10Sstevel@tonic-gate /* 20Sstevel@tonic-gate * CDDL HEADER START 30Sstevel@tonic-gate * 40Sstevel@tonic-gate * The contents of this file are subject to the terms of the 51455Sandrei * Common Development and Distribution License (the "License"). 61455Sandrei * You may not use this file except in compliance with the License. 70Sstevel@tonic-gate * 80Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 90Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 100Sstevel@tonic-gate * See the License for the specific language governing permissions 110Sstevel@tonic-gate * and limitations under the License. 120Sstevel@tonic-gate * 130Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 140Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 150Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 160Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 170Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 180Sstevel@tonic-gate * 190Sstevel@tonic-gate * CDDL HEADER END 200Sstevel@tonic-gate */ 210Sstevel@tonic-gate /* 223446Smrj * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 230Sstevel@tonic-gate * Use is subject to license terms. 240Sstevel@tonic-gate */ 250Sstevel@tonic-gate 260Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 270Sstevel@tonic-gate 280Sstevel@tonic-gate #include <sys/cpuvar.h> 290Sstevel@tonic-gate #include <sys/regset.h> 300Sstevel@tonic-gate #include <sys/psw.h> 310Sstevel@tonic-gate #include <sys/types.h> 320Sstevel@tonic-gate #include <sys/thread.h> 330Sstevel@tonic-gate #include <sys/systm.h> 340Sstevel@tonic-gate #include <sys/segments.h> 350Sstevel@tonic-gate #include <sys/pcb.h> 360Sstevel@tonic-gate #include <sys/trap.h> 370Sstevel@tonic-gate #include <sys/ftrace.h> 380Sstevel@tonic-gate #include <sys/traptrace.h> 390Sstevel@tonic-gate #include <sys/clock.h> 400Sstevel@tonic-gate #include <sys/panic.h> 410Sstevel@tonic-gate #include <sys/disp.h> 420Sstevel@tonic-gate #include <vm/seg_kp.h> 430Sstevel@tonic-gate #include <sys/stack.h> 440Sstevel@tonic-gate #include <sys/sysmacros.h> 450Sstevel@tonic-gate #include <sys/cmn_err.h> 460Sstevel@tonic-gate #include <sys/kstat.h> 470Sstevel@tonic-gate #include <sys/smp_impldefs.h> 480Sstevel@tonic-gate #include <sys/pool_pset.h> 490Sstevel@tonic-gate #include <sys/zone.h> 500Sstevel@tonic-gate #include <sys/bitmap.h> 513446Smrj #include <sys/archsystm.h> 523446Smrj #include <sys/machsystm.h> 533446Smrj #include <sys/ontrap.h> 543446Smrj #include <sys/x86_archext.h> 553446Smrj #include <sys/promif.h> 564191Sjosephb #include <vm/hat_i86.h> 570Sstevel@tonic-gate 580Sstevel@tonic-gate 590Sstevel@tonic-gate /* 603446Smrj * Set cpu's base SPL level to the highest active interrupt level 610Sstevel@tonic-gate */ 623446Smrj void 633446Smrj set_base_spl(void) 640Sstevel@tonic-gate { 653446Smrj struct cpu *cpu = CPU; 663446Smrj uint16_t active = (uint16_t)cpu->cpu_intr_actv; 670Sstevel@tonic-gate 683446Smrj cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 690Sstevel@tonic-gate } 700Sstevel@tonic-gate 710Sstevel@tonic-gate /* 720Sstevel@tonic-gate * Do all the work necessary to set up the cpu and thread structures 730Sstevel@tonic-gate * to dispatch a high-level interrupt. 740Sstevel@tonic-gate * 750Sstevel@tonic-gate * Returns 0 if we're -not- already on the high-level interrupt stack, 760Sstevel@tonic-gate * (and *must* switch to it), non-zero if we are already on that stack. 770Sstevel@tonic-gate * 780Sstevel@tonic-gate * Called with interrupts masked. 790Sstevel@tonic-gate * The 'pil' is already set to the appropriate level for rp->r_trapno. 800Sstevel@tonic-gate */ 813446Smrj static int 820Sstevel@tonic-gate hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 830Sstevel@tonic-gate { 840Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 850Sstevel@tonic-gate uint_t mask; 86590Sesolom hrtime_t intrtime; 873446Smrj hrtime_t now = tsc_read(); 880Sstevel@tonic-gate 890Sstevel@tonic-gate ASSERT(pil > LOCK_LEVEL); 900Sstevel@tonic-gate 910Sstevel@tonic-gate if (pil == CBE_HIGH_PIL) { 920Sstevel@tonic-gate cpu->cpu_profile_pil = oldpil; 930Sstevel@tonic-gate if (USERMODE(rp->r_cs)) { 940Sstevel@tonic-gate cpu->cpu_profile_pc = 0; 950Sstevel@tonic-gate cpu->cpu_profile_upc = rp->r_pc; 960Sstevel@tonic-gate } else { 970Sstevel@tonic-gate cpu->cpu_profile_pc = rp->r_pc; 980Sstevel@tonic-gate cpu->cpu_profile_upc = 0; 990Sstevel@tonic-gate } 1000Sstevel@tonic-gate } 1010Sstevel@tonic-gate 1020Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 1030Sstevel@tonic-gate if (mask != 0) { 1040Sstevel@tonic-gate int nestpil; 1050Sstevel@tonic-gate 1060Sstevel@tonic-gate /* 1070Sstevel@tonic-gate * We have interrupted another high-level interrupt. 1080Sstevel@tonic-gate * Load starting timestamp, compute interval, update 1090Sstevel@tonic-gate * cumulative counter. 1100Sstevel@tonic-gate */ 1110Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 1120Sstevel@tonic-gate ASSERT(nestpil < pil); 1133446Smrj intrtime = now - 1140Sstevel@tonic-gate mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 115916Sschwartz mcpu->intrstat[nestpil][0] += intrtime; 116590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1170Sstevel@tonic-gate /* 1180Sstevel@tonic-gate * Another high-level interrupt is active below this one, so 1190Sstevel@tonic-gate * there is no need to check for an interrupt thread. That 1200Sstevel@tonic-gate * will be done by the lowest priority high-level interrupt 1210Sstevel@tonic-gate * active. 1220Sstevel@tonic-gate */ 1230Sstevel@tonic-gate } else { 1240Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 1250Sstevel@tonic-gate 1260Sstevel@tonic-gate /* 1270Sstevel@tonic-gate * See if we are interrupting a low-level interrupt thread. 1280Sstevel@tonic-gate * If so, account for its time slice only if its time stamp 1290Sstevel@tonic-gate * is non-zero. 1300Sstevel@tonic-gate */ 1310Sstevel@tonic-gate if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 1323446Smrj intrtime = now - t->t_intr_start; 133916Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 134590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1350Sstevel@tonic-gate t->t_intr_start = 0; 1360Sstevel@tonic-gate } 1370Sstevel@tonic-gate } 1380Sstevel@tonic-gate 1390Sstevel@tonic-gate /* 1400Sstevel@tonic-gate * Store starting timestamp in CPU structure for this PIL. 1410Sstevel@tonic-gate */ 1423446Smrj mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 1430Sstevel@tonic-gate 1440Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 1450Sstevel@tonic-gate 1460Sstevel@tonic-gate if (pil == 15) { 1470Sstevel@tonic-gate /* 1480Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 1490Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 1500Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 1510Sstevel@tonic-gate * the lower half of cpu_intr_actv. 1520Sstevel@tonic-gate */ 1530Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 1540Sstevel@tonic-gate (*refcntp)++; 1550Sstevel@tonic-gate } 1560Sstevel@tonic-gate 1570Sstevel@tonic-gate mask = cpu->cpu_intr_actv; 1580Sstevel@tonic-gate 1590Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 1600Sstevel@tonic-gate 1610Sstevel@tonic-gate return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 1620Sstevel@tonic-gate } 1630Sstevel@tonic-gate 1640Sstevel@tonic-gate /* 1650Sstevel@tonic-gate * Does most of the work of returning from a high level interrupt. 1660Sstevel@tonic-gate * 1670Sstevel@tonic-gate * Returns 0 if there are no more high level interrupts (in which 1680Sstevel@tonic-gate * case we must switch back to the interrupted thread stack) or 1690Sstevel@tonic-gate * non-zero if there are more (in which case we should stay on it). 1700Sstevel@tonic-gate * 1710Sstevel@tonic-gate * Called with interrupts masked 1720Sstevel@tonic-gate */ 1733446Smrj static int 1740Sstevel@tonic-gate hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 1750Sstevel@tonic-gate { 1760Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 1770Sstevel@tonic-gate uint_t mask; 178590Sesolom hrtime_t intrtime; 1793446Smrj hrtime_t now = tsc_read(); 1800Sstevel@tonic-gate 1810Sstevel@tonic-gate ASSERT(mcpu->mcpu_pri == pil); 1820Sstevel@tonic-gate 1830Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 1840Sstevel@tonic-gate 1850Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 1860Sstevel@tonic-gate 1870Sstevel@tonic-gate if (pil == 15) { 1880Sstevel@tonic-gate /* 1890Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 1900Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 1910Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 1920Sstevel@tonic-gate * the lower half of cpu_intr_actv. 1930Sstevel@tonic-gate */ 1940Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 1950Sstevel@tonic-gate 1960Sstevel@tonic-gate ASSERT(*refcntp > 0); 1970Sstevel@tonic-gate 1980Sstevel@tonic-gate if (--(*refcntp) == 0) 1990Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 2000Sstevel@tonic-gate } else { 2010Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 2020Sstevel@tonic-gate } 2030Sstevel@tonic-gate 2040Sstevel@tonic-gate ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 2050Sstevel@tonic-gate 2063446Smrj intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 207916Sschwartz mcpu->intrstat[pil][0] += intrtime; 208590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 2090Sstevel@tonic-gate 2100Sstevel@tonic-gate /* 2110Sstevel@tonic-gate * Check for lower-pil nested high-level interrupt beneath 2120Sstevel@tonic-gate * current one. If so, place a starting timestamp in its 2130Sstevel@tonic-gate * pil_high_start entry. 2140Sstevel@tonic-gate */ 2150Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 2160Sstevel@tonic-gate if (mask != 0) { 2170Sstevel@tonic-gate int nestpil; 2180Sstevel@tonic-gate 2190Sstevel@tonic-gate /* 2200Sstevel@tonic-gate * find PIL of nested interrupt 2210Sstevel@tonic-gate */ 2220Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 2230Sstevel@tonic-gate ASSERT(nestpil < pil); 2243446Smrj mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 2250Sstevel@tonic-gate /* 2260Sstevel@tonic-gate * (Another high-level interrupt is active below this one, 2270Sstevel@tonic-gate * so there is no need to check for an interrupt 2280Sstevel@tonic-gate * thread. That will be done by the lowest priority 2290Sstevel@tonic-gate * high-level interrupt active.) 2300Sstevel@tonic-gate */ 2310Sstevel@tonic-gate } else { 2320Sstevel@tonic-gate /* 2330Sstevel@tonic-gate * Check to see if there is a low-level interrupt active. 2340Sstevel@tonic-gate * If so, place a starting timestamp in the thread 2350Sstevel@tonic-gate * structure. 2360Sstevel@tonic-gate */ 2370Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 2380Sstevel@tonic-gate 2390Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 2403446Smrj t->t_intr_start = now; 2410Sstevel@tonic-gate } 2420Sstevel@tonic-gate 2430Sstevel@tonic-gate mcpu->mcpu_pri = oldpil; 2440Sstevel@tonic-gate (void) (*setlvlx)(oldpil, vecnum); 2450Sstevel@tonic-gate 2460Sstevel@tonic-gate return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 2470Sstevel@tonic-gate } 2480Sstevel@tonic-gate 2490Sstevel@tonic-gate /* 2500Sstevel@tonic-gate * Set up the cpu, thread and interrupt thread structures for 2510Sstevel@tonic-gate * executing an interrupt thread. The new stack pointer of the 2520Sstevel@tonic-gate * interrupt thread (which *must* be switched to) is returned. 2530Sstevel@tonic-gate */ 2543446Smrj static caddr_t 2550Sstevel@tonic-gate intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 2560Sstevel@tonic-gate { 2570Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 2580Sstevel@tonic-gate kthread_t *t, *volatile it; 2593446Smrj hrtime_t now = tsc_read(); 2600Sstevel@tonic-gate 2610Sstevel@tonic-gate ASSERT(pil > 0); 2620Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 2630Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 2640Sstevel@tonic-gate 2650Sstevel@tonic-gate /* 2660Sstevel@tonic-gate * Get set to run an interrupt thread. 2670Sstevel@tonic-gate * There should always be an interrupt thread, since we 2680Sstevel@tonic-gate * allocate one for each level on each CPU. 2690Sstevel@tonic-gate * 270989Sesolom * t_intr_start could be zero due to cpu_intr_swtch_enter. 2710Sstevel@tonic-gate */ 2720Sstevel@tonic-gate t = cpu->cpu_thread; 273989Sesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 2743446Smrj hrtime_t intrtime = now - t->t_intr_start; 275916Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 276590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 2770Sstevel@tonic-gate t->t_intr_start = 0; 2780Sstevel@tonic-gate } 2790Sstevel@tonic-gate 2800Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 2810Sstevel@tonic-gate 2820Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 2830Sstevel@tonic-gate 2840Sstevel@tonic-gate /* 2850Sstevel@tonic-gate * unlink the interrupt thread off the cpu 286989Sesolom * 287989Sesolom * Note that the code in kcpc_overflow_intr -relies- on the 288989Sesolom * ordering of events here - in particular that t->t_lwp of 289989Sesolom * the interrupt thread is set to the pinned thread *before* 290989Sesolom * curthread is changed. 2910Sstevel@tonic-gate */ 2920Sstevel@tonic-gate it = cpu->cpu_intr_thread; 2930Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 2940Sstevel@tonic-gate it->t_intr = t; 2950Sstevel@tonic-gate it->t_lwp = t->t_lwp; 2960Sstevel@tonic-gate 2970Sstevel@tonic-gate /* 2980Sstevel@tonic-gate * (threads on the interrupt thread free list could have state 2990Sstevel@tonic-gate * preset to TS_ONPROC, but it helps in debugging if 3000Sstevel@tonic-gate * they're TS_FREE.) 3010Sstevel@tonic-gate */ 3020Sstevel@tonic-gate it->t_state = TS_ONPROC; 3030Sstevel@tonic-gate 3040Sstevel@tonic-gate cpu->cpu_thread = it; /* new curthread on this cpu */ 3050Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 3060Sstevel@tonic-gate it->t_pri = intr_pri + (pri_t)pil; 3073446Smrj it->t_intr_start = now; 3080Sstevel@tonic-gate 3090Sstevel@tonic-gate return (it->t_stk); 3100Sstevel@tonic-gate } 3110Sstevel@tonic-gate 3120Sstevel@tonic-gate 3130Sstevel@tonic-gate #ifdef DEBUG 3140Sstevel@tonic-gate int intr_thread_cnt; 3150Sstevel@tonic-gate #endif 3160Sstevel@tonic-gate 3170Sstevel@tonic-gate /* 3180Sstevel@tonic-gate * Called with interrupts disabled 3190Sstevel@tonic-gate */ 3203446Smrj static void 3210Sstevel@tonic-gate intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 3220Sstevel@tonic-gate { 3230Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 3240Sstevel@tonic-gate kthread_t *t; 3250Sstevel@tonic-gate kthread_t *it = cpu->cpu_thread; /* curthread */ 3260Sstevel@tonic-gate uint_t pil, basespl; 327590Sesolom hrtime_t intrtime; 3283446Smrj hrtime_t now = tsc_read(); 3290Sstevel@tonic-gate 3300Sstevel@tonic-gate pil = it->t_pil; 3310Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 3320Sstevel@tonic-gate 3330Sstevel@tonic-gate ASSERT(it->t_intr_start != 0); 3343446Smrj intrtime = now - it->t_intr_start; 335916Sschwartz mcpu->intrstat[pil][0] += intrtime; 336590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 3370Sstevel@tonic-gate 3380Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 3390Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 3400Sstevel@tonic-gate 3410Sstevel@tonic-gate /* 3420Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 3430Sstevel@tonic-gate * then the interrupt was never blocked and the return is 3440Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 3450Sstevel@tonic-gate */ 3460Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 3470Sstevel@tonic-gate /* 3480Sstevel@tonic-gate * The interrupted thread is no longer pinned underneath 3490Sstevel@tonic-gate * the interrupt thread. This means the interrupt must 3500Sstevel@tonic-gate * have blocked, and the interrupted thread has been 3510Sstevel@tonic-gate * unpinned, and has probably been running around the 3520Sstevel@tonic-gate * system for a while. 3530Sstevel@tonic-gate * 3540Sstevel@tonic-gate * Since there is no longer a thread under this one, put 3550Sstevel@tonic-gate * this interrupt thread back on the CPU's free list and 3560Sstevel@tonic-gate * resume the idle thread which will dispatch the next 3570Sstevel@tonic-gate * thread to run. 3580Sstevel@tonic-gate */ 3590Sstevel@tonic-gate #ifdef DEBUG 3600Sstevel@tonic-gate intr_thread_cnt++; 3610Sstevel@tonic-gate #endif 3620Sstevel@tonic-gate cpu->cpu_stats.sys.intrblk++; 3630Sstevel@tonic-gate /* 3640Sstevel@tonic-gate * Set CPU's base SPL based on active interrupts bitmask 3650Sstevel@tonic-gate */ 3660Sstevel@tonic-gate set_base_spl(); 3670Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 3680Sstevel@tonic-gate mcpu->mcpu_pri = basespl; 3690Sstevel@tonic-gate (*setlvlx)(basespl, vec); 3700Sstevel@tonic-gate (void) splhigh(); 3713446Smrj sti(); 3720Sstevel@tonic-gate it->t_state = TS_FREE; 3730Sstevel@tonic-gate /* 3740Sstevel@tonic-gate * Return interrupt thread to pool 3750Sstevel@tonic-gate */ 3760Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 3770Sstevel@tonic-gate cpu->cpu_intr_thread = it; 3780Sstevel@tonic-gate swtch(); 3793446Smrj panic("intr_thread_epilog: swtch returned"); 3800Sstevel@tonic-gate /*NOTREACHED*/ 3810Sstevel@tonic-gate } 3820Sstevel@tonic-gate 3830Sstevel@tonic-gate /* 3840Sstevel@tonic-gate * Return interrupt thread to the pool 3850Sstevel@tonic-gate */ 3860Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 3870Sstevel@tonic-gate cpu->cpu_intr_thread = it; 3880Sstevel@tonic-gate it->t_state = TS_FREE; 3890Sstevel@tonic-gate 3900Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 3910Sstevel@tonic-gate pil = MAX(oldpil, basespl); 3920Sstevel@tonic-gate mcpu->mcpu_pri = pil; 3930Sstevel@tonic-gate (*setlvlx)(pil, vec); 3943446Smrj t->t_intr_start = now; 3950Sstevel@tonic-gate cpu->cpu_thread = t; 3960Sstevel@tonic-gate } 3970Sstevel@tonic-gate 398916Sschwartz /* 3993446Smrj * intr_get_time() is a resource for interrupt handlers to determine how 4003446Smrj * much time has been spent handling the current interrupt. Such a function 4013446Smrj * is needed because higher level interrupts can arrive during the 4023446Smrj * processing of an interrupt. intr_get_time() only returns time spent in the 4033446Smrj * current interrupt handler. 4043446Smrj * 4053446Smrj * The caller must be calling from an interrupt handler running at a pil 4063446Smrj * below or at lock level. Timings are not provided for high-level 4073446Smrj * interrupts. 4083446Smrj * 4093446Smrj * The first time intr_get_time() is called while handling an interrupt, 4103446Smrj * it returns the time since the interrupt handler was invoked. Subsequent 4113446Smrj * calls will return the time since the prior call to intr_get_time(). Time 4123446Smrj * is returned as ticks. Use tsc_scalehrtime() to convert ticks to nsec. 4133446Smrj * 4143446Smrj * Theory Of Intrstat[][]: 4153446Smrj * 4163446Smrj * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 4173446Smrj * uint64_ts per pil. 4183446Smrj * 4193446Smrj * intrstat[pil][0] is a cumulative count of the number of ticks spent 4203446Smrj * handling all interrupts at the specified pil on this CPU. It is 4213446Smrj * exported via kstats to the user. 4223446Smrj * 4233446Smrj * intrstat[pil][1] is always a count of ticks less than or equal to the 4243446Smrj * value in [0]. The difference between [1] and [0] is the value returned 4253446Smrj * by a call to intr_get_time(). At the start of interrupt processing, 4263446Smrj * [0] and [1] will be equal (or nearly so). As the interrupt consumes 4273446Smrj * time, [0] will increase, but [1] will remain the same. A call to 4283446Smrj * intr_get_time() will return the difference, then update [1] to be the 4293446Smrj * same as [0]. Future calls will return the time since the last call. 4303446Smrj * Finally, when the interrupt completes, [1] is updated to the same as [0]. 4313446Smrj * 4323446Smrj * Implementation: 4333446Smrj * 4343446Smrj * intr_get_time() works much like a higher level interrupt arriving. It 4353446Smrj * "checkpoints" the timing information by incrementing intrstat[pil][0] 4363446Smrj * to include elapsed running time, and by setting t_intr_start to rdtsc. 4373446Smrj * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 4383446Smrj * and updates intrstat[pil][1] to be the same as the new value of 4393446Smrj * intrstat[pil][0]. 4403446Smrj * 4413446Smrj * In the normal handling of interrupts, after an interrupt handler returns 4423446Smrj * and the code in intr_thread() updates intrstat[pil][0], it then sets 4433446Smrj * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 4443446Smrj * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 4453446Smrj * is 0. 4463446Smrj * 4473446Smrj * Whenever interrupts arrive on a CPU which is handling a lower pil 4483446Smrj * interrupt, they update the lower pil's [0] to show time spent in the 4493446Smrj * handler that they've interrupted. This results in a growing discrepancy 4503446Smrj * between [0] and [1], which is returned the next time intr_get_time() is 4513446Smrj * called. Time spent in the higher-pil interrupt will not be returned in 4523446Smrj * the next intr_get_time() call from the original interrupt, because 4533446Smrj * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 454916Sschwartz */ 455916Sschwartz uint64_t 4563446Smrj intr_get_time(void) 457916Sschwartz { 4583446Smrj struct cpu *cpu; 4593446Smrj struct machcpu *mcpu; 4603446Smrj kthread_t *t; 461916Sschwartz uint64_t time, delta, ret; 4623446Smrj uint_t pil; 463916Sschwartz 4643446Smrj cli(); 4653446Smrj cpu = CPU; 4663446Smrj mcpu = &cpu->cpu_m; 4673446Smrj t = cpu->cpu_thread; 4683446Smrj pil = t->t_pil; 469916Sschwartz ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 470916Sschwartz ASSERT(t->t_flag & T_INTR_THREAD); 471916Sschwartz ASSERT(pil != 0); 472916Sschwartz ASSERT(t->t_intr_start != 0); 473916Sschwartz 474916Sschwartz time = tsc_read(); 475916Sschwartz delta = time - t->t_intr_start; 476916Sschwartz t->t_intr_start = time; 477916Sschwartz 478916Sschwartz time = mcpu->intrstat[pil][0] + delta; 479916Sschwartz ret = time - mcpu->intrstat[pil][1]; 480916Sschwartz mcpu->intrstat[pil][0] = time; 481916Sschwartz mcpu->intrstat[pil][1] = time; 4821887Sjhaslam cpu->cpu_intracct[cpu->cpu_mstate] += delta; 483916Sschwartz 4843446Smrj sti(); 485916Sschwartz return (ret); 486916Sschwartz } 487916Sschwartz 4883446Smrj static caddr_t 4890Sstevel@tonic-gate dosoftint_prolog( 4900Sstevel@tonic-gate struct cpu *cpu, 4910Sstevel@tonic-gate caddr_t stackptr, 4920Sstevel@tonic-gate uint32_t st_pending, 4930Sstevel@tonic-gate uint_t oldpil) 4940Sstevel@tonic-gate { 4950Sstevel@tonic-gate kthread_t *t, *volatile it; 4960Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 4970Sstevel@tonic-gate uint_t pil; 4983446Smrj hrtime_t now; 4990Sstevel@tonic-gate 5000Sstevel@tonic-gate top: 5010Sstevel@tonic-gate ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 5020Sstevel@tonic-gate 5030Sstevel@tonic-gate pil = bsrw_insn((uint16_t)st_pending); 5040Sstevel@tonic-gate if (pil <= oldpil || pil <= cpu->cpu_base_spl) 5050Sstevel@tonic-gate return (0); 5060Sstevel@tonic-gate 5070Sstevel@tonic-gate /* 5080Sstevel@tonic-gate * XX64 Sigh. 5090Sstevel@tonic-gate * 5100Sstevel@tonic-gate * This is a transliteration of the i386 assembler code for 5110Sstevel@tonic-gate * soft interrupts. One question is "why does this need 5120Sstevel@tonic-gate * to be atomic?" One possible race is -other- processors 5130Sstevel@tonic-gate * posting soft interrupts to us in set_pending() i.e. the 5140Sstevel@tonic-gate * CPU might get preempted just after the address computation, 5150Sstevel@tonic-gate * but just before the atomic transaction, so another CPU would 5160Sstevel@tonic-gate * actually set the original CPU's st_pending bit. However, 5170Sstevel@tonic-gate * it looks like it would be simpler to disable preemption there. 5180Sstevel@tonic-gate * Are there other races for which preemption control doesn't work? 5190Sstevel@tonic-gate * 5200Sstevel@tonic-gate * The i386 assembler version -also- checks to see if the bit 5210Sstevel@tonic-gate * being cleared was actually set; if it wasn't, it rechecks 5220Sstevel@tonic-gate * for more. This seems a bit strange, as the only code that 5230Sstevel@tonic-gate * ever clears the bit is -this- code running with interrupts 5240Sstevel@tonic-gate * disabled on -this- CPU. This code would probably be cheaper: 5250Sstevel@tonic-gate * 5260Sstevel@tonic-gate * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 5270Sstevel@tonic-gate * ~(1 << pil)); 5280Sstevel@tonic-gate * 5290Sstevel@tonic-gate * and t->t_preempt--/++ around set_pending() even cheaper, 5300Sstevel@tonic-gate * but at this point, correctness is critical, so we slavishly 5310Sstevel@tonic-gate * emulate the i386 port. 5320Sstevel@tonic-gate */ 5333446Smrj if (atomic_btr32((uint32_t *) 5343446Smrj &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 5350Sstevel@tonic-gate st_pending = mcpu->mcpu_softinfo.st_pending; 5360Sstevel@tonic-gate goto top; 5370Sstevel@tonic-gate } 5380Sstevel@tonic-gate 5390Sstevel@tonic-gate mcpu->mcpu_pri = pil; 5400Sstevel@tonic-gate (*setspl)(pil); 5410Sstevel@tonic-gate 5423446Smrj now = tsc_read(); 5433446Smrj 5440Sstevel@tonic-gate /* 5450Sstevel@tonic-gate * Get set to run interrupt thread. 5460Sstevel@tonic-gate * There should always be an interrupt thread since we 5470Sstevel@tonic-gate * allocate one for each level on the CPU. 5480Sstevel@tonic-gate */ 5490Sstevel@tonic-gate it = cpu->cpu_intr_thread; 5500Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 5510Sstevel@tonic-gate 552989Sesolom /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 553989Sesolom t = cpu->cpu_thread; 554989Sesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 5553446Smrj hrtime_t intrtime = now - t->t_intr_start; 556989Sesolom mcpu->intrstat[pil][0] += intrtime; 557989Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 558989Sesolom t->t_intr_start = 0; 559989Sesolom } 560989Sesolom 5610Sstevel@tonic-gate /* 5620Sstevel@tonic-gate * Note that the code in kcpc_overflow_intr -relies- on the 5630Sstevel@tonic-gate * ordering of events here - in particular that t->t_lwp of 5640Sstevel@tonic-gate * the interrupt thread is set to the pinned thread *before* 565989Sesolom * curthread is changed. 5660Sstevel@tonic-gate */ 5670Sstevel@tonic-gate it->t_lwp = t->t_lwp; 5680Sstevel@tonic-gate it->t_state = TS_ONPROC; 5690Sstevel@tonic-gate 5700Sstevel@tonic-gate /* 5710Sstevel@tonic-gate * Push interrupted thread onto list from new thread. 5720Sstevel@tonic-gate * Set the new thread as the current one. 5730Sstevel@tonic-gate * Set interrupted thread's T_SP because if it is the idle thread, 5740Sstevel@tonic-gate * resume() may use that stack between threads. 5750Sstevel@tonic-gate */ 5760Sstevel@tonic-gate 5770Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 5780Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; 5790Sstevel@tonic-gate 5800Sstevel@tonic-gate it->t_intr = t; 5810Sstevel@tonic-gate cpu->cpu_thread = it; 5820Sstevel@tonic-gate 5830Sstevel@tonic-gate /* 5840Sstevel@tonic-gate * Set bit for this pil in CPU's interrupt active bitmask. 5850Sstevel@tonic-gate */ 5860Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 5870Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 5880Sstevel@tonic-gate 5890Sstevel@tonic-gate /* 5900Sstevel@tonic-gate * Initialize thread priority level from intr_pri 5910Sstevel@tonic-gate */ 5920Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 5930Sstevel@tonic-gate it->t_pri = (pri_t)pil + intr_pri; 5943446Smrj it->t_intr_start = now; 5950Sstevel@tonic-gate 5960Sstevel@tonic-gate return (it->t_stk); 5970Sstevel@tonic-gate } 5980Sstevel@tonic-gate 5993446Smrj static void 6000Sstevel@tonic-gate dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 6010Sstevel@tonic-gate { 6020Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 6030Sstevel@tonic-gate kthread_t *t, *it; 6040Sstevel@tonic-gate uint_t pil, basespl; 605590Sesolom hrtime_t intrtime; 6063446Smrj hrtime_t now = tsc_read(); 6070Sstevel@tonic-gate 6080Sstevel@tonic-gate it = cpu->cpu_thread; 6090Sstevel@tonic-gate pil = it->t_pil; 6100Sstevel@tonic-gate 6110Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 6120Sstevel@tonic-gate 6130Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 6140Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 6153446Smrj intrtime = now - it->t_intr_start; 616916Sschwartz mcpu->intrstat[pil][0] += intrtime; 617590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 6180Sstevel@tonic-gate 6190Sstevel@tonic-gate /* 6200Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 6210Sstevel@tonic-gate * then the interrupt was never blocked and the return is 6220Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 6230Sstevel@tonic-gate */ 6240Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 6250Sstevel@tonic-gate /* 6260Sstevel@tonic-gate * Put thread back on the interrupt thread list. 6270Sstevel@tonic-gate * This was an interrupt thread, so set CPU's base SPL. 6280Sstevel@tonic-gate */ 6290Sstevel@tonic-gate set_base_spl(); 6300Sstevel@tonic-gate it->t_state = TS_FREE; 6310Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 6320Sstevel@tonic-gate cpu->cpu_intr_thread = it; 6330Sstevel@tonic-gate (void) splhigh(); 6343446Smrj sti(); 6350Sstevel@tonic-gate swtch(); 6360Sstevel@tonic-gate /*NOTREACHED*/ 6373446Smrj panic("dosoftint_epilog: swtch returned"); 6380Sstevel@tonic-gate } 6390Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 6400Sstevel@tonic-gate cpu->cpu_intr_thread = it; 6410Sstevel@tonic-gate it->t_state = TS_FREE; 6420Sstevel@tonic-gate cpu->cpu_thread = t; 6430Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 6443446Smrj t->t_intr_start = now; 6450Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 6460Sstevel@tonic-gate pil = MAX(oldpil, basespl); 6470Sstevel@tonic-gate mcpu->mcpu_pri = pil; 6480Sstevel@tonic-gate (*setspl)(pil); 6490Sstevel@tonic-gate } 6500Sstevel@tonic-gate 6513446Smrj 6520Sstevel@tonic-gate /* 6530Sstevel@tonic-gate * Make the interrupted thread 'to' be runnable. 6540Sstevel@tonic-gate * 6550Sstevel@tonic-gate * Since t->t_sp has already been saved, t->t_pc is all 6560Sstevel@tonic-gate * that needs to be set in this function. 6570Sstevel@tonic-gate * 6580Sstevel@tonic-gate * Returns the interrupt level of the interrupt thread. 6590Sstevel@tonic-gate */ 6600Sstevel@tonic-gate int 6610Sstevel@tonic-gate intr_passivate( 6620Sstevel@tonic-gate kthread_t *it, /* interrupt thread */ 6630Sstevel@tonic-gate kthread_t *t) /* interrupted thread */ 6640Sstevel@tonic-gate { 6650Sstevel@tonic-gate extern void _sys_rtt(); 6660Sstevel@tonic-gate 6670Sstevel@tonic-gate ASSERT(it->t_flag & T_INTR_THREAD); 6680Sstevel@tonic-gate ASSERT(SA(t->t_sp) == t->t_sp); 6690Sstevel@tonic-gate 6700Sstevel@tonic-gate t->t_pc = (uintptr_t)_sys_rtt; 6710Sstevel@tonic-gate return (it->t_pil); 6720Sstevel@tonic-gate } 6730Sstevel@tonic-gate 6740Sstevel@tonic-gate /* 6750Sstevel@tonic-gate * Create interrupt kstats for this CPU. 6760Sstevel@tonic-gate */ 6770Sstevel@tonic-gate void 6780Sstevel@tonic-gate cpu_create_intrstat(cpu_t *cp) 6790Sstevel@tonic-gate { 6800Sstevel@tonic-gate int i; 6810Sstevel@tonic-gate kstat_t *intr_ksp; 6820Sstevel@tonic-gate kstat_named_t *knp; 6830Sstevel@tonic-gate char name[KSTAT_STRLEN]; 6840Sstevel@tonic-gate zoneid_t zoneid; 6850Sstevel@tonic-gate 6860Sstevel@tonic-gate ASSERT(MUTEX_HELD(&cpu_lock)); 6870Sstevel@tonic-gate 6880Sstevel@tonic-gate if (pool_pset_enabled()) 6890Sstevel@tonic-gate zoneid = GLOBAL_ZONEID; 6900Sstevel@tonic-gate else 6910Sstevel@tonic-gate zoneid = ALL_ZONES; 6920Sstevel@tonic-gate 6930Sstevel@tonic-gate intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 6940Sstevel@tonic-gate KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 6950Sstevel@tonic-gate 6960Sstevel@tonic-gate /* 6970Sstevel@tonic-gate * Initialize each PIL's named kstat 6980Sstevel@tonic-gate */ 6990Sstevel@tonic-gate if (intr_ksp != NULL) { 7000Sstevel@tonic-gate intr_ksp->ks_update = cpu_kstat_intrstat_update; 7010Sstevel@tonic-gate knp = (kstat_named_t *)intr_ksp->ks_data; 7020Sstevel@tonic-gate intr_ksp->ks_private = cp; 7030Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 7040Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 7050Sstevel@tonic-gate i + 1); 7060Sstevel@tonic-gate kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 7070Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 7080Sstevel@tonic-gate i + 1); 7090Sstevel@tonic-gate kstat_named_init(&knp[(i * 2) + 1], name, 7100Sstevel@tonic-gate KSTAT_DATA_UINT64); 7110Sstevel@tonic-gate } 7120Sstevel@tonic-gate kstat_install(intr_ksp); 7130Sstevel@tonic-gate } 7140Sstevel@tonic-gate } 7150Sstevel@tonic-gate 7160Sstevel@tonic-gate /* 7170Sstevel@tonic-gate * Delete interrupt kstats for this CPU. 7180Sstevel@tonic-gate */ 7190Sstevel@tonic-gate void 7200Sstevel@tonic-gate cpu_delete_intrstat(cpu_t *cp) 7210Sstevel@tonic-gate { 7220Sstevel@tonic-gate kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 7230Sstevel@tonic-gate } 7240Sstevel@tonic-gate 7250Sstevel@tonic-gate /* 7260Sstevel@tonic-gate * Convert interrupt statistics from CPU ticks to nanoseconds and 7270Sstevel@tonic-gate * update kstat. 7280Sstevel@tonic-gate */ 7290Sstevel@tonic-gate int 7300Sstevel@tonic-gate cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 7310Sstevel@tonic-gate { 7320Sstevel@tonic-gate kstat_named_t *knp = ksp->ks_data; 7330Sstevel@tonic-gate cpu_t *cpup = (cpu_t *)ksp->ks_private; 7340Sstevel@tonic-gate int i; 7350Sstevel@tonic-gate hrtime_t hrt; 7360Sstevel@tonic-gate 7370Sstevel@tonic-gate if (rw == KSTAT_WRITE) 7380Sstevel@tonic-gate return (EACCES); 7390Sstevel@tonic-gate 7400Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 741916Sschwartz hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 7420Sstevel@tonic-gate tsc_scalehrtime(&hrt); 7430Sstevel@tonic-gate knp[i * 2].value.ui64 = (uint64_t)hrt; 7440Sstevel@tonic-gate knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 7450Sstevel@tonic-gate } 7460Sstevel@tonic-gate 7470Sstevel@tonic-gate return (0); 7480Sstevel@tonic-gate } 7490Sstevel@tonic-gate 7500Sstevel@tonic-gate /* 7510Sstevel@tonic-gate * An interrupt thread is ending a time slice, so compute the interval it 7520Sstevel@tonic-gate * ran for and update the statistic for its PIL. 7530Sstevel@tonic-gate */ 7540Sstevel@tonic-gate void 7550Sstevel@tonic-gate cpu_intr_swtch_enter(kthread_id_t t) 7560Sstevel@tonic-gate { 7570Sstevel@tonic-gate uint64_t interval; 7580Sstevel@tonic-gate uint64_t start; 759590Sesolom cpu_t *cpu; 7600Sstevel@tonic-gate 7610Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 7620Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 7630Sstevel@tonic-gate 7640Sstevel@tonic-gate /* 7650Sstevel@tonic-gate * We could be here with a zero timestamp. This could happen if: 7660Sstevel@tonic-gate * an interrupt thread which no longer has a pinned thread underneath 7670Sstevel@tonic-gate * it (i.e. it blocked at some point in its past) has finished running 7680Sstevel@tonic-gate * its handler. intr_thread() updated the interrupt statistic for its 7690Sstevel@tonic-gate * PIL and zeroed its timestamp. Since there was no pinned thread to 7700Sstevel@tonic-gate * return to, swtch() gets called and we end up here. 771590Sesolom * 772590Sesolom * Note that we use atomic ops below (cas64 and atomic_add_64), which 773590Sesolom * we don't use in the functions above, because we're not called 774590Sesolom * with interrupts blocked, but the epilog/prolog functions are. 7750Sstevel@tonic-gate */ 7760Sstevel@tonic-gate if (t->t_intr_start) { 7770Sstevel@tonic-gate do { 7780Sstevel@tonic-gate start = t->t_intr_start; 7790Sstevel@tonic-gate interval = tsc_read() - start; 7800Sstevel@tonic-gate } while (cas64(&t->t_intr_start, start, 0) != start); 781590Sesolom cpu = CPU; 782916Sschwartz cpu->cpu_m.intrstat[t->t_pil][0] += interval; 783590Sesolom 784590Sesolom atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 785590Sesolom interval); 7860Sstevel@tonic-gate } else 7870Sstevel@tonic-gate ASSERT(t->t_intr == NULL); 7880Sstevel@tonic-gate } 7890Sstevel@tonic-gate 7900Sstevel@tonic-gate /* 7910Sstevel@tonic-gate * An interrupt thread is returning from swtch(). Place a starting timestamp 7920Sstevel@tonic-gate * in its thread structure. 7930Sstevel@tonic-gate */ 7940Sstevel@tonic-gate void 7950Sstevel@tonic-gate cpu_intr_swtch_exit(kthread_id_t t) 7960Sstevel@tonic-gate { 7970Sstevel@tonic-gate uint64_t ts; 7980Sstevel@tonic-gate 7990Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 8000Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 8010Sstevel@tonic-gate 8020Sstevel@tonic-gate do { 8030Sstevel@tonic-gate ts = t->t_intr_start; 8040Sstevel@tonic-gate } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 8050Sstevel@tonic-gate } 8063446Smrj 8073446Smrj /* 8083446Smrj * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 8093446Smrj */ 8103446Smrj /*ARGSUSED*/ 8113446Smrj static void 8123446Smrj dispatch_hilevel(uint_t vector, uint_t arg2) 8133446Smrj { 8143446Smrj sti(); 8153446Smrj av_dispatch_autovect(vector); 8163446Smrj cli(); 8173446Smrj } 8183446Smrj 8193446Smrj /* 8203446Smrj * Dispatch a soft interrupt 8213446Smrj */ 8223446Smrj /*ARGSUSED*/ 8233446Smrj static void 8243446Smrj dispatch_softint(uint_t oldpil, uint_t arg2) 8253446Smrj { 8263446Smrj struct cpu *cpu = CPU; 8273446Smrj 8283446Smrj sti(); 8293446Smrj av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 8303446Smrj cli(); 8313446Smrj 8323446Smrj /* 8333446Smrj * Must run softint_epilog() on the interrupt thread stack, since 8343446Smrj * there may not be a return from it if the interrupt thread blocked. 8353446Smrj */ 8363446Smrj dosoftint_epilog(cpu, oldpil); 8373446Smrj } 8383446Smrj 8393446Smrj /* 8403446Smrj * Dispatch a normal interrupt 8413446Smrj */ 8423446Smrj static void 8433446Smrj dispatch_hardint(uint_t vector, uint_t oldipl) 8443446Smrj { 8453446Smrj struct cpu *cpu = CPU; 8463446Smrj 8473446Smrj sti(); 8483446Smrj av_dispatch_autovect(vector); 8493446Smrj cli(); 8503446Smrj 8513446Smrj /* 8523446Smrj * Must run intr_thread_epilog() on the interrupt thread stack, since 8533446Smrj * there may not be a return from it if the interrupt thread blocked. 8543446Smrj */ 8553446Smrj intr_thread_epilog(cpu, vector, oldipl); 8563446Smrj } 8573446Smrj 8583446Smrj /* 8593446Smrj * Deliver any softints the current interrupt priority allows. 8603446Smrj * Called with interrupts disabled. 8613446Smrj */ 8623446Smrj void 8633446Smrj dosoftint(struct regs *regs) 8643446Smrj { 8653446Smrj struct cpu *cpu = CPU; 8663446Smrj int oldipl; 8673446Smrj caddr_t newsp; 8683446Smrj 8693446Smrj while (cpu->cpu_softinfo.st_pending) { 8703446Smrj oldipl = cpu->cpu_pri; 8713446Smrj newsp = dosoftint_prolog(cpu, (caddr_t)regs, 8723446Smrj cpu->cpu_softinfo.st_pending, oldipl); 8733446Smrj /* 8743446Smrj * If returned stack pointer is NULL, priority is too high 8753446Smrj * to run any of the pending softints now. 8763446Smrj * Break out and they will be run later. 8773446Smrj */ 8783446Smrj if (newsp == NULL) 8793446Smrj break; 8803446Smrj switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 8813446Smrj } 8823446Smrj } 8833446Smrj 8843446Smrj /* 8853446Smrj * Interrupt service routine, called with interrupts disabled. 8863446Smrj */ 8873446Smrj /*ARGSUSED*/ 8883446Smrj void 8893446Smrj do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 8903446Smrj { 8913446Smrj struct cpu *cpu = CPU; 8923446Smrj int newipl, oldipl = cpu->cpu_pri; 8933446Smrj uint_t vector; 8943446Smrj caddr_t newsp; 8953446Smrj 8963446Smrj #ifdef TRAPTRACE 8973446Smrj ttp->ttr_marker = TT_INTERRUPT; 8983446Smrj ttp->ttr_ipl = 0xff; 8993446Smrj ttp->ttr_pri = oldipl; 9003446Smrj ttp->ttr_spl = cpu->cpu_base_spl; 9013446Smrj ttp->ttr_vector = 0xff; 9023446Smrj #endif /* TRAPTRACE */ 9033446Smrj 9043446Smrj /* 9054191Sjosephb * Handle any pending TLB flushing 9064191Sjosephb */ 9074191Sjosephb tlb_service(); 9084191Sjosephb 9094191Sjosephb /* 9103446Smrj * If it's a softint go do it now. 9113446Smrj */ 9123446Smrj if (rp->r_trapno == T_SOFTINT) { 9133446Smrj dosoftint(rp); 9143446Smrj ASSERT(!interrupts_enabled()); 9153446Smrj return; 9163446Smrj } 9173446Smrj 9183446Smrj /* 9193446Smrj * Raise the interrupt priority. 9203446Smrj */ 9213446Smrj newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 9223446Smrj #ifdef TRAPTRACE 9233446Smrj ttp->ttr_ipl = newipl; 9243446Smrj #endif /* TRAPTRACE */ 9253446Smrj 9263446Smrj /* 9273446Smrj * Bail if it is a spurious interrupt 9283446Smrj */ 9293446Smrj if (newipl == -1) 9303446Smrj return; 9313446Smrj cpu->cpu_pri = newipl; 9323446Smrj vector = rp->r_trapno; 9333446Smrj #ifdef TRAPTRACE 9343446Smrj ttp->ttr_vector = vector; 9353446Smrj #endif /* TRAPTRACE */ 9363446Smrj if (newipl > LOCK_LEVEL) { 9373446Smrj /* 9383446Smrj * High priority interrupts run on this cpu's interrupt stack. 9393446Smrj */ 9403446Smrj if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 9413446Smrj newsp = cpu->cpu_intr_stack; 9423446Smrj switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 9433446Smrj } else { /* already on the interrupt stack */ 9443446Smrj dispatch_hilevel(vector, 0); 9453446Smrj } 9463446Smrj (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 9473446Smrj } else { 9483446Smrj /* 9493446Smrj * Run this interrupt in a separate thread. 9503446Smrj */ 9513446Smrj newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 9523446Smrj switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 9533446Smrj } 9543446Smrj 9553446Smrj /* 9563446Smrj * Deliver any pending soft interrupts. 9573446Smrj */ 9583446Smrj if (cpu->cpu_softinfo.st_pending) 9593446Smrj dosoftint(rp); 9603446Smrj } 9613446Smrj 9623446Smrj /* 9633446Smrj * Common tasks always done by _sys_rtt, called with interrupts disabled. 9643446Smrj * Returns 1 if returning to userland, 0 if returning to system mode. 9653446Smrj */ 9663446Smrj int 9673446Smrj sys_rtt_common(struct regs *rp) 9683446Smrj { 9693446Smrj kthread_t *tp; 9703446Smrj extern void mutex_exit_critical_start(); 9713446Smrj extern long mutex_exit_critical_size; 9723446Smrj 9733446Smrj loop: 9743446Smrj 9753446Smrj /* 9763446Smrj * Check if returning to user 9773446Smrj */ 9783446Smrj tp = CPU->cpu_thread; 9793446Smrj if (USERMODE(rp->r_cs)) { 9803446Smrj /* 9813446Smrj * Check if AST pending. 9823446Smrj */ 9833446Smrj if (tp->t_astflag) { 9843446Smrj /* 9853446Smrj * Let trap() handle the AST 9863446Smrj */ 9873446Smrj sti(); 9883446Smrj rp->r_trapno = T_AST; 9893446Smrj trap(rp, (caddr_t)0, CPU->cpu_id); 9903446Smrj cli(); 9913446Smrj goto loop; 9923446Smrj } 9933446Smrj 9943446Smrj #if defined(__amd64) 9953446Smrj /* 9963446Smrj * We are done if segment registers do not need updating. 9973446Smrj */ 998*4503Ssudheer if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0) 9993446Smrj return (1); 10003446Smrj 10013446Smrj if (update_sregs(rp, tp->t_lwp)) { 10023446Smrj /* 10033446Smrj * 1 or more of the selectors is bad. 10043446Smrj * Deliver a SIGSEGV. 10053446Smrj */ 10063446Smrj proc_t *p = ttoproc(tp); 10073446Smrj 10083446Smrj sti(); 10093446Smrj mutex_enter(&p->p_lock); 10103446Smrj tp->t_lwp->lwp_cursig = SIGSEGV; 10113446Smrj mutex_exit(&p->p_lock); 10123446Smrj psig(); 10133446Smrj tp->t_sig_check = 1; 10143446Smrj cli(); 10153446Smrj } 1016*4503Ssudheer tp->t_lwp->lwp_pcb.pcb_rupdate = 0; 10173446Smrj 10183446Smrj #endif /* __amd64 */ 10193446Smrj return (1); 10203446Smrj } 10213446Smrj 10223446Smrj /* 10233446Smrj * Here if we are returning to supervisor mode. 10243446Smrj * Check for a kernel preemption request. 10253446Smrj */ 10263446Smrj if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 10273446Smrj 10283446Smrj /* 10293446Smrj * Do nothing if already in kpreempt 10303446Smrj */ 10313446Smrj if (!tp->t_preempt_lk) { 10323446Smrj tp->t_preempt_lk = 1; 10333446Smrj sti(); 10343446Smrj kpreempt(1); /* asynchronous kpreempt call */ 10353446Smrj cli(); 10363446Smrj tp->t_preempt_lk = 0; 10373446Smrj } 10383446Smrj } 10393446Smrj 10403446Smrj /* 10413446Smrj * If we interrupted the mutex_exit() critical region we must 10423446Smrj * reset the PC back to the beginning to prevent missed wakeups 10433446Smrj * See the comments in mutex_exit() for details. 10443446Smrj */ 10453446Smrj if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 10463446Smrj mutex_exit_critical_size) { 10473446Smrj rp->r_pc = (greg_t)mutex_exit_critical_start; 10483446Smrj } 10493446Smrj return (0); 10503446Smrj } 10513446Smrj 10523446Smrj void 10533446Smrj send_dirint(int cpuid, int int_level) 10543446Smrj { 10553446Smrj (*send_dirintf)(cpuid, int_level); 10563446Smrj } 10573446Smrj 10583446Smrj /* 10593446Smrj * do_splx routine, takes new ipl to set 10603446Smrj * returns the old ipl. 10613446Smrj * We are careful not to set priority lower than CPU->cpu_base_pri, 10623446Smrj * even though it seems we're raising the priority, it could be set 10633446Smrj * higher at any time by an interrupt routine, so we must block interrupts 10643446Smrj * and look at CPU->cpu_base_pri 10653446Smrj */ 10663446Smrj int 10673446Smrj do_splx(int newpri) 10683446Smrj { 10693446Smrj ulong_t flag; 10703446Smrj cpu_t *cpu; 10713446Smrj int curpri, basepri; 10723446Smrj 10733446Smrj flag = intr_clear(); 10743446Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 10753446Smrj curpri = cpu->cpu_m.mcpu_pri; 10763446Smrj basepri = cpu->cpu_base_spl; 10773446Smrj if (newpri < basepri) 10783446Smrj newpri = basepri; 10793446Smrj cpu->cpu_m.mcpu_pri = newpri; 10803446Smrj (*setspl)(newpri); 10813446Smrj /* 10823446Smrj * If we are going to reenable interrupts see if new priority level 10833446Smrj * allows pending softint delivery. 10843446Smrj */ 10853446Smrj if ((flag & PS_IE) && 10863446Smrj bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 10873446Smrj fakesoftint(); 10883446Smrj ASSERT(!interrupts_enabled()); 10893446Smrj intr_restore(flag); 10903446Smrj return (curpri); 10913446Smrj } 10923446Smrj 10933446Smrj /* 10943446Smrj * Common spl raise routine, takes new ipl to set 10953446Smrj * returns the old ipl, will not lower ipl. 10963446Smrj */ 10973446Smrj int 10983446Smrj splr(int newpri) 10993446Smrj { 11003446Smrj ulong_t flag; 11013446Smrj cpu_t *cpu; 11023446Smrj int curpri, basepri; 11033446Smrj 11043446Smrj flag = intr_clear(); 11053446Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 11063446Smrj curpri = cpu->cpu_m.mcpu_pri; 11073446Smrj /* 11083446Smrj * Only do something if new priority is larger 11093446Smrj */ 11103446Smrj if (newpri > curpri) { 11113446Smrj basepri = cpu->cpu_base_spl; 11123446Smrj if (newpri < basepri) 11133446Smrj newpri = basepri; 11143446Smrj cpu->cpu_m.mcpu_pri = newpri; 11153446Smrj (*setspl)(newpri); 11163446Smrj /* 11173446Smrj * See if new priority level allows pending softint delivery 11183446Smrj */ 11193446Smrj if ((flag & PS_IE) && 11203446Smrj bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 11213446Smrj fakesoftint(); 11223446Smrj } 11233446Smrj intr_restore(flag); 11243446Smrj return (curpri); 11253446Smrj } 11263446Smrj 11273446Smrj int 11283446Smrj getpil(void) 11293446Smrj { 11303446Smrj return (CPU->cpu_m.mcpu_pri); 11313446Smrj } 11323446Smrj 11333446Smrj int 11343446Smrj interrupts_enabled(void) 11353446Smrj { 11363446Smrj ulong_t flag; 11373446Smrj 11383446Smrj flag = getflags(); 11393446Smrj return ((flag & PS_IE) == PS_IE); 11403446Smrj } 11413446Smrj 11423446Smrj #ifdef DEBUG 11433446Smrj void 11443446Smrj assert_ints_enabled(void) 11453446Smrj { 11463446Smrj ASSERT(!interrupts_unleashed || interrupts_enabled()); 11473446Smrj } 11483446Smrj #endif /* DEBUG */ 1149