjohnlev cnt++; 3915084Sjohnlev va += MMU_PAGESIZE; 3925084Sjohnlev } 3935084Sjohnlev 3945084Sjohnlev /* 3955084Sjohnlev * Finally, dump the shared_info page 3965084Sjohnlev */ 3975084Sjohnlev csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf, 3985084Sjohnlev PAGESIZE); 3995084Sjohnlev dumpvp_write(&csize, sizeof (uint32_t)); 4005084Sjohnlev dumpvp_write(dump_cbuf, csize); 4015084Sjohnlev if (dump_ioerr) 4025084Sjohnlev dumphdr->dump_flags &= ~DF_COMPLETE; 4035084Sjohnlev cnt++; 4045084Sjohnlev 4055084Sjohnlev return (cnt); 4065084Sjohnlev } 4075084Sjohnlev 4085084Sjohnlev static void * 4095084Sjohnlev showstack(void *fpreg, int xpv_only) 4105084Sjohnlev { 4115084Sjohnlev struct frame *fpp; 4125084Sjohnlev ulong_t off; 4135084Sjohnlev char *sym; 4145084Sjohnlev uintptr_t pc, fp, lastfp; 4155084Sjohnlev uintptr_t minaddr = min(KERNELBASE, xen_virt_start); 4165084Sjohnlev 4175084Sjohnlev fp = (uintptr_t)fpreg; 4185084Sjohnlev if (fp < minaddr) { 4195084Sjohnlev xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg); 4205084Sjohnlev return (fpreg); 4215084Sjohnlev } 4225084Sjohnlev 4235084Sjohnlev do { 4245084Sjohnlev fpp = (struct frame *)fp; 4255084Sjohnlev pc = fpp->fr_savpc; 4265084Sjohnlev 4275084Sjohnlev if ((xpv_only != 0) && 4285084Sjohnlev (fp > xpv_end || fp < xen_virt_start)) 4295084Sjohnlev break; 4305084Sjohnlev if ((sym = kobj_getsymname(pc, &off)) != NULL) 4315084Sjohnlev xpv_panic_printf("%08lx %s:%s+%lx\n", fp, 4325084Sjohnlev mod_containing_pc((caddr_t)pc), sym, off); 4335084Sjohnlev else if ((pc >= xen_virt_start) && (pc <= xpv_end)) 4345084Sjohnlev xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc); 4355084Sjohnlev else 4365084Sjohnlev xpv_panic_printf("%08lx %lx\n", fp, pc); 4375084Sjohnlev 4385084Sjohnlev lastfp = fp; 4395084Sjohnlev fp = fpp->fr_savfp; 4405084Sjohnlev 4415084Sjohnlev /* 4425084Sjohnlev * Xen marks an exception frame by inverting the frame 4435084Sjohnlev * pointer. 4445084Sjohnlev */ 4455084Sjohnlev if (fp < lastfp) { 4465084Sjohnlev if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff) 4475084Sjohnlev fp = ~fp; 4485084Sjohnlev } 4495084Sjohnlev } while (fp > lastfp); 4505084Sjohnlev return ((void *)fp); 4515084Sjohnlev } 4525084Sjohnlev 4535084Sjohnlev void * 4545084Sjohnlev xpv_traceback(void *fpreg) 4555084Sjohnlev { 4565084Sjohnlev return (showstack(fpreg, 1)); 4575084Sjohnlev } 4585084Sjohnlev 4595084Sjohnlev #if defined(__amd64) 4605084Sjohnlev static void 4615084Sjohnlev xpv_panic_hypercall(ulong_t call) 4625084Sjohnlev { 4635084Sjohnlev panic("Illegally issued hypercall %d during panic!\n", (int)call); 4645084Sjohnlev } 4655084Sjohnlev #endif 4665084Sjohnlev 4675084Sjohnlev void 4685084Sjohnlev xpv_die(struct regs *rp) 4695084Sjohnlev { 4705084Sjohnlev struct panic_trap_info ti; 4715084Sjohnlev struct cregs creg; 4725084Sjohnlev 4735084Sjohnlev ti.trap_regs = rp; 4745084Sjohnlev ti.trap_type = rp->r_trapno; 4755084Sjohnlev 4765084Sjohnlev curthread->t_panic_trap = &ti; 4775084Sjohnlev if (ti.trap_type == T_PGFLT) { 4785084Sjohnlev getcregs(&creg); 4795084Sjohnlev ti.trap_addr = (caddr_t)creg.cr_cr2; 4805084Sjohnlev panic("Fatal pagefault at 0x%lx. fault addr=0x%p rp=0x%p", 481*7240Srh87107 rp->r_pc, (void *)ti.trap_addr, (void *)rp); 4825084Sjohnlev } else { 4835084Sjohnlev ti.trap_addr = (caddr_t)rp->r_pc; 4845084Sjohnlev panic("Fatal trap %ld at 0x%lx. rp=0x%p", rp->r_trapno, 485*7240Srh87107 rp->r_pc, (void *)rp); 4865084Sjohnlev } 4875084Sjohnlev } 4885084Sjohnlev 4895084Sjohnlev /* 4905084Sjohnlev * Build IDT to handle a Xen panic 4915084Sjohnlev */ 4925084Sjohnlev static void 4935084Sjohnlev switch_to_xpv_panic_idt() 4945084Sjohnlev { 4955084Sjohnlev int i; 4965084Sjohnlev desctbr_t idtr; 4975084Sjohnlev gate_desc_t *idt = xpv_panic_idt; 4985084Sjohnlev selector_t cs = get_cs_register(); 4995084Sjohnlev 5005084Sjohnlev for (i = 0; i < 32; i++) 5015084Sjohnlev set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL); 5025084Sjohnlev 5035084Sjohnlev set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL); 5045084Sjohnlev set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL); 5055084Sjohnlev set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL); 5065084Sjohnlev set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT, 5075084Sjohnlev TRP_XPL); 5085084Sjohnlev set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL); 5095084Sjohnlev set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL); 5105084Sjohnlev set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL); 5115084Sjohnlev set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL); 5125084Sjohnlev set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL); 5135084Sjohnlev set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL); 5145084Sjohnlev set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL); 5155084Sjohnlev set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL); 5165084Sjohnlev set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL); 5175084Sjohnlev set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL); 5185084Sjohnlev set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL); 5195084Sjohnlev 5205084Sjohnlev /* 5215084Sjohnlev * We have no double fault handler. Any single fault represents a 5225084Sjohnlev * catastrophic failure for us, so there is no attempt to handle 5235084Sjohnlev * them cleanly: we just print a message and reboot. If we 5245084Sjohnlev * encounter a second fault while doing that, there is nothing 5255084Sjohnlev * else we can do. 5265084Sjohnlev */ 5275084Sjohnlev 5285084Sjohnlev /* 5295084Sjohnlev * Be prepared to absorb any stray device interrupts received 5305084Sjohnlev * while writing the core to disk. 5315084Sjohnlev */ 5325084Sjohnlev for (i = 33; i < NIDT; i++) 5335084Sjohnlev set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT, 5345084Sjohnlev TRP_XPL); 5355084Sjohnlev 5365084Sjohnlev /* The one interrupt we expect to get is from the APIC timer. */ 5375084Sjohnlev set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT, 5385084Sjohnlev TRP_XPL); 5395084Sjohnlev 5405084Sjohnlev idtr.dtr_base = (uintptr_t)xpv_panic_idt; 5415084Sjohnlev idtr.dtr_limit = sizeof (xpv_panic_idt) - 1; 5425084Sjohnlev wr_idtr(&idtr); 5435084Sjohnlev 5445084Sjohnlev #if defined(__amd64) 5455084Sjohnlev /* Catch any hypercalls. */ 5465084Sjohnlev wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall); 5475084Sjohnlev wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall); 5485084Sjohnlev #endif 5495084Sjohnlev } 5505084Sjohnlev 5515084Sjohnlev static void 5525084Sjohnlev xpv_apic_clkinit() 5535084Sjohnlev { 5545084Sjohnlev uint_t apic_ticks = 0; 5555084Sjohnlev 5565084Sjohnlev /* 5575084Sjohnlev * Measure how many APIC ticks there are within a fixed time 5585084Sjohnlev * period. We're going to be fairly coarse here. This timer is 5595084Sjohnlev * just being used to detect a stalled panic, so as long as we have 5605084Sjohnlev * the right order of magnitude, everything should be fine. 5615084Sjohnlev */ 5625084Sjohnlev xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 5635084Sjohnlev xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK; 5645084Sjohnlev xpv_apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 5655084Sjohnlev 5665084Sjohnlev xpv_apicadr[APIC_DIVIDE_REG] = 0; 5675084Sjohnlev xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 5685084Sjohnlev drv_usecwait(XPV_TIMER_INTERVAL); 5695084Sjohnlev apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT]; 5705084Sjohnlev 5715084Sjohnlev /* 5725084Sjohnlev * apic_ticks now represents roughly how many apic ticks comprise 5735084Sjohnlev * one timeout interval. Program the timer to send us an interrupt 5745084Sjohnlev * every time that interval expires. 5755084Sjohnlev */ 5765084Sjohnlev xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_TIME; 5775084Sjohnlev xpv_apicadr[APIC_INIT_COUNT] = apic_ticks; 5785084Sjohnlev xpv_apicadr[APIC_EOI_REG] = 0; 5795084Sjohnlev } 5805084Sjohnlev 5815084Sjohnlev void 5825084Sjohnlev xpv_timer_tick(void) 5835084Sjohnlev { 5845084Sjohnlev static int ticks = 0; 5855084Sjohnlev 5865084Sjohnlev if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) { 5875084Sjohnlev ticks = 0; 5885084Sjohnlev if (dump_timeleft && (--dump_timeleft == 0)) 5895084Sjohnlev panic("Xen panic timeout\n"); 5905084Sjohnlev } 5915084Sjohnlev xpv_apicadr[APIC_EOI_REG] = 0; 5925084Sjohnlev } 5935084Sjohnlev 5945084Sjohnlev void 5955084Sjohnlev xpv_interrupt(void) 5965084Sjohnlev { 5975084Sjohnlev #ifdef DEBUG 5985084Sjohnlev static int cnt = 0; 5995084Sjohnlev 6005084Sjohnlev if (cnt++ < 10) 6015084Sjohnlev xpv_panic_printf("Unexpected interrupt received.\n"); 6025084Sjohnlev if ((cnt < 1000) && ((cnt % 100) == 0)) 6035084Sjohnlev xpv_panic_printf("%d unexpected interrupts received.\n", cnt); 6045084Sjohnlev #endif 6055084Sjohnlev 6065084Sjohnlev xpv_apicadr[APIC_EOI_REG] = 0; 6075084Sjohnlev } 6085084Sjohnlev 6095084Sjohnlev /* 6105084Sjohnlev * Managing time in panic context is trivial. We only have a single CPU, 6115084Sjohnlev * we never get rescheduled, we never get suspended. We just need to 6125084Sjohnlev * convert clock ticks into nanoseconds. 6135084Sjohnlev */ 6145084Sjohnlev static hrtime_t 6155084Sjohnlev xpv_panic_gethrtime(void) 6165084Sjohnlev { 6175084Sjohnlev hrtime_t tsc, hrt; 6185084Sjohnlev unsigned int *l = (unsigned int *)&(tsc); 6195084Sjohnlev 6205084Sjohnlev tsc = __rdtsc_insn(); 6215084Sjohnlev hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) + 6225084Sjohnlev (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT)); 6235084Sjohnlev 6245084Sjohnlev return (hrt); 6255084Sjohnlev } 6265084Sjohnlev 6275084Sjohnlev static void 6285084Sjohnlev xpv_panic_time_init() 6295084Sjohnlev { 6305084Sjohnlev nsec_scale = 6315084Sjohnlev CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT; 6325084Sjohnlev 6335084Sjohnlev gethrtimef = xpv_panic_gethrtime; 6345084Sjohnlev } 6355084Sjohnlev 6365084Sjohnlev static void 6375084Sjohnlev xpv_panicsys(struct regs *rp, char *fmt, ...) 6385084Sjohnlev { 6395084Sjohnlev extern void panicsys(const char *, va_list, struct regs *, int); 6405084Sjohnlev va_list alist; 6415084Sjohnlev 6425084Sjohnlev va_start(alist, fmt); 6435084Sjohnlev panicsys(fmt, alist, rp, 1); 6445084Sjohnlev va_end(alist); 6455084Sjohnlev } 6465084Sjohnlev 6475084Sjohnlev void 6485084Sjohnlev xpv_do_panic(void *arg) 6495084Sjohnlev { 6505084Sjohnlev struct panic_info *pip = (struct panic_info *)arg; 6515084Sjohnlev int l; 6525084Sjohnlev struct cregs creg; 6535084Sjohnlev #if defined(__amd64) 6545084Sjohnlev extern uintptr_t postbootkernelbase; 6555084Sjohnlev #endif 6565084Sjohnlev 6575084Sjohnlev if (xpv_panicking++ > 0) 6585084Sjohnlev panic("multiple calls to xpv_do_panic()"); 6595084Sjohnlev 6605084Sjohnlev /* 6615084Sjohnlev * Indicate to the underlying panic framework that a panic has been 6625084Sjohnlev * initiated. This is ordinarily done as part of vpanic(). Since 6635084Sjohnlev * we already have all the register state saved by the hypervisor, 6645084Sjohnlev * we skip that and jump straight into the panic processing code. 6655084Sjohnlev */ 6665084Sjohnlev (void) panic_trigger(&panic_quiesce); 6675084Sjohnlev 6685084Sjohnlev #if defined(__amd64) 6695084Sjohnlev /* 6705084Sjohnlev * bzero() and bcopy() get unhappy when asked to operate on 6715084Sjohnlev * addresses outside of the kernel. At this point Xen is really a 6725084Sjohnlev * part of the kernel, so we update the routines' notion of where 6735084Sjohnlev * the kernel starts. 6745084Sjohnlev */ 6755084Sjohnlev postbootkernelbase = xen_virt_start; 6765084Sjohnlev #endif 6775084Sjohnlev 6785084Sjohnlev #if defined(HYPERVISOR_VIRT_END) 6795084Sjohnlev xpv_end = HYPERVISOR_VIRT_END; 6805084Sjohnlev #else 6815084Sjohnlev xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t); 6825084Sjohnlev #endif 6835084Sjohnlev 6845084Sjohnlev /* 6855084Sjohnlev * If we were redirecting console output to the hypervisor, we have 6865084Sjohnlev * to stop. 6875084Sjohnlev */ 6885084Sjohnlev use_polledio = B_FALSE; 6895084Sjohnlev if (console == CONS_HYPERVISOR) { 6905084Sjohnlev bcons_device_change(CONS_HYPERVISOR); 6915084Sjohnlev } else if (cons_polledio != NULL && 6925084Sjohnlev cons_polledio->cons_polledio_putchar != NULL) { 6935084Sjohnlev if (cons_polledio->cons_polledio_enter != NULL) 6945084Sjohnlev cons_polledio->cons_polledio_enter( 6955084Sjohnlev cons_polledio->cons_polledio_argument); 6965084Sjohnlev use_polledio = 1; 6975084Sjohnlev } 6985084Sjohnlev 6995084Sjohnlev /* Make sure we handle all console output from here on. */ 7005084Sjohnlev sysp->bsvc_putchar = xpv_panic_putc; 7015084Sjohnlev 7025084Sjohnlev /* 7035084Sjohnlev * If we find an unsupported panic_info structure, there's not much 7045084Sjohnlev * we can do other than complain, plow on, and hope for the best. 7055084Sjohnlev */ 7065084Sjohnlev if (pip->pi_version != PANIC_INFO_VERSION) 7075084Sjohnlev xpv_panic_printf("Warning: Xen is using an unsupported " 7085084Sjohnlev "version of the panic_info structure.\n"); 7095084Sjohnlev 7105084Sjohnlev xpv_panic_info = pip; 7115084Sjohnlev 7126144Srab #if defined(__amd64) 7136144Srab kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start; 7146144Srab if (xpv_panic_info->pi_xen_start == NULL) { 7156144Srab kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end; 7166144Srab } else { 7176144Srab kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start; 7186144Srab kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end; 7196144Srab kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end; 7206144Srab } 7216144Srab #endif 7226144Srab 7235084Sjohnlev /* 7245084Sjohnlev * Make sure we are running on the Solaris %gs. The Xen panic code 7255084Sjohnlev * should already have set up the GDT properly. 7265084Sjohnlev */ 7275084Sjohnlev xpv_panic_resetgs(); 7285084Sjohnlev #if defined(__amd64) 7295084Sjohnlev wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); 7305084Sjohnlev #endif 7315084Sjohnlev 7325084Sjohnlev xpv_panic_time_init(); 7335084Sjohnlev 7345084Sjohnlev /* 7355084Sjohnlev * Switch to our own IDT, avoiding any accidental returns to Xen 7365084Sjohnlev * world. 7375084Sjohnlev */ 7385084Sjohnlev switch_to_xpv_panic_idt(); 7395084Sjohnlev 7405084Sjohnlev /* 7415084Sjohnlev * Initialize the APIC timer, which is used to detect a hung dump 7425084Sjohnlev * attempt. 7435084Sjohnlev */ 7445084Sjohnlev xpv_apicadr = pip->pi_apic; 7455084Sjohnlev xpv_apic_clkinit(); 7465084Sjohnlev 7475084Sjohnlev /* 7485084Sjohnlev * Set up a few values that we'll need repeatedly. 7495084Sjohnlev */ 7505084Sjohnlev getcregs(&creg); 7515084Sjohnlev xpv_panic_cr3 = creg.cr_cr3; 7525084Sjohnlev for (l = mmu.max_level; l >= 0; l--) 7535084Sjohnlev xpv_panic_nptes[l] = mmu.ptes_per_table; 7545084Sjohnlev #ifdef __i386 7555084Sjohnlev if (mmu.pae_hat) 7565084Sjohnlev xpv_panic_nptes[mmu.max_level] = 4; 7575084Sjohnlev #endif 7585084Sjohnlev 7595084Sjohnlev /* Add the fake Xen module to the module list */ 7605084Sjohnlev if (xpv_module != NULL) { 7615084Sjohnlev extern int last_module_id; 7625084Sjohnlev 7635084Sjohnlev xpv_modctl->mod_id = last_module_id++; 7645084Sjohnlev xpv_modctl->mod_next = &modules; 7655084Sjohnlev xpv_modctl->mod_prev = modules.mod_prev; 7665084Sjohnlev modules.mod_prev->mod_next = xpv_modctl; 7675084Sjohnlev modules.mod_prev = xpv_modctl; 7685084Sjohnlev } 7695084Sjohnlev xpv_panic_printf = printf; 7705084Sjohnlev xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr); 7715084Sjohnlev xpv_panic_printf("Failed to reboot following panic.\n"); 7725084Sjohnlev for (;;) 7735084Sjohnlev ; 7745084Sjohnlev } 7755084Sjohnlev 7765084Sjohnlev /* 7775084Sjohnlev * Set up the necessary data structures to pretend that the Xen hypervisor 7785084Sjohnlev * is a loadable module, allowing mdb to find the Xen symbols in a crash 7795084Sjohnlev * dump. Since these symbols all map to VA space Solaris doesn't normally 7805084Sjohnlev * have access to, we don't link these structures into the kernel's lists 7815084Sjohnlev * until/unless we hit a Xen panic. 7825084Sjohnlev * 7835084Sjohnlev * The observant reader will note a striking amount of overlap between this 7845084Sjohnlev * code and that found in krtld. While it would be handy if we could just 7855084Sjohnlev * ask krtld to do this work for us, it's not that simple. Among the 7865084Sjohnlev * complications: we're not actually loading the text here (grub did it at 7875084Sjohnlev * boot), the .text section is writable, there are no relocations to do, 7885084Sjohnlev * none of the module text/data is in readable memory, etc. Training krtld 7895084Sjohnlev * to deal with this weird module is as complicated, and more risky, than 7905084Sjohnlev * reimplementing the necessary subset of it here. 7915084Sjohnlev */ 7925084Sjohnlev static void 7935084Sjohnlev init_xen_module() 7945084Sjohnlev { 7955084Sjohnlev struct _buf *file = NULL; 7965084Sjohnlev struct module *mp; 7975084Sjohnlev struct modctl *mcp; 7985084Sjohnlev int i, shn; 7995084Sjohnlev Shdr *shp, *ctf_shp; 8005084Sjohnlev char *names = NULL; 8015084Sjohnlev size_t n, namesize, text_align, data_align; 8025084Sjohnlev #if defined(__amd64) 8035084Sjohnlev const char machine = EM_AMD64; 8045084Sjohnlev #else 8055084Sjohnlev const char machine = EM_386; 8065084Sjohnlev #endif 8075084Sjohnlev 8085084Sjohnlev /* Allocate and init the module structure */ 8095084Sjohnlev mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 8105084Sjohnlev mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 8115084Sjohnlev (void) strcpy(mp->filename, XPV_FILENAME); 8125084Sjohnlev 8135084Sjohnlev /* Allocate and init the modctl structure */ 8145084Sjohnlev mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP); 8155084Sjohnlev mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP); 8165084Sjohnlev (void) strcpy(mcp->mod_modname, XPV_MODNAME); 8175084Sjohnlev mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 8185084Sjohnlev (void) strcpy(mcp->mod_filename, XPV_FILENAME); 8195084Sjohnlev mcp->mod_inprogress_thread = (kthread_id_t)-1; 8205084Sjohnlev mcp->mod_ref = 1; 8215084Sjohnlev mcp->mod_loaded = 1; 8225084Sjohnlev mcp->mod_loadcnt = 1; 8235084Sjohnlev mcp->mod_mp = mp; 8245084Sjohnlev 8255084Sjohnlev /* 8265084Sjohnlev * Try to open a Xen image that hasn't had its symbol and CTF 8275084Sjohnlev * information stripped off. 8285084Sjohnlev */ 8295084Sjohnlev file = kobj_open_file(XPV_FILENAME); 8305084Sjohnlev if (file == (struct _buf *)-1) { 8315084Sjohnlev file = NULL; 8325084Sjohnlev goto err; 8335084Sjohnlev } 8345084Sjohnlev 8355084Sjohnlev /* 8365084Sjohnlev * Read the header and ensure that this is an ELF file for the 8375084Sjohnlev * proper ISA. If it's not, somebody has done something very 8385084Sjohnlev * stupid. Why bother? See Mencken. 8395084Sjohnlev */ 8405084Sjohnlev if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) 8415084Sjohnlev goto err; 8425084Sjohnlev for (i = 0; i < SELFMAG; i++) 8435084Sjohnlev if (mp->hdr.e_ident[i] != ELFMAG[i]) 8445084Sjohnlev goto err; 8455084Sjohnlev if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) || 8465084Sjohnlev (mp->hdr.e_machine != machine)) 8475084Sjohnlev goto err; 8485084Sjohnlev 8495084Sjohnlev /* Read in the section headers */ 8505084Sjohnlev n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 8515084Sjohnlev mp->shdrs = kmem_zalloc(n, KM_SLEEP); 8525084Sjohnlev if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) 8535084Sjohnlev goto err; 8545084Sjohnlev 8555084Sjohnlev /* Read the section names */ 8565084Sjohnlev shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 8575084Sjohnlev namesize = shp->sh_size; 8585084Sjohnlev names = kmem_zalloc(shp->sh_size, KM_SLEEP); 8595084Sjohnlev if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0) 8605084Sjohnlev goto err; 8615084Sjohnlev 8625084Sjohnlev /* 8635084Sjohnlev * Fill in the text and data size fields. 8645084Sjohnlev */ 8655084Sjohnlev ctf_shp = NULL; 8665084Sjohnlev text_align = data_align = 0; 8675084Sjohnlev for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 8685084Sjohnlev shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 8695084Sjohnlev 8705084Sjohnlev /* Sanity check the offset of the section name */ 8715084Sjohnlev if (shp->sh_name >= namesize) 8725084Sjohnlev continue; 8735084Sjohnlev 8745084Sjohnlev /* If we find the symtab section, remember it for later. */ 8755084Sjohnlev if (shp->sh_type == SHT_SYMTAB) { 8765084Sjohnlev mp->symtbl_section = shn; 8775084Sjohnlev mp->symhdr = shp; 8785084Sjohnlev continue; 8795084Sjohnlev } 8805084Sjohnlev 8815084Sjohnlev /* If we find the CTF section, remember it for later. */ 8825084Sjohnlev if ((shp->sh_size != 0) && 8835084Sjohnlev (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) { 8845084Sjohnlev ctf_shp = shp; 8855084Sjohnlev continue; 8865084Sjohnlev } 8875084Sjohnlev 8885084Sjohnlev if (!(shp->sh_flags & SHF_ALLOC)) 8895084Sjohnlev continue; 8905084Sjohnlev 8915084Sjohnlev /* 8925084Sjohnlev * Xen marks its text section as writable, so we need to 8935084Sjohnlev * look for the name - not just the flag. 8945084Sjohnlev */ 8955084Sjohnlev if ((strcmp(&names[shp->sh_name], ".text") != NULL) && 8965084Sjohnlev (shp->sh_flags & SHF_WRITE) != 0) { 8975084Sjohnlev if (shp->sh_addralign > data_align) 8985084Sjohnlev data_align = shp->sh_addralign; 8995084Sjohnlev mp->data_size = ALIGN(mp->data_size, data_align); 9005084Sjohnlev mp->data_size += ALIGN(shp->sh_size, 8); 9015084Sjohnlev if (mp->data == NULL || mp->data > (char *)shp->sh_addr) 9025084Sjohnlev mp->data = (char *)shp->sh_addr; 9035084Sjohnlev } else { 9045084Sjohnlev if (shp->sh_addralign > text_align) 9055084Sjohnlev text_align = shp->sh_addralign; 9065084Sjohnlev mp->text_size = ALIGN(mp->text_size, text_align); 9075084Sjohnlev mp->text_size += ALIGN(shp->sh_size, 8); 9085084Sjohnlev if (mp->text == NULL || mp->text > (char *)shp->sh_addr) 9095084Sjohnlev mp->text = (char *)shp->sh_addr; 9105084Sjohnlev } 9115084Sjohnlev } 9125084Sjohnlev kmem_free(names, namesize); 9135084Sjohnlev names = NULL; 9145249Snn35248 shp = NULL; 9155084Sjohnlev mcp->mod_text = mp->text; 9165084Sjohnlev mcp->mod_text_size = mp->text_size; 9175084Sjohnlev 9185084Sjohnlev /* 9195084Sjohnlev * If we have symbol table and string table sections, read them in 9205084Sjohnlev * now. If we don't, we just plow on. We'll still get a valid 9215084Sjohnlev * core dump, but finding anything useful will be just a bit 9225084Sjohnlev * harder. 9235084Sjohnlev * 9245084Sjohnlev * Note: we don't bother with a hash table. We'll never do a 9255084Sjohnlev * symbol lookup unless we crash, and then mdb creates its own. We 9265084Sjohnlev * also don't try to perform any relocations. Xen should be loaded 9275084Sjohnlev * exactly where the ELF file indicates, and the symbol information 9285084Sjohnlev * in the file should be complete and correct already. Static 9295084Sjohnlev * linking ain't all bad. 9305084Sjohnlev */ 9315084Sjohnlev if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) { 9325084Sjohnlev mp->strhdr = (Shdr *) 9335084Sjohnlev (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 9345084Sjohnlev mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 9355084Sjohnlev 9365084Sjohnlev /* Allocate space for the symbol table and strings. */ 9375084Sjohnlev mp->symsize = mp->symhdr->sh_size + 9385084Sjohnlev mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size; 9395084Sjohnlev mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP); 9405084Sjohnlev mp->symtbl = mp->symspace; 9415084Sjohnlev mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size); 9425084Sjohnlev 9435084Sjohnlev if ((kobj_read_file(file, mp->symtbl, 9445084Sjohnlev mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) || 9455084Sjohnlev (kobj_read_file(file, mp->strings, 9465084Sjohnlev mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)) 9475084Sjohnlev goto err; 9485084Sjohnlev } 9495084Sjohnlev 9505084Sjohnlev /* 9515084Sjohnlev * Read in the CTF section 9525084Sjohnlev */ 9535084Sjohnlev if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) { 9545249Snn35248 mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP); 9555084Sjohnlev mp->ctfsize = ctf_shp->sh_size; 9565084Sjohnlev if (kobj_read_file(file, mp->ctfdata, mp->ctfsize, 9575084Sjohnlev ctf_shp->sh_offset) < 0) 9585084Sjohnlev goto err; 9595084Sjohnlev } 9605084Sjohnlev 9615084Sjohnlev kobj_close_file(file); 9625084Sjohnlev 9635084Sjohnlev xpv_module = mp; 9645084Sjohnlev xpv_modctl = mcp; 9655084Sjohnlev return; 9665084Sjohnlev 9675084Sjohnlev err: 9685084Sjohnlev cmn_err(CE_WARN, "Failed to initialize xpv module."); 9695084Sjohnlev if (file != NULL) 9705084Sjohnlev kobj_close_file(file); 9715084Sjohnlev 9725084Sjohnlev kmem_free(mp->filename, strlen(XPV_FILENAME) + 1); 9735084Sjohnlev if (mp->shdrs != NULL) 9745084Sjohnlev kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 9755084Sjohnlev if (mp->symspace != NULL) 9765084Sjohnlev kmem_free(mp->symspace, mp->symsize); 9775084Sjohnlev if (mp->ctfdata != NULL) 9785084Sjohnlev kmem_free(mp->ctfdata, mp->ctfsize); 9795084Sjohnlev kmem_free(mp, sizeof (*mp)); 9805084Sjohnlev kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1); 9815084Sjohnlev kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1); 9825084Sjohnlev kmem_free(mcp, sizeof (*mcp)); 9835084Sjohnlev if (names != NULL) 9845084Sjohnlev kmem_free(names, namesize); 9855084Sjohnlev } 9865084Sjohnlev 9875084Sjohnlev void 9885084Sjohnlev xpv_panic_init() 9895084Sjohnlev { 9905084Sjohnlev xen_platform_op_t op; 9915084Sjohnlev int i; 9925084Sjohnlev 9935084Sjohnlev ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 9945084Sjohnlev 9955084Sjohnlev for (i = 0; i < mmu.num_level; i++) 9965084Sjohnlev ptable_pfn[i] = PFN_INVALID; 9975084Sjohnlev 9985084Sjohnlev /* Let Xen know where to jump if/when it panics. */ 9995084Sjohnlev op.cmd = XENPF_panic_init; 10005084Sjohnlev op.interface_version = XENPF_INTERFACE_VERSION; 10015084Sjohnlev op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr; 10025084Sjohnlev 10035084Sjohnlev (void) HYPERVISOR_platform_op(&op); 10045084Sjohnlev 10055084Sjohnlev init_xen_module(); 10065084Sjohnlev } 1007