xref: /onnv-gate/usr/src/uts/i86pc/os/intr.c (revision 8803:8c01b39012c9)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
51455Sandrei  * Common Development and Distribution License (the "License").
61455Sandrei  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
215084Sjohnlev 
220Sstevel@tonic-gate /*
23*8803SJonathan.Haslam@Sun.COM  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
240Sstevel@tonic-gate  * Use is subject to license terms.
250Sstevel@tonic-gate  */
260Sstevel@tonic-gate 
270Sstevel@tonic-gate #include <sys/cpuvar.h>
280Sstevel@tonic-gate #include <sys/regset.h>
290Sstevel@tonic-gate #include <sys/psw.h>
300Sstevel@tonic-gate #include <sys/types.h>
310Sstevel@tonic-gate #include <sys/thread.h>
320Sstevel@tonic-gate #include <sys/systm.h>
330Sstevel@tonic-gate #include <sys/segments.h>
340Sstevel@tonic-gate #include <sys/pcb.h>
350Sstevel@tonic-gate #include <sys/trap.h>
360Sstevel@tonic-gate #include <sys/ftrace.h>
370Sstevel@tonic-gate #include <sys/traptrace.h>
380Sstevel@tonic-gate #include <sys/clock.h>
390Sstevel@tonic-gate #include <sys/panic.h>
400Sstevel@tonic-gate #include <sys/disp.h>
410Sstevel@tonic-gate #include <vm/seg_kp.h>
420Sstevel@tonic-gate #include <sys/stack.h>
430Sstevel@tonic-gate #include <sys/sysmacros.h>
440Sstevel@tonic-gate #include <sys/cmn_err.h>
450Sstevel@tonic-gate #include <sys/kstat.h>
460Sstevel@tonic-gate #include <sys/smp_impldefs.h>
470Sstevel@tonic-gate #include <sys/pool_pset.h>
480Sstevel@tonic-gate #include <sys/zone.h>
490Sstevel@tonic-gate #include <sys/bitmap.h>
503446Smrj #include <sys/archsystm.h>
513446Smrj #include <sys/machsystm.h>
523446Smrj #include <sys/ontrap.h>
533446Smrj #include <sys/x86_archext.h>
543446Smrj #include <sys/promif.h>
554191Sjosephb #include <vm/hat_i86.h>
565084Sjohnlev #if defined(__xpv)
575084Sjohnlev #include <sys/hypervisor.h>
585084Sjohnlev #endif
590Sstevel@tonic-gate 
600Sstevel@tonic-gate 
615084Sjohnlev #if defined(__xpv) && defined(DEBUG)
625084Sjohnlev 
635084Sjohnlev /*
645084Sjohnlev  * This panic message is intended as an aid to interrupt debugging.
655084Sjohnlev  *
665084Sjohnlev  * The associated assertion tests the condition of enabling
675084Sjohnlev  * events when events are already enabled.  The implication
685084Sjohnlev  * being that whatever code the programmer thought was
695084Sjohnlev  * protected by having events disabled until the second
705084Sjohnlev  * enable happened really wasn't protected at all ..
715084Sjohnlev  */
725084Sjohnlev 
735084Sjohnlev int stistipanic = 1;	/* controls the debug panic check */
745084Sjohnlev const char *stistimsg = "stisti";
755084Sjohnlev ulong_t laststi[NCPU];
765084Sjohnlev 
775084Sjohnlev /*
785084Sjohnlev  * This variable tracks the last place events were disabled on each cpu
795084Sjohnlev  * it assists in debugging when asserts that interupts are enabled trip.
805084Sjohnlev  */
815084Sjohnlev ulong_t lastcli[NCPU];
825084Sjohnlev 
835084Sjohnlev #endif
845084Sjohnlev 
850Sstevel@tonic-gate /*
863446Smrj  * Set cpu's base SPL level to the highest active interrupt level
870Sstevel@tonic-gate  */
883446Smrj void
893446Smrj set_base_spl(void)
900Sstevel@tonic-gate {
913446Smrj 	struct cpu *cpu = CPU;
923446Smrj 	uint16_t active = (uint16_t)cpu->cpu_intr_actv;
930Sstevel@tonic-gate 
943446Smrj 	cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active);
950Sstevel@tonic-gate }
960Sstevel@tonic-gate 
970Sstevel@tonic-gate /*
980Sstevel@tonic-gate  * Do all the work necessary to set up the cpu and thread structures
990Sstevel@tonic-gate  * to dispatch a high-level interrupt.
1000Sstevel@tonic-gate  *
1010Sstevel@tonic-gate  * Returns 0 if we're -not- already on the high-level interrupt stack,
1020Sstevel@tonic-gate  * (and *must* switch to it), non-zero if we are already on that stack.
1030Sstevel@tonic-gate  *
1040Sstevel@tonic-gate  * Called with interrupts masked.
1050Sstevel@tonic-gate  * The 'pil' is already set to the appropriate level for rp->r_trapno.
1060Sstevel@tonic-gate  */
1073446Smrj static int
1080Sstevel@tonic-gate hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp)
1090Sstevel@tonic-gate {
1100Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
1110Sstevel@tonic-gate 	uint_t mask;
112590Sesolom 	hrtime_t intrtime;
1133446Smrj 	hrtime_t now = tsc_read();
1140Sstevel@tonic-gate 
1150Sstevel@tonic-gate 	ASSERT(pil > LOCK_LEVEL);
1160Sstevel@tonic-gate 
1170Sstevel@tonic-gate 	if (pil == CBE_HIGH_PIL) {
1180Sstevel@tonic-gate 		cpu->cpu_profile_pil = oldpil;
1190Sstevel@tonic-gate 		if (USERMODE(rp->r_cs)) {
1200Sstevel@tonic-gate 			cpu->cpu_profile_pc = 0;
1210Sstevel@tonic-gate 			cpu->cpu_profile_upc = rp->r_pc;
122*8803SJonathan.Haslam@Sun.COM 			cpu->cpu_cpcprofile_pc = 0;
123*8803SJonathan.Haslam@Sun.COM 			cpu->cpu_cpcprofile_upc = rp->r_pc;
1240Sstevel@tonic-gate 		} else {
1250Sstevel@tonic-gate 			cpu->cpu_profile_pc = rp->r_pc;
1260Sstevel@tonic-gate 			cpu->cpu_profile_upc = 0;
127*8803SJonathan.Haslam@Sun.COM 			cpu->cpu_cpcprofile_pc = rp->r_pc;
128*8803SJonathan.Haslam@Sun.COM 			cpu->cpu_cpcprofile_upc = 0;
1290Sstevel@tonic-gate 		}
1300Sstevel@tonic-gate 	}
1310Sstevel@tonic-gate 
1320Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
1330Sstevel@tonic-gate 	if (mask != 0) {
1340Sstevel@tonic-gate 		int nestpil;
1350Sstevel@tonic-gate 
1360Sstevel@tonic-gate 		/*
1370Sstevel@tonic-gate 		 * We have interrupted another high-level interrupt.
1380Sstevel@tonic-gate 		 * Load starting timestamp, compute interval, update
1390Sstevel@tonic-gate 		 * cumulative counter.
1400Sstevel@tonic-gate 		 */
1410Sstevel@tonic-gate 		nestpil = bsrw_insn((uint16_t)mask);
1420Sstevel@tonic-gate 		ASSERT(nestpil < pil);
1433446Smrj 		intrtime = now -
1440Sstevel@tonic-gate 		    mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)];
145916Sschwartz 		mcpu->intrstat[nestpil][0] += intrtime;
146590Sesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
1470Sstevel@tonic-gate 		/*
1480Sstevel@tonic-gate 		 * Another high-level interrupt is active below this one, so
1490Sstevel@tonic-gate 		 * there is no need to check for an interrupt thread.  That
1500Sstevel@tonic-gate 		 * will be done by the lowest priority high-level interrupt
1510Sstevel@tonic-gate 		 * active.
1520Sstevel@tonic-gate 		 */
1530Sstevel@tonic-gate 	} else {
1540Sstevel@tonic-gate 		kthread_t *t = cpu->cpu_thread;
1550Sstevel@tonic-gate 
1560Sstevel@tonic-gate 		/*
1570Sstevel@tonic-gate 		 * See if we are interrupting a low-level interrupt thread.
1580Sstevel@tonic-gate 		 * If so, account for its time slice only if its time stamp
1590Sstevel@tonic-gate 		 * is non-zero.
1600Sstevel@tonic-gate 		 */
1610Sstevel@tonic-gate 		if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) {
1623446Smrj 			intrtime = now - t->t_intr_start;
163916Sschwartz 			mcpu->intrstat[t->t_pil][0] += intrtime;
164590Sesolom 			cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
1650Sstevel@tonic-gate 			t->t_intr_start = 0;
1660Sstevel@tonic-gate 		}
1670Sstevel@tonic-gate 	}
1680Sstevel@tonic-gate 
1690Sstevel@tonic-gate 	/*
1700Sstevel@tonic-gate 	 * Store starting timestamp in CPU structure for this PIL.
1710Sstevel@tonic-gate 	 */
1723446Smrj 	mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now;
1730Sstevel@tonic-gate 
1740Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
1750Sstevel@tonic-gate 
1760Sstevel@tonic-gate 	if (pil == 15) {
1770Sstevel@tonic-gate 		/*
1780Sstevel@tonic-gate 		 * To support reentrant level 15 interrupts, we maintain a
1790Sstevel@tonic-gate 		 * recursion count in the top half of cpu_intr_actv.  Only
1800Sstevel@tonic-gate 		 * when this count hits zero do we clear the PIL 15 bit from
1810Sstevel@tonic-gate 		 * the lower half of cpu_intr_actv.
1820Sstevel@tonic-gate 		 */
1830Sstevel@tonic-gate 		uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
1840Sstevel@tonic-gate 		(*refcntp)++;
1850Sstevel@tonic-gate 	}
1860Sstevel@tonic-gate 
1870Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv;
1880Sstevel@tonic-gate 
1890Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
1900Sstevel@tonic-gate 
1910Sstevel@tonic-gate 	return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
1920Sstevel@tonic-gate }
1930Sstevel@tonic-gate 
1940Sstevel@tonic-gate /*
1950Sstevel@tonic-gate  * Does most of the work of returning from a high level interrupt.
1960Sstevel@tonic-gate  *
1970Sstevel@tonic-gate  * Returns 0 if there are no more high level interrupts (in which
1980Sstevel@tonic-gate  * case we must switch back to the interrupted thread stack) or
1990Sstevel@tonic-gate  * non-zero if there are more (in which case we should stay on it).
2000Sstevel@tonic-gate  *
2010Sstevel@tonic-gate  * Called with interrupts masked
2020Sstevel@tonic-gate  */
2033446Smrj static int
2040Sstevel@tonic-gate hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum)
2050Sstevel@tonic-gate {
2060Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
2070Sstevel@tonic-gate 	uint_t mask;
208590Sesolom 	hrtime_t intrtime;
2093446Smrj 	hrtime_t now = tsc_read();
2100Sstevel@tonic-gate 
2110Sstevel@tonic-gate 	ASSERT(mcpu->mcpu_pri == pil);
2120Sstevel@tonic-gate 
2130Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
2140Sstevel@tonic-gate 
2150Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
2160Sstevel@tonic-gate 
2170Sstevel@tonic-gate 	if (pil == 15) {
2180Sstevel@tonic-gate 		/*
2190Sstevel@tonic-gate 		 * To support reentrant level 15 interrupts, we maintain a
2200Sstevel@tonic-gate 		 * recursion count in the top half of cpu_intr_actv.  Only
2210Sstevel@tonic-gate 		 * when this count hits zero do we clear the PIL 15 bit from
2220Sstevel@tonic-gate 		 * the lower half of cpu_intr_actv.
2230Sstevel@tonic-gate 		 */
2240Sstevel@tonic-gate 		uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
2250Sstevel@tonic-gate 
2260Sstevel@tonic-gate 		ASSERT(*refcntp > 0);
2270Sstevel@tonic-gate 
2280Sstevel@tonic-gate 		if (--(*refcntp) == 0)
2290Sstevel@tonic-gate 			cpu->cpu_intr_actv &= ~(1 << pil);
2300Sstevel@tonic-gate 	} else {
2310Sstevel@tonic-gate 		cpu->cpu_intr_actv &= ~(1 << pil);
2320Sstevel@tonic-gate 	}
2330Sstevel@tonic-gate 
2340Sstevel@tonic-gate 	ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0);
2350Sstevel@tonic-gate 
2363446Smrj 	intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)];
237916Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
238590Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
2390Sstevel@tonic-gate 
2400Sstevel@tonic-gate 	/*
2410Sstevel@tonic-gate 	 * Check for lower-pil nested high-level interrupt beneath
2420Sstevel@tonic-gate 	 * current one.  If so, place a starting timestamp in its
2430Sstevel@tonic-gate 	 * pil_high_start entry.
2440Sstevel@tonic-gate 	 */
2450Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
2460Sstevel@tonic-gate 	if (mask != 0) {
2470Sstevel@tonic-gate 		int nestpil;
2480Sstevel@tonic-gate 
2490Sstevel@tonic-gate 		/*
2500Sstevel@tonic-gate 		 * find PIL of nested interrupt
2510Sstevel@tonic-gate 		 */
2520Sstevel@tonic-gate 		nestpil = bsrw_insn((uint16_t)mask);
2530Sstevel@tonic-gate 		ASSERT(nestpil < pil);
2543446Smrj 		mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now;
2550Sstevel@tonic-gate 		/*
2560Sstevel@tonic-gate 		 * (Another high-level interrupt is active below this one,
2570Sstevel@tonic-gate 		 * so there is no need to check for an interrupt
2580Sstevel@tonic-gate 		 * thread.  That will be done by the lowest priority
2590Sstevel@tonic-gate 		 * high-level interrupt active.)
2600Sstevel@tonic-gate 		 */
2610Sstevel@tonic-gate 	} else {
2620Sstevel@tonic-gate 		/*
2630Sstevel@tonic-gate 		 * Check to see if there is a low-level interrupt active.
2640Sstevel@tonic-gate 		 * If so, place a starting timestamp in the thread
2650Sstevel@tonic-gate 		 * structure.
2660Sstevel@tonic-gate 		 */
2670Sstevel@tonic-gate 		kthread_t *t = cpu->cpu_thread;
2680Sstevel@tonic-gate 
2690Sstevel@tonic-gate 		if (t->t_flag & T_INTR_THREAD)
2703446Smrj 			t->t_intr_start = now;
2710Sstevel@tonic-gate 	}
2720Sstevel@tonic-gate 
2730Sstevel@tonic-gate 	mcpu->mcpu_pri = oldpil;
2740Sstevel@tonic-gate 	(void) (*setlvlx)(oldpil, vecnum);
2750Sstevel@tonic-gate 
2760Sstevel@tonic-gate 	return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
2770Sstevel@tonic-gate }
2780Sstevel@tonic-gate 
2790Sstevel@tonic-gate /*
2800Sstevel@tonic-gate  * Set up the cpu, thread and interrupt thread structures for
2810Sstevel@tonic-gate  * executing an interrupt thread.  The new stack pointer of the
2820Sstevel@tonic-gate  * interrupt thread (which *must* be switched to) is returned.
2830Sstevel@tonic-gate  */
2843446Smrj static caddr_t
2850Sstevel@tonic-gate intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil)
2860Sstevel@tonic-gate {
2870Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
2880Sstevel@tonic-gate 	kthread_t *t, *volatile it;
2893446Smrj 	hrtime_t now = tsc_read();
2900Sstevel@tonic-gate 
2910Sstevel@tonic-gate 	ASSERT(pil > 0);
2920Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
2930Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
2940Sstevel@tonic-gate 
2950Sstevel@tonic-gate 	/*
2960Sstevel@tonic-gate 	 * Get set to run an interrupt thread.
2970Sstevel@tonic-gate 	 * There should always be an interrupt thread, since we
2980Sstevel@tonic-gate 	 * allocate one for each level on each CPU.
2990Sstevel@tonic-gate 	 *
300989Sesolom 	 * t_intr_start could be zero due to cpu_intr_swtch_enter.
3010Sstevel@tonic-gate 	 */
3020Sstevel@tonic-gate 	t = cpu->cpu_thread;
303989Sesolom 	if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
3043446Smrj 		hrtime_t intrtime = now - t->t_intr_start;
305916Sschwartz 		mcpu->intrstat[t->t_pil][0] += intrtime;
306590Sesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
3070Sstevel@tonic-gate 		t->t_intr_start = 0;
3080Sstevel@tonic-gate 	}
3090Sstevel@tonic-gate 
3100Sstevel@tonic-gate 	ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
3110Sstevel@tonic-gate 
3120Sstevel@tonic-gate 	t->t_sp = (uintptr_t)stackptr;	/* mark stack in curthread for resume */
3130Sstevel@tonic-gate 
3140Sstevel@tonic-gate 	/*
3150Sstevel@tonic-gate 	 * unlink the interrupt thread off the cpu
316989Sesolom 	 *
317989Sesolom 	 * Note that the code in kcpc_overflow_intr -relies- on the
318989Sesolom 	 * ordering of events here - in particular that t->t_lwp of
319989Sesolom 	 * the interrupt thread is set to the pinned thread *before*
320989Sesolom 	 * curthread is changed.
3210Sstevel@tonic-gate 	 */
3220Sstevel@tonic-gate 	it = cpu->cpu_intr_thread;
3230Sstevel@tonic-gate 	cpu->cpu_intr_thread = it->t_link;
3240Sstevel@tonic-gate 	it->t_intr = t;
3250Sstevel@tonic-gate 	it->t_lwp = t->t_lwp;
3260Sstevel@tonic-gate 
3270Sstevel@tonic-gate 	/*
3280Sstevel@tonic-gate 	 * (threads on the interrupt thread free list could have state
3290Sstevel@tonic-gate 	 * preset to TS_ONPROC, but it helps in debugging if
3300Sstevel@tonic-gate 	 * they're TS_FREE.)
3310Sstevel@tonic-gate 	 */
3320Sstevel@tonic-gate 	it->t_state = TS_ONPROC;
3330Sstevel@tonic-gate 
3340Sstevel@tonic-gate 	cpu->cpu_thread = it;		/* new curthread on this cpu */
3350Sstevel@tonic-gate 	it->t_pil = (uchar_t)pil;
3360Sstevel@tonic-gate 	it->t_pri = intr_pri + (pri_t)pil;
3373446Smrj 	it->t_intr_start = now;
3380Sstevel@tonic-gate 
3390Sstevel@tonic-gate 	return (it->t_stk);
3400Sstevel@tonic-gate }
3410Sstevel@tonic-gate 
3420Sstevel@tonic-gate 
3430Sstevel@tonic-gate #ifdef DEBUG
3440Sstevel@tonic-gate int intr_thread_cnt;
3450Sstevel@tonic-gate #endif
3460Sstevel@tonic-gate 
3470Sstevel@tonic-gate /*
3480Sstevel@tonic-gate  * Called with interrupts disabled
3490Sstevel@tonic-gate  */
3503446Smrj static void
3510Sstevel@tonic-gate intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil)
3520Sstevel@tonic-gate {
3530Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
3540Sstevel@tonic-gate 	kthread_t *t;
3550Sstevel@tonic-gate 	kthread_t *it = cpu->cpu_thread;	/* curthread */
3560Sstevel@tonic-gate 	uint_t pil, basespl;
357590Sesolom 	hrtime_t intrtime;
3583446Smrj 	hrtime_t now = tsc_read();
3590Sstevel@tonic-gate 
3600Sstevel@tonic-gate 	pil = it->t_pil;
3610Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
3620Sstevel@tonic-gate 
3630Sstevel@tonic-gate 	ASSERT(it->t_intr_start != 0);
3643446Smrj 	intrtime = now - it->t_intr_start;
365916Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
366590Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
3670Sstevel@tonic-gate 
3680Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
3690Sstevel@tonic-gate 	cpu->cpu_intr_actv &= ~(1 << pil);
3700Sstevel@tonic-gate 
3710Sstevel@tonic-gate 	/*
3720Sstevel@tonic-gate 	 * If there is still an interrupted thread underneath this one
3730Sstevel@tonic-gate 	 * then the interrupt was never blocked and the return is
3740Sstevel@tonic-gate 	 * fairly simple.  Otherwise it isn't.
3750Sstevel@tonic-gate 	 */
3760Sstevel@tonic-gate 	if ((t = it->t_intr) == NULL) {
3770Sstevel@tonic-gate 		/*
3780Sstevel@tonic-gate 		 * The interrupted thread is no longer pinned underneath
3790Sstevel@tonic-gate 		 * the interrupt thread.  This means the interrupt must
3800Sstevel@tonic-gate 		 * have blocked, and the interrupted thread has been
3810Sstevel@tonic-gate 		 * unpinned, and has probably been running around the
3820Sstevel@tonic-gate 		 * system for a while.
3830Sstevel@tonic-gate 		 *
3840Sstevel@tonic-gate 		 * Since there is no longer a thread under this one, put
3850Sstevel@tonic-gate 		 * this interrupt thread back on the CPU's free list and
3860Sstevel@tonic-gate 		 * resume the idle thread which will dispatch the next
3870Sstevel@tonic-gate 		 * thread to run.
3880Sstevel@tonic-gate 		 */
3890Sstevel@tonic-gate #ifdef DEBUG
3900Sstevel@tonic-gate 		intr_thread_cnt++;
3910Sstevel@tonic-gate #endif
3920Sstevel@tonic-gate 		cpu->cpu_stats.sys.intrblk++;
3930Sstevel@tonic-gate 		/*
3940Sstevel@tonic-gate 		 * Set CPU's base SPL based on active interrupts bitmask
3950Sstevel@tonic-gate 		 */
3960Sstevel@tonic-gate 		set_base_spl();
3970Sstevel@tonic-gate 		basespl = cpu->cpu_base_spl;
3980Sstevel@tonic-gate 		mcpu->mcpu_pri = basespl;
3990Sstevel@tonic-gate 		(*setlvlx)(basespl, vec);
4000Sstevel@tonic-gate 		(void) splhigh();
4013446Smrj 		sti();
4020Sstevel@tonic-gate 		it->t_state = TS_FREE;
4030Sstevel@tonic-gate 		/*
4040Sstevel@tonic-gate 		 * Return interrupt thread to pool
4050Sstevel@tonic-gate 		 */
4060Sstevel@tonic-gate 		it->t_link = cpu->cpu_intr_thread;
4070Sstevel@tonic-gate 		cpu->cpu_intr_thread = it;
4080Sstevel@tonic-gate 		swtch();
4093446Smrj 		panic("intr_thread_epilog: swtch returned");
4100Sstevel@tonic-gate 		/*NOTREACHED*/
4110Sstevel@tonic-gate 	}
4120Sstevel@tonic-gate 
4130Sstevel@tonic-gate 	/*
4140Sstevel@tonic-gate 	 * Return interrupt thread to the pool
4150Sstevel@tonic-gate 	 */
4160Sstevel@tonic-gate 	it->t_link = cpu->cpu_intr_thread;
4170Sstevel@tonic-gate 	cpu->cpu_intr_thread = it;
4180Sstevel@tonic-gate 	it->t_state = TS_FREE;
4190Sstevel@tonic-gate 
4200Sstevel@tonic-gate 	basespl = cpu->cpu_base_spl;
4210Sstevel@tonic-gate 	pil = MAX(oldpil, basespl);
4220Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
4230Sstevel@tonic-gate 	(*setlvlx)(pil, vec);
4243446Smrj 	t->t_intr_start = now;
4250Sstevel@tonic-gate 	cpu->cpu_thread = t;
4260Sstevel@tonic-gate }
4270Sstevel@tonic-gate 
428916Sschwartz /*
4293446Smrj  * intr_get_time() is a resource for interrupt handlers to determine how
4303446Smrj  * much time has been spent handling the current interrupt. Such a function
4313446Smrj  * is needed because higher level interrupts can arrive during the
4323446Smrj  * processing of an interrupt.  intr_get_time() only returns time spent in the
4333446Smrj  * current interrupt handler.
4343446Smrj  *
4353446Smrj  * The caller must be calling from an interrupt handler running at a pil
4363446Smrj  * below or at lock level. Timings are not provided for high-level
4373446Smrj  * interrupts.
4383446Smrj  *
4393446Smrj  * The first time intr_get_time() is called while handling an interrupt,
4403446Smrj  * it returns the time since the interrupt handler was invoked. Subsequent
4413446Smrj  * calls will return the time since the prior call to intr_get_time(). Time
4425084Sjohnlev  * is returned as ticks. Use scalehrtimef() to convert ticks to nsec.
4433446Smrj  *
4443446Smrj  * Theory Of Intrstat[][]:
4453446Smrj  *
4463446Smrj  * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two
4473446Smrj  * uint64_ts per pil.
4483446Smrj  *
4493446Smrj  * intrstat[pil][0] is a cumulative count of the number of ticks spent
4503446Smrj  * handling all interrupts at the specified pil on this CPU. It is
4513446Smrj  * exported via kstats to the user.
4523446Smrj  *
4533446Smrj  * intrstat[pil][1] is always a count of ticks less than or equal to the
4543446Smrj  * value in [0]. The difference between [1] and [0] is the value returned
4553446Smrj  * by a call to intr_get_time(). At the start of interrupt processing,
4563446Smrj  * [0] and [1] will be equal (or nearly so). As the interrupt consumes
4573446Smrj  * time, [0] will increase, but [1] will remain the same. A call to
4583446Smrj  * intr_get_time() will return the difference, then update [1] to be the
4593446Smrj  * same as [0]. Future calls will return the time since the last call.
4603446Smrj  * Finally, when the interrupt completes, [1] is updated to the same as [0].
4613446Smrj  *
4623446Smrj  * Implementation:
4633446Smrj  *
4643446Smrj  * intr_get_time() works much like a higher level interrupt arriving. It
4653446Smrj  * "checkpoints" the timing information by incrementing intrstat[pil][0]
4663446Smrj  * to include elapsed running time, and by setting t_intr_start to rdtsc.
4673446Smrj  * It then sets the return value to intrstat[pil][0] - intrstat[pil][1],
4683446Smrj  * and updates intrstat[pil][1] to be the same as the new value of
4693446Smrj  * intrstat[pil][0].
4703446Smrj  *
4713446Smrj  * In the normal handling of interrupts, after an interrupt handler returns
4723446Smrj  * and the code in intr_thread() updates intrstat[pil][0], it then sets
4733446Smrj  * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1],
4743446Smrj  * the timings are reset, i.e. intr_get_time() will return [0] - [1] which
4753446Smrj  * is 0.
4763446Smrj  *
4773446Smrj  * Whenever interrupts arrive on a CPU which is handling a lower pil
4783446Smrj  * interrupt, they update the lower pil's [0] to show time spent in the
4793446Smrj  * handler that they've interrupted. This results in a growing discrepancy
4803446Smrj  * between [0] and [1], which is returned the next time intr_get_time() is
4813446Smrj  * called. Time spent in the higher-pil interrupt will not be returned in
4823446Smrj  * the next intr_get_time() call from the original interrupt, because
4833446Smrj  * the higher-pil interrupt's time is accumulated in intrstat[higherpil][].
484916Sschwartz  */
485916Sschwartz uint64_t
4863446Smrj intr_get_time(void)
487916Sschwartz {
4883446Smrj 	struct cpu *cpu;
4893446Smrj 	struct machcpu *mcpu;
4903446Smrj 	kthread_t *t;
491916Sschwartz 	uint64_t time, delta, ret;
4923446Smrj 	uint_t pil;
493916Sschwartz 
4943446Smrj 	cli();
4953446Smrj 	cpu = CPU;
4963446Smrj 	mcpu = &cpu->cpu_m;
4973446Smrj 	t = cpu->cpu_thread;
4983446Smrj 	pil = t->t_pil;
499916Sschwartz 	ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0);
500916Sschwartz 	ASSERT(t->t_flag & T_INTR_THREAD);
501916Sschwartz 	ASSERT(pil != 0);
502916Sschwartz 	ASSERT(t->t_intr_start != 0);
503916Sschwartz 
504916Sschwartz 	time = tsc_read();
505916Sschwartz 	delta = time - t->t_intr_start;
506916Sschwartz 	t->t_intr_start = time;
507916Sschwartz 
508916Sschwartz 	time = mcpu->intrstat[pil][0] + delta;
509916Sschwartz 	ret = time - mcpu->intrstat[pil][1];
510916Sschwartz 	mcpu->intrstat[pil][0] = time;
511916Sschwartz 	mcpu->intrstat[pil][1] = time;
5121887Sjhaslam 	cpu->cpu_intracct[cpu->cpu_mstate] += delta;
513916Sschwartz 
5143446Smrj 	sti();
515916Sschwartz 	return (ret);
516916Sschwartz }
517916Sschwartz 
5183446Smrj static caddr_t
5190Sstevel@tonic-gate dosoftint_prolog(
5200Sstevel@tonic-gate 	struct cpu *cpu,
5210Sstevel@tonic-gate 	caddr_t stackptr,
5220Sstevel@tonic-gate 	uint32_t st_pending,
5230Sstevel@tonic-gate 	uint_t oldpil)
5240Sstevel@tonic-gate {
5250Sstevel@tonic-gate 	kthread_t *t, *volatile it;
5260Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
5270Sstevel@tonic-gate 	uint_t pil;
5283446Smrj 	hrtime_t now;
5290Sstevel@tonic-gate 
5300Sstevel@tonic-gate top:
5310Sstevel@tonic-gate 	ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending);
5320Sstevel@tonic-gate 
5330Sstevel@tonic-gate 	pil = bsrw_insn((uint16_t)st_pending);
5340Sstevel@tonic-gate 	if (pil <= oldpil || pil <= cpu->cpu_base_spl)
5350Sstevel@tonic-gate 		return (0);
5360Sstevel@tonic-gate 
5370Sstevel@tonic-gate 	/*
5380Sstevel@tonic-gate 	 * XX64	Sigh.
5390Sstevel@tonic-gate 	 *
5400Sstevel@tonic-gate 	 * This is a transliteration of the i386 assembler code for
5410Sstevel@tonic-gate 	 * soft interrupts.  One question is "why does this need
5420Sstevel@tonic-gate 	 * to be atomic?"  One possible race is -other- processors
5430Sstevel@tonic-gate 	 * posting soft interrupts to us in set_pending() i.e. the
5440Sstevel@tonic-gate 	 * CPU might get preempted just after the address computation,
5450Sstevel@tonic-gate 	 * but just before the atomic transaction, so another CPU would
5460Sstevel@tonic-gate 	 * actually set the original CPU's st_pending bit.  However,
5470Sstevel@tonic-gate 	 * it looks like it would be simpler to disable preemption there.
5480Sstevel@tonic-gate 	 * Are there other races for which preemption control doesn't work?
5490Sstevel@tonic-gate 	 *
5500Sstevel@tonic-gate 	 * The i386 assembler version -also- checks to see if the bit
5510Sstevel@tonic-gate 	 * being cleared was actually set; if it wasn't, it rechecks
5520Sstevel@tonic-gate 	 * for more.  This seems a bit strange, as the only code that
5530Sstevel@tonic-gate 	 * ever clears the bit is -this- code running with interrupts
5540Sstevel@tonic-gate 	 * disabled on -this- CPU.  This code would probably be cheaper:
5550Sstevel@tonic-gate 	 *
5560Sstevel@tonic-gate 	 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending,
5570Sstevel@tonic-gate 	 *   ~(1 << pil));
5580Sstevel@tonic-gate 	 *
5590Sstevel@tonic-gate 	 * and t->t_preempt--/++ around set_pending() even cheaper,
5600Sstevel@tonic-gate 	 * but at this point, correctness is critical, so we slavishly
5610Sstevel@tonic-gate 	 * emulate the i386 port.
5620Sstevel@tonic-gate 	 */
5633446Smrj 	if (atomic_btr32((uint32_t *)
5643446Smrj 	    &mcpu->mcpu_softinfo.st_pending, pil) == 0) {
5650Sstevel@tonic-gate 		st_pending = mcpu->mcpu_softinfo.st_pending;
5660Sstevel@tonic-gate 		goto top;
5670Sstevel@tonic-gate 	}
5680Sstevel@tonic-gate 
5690Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
5700Sstevel@tonic-gate 	(*setspl)(pil);
5710Sstevel@tonic-gate 
5723446Smrj 	now = tsc_read();
5733446Smrj 
5740Sstevel@tonic-gate 	/*
5750Sstevel@tonic-gate 	 * Get set to run interrupt thread.
5760Sstevel@tonic-gate 	 * There should always be an interrupt thread since we
5770Sstevel@tonic-gate 	 * allocate one for each level on the CPU.
5780Sstevel@tonic-gate 	 */
5790Sstevel@tonic-gate 	it = cpu->cpu_intr_thread;
5800Sstevel@tonic-gate 	cpu->cpu_intr_thread = it->t_link;
5810Sstevel@tonic-gate 
582989Sesolom 	/* t_intr_start could be zero due to cpu_intr_swtch_enter. */
583989Sesolom 	t = cpu->cpu_thread;
584989Sesolom 	if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
5853446Smrj 		hrtime_t intrtime = now - t->t_intr_start;
586989Sesolom 		mcpu->intrstat[pil][0] += intrtime;
587989Sesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
588989Sesolom 		t->t_intr_start = 0;
589989Sesolom 	}
590989Sesolom 
5910Sstevel@tonic-gate 	/*
5920Sstevel@tonic-gate 	 * Note that the code in kcpc_overflow_intr -relies- on the
5930Sstevel@tonic-gate 	 * ordering of events here - in particular that t->t_lwp of
5940Sstevel@tonic-gate 	 * the interrupt thread is set to the pinned thread *before*
595989Sesolom 	 * curthread is changed.
5960Sstevel@tonic-gate 	 */
5970Sstevel@tonic-gate 	it->t_lwp = t->t_lwp;
5980Sstevel@tonic-gate 	it->t_state = TS_ONPROC;
5990Sstevel@tonic-gate 
6000Sstevel@tonic-gate 	/*
6010Sstevel@tonic-gate 	 * Push interrupted thread onto list from new thread.
6020Sstevel@tonic-gate 	 * Set the new thread as the current one.
6030Sstevel@tonic-gate 	 * Set interrupted thread's T_SP because if it is the idle thread,
6040Sstevel@tonic-gate 	 * resume() may use that stack between threads.
6050Sstevel@tonic-gate 	 */
6060Sstevel@tonic-gate 
6070Sstevel@tonic-gate 	ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
6080Sstevel@tonic-gate 	t->t_sp = (uintptr_t)stackptr;
6090Sstevel@tonic-gate 
6100Sstevel@tonic-gate 	it->t_intr = t;
6110Sstevel@tonic-gate 	cpu->cpu_thread = it;
6120Sstevel@tonic-gate 
6130Sstevel@tonic-gate 	/*
6140Sstevel@tonic-gate 	 * Set bit for this pil in CPU's interrupt active bitmask.
6150Sstevel@tonic-gate 	 */
6160Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
6170Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
6180Sstevel@tonic-gate 
6190Sstevel@tonic-gate 	/*
6200Sstevel@tonic-gate 	 * Initialize thread priority level from intr_pri
6210Sstevel@tonic-gate 	 */
6220Sstevel@tonic-gate 	it->t_pil = (uchar_t)pil;
6230Sstevel@tonic-gate 	it->t_pri = (pri_t)pil + intr_pri;
6243446Smrj 	it->t_intr_start = now;
6250Sstevel@tonic-gate 
6260Sstevel@tonic-gate 	return (it->t_stk);
6270Sstevel@tonic-gate }
6280Sstevel@tonic-gate 
6293446Smrj static void
6300Sstevel@tonic-gate dosoftint_epilog(struct cpu *cpu, uint_t oldpil)
6310Sstevel@tonic-gate {
6320Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
6330Sstevel@tonic-gate 	kthread_t *t, *it;
6340Sstevel@tonic-gate 	uint_t pil, basespl;
635590Sesolom 	hrtime_t intrtime;
6363446Smrj 	hrtime_t now = tsc_read();
6370Sstevel@tonic-gate 
6380Sstevel@tonic-gate 	it = cpu->cpu_thread;
6390Sstevel@tonic-gate 	pil = it->t_pil;
6400Sstevel@tonic-gate 
6410Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
6420Sstevel@tonic-gate 
6430Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
6440Sstevel@tonic-gate 	cpu->cpu_intr_actv &= ~(1 << pil);
6453446Smrj 	intrtime = now - it->t_intr_start;
646916Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
647590Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
6480Sstevel@tonic-gate 
6490Sstevel@tonic-gate 	/*
6500Sstevel@tonic-gate 	 * If there is still an interrupted thread underneath this one
6510Sstevel@tonic-gate 	 * then the interrupt was never blocked and the return is
6520Sstevel@tonic-gate 	 * fairly simple.  Otherwise it isn't.
6530Sstevel@tonic-gate 	 */
6540Sstevel@tonic-gate 	if ((t = it->t_intr) == NULL) {
6550Sstevel@tonic-gate 		/*
6560Sstevel@tonic-gate 		 * Put thread back on the interrupt thread list.
6570Sstevel@tonic-gate 		 * This was an interrupt thread, so set CPU's base SPL.
6580Sstevel@tonic-gate 		 */
6590Sstevel@tonic-gate 		set_base_spl();
6600Sstevel@tonic-gate 		it->t_state = TS_FREE;
6610Sstevel@tonic-gate 		it->t_link = cpu->cpu_intr_thread;
6620Sstevel@tonic-gate 		cpu->cpu_intr_thread = it;
6630Sstevel@tonic-gate 		(void) splhigh();
6643446Smrj 		sti();
6650Sstevel@tonic-gate 		swtch();
6660Sstevel@tonic-gate 		/*NOTREACHED*/
6673446Smrj 		panic("dosoftint_epilog: swtch returned");
6680Sstevel@tonic-gate 	}
6690Sstevel@tonic-gate 	it->t_link = cpu->cpu_intr_thread;
6700Sstevel@tonic-gate 	cpu->cpu_intr_thread = it;
6710Sstevel@tonic-gate 	it->t_state = TS_FREE;
6720Sstevel@tonic-gate 	cpu->cpu_thread = t;
6730Sstevel@tonic-gate 	if (t->t_flag & T_INTR_THREAD)
6743446Smrj 		t->t_intr_start = now;
6750Sstevel@tonic-gate 	basespl = cpu->cpu_base_spl;
6760Sstevel@tonic-gate 	pil = MAX(oldpil, basespl);
6770Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
6780Sstevel@tonic-gate 	(*setspl)(pil);
6790Sstevel@tonic-gate }
6800Sstevel@tonic-gate 
6813446Smrj 
6820Sstevel@tonic-gate /*
6830Sstevel@tonic-gate  * Make the interrupted thread 'to' be runnable.
6840Sstevel@tonic-gate  *
6850Sstevel@tonic-gate  * Since t->t_sp has already been saved, t->t_pc is all
6860Sstevel@tonic-gate  * that needs to be set in this function.
6870Sstevel@tonic-gate  *
6880Sstevel@tonic-gate  * Returns the interrupt level of the interrupt thread.
6890Sstevel@tonic-gate  */
6900Sstevel@tonic-gate int
6910Sstevel@tonic-gate intr_passivate(
6920Sstevel@tonic-gate 	kthread_t *it,		/* interrupt thread */
6930Sstevel@tonic-gate 	kthread_t *t)		/* interrupted thread */
6940Sstevel@tonic-gate {
6950Sstevel@tonic-gate 	extern void _sys_rtt();
6960Sstevel@tonic-gate 
6970Sstevel@tonic-gate 	ASSERT(it->t_flag & T_INTR_THREAD);
6980Sstevel@tonic-gate 	ASSERT(SA(t->t_sp) == t->t_sp);
6990Sstevel@tonic-gate 
7000Sstevel@tonic-gate 	t->t_pc = (uintptr_t)_sys_rtt;
7010Sstevel@tonic-gate 	return (it->t_pil);
7020Sstevel@tonic-gate }
7030Sstevel@tonic-gate 
7040Sstevel@tonic-gate /*
7050Sstevel@tonic-gate  * Create interrupt kstats for this CPU.
7060Sstevel@tonic-gate  */
7070Sstevel@tonic-gate void
7080Sstevel@tonic-gate cpu_create_intrstat(cpu_t *cp)
7090Sstevel@tonic-gate {
7100Sstevel@tonic-gate 	int		i;
7110Sstevel@tonic-gate 	kstat_t		*intr_ksp;
7120Sstevel@tonic-gate 	kstat_named_t	*knp;
7130Sstevel@tonic-gate 	char		name[KSTAT_STRLEN];
7140Sstevel@tonic-gate 	zoneid_t	zoneid;
7150Sstevel@tonic-gate 
7160Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
7170Sstevel@tonic-gate 
7180Sstevel@tonic-gate 	if (pool_pset_enabled())
7190Sstevel@tonic-gate 		zoneid = GLOBAL_ZONEID;
7200Sstevel@tonic-gate 	else
7210Sstevel@tonic-gate 		zoneid = ALL_ZONES;
7220Sstevel@tonic-gate 
7230Sstevel@tonic-gate 	intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc",
7240Sstevel@tonic-gate 	    KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid);
7250Sstevel@tonic-gate 
7260Sstevel@tonic-gate 	/*
7270Sstevel@tonic-gate 	 * Initialize each PIL's named kstat
7280Sstevel@tonic-gate 	 */
7290Sstevel@tonic-gate 	if (intr_ksp != NULL) {
7300Sstevel@tonic-gate 		intr_ksp->ks_update = cpu_kstat_intrstat_update;
7310Sstevel@tonic-gate 		knp = (kstat_named_t *)intr_ksp->ks_data;
7320Sstevel@tonic-gate 		intr_ksp->ks_private = cp;
7330Sstevel@tonic-gate 		for (i = 0; i < PIL_MAX; i++) {
7340Sstevel@tonic-gate 			(void) snprintf(name, KSTAT_STRLEN, "level-%d-time",
7350Sstevel@tonic-gate 			    i + 1);
7360Sstevel@tonic-gate 			kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64);
7370Sstevel@tonic-gate 			(void) snprintf(name, KSTAT_STRLEN, "level-%d-count",
7380Sstevel@tonic-gate 			    i + 1);
7390Sstevel@tonic-gate 			kstat_named_init(&knp[(i * 2) + 1], name,
7400Sstevel@tonic-gate 			    KSTAT_DATA_UINT64);
7410Sstevel@tonic-gate 		}
7420Sstevel@tonic-gate 		kstat_install(intr_ksp);
7430Sstevel@tonic-gate 	}
7440Sstevel@tonic-gate }
7450Sstevel@tonic-gate 
7460Sstevel@tonic-gate /*
7470Sstevel@tonic-gate  * Delete interrupt kstats for this CPU.
7480Sstevel@tonic-gate  */
7490Sstevel@tonic-gate void
7500Sstevel@tonic-gate cpu_delete_intrstat(cpu_t *cp)
7510Sstevel@tonic-gate {
7520Sstevel@tonic-gate 	kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES);
7530Sstevel@tonic-gate }
7540Sstevel@tonic-gate 
7550Sstevel@tonic-gate /*
7560Sstevel@tonic-gate  * Convert interrupt statistics from CPU ticks to nanoseconds and
7570Sstevel@tonic-gate  * update kstat.
7580Sstevel@tonic-gate  */
7590Sstevel@tonic-gate int
7600Sstevel@tonic-gate cpu_kstat_intrstat_update(kstat_t *ksp, int rw)
7610Sstevel@tonic-gate {
7620Sstevel@tonic-gate 	kstat_named_t	*knp = ksp->ks_data;
7630Sstevel@tonic-gate 	cpu_t		*cpup = (cpu_t *)ksp->ks_private;
7640Sstevel@tonic-gate 	int		i;
7650Sstevel@tonic-gate 	hrtime_t	hrt;
7660Sstevel@tonic-gate 
7670Sstevel@tonic-gate 	if (rw == KSTAT_WRITE)
7680Sstevel@tonic-gate 		return (EACCES);
7690Sstevel@tonic-gate 
7700Sstevel@tonic-gate 	for (i = 0; i < PIL_MAX; i++) {
771916Sschwartz 		hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0];
7725084Sjohnlev 		scalehrtimef(&hrt);
7730Sstevel@tonic-gate 		knp[i * 2].value.ui64 = (uint64_t)hrt;
7740Sstevel@tonic-gate 		knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i];
7750Sstevel@tonic-gate 	}
7760Sstevel@tonic-gate 
7770Sstevel@tonic-gate 	return (0);
7780Sstevel@tonic-gate }
7790Sstevel@tonic-gate 
7800Sstevel@tonic-gate /*
7810Sstevel@tonic-gate  * An interrupt thread is ending a time slice, so compute the interval it
7820Sstevel@tonic-gate  * ran for and update the statistic for its PIL.
7830Sstevel@tonic-gate  */
7840Sstevel@tonic-gate void
7850Sstevel@tonic-gate cpu_intr_swtch_enter(kthread_id_t t)
7860Sstevel@tonic-gate {
7870Sstevel@tonic-gate 	uint64_t	interval;
7880Sstevel@tonic-gate 	uint64_t	start;
789590Sesolom 	cpu_t		*cpu;
7900Sstevel@tonic-gate 
7910Sstevel@tonic-gate 	ASSERT((t->t_flag & T_INTR_THREAD) != 0);
7920Sstevel@tonic-gate 	ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL);
7930Sstevel@tonic-gate 
7940Sstevel@tonic-gate 	/*
7950Sstevel@tonic-gate 	 * We could be here with a zero timestamp. This could happen if:
7960Sstevel@tonic-gate 	 * an interrupt thread which no longer has a pinned thread underneath
7970Sstevel@tonic-gate 	 * it (i.e. it blocked at some point in its past) has finished running
7980Sstevel@tonic-gate 	 * its handler. intr_thread() updated the interrupt statistic for its
7990Sstevel@tonic-gate 	 * PIL and zeroed its timestamp. Since there was no pinned thread to
8000Sstevel@tonic-gate 	 * return to, swtch() gets called and we end up here.
801590Sesolom 	 *
802590Sesolom 	 * Note that we use atomic ops below (cas64 and atomic_add_64), which
803590Sesolom 	 * we don't use in the functions above, because we're not called
804590Sesolom 	 * with interrupts blocked, but the epilog/prolog functions are.
8050Sstevel@tonic-gate 	 */
8060Sstevel@tonic-gate 	if (t->t_intr_start) {
8070Sstevel@tonic-gate 		do {
8080Sstevel@tonic-gate 			start = t->t_intr_start;
8090Sstevel@tonic-gate 			interval = tsc_read() - start;
8100Sstevel@tonic-gate 		} while (cas64(&t->t_intr_start, start, 0) != start);
811590Sesolom 		cpu = CPU;
812916Sschwartz 		cpu->cpu_m.intrstat[t->t_pil][0] += interval;
813590Sesolom 
814590Sesolom 		atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate],
815590Sesolom 		    interval);
8160Sstevel@tonic-gate 	} else
8170Sstevel@tonic-gate 		ASSERT(t->t_intr == NULL);
8180Sstevel@tonic-gate }
8190Sstevel@tonic-gate 
8200Sstevel@tonic-gate /*
8210Sstevel@tonic-gate  * An interrupt thread is returning from swtch(). Place a starting timestamp
8220Sstevel@tonic-gate  * in its thread structure.
8230Sstevel@tonic-gate  */
8240Sstevel@tonic-gate void
8250Sstevel@tonic-gate cpu_intr_swtch_exit(kthread_id_t t)
8260Sstevel@tonic-gate {
8270Sstevel@tonic-gate 	uint64_t ts;
8280Sstevel@tonic-gate 
8290Sstevel@tonic-gate 	ASSERT((t->t_flag & T_INTR_THREAD) != 0);
8300Sstevel@tonic-gate 	ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL);
8310Sstevel@tonic-gate 
8320Sstevel@tonic-gate 	do {
8330Sstevel@tonic-gate 		ts = t->t_intr_start;
8340Sstevel@tonic-gate 	} while (cas64(&t->t_intr_start, ts, tsc_read()) != ts);
8350Sstevel@tonic-gate }
8363446Smrj 
8373446Smrj /*
8383446Smrj  * Dispatch a hilevel interrupt (one above LOCK_LEVEL)
8393446Smrj  */
8403446Smrj /*ARGSUSED*/
8413446Smrj static void
8423446Smrj dispatch_hilevel(uint_t vector, uint_t arg2)
8433446Smrj {
8443446Smrj 	sti();
8453446Smrj 	av_dispatch_autovect(vector);
8463446Smrj 	cli();
8473446Smrj }
8483446Smrj 
8493446Smrj /*
8503446Smrj  * Dispatch a soft interrupt
8513446Smrj  */
8523446Smrj /*ARGSUSED*/
8533446Smrj static void
8543446Smrj dispatch_softint(uint_t oldpil, uint_t arg2)
8553446Smrj {
8563446Smrj 	struct cpu *cpu = CPU;
8573446Smrj 
8583446Smrj 	sti();
8593446Smrj 	av_dispatch_softvect((int)cpu->cpu_thread->t_pil);
8603446Smrj 	cli();
8613446Smrj 
8623446Smrj 	/*
8633446Smrj 	 * Must run softint_epilog() on the interrupt thread stack, since
8643446Smrj 	 * there may not be a return from it if the interrupt thread blocked.
8653446Smrj 	 */
8663446Smrj 	dosoftint_epilog(cpu, oldpil);
8673446Smrj }
8683446Smrj 
8693446Smrj /*
8703446Smrj  * Dispatch a normal interrupt
8713446Smrj  */
8723446Smrj static void
8733446Smrj dispatch_hardint(uint_t vector, uint_t oldipl)
8743446Smrj {
8753446Smrj 	struct cpu *cpu = CPU;
8763446Smrj 
8773446Smrj 	sti();
8783446Smrj 	av_dispatch_autovect(vector);
8793446Smrj 	cli();
8803446Smrj 
8813446Smrj 	/*
8823446Smrj 	 * Must run intr_thread_epilog() on the interrupt thread stack, since
8833446Smrj 	 * there may not be a return from it if the interrupt thread blocked.
8843446Smrj 	 */
8853446Smrj 	intr_thread_epilog(cpu, vector, oldipl);
8863446Smrj }
8873446Smrj 
8883446Smrj /*
8893446Smrj  * Deliver any softints the current interrupt priority allows.
8903446Smrj  * Called with interrupts disabled.
8913446Smrj  */
8923446Smrj void
8933446Smrj dosoftint(struct regs *regs)
8943446Smrj {
8953446Smrj 	struct cpu *cpu = CPU;
8963446Smrj 	int oldipl;
8973446Smrj 	caddr_t newsp;
8983446Smrj 
8993446Smrj 	while (cpu->cpu_softinfo.st_pending) {
9003446Smrj 		oldipl = cpu->cpu_pri;
9013446Smrj 		newsp = dosoftint_prolog(cpu, (caddr_t)regs,
9025084Sjohnlev 		    cpu->cpu_softinfo.st_pending, oldipl);
9033446Smrj 		/*
9043446Smrj 		 * If returned stack pointer is NULL, priority is too high
9053446Smrj 		 * to run any of the pending softints now.
9063446Smrj 		 * Break out and they will be run later.
9073446Smrj 		 */
9083446Smrj 		if (newsp == NULL)
9093446Smrj 			break;
9103446Smrj 		switch_sp_and_call(newsp, dispatch_softint, oldipl, 0);
9113446Smrj 	}
9123446Smrj }
9133446Smrj 
9143446Smrj /*
9153446Smrj  * Interrupt service routine, called with interrupts disabled.
9163446Smrj  */
9173446Smrj /*ARGSUSED*/
9183446Smrj void
9193446Smrj do_interrupt(struct regs *rp, trap_trace_rec_t *ttp)
9203446Smrj {
9213446Smrj 	struct cpu *cpu = CPU;
9223446Smrj 	int newipl, oldipl = cpu->cpu_pri;
9233446Smrj 	uint_t vector;
9243446Smrj 	caddr_t newsp;
9253446Smrj 
9263446Smrj #ifdef TRAPTRACE
9273446Smrj 	ttp->ttr_marker = TT_INTERRUPT;
9283446Smrj 	ttp->ttr_ipl = 0xff;
9293446Smrj 	ttp->ttr_pri = oldipl;
9303446Smrj 	ttp->ttr_spl = cpu->cpu_base_spl;
9313446Smrj 	ttp->ttr_vector = 0xff;
9323446Smrj #endif	/* TRAPTRACE */
9333446Smrj 
9345084Sjohnlev #if !defined(__xpv)
9353446Smrj 	/*
9364191Sjosephb 	 * Handle any pending TLB flushing
9374191Sjosephb 	 */
9384191Sjosephb 	tlb_service();
9395084Sjohnlev #endif
9404191Sjosephb 
9414191Sjosephb 	/*
9423446Smrj 	 * If it's a softint go do it now.
9433446Smrj 	 */
9443446Smrj 	if (rp->r_trapno == T_SOFTINT) {
9453446Smrj 		dosoftint(rp);
9463446Smrj 		ASSERT(!interrupts_enabled());
9473446Smrj 		return;
9483446Smrj 	}
9493446Smrj 
9503446Smrj 	/*
9513446Smrj 	 * Raise the interrupt priority.
9523446Smrj 	 */
9533446Smrj 	newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno);
9543446Smrj #ifdef TRAPTRACE
9553446Smrj 	ttp->ttr_ipl = newipl;
9563446Smrj #endif	/* TRAPTRACE */
9573446Smrj 
9583446Smrj 	/*
9593446Smrj 	 * Bail if it is a spurious interrupt
9603446Smrj 	 */
9613446Smrj 	if (newipl == -1)
9623446Smrj 		return;
9633446Smrj 	cpu->cpu_pri = newipl;
9643446Smrj 	vector = rp->r_trapno;
9653446Smrj #ifdef TRAPTRACE
9663446Smrj 	ttp->ttr_vector = vector;
9673446Smrj #endif	/* TRAPTRACE */
9683446Smrj 	if (newipl > LOCK_LEVEL) {
9693446Smrj 		/*
9703446Smrj 		 * High priority interrupts run on this cpu's interrupt stack.
9713446Smrj 		 */
9723446Smrj 		if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) {
9733446Smrj 			newsp = cpu->cpu_intr_stack;
9743446Smrj 			switch_sp_and_call(newsp, dispatch_hilevel, vector, 0);
9753446Smrj 		} else { /* already on the interrupt stack */
9763446Smrj 			dispatch_hilevel(vector, 0);
9773446Smrj 		}
9783446Smrj 		(void) hilevel_intr_epilog(cpu, newipl, oldipl, vector);
9793446Smrj 	} else {
9803446Smrj 		/*
9813446Smrj 		 * Run this interrupt in a separate thread.
9823446Smrj 		 */
9833446Smrj 		newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl);
9843446Smrj 		switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl);
9853446Smrj 	}
9863446Smrj 
9873446Smrj 	/*
9883446Smrj 	 * Deliver any pending soft interrupts.
9893446Smrj 	 */
9903446Smrj 	if (cpu->cpu_softinfo.st_pending)
9913446Smrj 		dosoftint(rp);
9923446Smrj }
9933446Smrj 
9943446Smrj /*
9953446Smrj  * Common tasks always done by _sys_rtt, called with interrupts disabled.
9963446Smrj  * Returns 1 if returning to userland, 0 if returning to system mode.
9973446Smrj  */
9983446Smrj int
9993446Smrj sys_rtt_common(struct regs *rp)
10003446Smrj {
10013446Smrj 	kthread_t *tp;
10023446Smrj 	extern void mutex_exit_critical_start();
10033446Smrj 	extern long mutex_exit_critical_size;
10045834Spt157919 	extern void mutex_owner_running_critical_start();
10055834Spt157919 	extern long mutex_owner_running_critical_size;
10063446Smrj 
10073446Smrj loop:
10083446Smrj 
10093446Smrj 	/*
10103446Smrj 	 * Check if returning to user
10113446Smrj 	 */
10123446Smrj 	tp = CPU->cpu_thread;
10133446Smrj 	if (USERMODE(rp->r_cs)) {
10143446Smrj 		/*
10153446Smrj 		 * Check if AST pending.
10163446Smrj 		 */
10173446Smrj 		if (tp->t_astflag) {
10183446Smrj 			/*
10193446Smrj 			 * Let trap() handle the AST
10203446Smrj 			 */
10213446Smrj 			sti();
10223446Smrj 			rp->r_trapno = T_AST;
10233446Smrj 			trap(rp, (caddr_t)0, CPU->cpu_id);
10243446Smrj 			cli();
10253446Smrj 			goto loop;
10263446Smrj 		}
10273446Smrj 
10283446Smrj #if defined(__amd64)
10293446Smrj 		/*
10303446Smrj 		 * We are done if segment registers do not need updating.
10313446Smrj 		 */
10324503Ssudheer 		if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0)
10333446Smrj 			return (1);
10343446Smrj 
10353446Smrj 		if (update_sregs(rp, tp->t_lwp)) {
10363446Smrj 			/*
10373446Smrj 			 * 1 or more of the selectors is bad.
10383446Smrj 			 * Deliver a SIGSEGV.
10393446Smrj 			 */
10403446Smrj 			proc_t *p = ttoproc(tp);
10413446Smrj 
10423446Smrj 			sti();
10433446Smrj 			mutex_enter(&p->p_lock);
10443446Smrj 			tp->t_lwp->lwp_cursig = SIGSEGV;
10453446Smrj 			mutex_exit(&p->p_lock);
10463446Smrj 			psig();
10473446Smrj 			tp->t_sig_check = 1;
10483446Smrj 			cli();
10493446Smrj 		}
10504503Ssudheer 		tp->t_lwp->lwp_pcb.pcb_rupdate = 0;
10513446Smrj 
10523446Smrj #endif	/* __amd64 */
10533446Smrj 		return (1);
10543446Smrj 	}
10553446Smrj 
10563446Smrj 	/*
10573446Smrj 	 * Here if we are returning to supervisor mode.
10583446Smrj 	 * Check for a kernel preemption request.
10593446Smrj 	 */
10603446Smrj 	if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) {
10613446Smrj 
10623446Smrj 		/*
10633446Smrj 		 * Do nothing if already in kpreempt
10643446Smrj 		 */
10653446Smrj 		if (!tp->t_preempt_lk) {
10663446Smrj 			tp->t_preempt_lk = 1;
10673446Smrj 			sti();
10683446Smrj 			kpreempt(1); /* asynchronous kpreempt call */
10693446Smrj 			cli();
10703446Smrj 			tp->t_preempt_lk = 0;
10713446Smrj 		}
10723446Smrj 	}
10733446Smrj 
10743446Smrj 	/*
10753446Smrj 	 * If we interrupted the mutex_exit() critical region we must
10763446Smrj 	 * reset the PC back to the beginning to prevent missed wakeups
10773446Smrj 	 * See the comments in mutex_exit() for details.
10783446Smrj 	 */
10793446Smrj 	if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start <
10803446Smrj 	    mutex_exit_critical_size) {
10813446Smrj 		rp->r_pc = (greg_t)mutex_exit_critical_start;
10823446Smrj 	}
10835834Spt157919 
10845834Spt157919 	/*
10855834Spt157919 	 * If we interrupted the mutex_owner_running() critical region we
10865834Spt157919 	 * must reset the PC back to the beginning to prevent dereferencing
10875834Spt157919 	 * of a freed thread pointer. See the comments in mutex_owner_running
10885834Spt157919 	 * for details.
10895834Spt157919 	 */
10905834Spt157919 	if ((uintptr_t)rp->r_pc -
10915834Spt157919 	    (uintptr_t)mutex_owner_running_critical_start <
10925834Spt157919 	    mutex_owner_running_critical_size) {
10935834Spt157919 		rp->r_pc = (greg_t)mutex_owner_running_critical_start;
10945834Spt157919 	}
10955834Spt157919 
10963446Smrj 	return (0);
10973446Smrj }
10983446Smrj 
10993446Smrj void
11003446Smrj send_dirint(int cpuid, int int_level)
11013446Smrj {
11023446Smrj 	(*send_dirintf)(cpuid, int_level);
11033446Smrj }
11043446Smrj 
11053446Smrj /*
11063446Smrj  * do_splx routine, takes new ipl to set
11073446Smrj  * returns the old ipl.
11083446Smrj  * We are careful not to set priority lower than CPU->cpu_base_pri,
11093446Smrj  * even though it seems we're raising the priority, it could be set
11103446Smrj  * higher at any time by an interrupt routine, so we must block interrupts
11113446Smrj  * and look at CPU->cpu_base_pri
11123446Smrj  */
11133446Smrj int
11143446Smrj do_splx(int newpri)
11153446Smrj {
11163446Smrj 	ulong_t	flag;
11173446Smrj 	cpu_t	*cpu;
11183446Smrj 	int	curpri, basepri;
11193446Smrj 
11203446Smrj 	flag = intr_clear();
11213446Smrj 	cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */
11223446Smrj 	curpri = cpu->cpu_m.mcpu_pri;
11233446Smrj 	basepri = cpu->cpu_base_spl;
11243446Smrj 	if (newpri < basepri)
11253446Smrj 		newpri = basepri;
11263446Smrj 	cpu->cpu_m.mcpu_pri = newpri;
11273446Smrj 	(*setspl)(newpri);
11283446Smrj 	/*
11293446Smrj 	 * If we are going to reenable interrupts see if new priority level
11303446Smrj 	 * allows pending softint delivery.
11313446Smrj 	 */
11323446Smrj 	if ((flag & PS_IE) &&
11333446Smrj 	    bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri)
11343446Smrj 		fakesoftint();
11353446Smrj 	ASSERT(!interrupts_enabled());
11363446Smrj 	intr_restore(flag);
11373446Smrj 	return (curpri);
11383446Smrj }
11393446Smrj 
11403446Smrj /*
11413446Smrj  * Common spl raise routine, takes new ipl to set
11423446Smrj  * returns the old ipl, will not lower ipl.
11433446Smrj  */
11443446Smrj int
11453446Smrj splr(int newpri)
11463446Smrj {
11473446Smrj 	ulong_t	flag;
11483446Smrj 	cpu_t	*cpu;
11493446Smrj 	int	curpri, basepri;
11503446Smrj 
11513446Smrj 	flag = intr_clear();
11523446Smrj 	cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */
11533446Smrj 	curpri = cpu->cpu_m.mcpu_pri;
11543446Smrj 	/*
11553446Smrj 	 * Only do something if new priority is larger
11563446Smrj 	 */
11573446Smrj 	if (newpri > curpri) {
11583446Smrj 		basepri = cpu->cpu_base_spl;
11593446Smrj 		if (newpri < basepri)
11603446Smrj 			newpri = basepri;
11613446Smrj 		cpu->cpu_m.mcpu_pri = newpri;
11623446Smrj 		(*setspl)(newpri);
11633446Smrj 		/*
11643446Smrj 		 * See if new priority level allows pending softint delivery
11653446Smrj 		 */
11663446Smrj 		if ((flag & PS_IE) &&
11673446Smrj 		    bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri)
11683446Smrj 			fakesoftint();
11693446Smrj 	}
11703446Smrj 	intr_restore(flag);
11713446Smrj 	return (curpri);
11723446Smrj }
11733446Smrj 
11743446Smrj int
11753446Smrj getpil(void)
11763446Smrj {
11773446Smrj 	return (CPU->cpu_m.mcpu_pri);
11783446Smrj }
11793446Smrj 
11803446Smrj int
11813446Smrj interrupts_enabled(void)
11823446Smrj {
11833446Smrj 	ulong_t	flag;
11843446Smrj 
11853446Smrj 	flag = getflags();
11863446Smrj 	return ((flag & PS_IE) == PS_IE);
11873446Smrj }
11883446Smrj 
11893446Smrj #ifdef DEBUG
11903446Smrj void
11913446Smrj assert_ints_enabled(void)
11923446Smrj {
11933446Smrj 	ASSERT(!interrupts_unleashed || interrupts_enabled());
11943446Smrj }
11953446Smrj #endif	/* DEBUG */
1196