xref: /onnv-gate/usr/src/uts/i86pc/os/timestamp.c (revision 5295:a21f2449e5f9)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
53446Smrj  * Common Development and Distribution License (the "License").
63446Smrj  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
215084Sjohnlev 
220Sstevel@tonic-gate /*
233446Smrj  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
240Sstevel@tonic-gate  * Use is subject to license terms.
250Sstevel@tonic-gate  */
260Sstevel@tonic-gate 
270Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
280Sstevel@tonic-gate 
290Sstevel@tonic-gate #include <sys/types.h>
300Sstevel@tonic-gate #include <sys/param.h>
310Sstevel@tonic-gate #include <sys/systm.h>
320Sstevel@tonic-gate #include <sys/disp.h>
330Sstevel@tonic-gate #include <sys/var.h>
340Sstevel@tonic-gate #include <sys/cmn_err.h>
350Sstevel@tonic-gate #include <sys/debug.h>
360Sstevel@tonic-gate #include <sys/x86_archext.h>
370Sstevel@tonic-gate #include <sys/archsystm.h>
380Sstevel@tonic-gate #include <sys/cpuvar.h>
390Sstevel@tonic-gate #include <sys/psm_defs.h>
400Sstevel@tonic-gate #include <sys/clock.h>
410Sstevel@tonic-gate #include <sys/atomic.h>
420Sstevel@tonic-gate #include <sys/lockstat.h>
430Sstevel@tonic-gate #include <sys/smp_impldefs.h>
440Sstevel@tonic-gate #include <sys/dtrace.h>
450Sstevel@tonic-gate #include <sys/time.h>
465084Sjohnlev #include <sys/panic.h>
470Sstevel@tonic-gate 
480Sstevel@tonic-gate /*
490Sstevel@tonic-gate  * Using the Pentium's TSC register for gethrtime()
500Sstevel@tonic-gate  * ------------------------------------------------
510Sstevel@tonic-gate  *
520Sstevel@tonic-gate  * The Pentium family, like many chip architectures, has a high-resolution
530Sstevel@tonic-gate  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
540Sstevel@tonic-gate  * of the timestamp counter are read with the RDTSC instruction.
550Sstevel@tonic-gate  *
560Sstevel@tonic-gate  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
570Sstevel@tonic-gate  * must be translated into nanoseconds in order to implement gethrtime().
580Sstevel@tonic-gate  * We avoid inducing floating point operations in this conversion by
590Sstevel@tonic-gate  * implementing the same nsec_scale algorithm as that found in the sun4u
600Sstevel@tonic-gate  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
610Sstevel@tonic-gate  * a detailed description of the algorithm; the comment is not reproduced
620Sstevel@tonic-gate  * here.  This implementation differs only in its value for NSEC_SHIFT:
630Sstevel@tonic-gate  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
640Sstevel@tonic-gate  * 60 MHz Pentiums.
650Sstevel@tonic-gate  *
660Sstevel@tonic-gate  * While TSC and %tick are both cycle counting registers, TSC's functionality
670Sstevel@tonic-gate  * falls short in several critical ways:
680Sstevel@tonic-gate  *
690Sstevel@tonic-gate  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
700Sstevel@tonic-gate  *	practice they often _are_ in sync, this isn't guaranteed by the
710Sstevel@tonic-gate  *	architecture.
720Sstevel@tonic-gate  *
730Sstevel@tonic-gate  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
740Sstevel@tonic-gate  *	only supports writing the low 32-bits of TSC, making it impractical
750Sstevel@tonic-gate  *	to rewrite.
760Sstevel@tonic-gate  *
770Sstevel@tonic-gate  *  (c)	The architecture doesn't have the capacity to interrupt based on
780Sstevel@tonic-gate  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
790Sstevel@tonic-gate  *
800Sstevel@tonic-gate  * Together, (a) and (b) imply that software must track the skew between
810Sstevel@tonic-gate  * TSCs and account for it (it is assumed that while there may exist skew,
820Sstevel@tonic-gate  * there does not exist drift).  To determine the skew between CPUs, we
830Sstevel@tonic-gate  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
840Sstevel@tonic-gate  * the online operation calls tsc_sync_master().  Once both CPUs are ready,
850Sstevel@tonic-gate  * the master sets a shared flag, and each reads its TSC register.  To reduce
860Sstevel@tonic-gate  * bias, we then wait until both CPUs are ready again, but this time the
870Sstevel@tonic-gate  * slave sets the shared flag, and each reads its TSC register again. The
880Sstevel@tonic-gate  * master compares the average of the two sample values, and, if observable
890Sstevel@tonic-gate  * skew is found, changes the gethrtimef function pointer to point to a
900Sstevel@tonic-gate  * gethrtime() implementation which will take the discovered skew into
910Sstevel@tonic-gate  * consideration.
920Sstevel@tonic-gate  *
930Sstevel@tonic-gate  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
940Sstevel@tonic-gate  * sync with gettimeofday().  This is problematic; given (c), the software
950Sstevel@tonic-gate  * cannot drive its time-of-day source from TSC, and yet they must somehow be
960Sstevel@tonic-gate  * kept in sync.  We implement this by having a routine, tsc_tick(), which
970Sstevel@tonic-gate  * is called once per second from the interrupt which drives time-of-day.
980Sstevel@tonic-gate  * tsc_tick() recalculates nsec_scale based on the number of the CPU cycles
990Sstevel@tonic-gate  * since boot versus the number of seconds since boot.  This algorithm
1000Sstevel@tonic-gate  * becomes more accurate over time and converges quickly; the error in
1010Sstevel@tonic-gate  * nsec_scale is typically under 1 ppm less than 10 seconds after boot, and
1020Sstevel@tonic-gate  * is less than 100 ppb 1 minute after boot.
1030Sstevel@tonic-gate  *
1040Sstevel@tonic-gate  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
1050Sstevel@tonic-gate  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
1060Sstevel@tonic-gate  * monotonically increases.
1070Sstevel@tonic-gate  */
1080Sstevel@tonic-gate 
1090Sstevel@tonic-gate #define	NSEC_SHIFT 5
1100Sstevel@tonic-gate 
1110Sstevel@tonic-gate static uint_t nsec_scale;
1120Sstevel@tonic-gate 
1130Sstevel@tonic-gate /*
1140Sstevel@tonic-gate  * These two variables used to be grouped together inside of a structure that
1150Sstevel@tonic-gate  * lived on a single cache line. A regression (bug ID 4623398) caused the
1160Sstevel@tonic-gate  * compiler to emit code that "optimized" away the while-loops below. The
1170Sstevel@tonic-gate  * result was that no synchronization between the onlining and onlined CPUs
1180Sstevel@tonic-gate  * took place.
1190Sstevel@tonic-gate  */
1200Sstevel@tonic-gate static volatile int tsc_ready;
1210Sstevel@tonic-gate static volatile int tsc_sync_go;
1220Sstevel@tonic-gate 
1230Sstevel@tonic-gate /*
1240Sstevel@tonic-gate  * Used as indices into the tsc_sync_snaps[] array.
1250Sstevel@tonic-gate  */
1260Sstevel@tonic-gate #define	TSC_MASTER		0
1270Sstevel@tonic-gate #define	TSC_SLAVE		1
1280Sstevel@tonic-gate 
1290Sstevel@tonic-gate /*
1300Sstevel@tonic-gate  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
1310Sstevel@tonic-gate  */
1320Sstevel@tonic-gate #define	TSC_SYNC_STOP		1
1330Sstevel@tonic-gate #define	TSC_SYNC_GO		2
1340Sstevel@tonic-gate #define	TSC_SYNC_AGAIN		3
1350Sstevel@tonic-gate 
1365084Sjohnlev #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) {	 	\
1373446Smrj 	unsigned int *_l = (unsigned int *)&(tsc); 	\
1383446Smrj 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; 	\
1390Sstevel@tonic-gate 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
1400Sstevel@tonic-gate }
1410Sstevel@tonic-gate 
1423446Smrj #define	TSC_CONVERT(tsc, hrt, scale) { 			\
1433446Smrj 	unsigned int *_l = (unsigned int *)&(tsc); 	\
1443446Smrj 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; 	\
1450Sstevel@tonic-gate 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
1460Sstevel@tonic-gate }
1470Sstevel@tonic-gate 
1483446Smrj int tsc_master_slave_sync_needed = 1;
1490Sstevel@tonic-gate 
1500Sstevel@tonic-gate static int	tsc_max_delta;
1510Sstevel@tonic-gate static hrtime_t tsc_sync_snaps[2];
1520Sstevel@tonic-gate static hrtime_t tsc_sync_delta[NCPU];
1530Sstevel@tonic-gate static hrtime_t tsc_sync_tick_delta[NCPU];
1540Sstevel@tonic-gate static hrtime_t	tsc_last = 0;
1550Sstevel@tonic-gate static hrtime_t	tsc_last_jumped = 0;
1560Sstevel@tonic-gate static hrtime_t	tsc_hrtime_base = 0;
1570Sstevel@tonic-gate static int	tsc_jumped = 0;
1580Sstevel@tonic-gate 
1590Sstevel@tonic-gate static hrtime_t	shadow_tsc_hrtime_base;
1600Sstevel@tonic-gate static hrtime_t	shadow_tsc_last;
1610Sstevel@tonic-gate static uint_t	shadow_nsec_scale;
1620Sstevel@tonic-gate static uint32_t	shadow_hres_lock;
163*5295Srandyf int get_tsc_ready();
1640Sstevel@tonic-gate 
1655084Sjohnlev hrtime_t
1665084Sjohnlev tsc_gethrtime(void)
1675084Sjohnlev {
1685084Sjohnlev 	uint32_t old_hres_lock;
1695084Sjohnlev 	hrtime_t tsc, hrt;
1705084Sjohnlev 
1715084Sjohnlev 	do {
1725084Sjohnlev 		old_hres_lock = hres_lock;
1735084Sjohnlev 
1745084Sjohnlev 		if ((tsc = tsc_read()) >= tsc_last) {
1755084Sjohnlev 			/*
1765084Sjohnlev 			 * It would seem to be obvious that this is true
1775084Sjohnlev 			 * (that is, the past is less than the present),
1785084Sjohnlev 			 * but it isn't true in the presence of suspend/resume
1795084Sjohnlev 			 * cycles.  If we manage to call gethrtime()
1805084Sjohnlev 			 * after a resume, but before the first call to
1815084Sjohnlev 			 * tsc_tick(), we will see the jump.  In this case,
1825084Sjohnlev 			 * we will simply use the value in TSC as the delta.
1835084Sjohnlev 			 */
1845084Sjohnlev 			tsc -= tsc_last;
1855084Sjohnlev 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
1865084Sjohnlev 			/*
1875084Sjohnlev 			 * There is a chance that tsc_tick() has just run on
1885084Sjohnlev 			 * another CPU, and we have drifted just enough so that
1895084Sjohnlev 			 * we appear behind tsc_last.  In this case, force the
1905084Sjohnlev 			 * delta to be zero.
1915084Sjohnlev 			 */
1925084Sjohnlev 			tsc = 0;
1935084Sjohnlev 		}
1945084Sjohnlev 
1955084Sjohnlev 		hrt = tsc_hrtime_base;
1965084Sjohnlev 
1975084Sjohnlev 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
1985084Sjohnlev 	} while ((old_hres_lock & ~1) != hres_lock);
1995084Sjohnlev 
2005084Sjohnlev 	return (hrt);
2015084Sjohnlev }
2025084Sjohnlev 
2035084Sjohnlev hrtime_t
2045084Sjohnlev tsc_gethrtime_delta(void)
2055084Sjohnlev {
2065084Sjohnlev 	uint32_t old_hres_lock;
2075084Sjohnlev 	hrtime_t tsc, hrt;
2085084Sjohnlev 	int flags;
2095084Sjohnlev 
2105084Sjohnlev 	do {
2115084Sjohnlev 		old_hres_lock = hres_lock;
2125084Sjohnlev 
2135084Sjohnlev 		/*
2145084Sjohnlev 		 * We need to disable interrupts here to assure that we
2155084Sjohnlev 		 * don't migrate between the call to tsc_read() and
2165084Sjohnlev 		 * adding the CPU's TSC tick delta. Note that disabling
2175084Sjohnlev 		 * and reenabling preemption is forbidden here because
2185084Sjohnlev 		 * we may be in the middle of a fast trap. In the amd64
2195084Sjohnlev 		 * kernel we cannot tolerate preemption during a fast
2205084Sjohnlev 		 * trap. See _update_sregs().
2215084Sjohnlev 		 */
2225084Sjohnlev 
2235084Sjohnlev 		flags = clear_int_flag();
2245084Sjohnlev 		tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id];
2255084Sjohnlev 		restore_int_flag(flags);
2265084Sjohnlev 
2275084Sjohnlev 		/* See comments in tsc_gethrtime() above */
2285084Sjohnlev 
2295084Sjohnlev 		if (tsc >= tsc_last) {
2305084Sjohnlev 			tsc -= tsc_last;
2315084Sjohnlev 		} else if (tsc >= tsc_last - 2 * tsc_max_delta) {
2325084Sjohnlev 			tsc = 0;
2335084Sjohnlev 		}
2345084Sjohnlev 
2355084Sjohnlev 		hrt = tsc_hrtime_base;
2365084Sjohnlev 
2375084Sjohnlev 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
2385084Sjohnlev 	} while ((old_hres_lock & ~1) != hres_lock);
2395084Sjohnlev 
2405084Sjohnlev 	return (hrt);
2415084Sjohnlev }
2425084Sjohnlev 
2435084Sjohnlev /*
2445084Sjohnlev  * This is similar to the above, but it cannot actually spin on hres_lock.
2455084Sjohnlev  * As a result, it caches all of the variables it needs; if the variables
2465084Sjohnlev  * don't change, it's done.
2475084Sjohnlev  */
2485084Sjohnlev hrtime_t
2495084Sjohnlev dtrace_gethrtime(void)
2505084Sjohnlev {
2515084Sjohnlev 	uint32_t old_hres_lock;
2525084Sjohnlev 	hrtime_t tsc, hrt;
2535084Sjohnlev 	int flags;
2545084Sjohnlev 
2555084Sjohnlev 	do {
2565084Sjohnlev 		old_hres_lock = hres_lock;
2575084Sjohnlev 
2585084Sjohnlev 		/*
2595084Sjohnlev 		 * Interrupts are disabled to ensure that the thread isn't
2605084Sjohnlev 		 * migrated between the tsc_read() and adding the CPU's
2615084Sjohnlev 		 * TSC tick delta.
2625084Sjohnlev 		 */
2635084Sjohnlev 		flags = clear_int_flag();
2645084Sjohnlev 
2655084Sjohnlev 		tsc = tsc_read();
2665084Sjohnlev 
2675084Sjohnlev 		if (gethrtimef == tsc_gethrtime_delta)
2685084Sjohnlev 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
2695084Sjohnlev 
2705084Sjohnlev 		restore_int_flag(flags);
2715084Sjohnlev 
2725084Sjohnlev 		/*
2735084Sjohnlev 		 * See the comments in tsc_gethrtime(), above.
2745084Sjohnlev 		 */
2755084Sjohnlev 		if (tsc >= tsc_last)
2765084Sjohnlev 			tsc -= tsc_last;
2775084Sjohnlev 		else if (tsc >= tsc_last - 2*tsc_max_delta)
2785084Sjohnlev 			tsc = 0;
2795084Sjohnlev 
2805084Sjohnlev 		hrt = tsc_hrtime_base;
2815084Sjohnlev 
2825084Sjohnlev 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
2835084Sjohnlev 
2845084Sjohnlev 		if ((old_hres_lock & ~1) == hres_lock)
2855084Sjohnlev 			break;
2865084Sjohnlev 
2875084Sjohnlev 		/*
2885084Sjohnlev 		 * If we're here, the clock lock is locked -- or it has been
2895084Sjohnlev 		 * unlocked and locked since we looked.  This may be due to
2905084Sjohnlev 		 * tsc_tick() running on another CPU -- or it may be because
2915084Sjohnlev 		 * some code path has ended up in dtrace_probe() with
2925084Sjohnlev 		 * CLOCK_LOCK held.  We'll try to determine that we're in
2935084Sjohnlev 		 * the former case by taking another lap if the lock has
2945084Sjohnlev 		 * changed since when we first looked at it.
2955084Sjohnlev 		 */
2965084Sjohnlev 		if (old_hres_lock != hres_lock)
2975084Sjohnlev 			continue;
2985084Sjohnlev 
2995084Sjohnlev 		/*
3005084Sjohnlev 		 * So the lock was and is locked.  We'll use the old data
3015084Sjohnlev 		 * instead.
3025084Sjohnlev 		 */
3035084Sjohnlev 		old_hres_lock = shadow_hres_lock;
3045084Sjohnlev 
3055084Sjohnlev 		/*
3065084Sjohnlev 		 * Again, disable interrupts to ensure that the thread
3075084Sjohnlev 		 * isn't migrated between the tsc_read() and adding
3085084Sjohnlev 		 * the CPU's TSC tick delta.
3095084Sjohnlev 		 */
3105084Sjohnlev 		flags = clear_int_flag();
3115084Sjohnlev 
3125084Sjohnlev 		tsc = tsc_read();
3135084Sjohnlev 
3145084Sjohnlev 		if (gethrtimef == tsc_gethrtime_delta)
3155084Sjohnlev 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
3165084Sjohnlev 
3175084Sjohnlev 		restore_int_flag(flags);
3185084Sjohnlev 
3195084Sjohnlev 		/*
3205084Sjohnlev 		 * See the comments in tsc_gethrtime(), above.
3215084Sjohnlev 		 */
3225084Sjohnlev 		if (tsc >= shadow_tsc_last)
3235084Sjohnlev 			tsc -= shadow_tsc_last;
3245084Sjohnlev 		else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta)
3255084Sjohnlev 			tsc = 0;
3265084Sjohnlev 
3275084Sjohnlev 		hrt = shadow_tsc_hrtime_base;
3285084Sjohnlev 
3295084Sjohnlev 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
3305084Sjohnlev 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
3315084Sjohnlev 
3325084Sjohnlev 	return (hrt);
3335084Sjohnlev }
3345084Sjohnlev 
3355084Sjohnlev hrtime_t
3365084Sjohnlev tsc_gethrtimeunscaled(void)
3375084Sjohnlev {
3385084Sjohnlev 	uint32_t old_hres_lock;
3395084Sjohnlev 	hrtime_t tsc;
3405084Sjohnlev 
3415084Sjohnlev 	do {
3425084Sjohnlev 		old_hres_lock = hres_lock;
3435084Sjohnlev 
3445084Sjohnlev 		/* See tsc_tick(). */
3455084Sjohnlev 		tsc = tsc_read() + tsc_last_jumped;
3465084Sjohnlev 	} while ((old_hres_lock & ~1) != hres_lock);
3475084Sjohnlev 
3485084Sjohnlev 	return (tsc);
3495084Sjohnlev }
3505084Sjohnlev 
3515084Sjohnlev 
3525084Sjohnlev /* Convert a tsc timestamp to nanoseconds */
3535084Sjohnlev void
3545084Sjohnlev tsc_scalehrtime(hrtime_t *tsc)
3555084Sjohnlev {
3565084Sjohnlev 	hrtime_t hrt;
3575084Sjohnlev 	hrtime_t mytsc;
3585084Sjohnlev 
3595084Sjohnlev 	if (tsc == NULL)
3605084Sjohnlev 		return;
3615084Sjohnlev 	mytsc = *tsc;
3625084Sjohnlev 
3635084Sjohnlev 	TSC_CONVERT(mytsc, hrt, nsec_scale);
3645084Sjohnlev 	*tsc  = hrt;
3655084Sjohnlev }
3665084Sjohnlev 
3675084Sjohnlev hrtime_t
3685084Sjohnlev tsc_gethrtimeunscaled_delta(void)
3695084Sjohnlev {
3705084Sjohnlev 	hrtime_t hrt;
3715084Sjohnlev 	int flags;
3725084Sjohnlev 
3735084Sjohnlev 	/*
3745084Sjohnlev 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
3755084Sjohnlev 	 * to prevent migration between the call to tsc_gethrtimeunscaled
3765084Sjohnlev 	 * and adding the CPU's hrtime delta. Note that disabling and
3775084Sjohnlev 	 * reenabling preemption is forbidden here because we may be in the
3785084Sjohnlev 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
3795084Sjohnlev 	 * preemption during a fast trap. See _update_sregs().
3805084Sjohnlev 	 */
3815084Sjohnlev 
3825084Sjohnlev 	flags = clear_int_flag();
3835084Sjohnlev 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
3845084Sjohnlev 	restore_int_flag(flags);
3855084Sjohnlev 
3865084Sjohnlev 	return (hrt);
3875084Sjohnlev }
3885084Sjohnlev 
3890Sstevel@tonic-gate /*
3900Sstevel@tonic-gate  * Called by the master after the sync operation is complete.  If the
3910Sstevel@tonic-gate  * slave is discovered to lag, gethrtimef will be changed to point to
3920Sstevel@tonic-gate  * tsc_gethrtime_delta().
3930Sstevel@tonic-gate  */
3940Sstevel@tonic-gate static void
3950Sstevel@tonic-gate tsc_digest(processorid_t target)
3960Sstevel@tonic-gate {
3970Sstevel@tonic-gate 	hrtime_t tdelta, hdelta = 0;
3980Sstevel@tonic-gate 	int max = tsc_max_delta;
3990Sstevel@tonic-gate 	processorid_t source = CPU->cpu_id;
4000Sstevel@tonic-gate 	int update;
4010Sstevel@tonic-gate 
4020Sstevel@tonic-gate 	update = tsc_sync_delta[source] != 0 ||
4030Sstevel@tonic-gate 	    gethrtimef == tsc_gethrtime_delta;
4040Sstevel@tonic-gate 
4050Sstevel@tonic-gate 	/*
4060Sstevel@tonic-gate 	 * We divide by 2 since each of the data points is the sum of two TSC
4070Sstevel@tonic-gate 	 * reads; this takes the average of the two.
4080Sstevel@tonic-gate 	 */
4090Sstevel@tonic-gate 	tdelta = (tsc_sync_snaps[TSC_SLAVE] - tsc_sync_snaps[TSC_MASTER]) / 2;
4100Sstevel@tonic-gate 	if ((tdelta > max) || ((tdelta >= 0) && update)) {
4110Sstevel@tonic-gate 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
4120Sstevel@tonic-gate 		tsc_sync_delta[target] = tsc_sync_delta[source] - hdelta;
413*5295Srandyf 		tsc_sync_tick_delta[target] = tsc_sync_tick_delta[source]
414*5295Srandyf 		    -tdelta;
4150Sstevel@tonic-gate 		gethrtimef = tsc_gethrtime_delta;
4160Sstevel@tonic-gate 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
4170Sstevel@tonic-gate 		return;
4180Sstevel@tonic-gate 	}
4190Sstevel@tonic-gate 
4200Sstevel@tonic-gate 	tdelta = -tdelta;
4210Sstevel@tonic-gate 	if ((tdelta > max) || update) {
4220Sstevel@tonic-gate 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
4230Sstevel@tonic-gate 		tsc_sync_delta[target] = tsc_sync_delta[source] + hdelta;
424*5295Srandyf 		tsc_sync_tick_delta[target] = tsc_sync_tick_delta[source]
425*5295Srandyf 		    + tdelta;
4260Sstevel@tonic-gate 		gethrtimef = tsc_gethrtime_delta;
4270Sstevel@tonic-gate 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
4280Sstevel@tonic-gate 	}
4290Sstevel@tonic-gate 
4300Sstevel@tonic-gate }
4310Sstevel@tonic-gate 
4320Sstevel@tonic-gate /*
4330Sstevel@tonic-gate  * Called by a CPU which has just performed an online operation on another
4340Sstevel@tonic-gate  * CPU.  It is expected that the newly onlined CPU will call tsc_sync_slave().
4350Sstevel@tonic-gate  */
4360Sstevel@tonic-gate void
4370Sstevel@tonic-gate tsc_sync_master(processorid_t slave)
4380Sstevel@tonic-gate {
4393446Smrj 	ulong_t flags;
4400Sstevel@tonic-gate 	hrtime_t hrt;
4410Sstevel@tonic-gate 
4423446Smrj 	if (!tsc_master_slave_sync_needed)
4433446Smrj 		return;
4443446Smrj 
4450Sstevel@tonic-gate 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
4460Sstevel@tonic-gate 
4470Sstevel@tonic-gate 	flags = clear_int_flag();
4480Sstevel@tonic-gate 
4490Sstevel@tonic-gate 	/*
4500Sstevel@tonic-gate 	 * Wait for the slave CPU to arrive.
4510Sstevel@tonic-gate 	 */
4520Sstevel@tonic-gate 	while (tsc_ready != TSC_SYNC_GO)
4530Sstevel@tonic-gate 		continue;
4540Sstevel@tonic-gate 
4550Sstevel@tonic-gate 	/*
4560Sstevel@tonic-gate 	 * Tell the slave CPU to begin reading its TSC; read our own.
4570Sstevel@tonic-gate 	 */
4580Sstevel@tonic-gate 	tsc_sync_go = TSC_SYNC_GO;
4590Sstevel@tonic-gate 	hrt = tsc_read();
4600Sstevel@tonic-gate 
4610Sstevel@tonic-gate 	/*
4620Sstevel@tonic-gate 	 * Tell the slave that we're ready, and wait for the slave to tell us
4630Sstevel@tonic-gate 	 * to read our TSC again.
4640Sstevel@tonic-gate 	 */
4650Sstevel@tonic-gate 	tsc_ready = TSC_SYNC_AGAIN;
4660Sstevel@tonic-gate 	while (tsc_sync_go != TSC_SYNC_AGAIN)
4670Sstevel@tonic-gate 		continue;
4680Sstevel@tonic-gate 
4690Sstevel@tonic-gate 	hrt += tsc_read();
4700Sstevel@tonic-gate 	tsc_sync_snaps[TSC_MASTER] = hrt;
4710Sstevel@tonic-gate 
4720Sstevel@tonic-gate 	/*
4730Sstevel@tonic-gate 	 * Wait for the slave to finish reading its TSC.
4740Sstevel@tonic-gate 	 */
4750Sstevel@tonic-gate 	while (tsc_ready != TSC_SYNC_STOP)
4760Sstevel@tonic-gate 		continue;
4770Sstevel@tonic-gate 
4780Sstevel@tonic-gate 	/*
4790Sstevel@tonic-gate 	 * At this point, both CPUs have performed their tsc_read() calls.
4800Sstevel@tonic-gate 	 * We'll digest it now before letting the slave CPU return.
4810Sstevel@tonic-gate 	 */
4820Sstevel@tonic-gate 	tsc_digest(slave);
4830Sstevel@tonic-gate 	tsc_sync_go = TSC_SYNC_STOP;
4840Sstevel@tonic-gate 
4850Sstevel@tonic-gate 	restore_int_flag(flags);
4860Sstevel@tonic-gate }
4870Sstevel@tonic-gate 
4880Sstevel@tonic-gate /*
4890Sstevel@tonic-gate  * Called by a CPU which has just been onlined.  It is expected that the CPU
4900Sstevel@tonic-gate  * performing the online operation will call tsc_sync_master().
4910Sstevel@tonic-gate  */
4920Sstevel@tonic-gate void
4930Sstevel@tonic-gate tsc_sync_slave(void)
4940Sstevel@tonic-gate {
4953446Smrj 	ulong_t flags;
4960Sstevel@tonic-gate 	hrtime_t hrt;
4970Sstevel@tonic-gate 
4983446Smrj 	if (!tsc_master_slave_sync_needed)
4993446Smrj 		return;
5003446Smrj 
5010Sstevel@tonic-gate 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
5020Sstevel@tonic-gate 
5030Sstevel@tonic-gate 	flags = clear_int_flag();
5040Sstevel@tonic-gate 
5051389Sdmick 	/* to test tsc_gethrtime_delta, add wrmsr(REG_TSC, 0) here */
5061389Sdmick 
5070Sstevel@tonic-gate 	/*
5080Sstevel@tonic-gate 	 * Tell the master CPU that we're ready, and wait for the master to
5090Sstevel@tonic-gate 	 * tell us to begin reading our TSC.
5100Sstevel@tonic-gate 	 */
5110Sstevel@tonic-gate 	tsc_ready = TSC_SYNC_GO;
5120Sstevel@tonic-gate 	while (tsc_sync_go != TSC_SYNC_GO)
5130Sstevel@tonic-gate 		continue;
5140Sstevel@tonic-gate 
5150Sstevel@tonic-gate 	hrt = tsc_read();
5160Sstevel@tonic-gate 
5170Sstevel@tonic-gate 	/*
5180Sstevel@tonic-gate 	 * Wait for the master CPU to be ready to read its TSC again.
5190Sstevel@tonic-gate 	 */
5200Sstevel@tonic-gate 	while (tsc_ready != TSC_SYNC_AGAIN)
5210Sstevel@tonic-gate 		continue;
5220Sstevel@tonic-gate 
5230Sstevel@tonic-gate 	/*
5240Sstevel@tonic-gate 	 * Tell the master CPU to read its TSC again; read ours again.
5250Sstevel@tonic-gate 	 */
5260Sstevel@tonic-gate 	tsc_sync_go = TSC_SYNC_AGAIN;
5270Sstevel@tonic-gate 
5280Sstevel@tonic-gate 	hrt += tsc_read();
5290Sstevel@tonic-gate 	tsc_sync_snaps[TSC_SLAVE] = hrt;
5300Sstevel@tonic-gate 
5310Sstevel@tonic-gate 	/*
5320Sstevel@tonic-gate 	 * Tell the master that we're done, and wait to be dismissed.
5330Sstevel@tonic-gate 	 */
5340Sstevel@tonic-gate 	tsc_ready = TSC_SYNC_STOP;
5350Sstevel@tonic-gate 	while (tsc_sync_go != TSC_SYNC_STOP)
5360Sstevel@tonic-gate 		continue;
5370Sstevel@tonic-gate 
5380Sstevel@tonic-gate 	restore_int_flag(flags);
5390Sstevel@tonic-gate }
5400Sstevel@tonic-gate 
5410Sstevel@tonic-gate /*
5423446Smrj  * Called once per second on a CPU from the cyclic subsystem's
5433446Smrj  * CY_HIGH_LEVEL interrupt.  (No longer just cpu0-only)
5440Sstevel@tonic-gate  */
5450Sstevel@tonic-gate void
5460Sstevel@tonic-gate tsc_tick(void)
5470Sstevel@tonic-gate {
5480Sstevel@tonic-gate 	hrtime_t now, delta;
5490Sstevel@tonic-gate 	ushort_t spl;
5500Sstevel@tonic-gate 
5510Sstevel@tonic-gate 	/*
5520Sstevel@tonic-gate 	 * Before we set the new variables, we set the shadow values.  This
5530Sstevel@tonic-gate 	 * allows for lock free operation in dtrace_gethrtime().
5540Sstevel@tonic-gate 	 */
5550Sstevel@tonic-gate 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
5560Sstevel@tonic-gate 	    ipltospl(CBE_HIGH_PIL), &spl);
5570Sstevel@tonic-gate 
5580Sstevel@tonic-gate 	shadow_tsc_hrtime_base = tsc_hrtime_base;
5590Sstevel@tonic-gate 	shadow_tsc_last = tsc_last;
5600Sstevel@tonic-gate 	shadow_nsec_scale = nsec_scale;
5610Sstevel@tonic-gate 
5620Sstevel@tonic-gate 	shadow_hres_lock++;
5630Sstevel@tonic-gate 	splx(spl);
5640Sstevel@tonic-gate 
5650Sstevel@tonic-gate 	CLOCK_LOCK(&spl);
5660Sstevel@tonic-gate 
5670Sstevel@tonic-gate 	now = tsc_read();
5680Sstevel@tonic-gate 
5691389Sdmick 	if (gethrtimef == tsc_gethrtime_delta)
5701389Sdmick 		now += tsc_sync_tick_delta[CPU->cpu_id];
5711389Sdmick 
5720Sstevel@tonic-gate 	if (now < tsc_last) {
5730Sstevel@tonic-gate 		/*
5740Sstevel@tonic-gate 		 * The TSC has just jumped into the past.  We assume that
5750Sstevel@tonic-gate 		 * this is due to a suspend/resume cycle, and we're going
5760Sstevel@tonic-gate 		 * to use the _current_ value of TSC as the delta.  This
5770Sstevel@tonic-gate 		 * will keep tsc_hrtime_base correct.  We're also going to
5780Sstevel@tonic-gate 		 * assume that rate of tsc does not change after a suspend
5790Sstevel@tonic-gate 		 * resume (i.e nsec_scale remains the same).
5800Sstevel@tonic-gate 		 */
5810Sstevel@tonic-gate 		delta = now;
5820Sstevel@tonic-gate 		tsc_last_jumped += tsc_last;
5830Sstevel@tonic-gate 		tsc_jumped = 1;
5840Sstevel@tonic-gate 	} else {
5850Sstevel@tonic-gate 		/*
5860Sstevel@tonic-gate 		 * Determine the number of TSC ticks since the last clock
5870Sstevel@tonic-gate 		 * tick, and add that to the hrtime base.
5880Sstevel@tonic-gate 		 */
5890Sstevel@tonic-gate 		delta = now - tsc_last;
5900Sstevel@tonic-gate 	}
5910Sstevel@tonic-gate 
5920Sstevel@tonic-gate 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
5930Sstevel@tonic-gate 	tsc_last = now;
5940Sstevel@tonic-gate 
5950Sstevel@tonic-gate 	CLOCK_UNLOCK(spl);
5960Sstevel@tonic-gate }
5970Sstevel@tonic-gate 
5985084Sjohnlev void
5995084Sjohnlev tsc_hrtimeinit(uint64_t cpu_freq_hz)
6000Sstevel@tonic-gate {
6015084Sjohnlev 	extern int gethrtime_hires;
6025084Sjohnlev 	longlong_t tsc;
6035084Sjohnlev 	ulong_t flags;
6040Sstevel@tonic-gate 
6055084Sjohnlev 	/*
6065084Sjohnlev 	 * cpu_freq_hz is the measured cpu frequency in hertz
6075084Sjohnlev 	 */
6080Sstevel@tonic-gate 
6090Sstevel@tonic-gate 	/*
6105084Sjohnlev 	 * We can't accommodate CPUs slower than 31.25 MHz.
6110Sstevel@tonic-gate 	 */
6125084Sjohnlev 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
6135084Sjohnlev 	nsec_scale =
6145084Sjohnlev 	    (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
6150Sstevel@tonic-gate 
6160Sstevel@tonic-gate 	flags = clear_int_flag();
6175084Sjohnlev 	tsc = tsc_read();
6185084Sjohnlev 	(void) tsc_gethrtime();
6195084Sjohnlev 	tsc_max_delta = tsc_read() - tsc;
6200Sstevel@tonic-gate 	restore_int_flag(flags);
6215084Sjohnlev 	gethrtimef = tsc_gethrtime;
6225084Sjohnlev 	gethrtimeunscaledf = tsc_gethrtimeunscaled;
6235084Sjohnlev 	scalehrtimef = tsc_scalehrtime;
6245084Sjohnlev 	hrtime_tick = tsc_tick;
6255084Sjohnlev 	gethrtime_hires = 1;
6260Sstevel@tonic-gate }
627*5295Srandyf 
628*5295Srandyf int
629*5295Srandyf get_tsc_ready()
630*5295Srandyf {
631*5295Srandyf 	return (tsc_ready);
632*5295Srandyf }
633*5295Srandyf 
634*5295Srandyf /*
635*5295Srandyf  * Adjust all the deltas by adding the passed value to the array.
636*5295Srandyf  * Then use the "delt" versions of the the gethrtime functions.
637*5295Srandyf  * Note that 'tdelta' _could_ be a negative number, which should
638*5295Srandyf  * reduce the values in the array (used, for example, if the Solaris
639*5295Srandyf  * instance was moved by a virtual manager to a machine with a higher
640*5295Srandyf  * value of tsc).
641*5295Srandyf  */
642*5295Srandyf void
643*5295Srandyf tsc_adjust_delta(hrtime_t tdelta)
644*5295Srandyf {
645*5295Srandyf 	int		i;
646*5295Srandyf 	hrtime_t	hdelta = 0;
647*5295Srandyf 
648*5295Srandyf 	TSC_CONVERT(tdelta, hdelta, nsec_scale);
649*5295Srandyf 
650*5295Srandyf 	for (i = 0; i < NCPU; i++) {
651*5295Srandyf 		tsc_sync_delta[i] += hdelta;
652*5295Srandyf 		tsc_sync_tick_delta[i] += tdelta;
653*5295Srandyf 	}
654*5295Srandyf 
655*5295Srandyf 	gethrtimef = tsc_gethrtime_delta;
656*5295Srandyf 	gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
657*5295Srandyf }
658*5295Srandyf 
659*5295Srandyf /*
660*5295Srandyf  * Functions to manage TSC and high-res time on suspend and resume.
661*5295Srandyf  */
662*5295Srandyf 
663*5295Srandyf /*
664*5295Srandyf  * declarations needed for time adjustment
665*5295Srandyf  */
666*5295Srandyf extern void	rtcsync(void);
667*5295Srandyf extern tod_ops_t *tod_ops;
668*5295Srandyf /* There must be a better way than exposing nsec_scale! */
669*5295Srandyf extern uint_t	nsec_scale;
670*5295Srandyf static uint64_t tsc_saved_tsc = 0; /* 1 in 2^64 chance this'll screw up! */
671*5295Srandyf static timestruc_t tsc_saved_ts;
672*5295Srandyf static int	tsc_needs_resume = 0;	/* We only want to do this once. */
673*5295Srandyf int		tsc_delta_onsuspend = 0;
674*5295Srandyf int		tsc_adjust_seconds = 1;
675*5295Srandyf int		tsc_suspend_count = 0;
676*5295Srandyf int		tsc_resume_in_cyclic = 0;
677*5295Srandyf 
678*5295Srandyf /*
679*5295Srandyf  * Let timestamp.c know that we are suspending.  It needs to take
680*5295Srandyf  * snapshots of the current time, and do any pre-suspend work.
681*5295Srandyf  */
682*5295Srandyf void
683*5295Srandyf tsc_suspend(void)
684*5295Srandyf {
685*5295Srandyf /*
686*5295Srandyf  * What we need to do here, is to get the time we suspended, so that we
687*5295Srandyf  * know how much we should add to the resume.
688*5295Srandyf  * This routine is called by each CPU, so we need to handle reentry.
689*5295Srandyf  */
690*5295Srandyf 	if (tsc_gethrtime_enable) {
691*5295Srandyf 		/*
692*5295Srandyf 		 * We put the tsc_read() inside the lock as it
693*5295Srandyf 		 * as no locking constraints, and it puts the
694*5295Srandyf 		 * aquired value closer to the time stamp (in
695*5295Srandyf 		 * case we delay getting the lock).
696*5295Srandyf 		 */
697*5295Srandyf 		mutex_enter(&tod_lock);
698*5295Srandyf 		tsc_saved_tsc = tsc_read();
699*5295Srandyf 		tsc_saved_ts = TODOP_GET(tod_ops);
700*5295Srandyf 		mutex_exit(&tod_lock);
701*5295Srandyf 		/* We only want to do this once. */
702*5295Srandyf 		if (tsc_needs_resume == 0) {
703*5295Srandyf 			if (tsc_delta_onsuspend) {
704*5295Srandyf 				tsc_adjust_delta(tsc_saved_tsc);
705*5295Srandyf 			} else {
706*5295Srandyf 				tsc_adjust_delta(nsec_scale);
707*5295Srandyf 			}
708*5295Srandyf 			tsc_suspend_count++;
709*5295Srandyf 		}
710*5295Srandyf 	}
711*5295Srandyf 
712*5295Srandyf 	invalidate_cache();
713*5295Srandyf 	tsc_needs_resume = 1;
714*5295Srandyf }
715*5295Srandyf 
716*5295Srandyf /*
717*5295Srandyf  * Restore all timestamp state based on the snapshots taken at
718*5295Srandyf  * suspend time.
719*5295Srandyf  */
720*5295Srandyf void
721*5295Srandyf tsc_resume(void)
722*5295Srandyf {
723*5295Srandyf 	/*
724*5295Srandyf 	 * We only need to (and want to) do this once.  So let the first
725*5295Srandyf 	 * caller handle this (we are locked by the cpu lock), as it
726*5295Srandyf 	 * is preferential that we get the earliest sync.
727*5295Srandyf 	 */
728*5295Srandyf 	if (tsc_needs_resume) {
729*5295Srandyf 		/*
730*5295Srandyf 		 * If using the TSC, adjust the delta based on how long
731*5295Srandyf 		 * we were sleeping (or away).  We also adjust for
732*5295Srandyf 		 * migration and a grown TSC.
733*5295Srandyf 		 */
734*5295Srandyf 		if (tsc_saved_tsc != 0) {
735*5295Srandyf 			timestruc_t	ts;
736*5295Srandyf 			hrtime_t	now, sleep_tsc = 0;
737*5295Srandyf 			int		sleep_sec;
738*5295Srandyf 			extern void	tsc_tick(void);
739*5295Srandyf 			extern uint64_t cpu_freq_hz;
740*5295Srandyf 
741*5295Srandyf 			/* tsc_read() MUST be before TODOP_GET() */
742*5295Srandyf 			mutex_enter(&tod_lock);
743*5295Srandyf 			now = tsc_read();
744*5295Srandyf 			ts = TODOP_GET(tod_ops);
745*5295Srandyf 			mutex_exit(&tod_lock);
746*5295Srandyf 
747*5295Srandyf 			/* Compute seconds of sleep time */
748*5295Srandyf 			sleep_sec = ts.tv_sec - tsc_saved_ts.tv_sec;
749*5295Srandyf 
750*5295Srandyf 			/*
751*5295Srandyf 			 * If the saved sec is less that or equal to
752*5295Srandyf 			 * the current ts, then there is likely a
753*5295Srandyf 			 * problem with the clock.  Assume at least
754*5295Srandyf 			 * one second has passed, so that time goes forward.
755*5295Srandyf 			 */
756*5295Srandyf 			if (sleep_sec <= 0) {
757*5295Srandyf 				sleep_sec = 1;
758*5295Srandyf 			}
759*5295Srandyf 
760*5295Srandyf 			/* How many TSC's should have occured while sleeping */
761*5295Srandyf 			if (tsc_adjust_seconds)
762*5295Srandyf 				sleep_tsc = sleep_sec * cpu_freq_hz;
763*5295Srandyf 
764*5295Srandyf 			/*
765*5295Srandyf 			 * We also want to subtract from the "sleep_tsc"
766*5295Srandyf 			 * the current value of tsc_read(), so that our
767*5295Srandyf 			 * adjustment accounts for the amount of time we
768*5295Srandyf 			 * have been resumed _or_ an adjustment based on
769*5295Srandyf 			 * the fact that we didn't actually power off the
770*5295Srandyf 			 * CPU (migration is another issue, but _should_
771*5295Srandyf 			 * also comply with this calculation).  If the CPU
772*5295Srandyf 			 * never powered off, then:
773*5295Srandyf 			 *    'now == sleep_tsc + saved_tsc'
774*5295Srandyf 			 * and the delta will effectively be "0".
775*5295Srandyf 			 */
776*5295Srandyf 			sleep_tsc -= now;
777*5295Srandyf 			if (tsc_delta_onsuspend) {
778*5295Srandyf 				tsc_adjust_delta(sleep_tsc);
779*5295Srandyf 			} else {
780*5295Srandyf 				tsc_adjust_delta(tsc_saved_tsc + sleep_tsc);
781*5295Srandyf 			}
782*5295Srandyf 			tsc_saved_tsc = 0;
783*5295Srandyf 
784*5295Srandyf 			tsc_tick();
785*5295Srandyf 		}
786*5295Srandyf 		tsc_needs_resume = 0;
787*5295Srandyf 	}
788*5295Srandyf 
789*5295Srandyf }
790