10Sstevel@tonic-gate /* 20Sstevel@tonic-gate * CDDL HEADER START 30Sstevel@tonic-gate * 40Sstevel@tonic-gate * The contents of this file are subject to the terms of the 51455Sandrei * Common Development and Distribution License (the "License"). 61455Sandrei * You may not use this file except in compliance with the License. 70Sstevel@tonic-gate * 80Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 90Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 100Sstevel@tonic-gate * See the License for the specific language governing permissions 110Sstevel@tonic-gate * and limitations under the License. 120Sstevel@tonic-gate * 130Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 140Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 150Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 160Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 170Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 180Sstevel@tonic-gate * 190Sstevel@tonic-gate * CDDL HEADER END 200Sstevel@tonic-gate */ 210Sstevel@tonic-gate /* 22*3446Smrj * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 230Sstevel@tonic-gate * Use is subject to license terms. 240Sstevel@tonic-gate */ 250Sstevel@tonic-gate 260Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 270Sstevel@tonic-gate 280Sstevel@tonic-gate #include <sys/cpuvar.h> 290Sstevel@tonic-gate #include <sys/regset.h> 300Sstevel@tonic-gate #include <sys/psw.h> 310Sstevel@tonic-gate #include <sys/types.h> 320Sstevel@tonic-gate #include <sys/thread.h> 330Sstevel@tonic-gate #include <sys/systm.h> 340Sstevel@tonic-gate #include <sys/segments.h> 350Sstevel@tonic-gate #include <sys/pcb.h> 360Sstevel@tonic-gate #include <sys/trap.h> 370Sstevel@tonic-gate #include <sys/ftrace.h> 380Sstevel@tonic-gate #include <sys/traptrace.h> 390Sstevel@tonic-gate #include <sys/clock.h> 400Sstevel@tonic-gate #include <sys/panic.h> 410Sstevel@tonic-gate #include <sys/disp.h> 420Sstevel@tonic-gate #include <vm/seg_kp.h> 430Sstevel@tonic-gate #include <sys/stack.h> 440Sstevel@tonic-gate #include <sys/sysmacros.h> 450Sstevel@tonic-gate #include <sys/cmn_err.h> 460Sstevel@tonic-gate #include <sys/kstat.h> 470Sstevel@tonic-gate #include <sys/smp_impldefs.h> 480Sstevel@tonic-gate #include <sys/pool_pset.h> 490Sstevel@tonic-gate #include <sys/zone.h> 500Sstevel@tonic-gate #include <sys/bitmap.h> 51*3446Smrj #include <sys/archsystm.h> 52*3446Smrj #include <sys/machsystm.h> 53*3446Smrj #include <sys/ontrap.h> 54*3446Smrj #include <sys/x86_archext.h> 55*3446Smrj #include <sys/promif.h> 560Sstevel@tonic-gate 570Sstevel@tonic-gate 580Sstevel@tonic-gate /* 59*3446Smrj * Set cpu's base SPL level to the highest active interrupt level 600Sstevel@tonic-gate */ 61*3446Smrj void 62*3446Smrj set_base_spl(void) 630Sstevel@tonic-gate { 64*3446Smrj struct cpu *cpu = CPU; 65*3446Smrj uint16_t active = (uint16_t)cpu->cpu_intr_actv; 660Sstevel@tonic-gate 67*3446Smrj cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 680Sstevel@tonic-gate } 690Sstevel@tonic-gate 700Sstevel@tonic-gate /* 710Sstevel@tonic-gate * Do all the work necessary to set up the cpu and thread structures 720Sstevel@tonic-gate * to dispatch a high-level interrupt. 730Sstevel@tonic-gate * 740Sstevel@tonic-gate * Returns 0 if we're -not- already on the high-level interrupt stack, 750Sstevel@tonic-gate * (and *must* switch to it), non-zero if we are already on that stack. 760Sstevel@tonic-gate * 770Sstevel@tonic-gate * Called with interrupts masked. 780Sstevel@tonic-gate * The 'pil' is already set to the appropriate level for rp->r_trapno. 790Sstevel@tonic-gate */ 80*3446Smrj static int 810Sstevel@tonic-gate hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 820Sstevel@tonic-gate { 830Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 840Sstevel@tonic-gate uint_t mask; 85590Sesolom hrtime_t intrtime; 86*3446Smrj hrtime_t now = tsc_read(); 870Sstevel@tonic-gate 880Sstevel@tonic-gate ASSERT(pil > LOCK_LEVEL); 890Sstevel@tonic-gate 900Sstevel@tonic-gate if (pil == CBE_HIGH_PIL) { 910Sstevel@tonic-gate cpu->cpu_profile_pil = oldpil; 920Sstevel@tonic-gate if (USERMODE(rp->r_cs)) { 930Sstevel@tonic-gate cpu->cpu_profile_pc = 0; 940Sstevel@tonic-gate cpu->cpu_profile_upc = rp->r_pc; 950Sstevel@tonic-gate } else { 960Sstevel@tonic-gate cpu->cpu_profile_pc = rp->r_pc; 970Sstevel@tonic-gate cpu->cpu_profile_upc = 0; 980Sstevel@tonic-gate } 990Sstevel@tonic-gate } 1000Sstevel@tonic-gate 1010Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 1020Sstevel@tonic-gate if (mask != 0) { 1030Sstevel@tonic-gate int nestpil; 1040Sstevel@tonic-gate 1050Sstevel@tonic-gate /* 1060Sstevel@tonic-gate * We have interrupted another high-level interrupt. 1070Sstevel@tonic-gate * Load starting timestamp, compute interval, update 1080Sstevel@tonic-gate * cumulative counter. 1090Sstevel@tonic-gate */ 1100Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 1110Sstevel@tonic-gate ASSERT(nestpil < pil); 112*3446Smrj intrtime = now - 1130Sstevel@tonic-gate mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 114916Sschwartz mcpu->intrstat[nestpil][0] += intrtime; 115590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1160Sstevel@tonic-gate /* 1170Sstevel@tonic-gate * Another high-level interrupt is active below this one, so 1180Sstevel@tonic-gate * there is no need to check for an interrupt thread. That 1190Sstevel@tonic-gate * will be done by the lowest priority high-level interrupt 1200Sstevel@tonic-gate * active. 1210Sstevel@tonic-gate */ 1220Sstevel@tonic-gate } else { 1230Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 1240Sstevel@tonic-gate 1250Sstevel@tonic-gate /* 1260Sstevel@tonic-gate * See if we are interrupting a low-level interrupt thread. 1270Sstevel@tonic-gate * If so, account for its time slice only if its time stamp 1280Sstevel@tonic-gate * is non-zero. 1290Sstevel@tonic-gate */ 1300Sstevel@tonic-gate if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 131*3446Smrj intrtime = now - t->t_intr_start; 132916Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 133590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1340Sstevel@tonic-gate t->t_intr_start = 0; 1350Sstevel@tonic-gate } 1360Sstevel@tonic-gate } 1370Sstevel@tonic-gate 1380Sstevel@tonic-gate /* 1390Sstevel@tonic-gate * Store starting timestamp in CPU structure for this PIL. 1400Sstevel@tonic-gate */ 141*3446Smrj mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 1420Sstevel@tonic-gate 1430Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 1440Sstevel@tonic-gate 1450Sstevel@tonic-gate if (pil == 15) { 1460Sstevel@tonic-gate /* 1470Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 1480Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 1490Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 1500Sstevel@tonic-gate * the lower half of cpu_intr_actv. 1510Sstevel@tonic-gate */ 1520Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 1530Sstevel@tonic-gate (*refcntp)++; 1540Sstevel@tonic-gate } 1550Sstevel@tonic-gate 1560Sstevel@tonic-gate mask = cpu->cpu_intr_actv; 1570Sstevel@tonic-gate 1580Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 1590Sstevel@tonic-gate 1600Sstevel@tonic-gate return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 1610Sstevel@tonic-gate } 1620Sstevel@tonic-gate 1630Sstevel@tonic-gate /* 1640Sstevel@tonic-gate * Does most of the work of returning from a high level interrupt. 1650Sstevel@tonic-gate * 1660Sstevel@tonic-gate * Returns 0 if there are no more high level interrupts (in which 1670Sstevel@tonic-gate * case we must switch back to the interrupted thread stack) or 1680Sstevel@tonic-gate * non-zero if there are more (in which case we should stay on it). 1690Sstevel@tonic-gate * 1700Sstevel@tonic-gate * Called with interrupts masked 1710Sstevel@tonic-gate */ 172*3446Smrj static int 1730Sstevel@tonic-gate hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 1740Sstevel@tonic-gate { 1750Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 1760Sstevel@tonic-gate uint_t mask; 177590Sesolom hrtime_t intrtime; 178*3446Smrj hrtime_t now = tsc_read(); 1790Sstevel@tonic-gate 1800Sstevel@tonic-gate ASSERT(mcpu->mcpu_pri == pil); 1810Sstevel@tonic-gate 1820Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 1830Sstevel@tonic-gate 1840Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 1850Sstevel@tonic-gate 1860Sstevel@tonic-gate if (pil == 15) { 1870Sstevel@tonic-gate /* 1880Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 1890Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 1900Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 1910Sstevel@tonic-gate * the lower half of cpu_intr_actv. 1920Sstevel@tonic-gate */ 1930Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 1940Sstevel@tonic-gate 1950Sstevel@tonic-gate ASSERT(*refcntp > 0); 1960Sstevel@tonic-gate 1970Sstevel@tonic-gate if (--(*refcntp) == 0) 1980Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 1990Sstevel@tonic-gate } else { 2000Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 2010Sstevel@tonic-gate } 2020Sstevel@tonic-gate 2030Sstevel@tonic-gate ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 2040Sstevel@tonic-gate 205*3446Smrj intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 206916Sschwartz mcpu->intrstat[pil][0] += intrtime; 207590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 2080Sstevel@tonic-gate 2090Sstevel@tonic-gate /* 2100Sstevel@tonic-gate * Check for lower-pil nested high-level interrupt beneath 2110Sstevel@tonic-gate * current one. If so, place a starting timestamp in its 2120Sstevel@tonic-gate * pil_high_start entry. 2130Sstevel@tonic-gate */ 2140Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 2150Sstevel@tonic-gate if (mask != 0) { 2160Sstevel@tonic-gate int nestpil; 2170Sstevel@tonic-gate 2180Sstevel@tonic-gate /* 2190Sstevel@tonic-gate * find PIL of nested interrupt 2200Sstevel@tonic-gate */ 2210Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 2220Sstevel@tonic-gate ASSERT(nestpil < pil); 223*3446Smrj mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 2240Sstevel@tonic-gate /* 2250Sstevel@tonic-gate * (Another high-level interrupt is active below this one, 2260Sstevel@tonic-gate * so there is no need to check for an interrupt 2270Sstevel@tonic-gate * thread. That will be done by the lowest priority 2280Sstevel@tonic-gate * high-level interrupt active.) 2290Sstevel@tonic-gate */ 2300Sstevel@tonic-gate } else { 2310Sstevel@tonic-gate /* 2320Sstevel@tonic-gate * Check to see if there is a low-level interrupt active. 2330Sstevel@tonic-gate * If so, place a starting timestamp in the thread 2340Sstevel@tonic-gate * structure. 2350Sstevel@tonic-gate */ 2360Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 2370Sstevel@tonic-gate 2380Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 239*3446Smrj t->t_intr_start = now; 2400Sstevel@tonic-gate } 2410Sstevel@tonic-gate 2420Sstevel@tonic-gate mcpu->mcpu_pri = oldpil; 2430Sstevel@tonic-gate (void) (*setlvlx)(oldpil, vecnum); 2440Sstevel@tonic-gate 2450Sstevel@tonic-gate return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 2460Sstevel@tonic-gate } 2470Sstevel@tonic-gate 2480Sstevel@tonic-gate /* 2490Sstevel@tonic-gate * Set up the cpu, thread and interrupt thread structures for 2500Sstevel@tonic-gate * executing an interrupt thread. The new stack pointer of the 2510Sstevel@tonic-gate * interrupt thread (which *must* be switched to) is returned. 2520Sstevel@tonic-gate */ 253*3446Smrj static caddr_t 2540Sstevel@tonic-gate intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 2550Sstevel@tonic-gate { 2560Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 2570Sstevel@tonic-gate kthread_t *t, *volatile it; 258*3446Smrj hrtime_t now = tsc_read(); 2590Sstevel@tonic-gate 2600Sstevel@tonic-gate ASSERT(pil > 0); 2610Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 2620Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 2630Sstevel@tonic-gate 2640Sstevel@tonic-gate /* 2650Sstevel@tonic-gate * Get set to run an interrupt thread. 2660Sstevel@tonic-gate * There should always be an interrupt thread, since we 2670Sstevel@tonic-gate * allocate one for each level on each CPU. 2680Sstevel@tonic-gate * 269989Sesolom * t_intr_start could be zero due to cpu_intr_swtch_enter. 2700Sstevel@tonic-gate */ 2710Sstevel@tonic-gate t = cpu->cpu_thread; 272989Sesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 273*3446Smrj hrtime_t intrtime = now - t->t_intr_start; 274916Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 275590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 2760Sstevel@tonic-gate t->t_intr_start = 0; 2770Sstevel@tonic-gate } 2780Sstevel@tonic-gate 2790Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 2800Sstevel@tonic-gate 2810Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 2820Sstevel@tonic-gate 2830Sstevel@tonic-gate /* 2840Sstevel@tonic-gate * unlink the interrupt thread off the cpu 285989Sesolom * 286989Sesolom * Note that the code in kcpc_overflow_intr -relies- on the 287989Sesolom * ordering of events here - in particular that t->t_lwp of 288989Sesolom * the interrupt thread is set to the pinned thread *before* 289989Sesolom * curthread is changed. 2900Sstevel@tonic-gate */ 2910Sstevel@tonic-gate it = cpu->cpu_intr_thread; 2920Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 2930Sstevel@tonic-gate it->t_intr = t; 2940Sstevel@tonic-gate it->t_lwp = t->t_lwp; 2950Sstevel@tonic-gate 2960Sstevel@tonic-gate /* 2970Sstevel@tonic-gate * (threads on the interrupt thread free list could have state 2980Sstevel@tonic-gate * preset to TS_ONPROC, but it helps in debugging if 2990Sstevel@tonic-gate * they're TS_FREE.) 3000Sstevel@tonic-gate */ 3010Sstevel@tonic-gate it->t_state = TS_ONPROC; 3020Sstevel@tonic-gate 3030Sstevel@tonic-gate cpu->cpu_thread = it; /* new curthread on this cpu */ 3040Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 3050Sstevel@tonic-gate it->t_pri = intr_pri + (pri_t)pil; 306*3446Smrj it->t_intr_start = now; 3070Sstevel@tonic-gate 3080Sstevel@tonic-gate return (it->t_stk); 3090Sstevel@tonic-gate } 3100Sstevel@tonic-gate 3110Sstevel@tonic-gate 3120Sstevel@tonic-gate #ifdef DEBUG 3130Sstevel@tonic-gate int intr_thread_cnt; 3140Sstevel@tonic-gate #endif 3150Sstevel@tonic-gate 3160Sstevel@tonic-gate /* 3170Sstevel@tonic-gate * Called with interrupts disabled 3180Sstevel@tonic-gate */ 319*3446Smrj static void 3200Sstevel@tonic-gate intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 3210Sstevel@tonic-gate { 3220Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 3230Sstevel@tonic-gate kthread_t *t; 3240Sstevel@tonic-gate kthread_t *it = cpu->cpu_thread; /* curthread */ 3250Sstevel@tonic-gate uint_t pil, basespl; 326590Sesolom hrtime_t intrtime; 327*3446Smrj hrtime_t now = tsc_read(); 3280Sstevel@tonic-gate 3290Sstevel@tonic-gate pil = it->t_pil; 3300Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 3310Sstevel@tonic-gate 3320Sstevel@tonic-gate ASSERT(it->t_intr_start != 0); 333*3446Smrj intrtime = now - it->t_intr_start; 334916Sschwartz mcpu->intrstat[pil][0] += intrtime; 335590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 3360Sstevel@tonic-gate 3370Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 3380Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 3390Sstevel@tonic-gate 3400Sstevel@tonic-gate /* 3410Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 3420Sstevel@tonic-gate * then the interrupt was never blocked and the return is 3430Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 3440Sstevel@tonic-gate */ 3450Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 3460Sstevel@tonic-gate /* 3470Sstevel@tonic-gate * The interrupted thread is no longer pinned underneath 3480Sstevel@tonic-gate * the interrupt thread. This means the interrupt must 3490Sstevel@tonic-gate * have blocked, and the interrupted thread has been 3500Sstevel@tonic-gate * unpinned, and has probably been running around the 3510Sstevel@tonic-gate * system for a while. 3520Sstevel@tonic-gate * 3530Sstevel@tonic-gate * Since there is no longer a thread under this one, put 3540Sstevel@tonic-gate * this interrupt thread back on the CPU's free list and 3550Sstevel@tonic-gate * resume the idle thread which will dispatch the next 3560Sstevel@tonic-gate * thread to run. 3570Sstevel@tonic-gate */ 3580Sstevel@tonic-gate #ifdef DEBUG 3590Sstevel@tonic-gate intr_thread_cnt++; 3600Sstevel@tonic-gate #endif 3610Sstevel@tonic-gate cpu->cpu_stats.sys.intrblk++; 3620Sstevel@tonic-gate /* 3630Sstevel@tonic-gate * Set CPU's base SPL based on active interrupts bitmask 3640Sstevel@tonic-gate */ 3650Sstevel@tonic-gate set_base_spl(); 3660Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 3670Sstevel@tonic-gate mcpu->mcpu_pri = basespl; 3680Sstevel@tonic-gate (*setlvlx)(basespl, vec); 3690Sstevel@tonic-gate (void) splhigh(); 370*3446Smrj sti(); 3710Sstevel@tonic-gate it->t_state = TS_FREE; 3720Sstevel@tonic-gate /* 3730Sstevel@tonic-gate * Return interrupt thread to pool 3740Sstevel@tonic-gate */ 3750Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 3760Sstevel@tonic-gate cpu->cpu_intr_thread = it; 3770Sstevel@tonic-gate swtch(); 378*3446Smrj panic("intr_thread_epilog: swtch returned"); 3790Sstevel@tonic-gate /*NOTREACHED*/ 3800Sstevel@tonic-gate } 3810Sstevel@tonic-gate 3820Sstevel@tonic-gate /* 3830Sstevel@tonic-gate * Return interrupt thread to the pool 3840Sstevel@tonic-gate */ 3850Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 3860Sstevel@tonic-gate cpu->cpu_intr_thread = it; 3870Sstevel@tonic-gate it->t_state = TS_FREE; 3880Sstevel@tonic-gate 3890Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 3900Sstevel@tonic-gate pil = MAX(oldpil, basespl); 3910Sstevel@tonic-gate mcpu->mcpu_pri = pil; 3920Sstevel@tonic-gate (*setlvlx)(pil, vec); 393*3446Smrj t->t_intr_start = now; 3940Sstevel@tonic-gate cpu->cpu_thread = t; 3950Sstevel@tonic-gate } 3960Sstevel@tonic-gate 397916Sschwartz /* 398*3446Smrj * intr_get_time() is a resource for interrupt handlers to determine how 399*3446Smrj * much time has been spent handling the current interrupt. Such a function 400*3446Smrj * is needed because higher level interrupts can arrive during the 401*3446Smrj * processing of an interrupt. intr_get_time() only returns time spent in the 402*3446Smrj * current interrupt handler. 403*3446Smrj * 404*3446Smrj * The caller must be calling from an interrupt handler running at a pil 405*3446Smrj * below or at lock level. Timings are not provided for high-level 406*3446Smrj * interrupts. 407*3446Smrj * 408*3446Smrj * The first time intr_get_time() is called while handling an interrupt, 409*3446Smrj * it returns the time since the interrupt handler was invoked. Subsequent 410*3446Smrj * calls will return the time since the prior call to intr_get_time(). Time 411*3446Smrj * is returned as ticks. Use tsc_scalehrtime() to convert ticks to nsec. 412*3446Smrj * 413*3446Smrj * Theory Of Intrstat[][]: 414*3446Smrj * 415*3446Smrj * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 416*3446Smrj * uint64_ts per pil. 417*3446Smrj * 418*3446Smrj * intrstat[pil][0] is a cumulative count of the number of ticks spent 419*3446Smrj * handling all interrupts at the specified pil on this CPU. It is 420*3446Smrj * exported via kstats to the user. 421*3446Smrj * 422*3446Smrj * intrstat[pil][1] is always a count of ticks less than or equal to the 423*3446Smrj * value in [0]. The difference between [1] and [0] is the value returned 424*3446Smrj * by a call to intr_get_time(). At the start of interrupt processing, 425*3446Smrj * [0] and [1] will be equal (or nearly so). As the interrupt consumes 426*3446Smrj * time, [0] will increase, but [1] will remain the same. A call to 427*3446Smrj * intr_get_time() will return the difference, then update [1] to be the 428*3446Smrj * same as [0]. Future calls will return the time since the last call. 429*3446Smrj * Finally, when the interrupt completes, [1] is updated to the same as [0]. 430*3446Smrj * 431*3446Smrj * Implementation: 432*3446Smrj * 433*3446Smrj * intr_get_time() works much like a higher level interrupt arriving. It 434*3446Smrj * "checkpoints" the timing information by incrementing intrstat[pil][0] 435*3446Smrj * to include elapsed running time, and by setting t_intr_start to rdtsc. 436*3446Smrj * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 437*3446Smrj * and updates intrstat[pil][1] to be the same as the new value of 438*3446Smrj * intrstat[pil][0]. 439*3446Smrj * 440*3446Smrj * In the normal handling of interrupts, after an interrupt handler returns 441*3446Smrj * and the code in intr_thread() updates intrstat[pil][0], it then sets 442*3446Smrj * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 443*3446Smrj * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 444*3446Smrj * is 0. 445*3446Smrj * 446*3446Smrj * Whenever interrupts arrive on a CPU which is handling a lower pil 447*3446Smrj * interrupt, they update the lower pil's [0] to show time spent in the 448*3446Smrj * handler that they've interrupted. This results in a growing discrepancy 449*3446Smrj * between [0] and [1], which is returned the next time intr_get_time() is 450*3446Smrj * called. Time spent in the higher-pil interrupt will not be returned in 451*3446Smrj * the next intr_get_time() call from the original interrupt, because 452*3446Smrj * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 453916Sschwartz */ 454916Sschwartz uint64_t 455*3446Smrj intr_get_time(void) 456916Sschwartz { 457*3446Smrj struct cpu *cpu; 458*3446Smrj struct machcpu *mcpu; 459*3446Smrj kthread_t *t; 460916Sschwartz uint64_t time, delta, ret; 461*3446Smrj uint_t pil; 462916Sschwartz 463*3446Smrj cli(); 464*3446Smrj cpu = CPU; 465*3446Smrj mcpu = &cpu->cpu_m; 466*3446Smrj t = cpu->cpu_thread; 467*3446Smrj pil = t->t_pil; 468916Sschwartz ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 469916Sschwartz ASSERT(t->t_flag & T_INTR_THREAD); 470916Sschwartz ASSERT(pil != 0); 471916Sschwartz ASSERT(t->t_intr_start != 0); 472916Sschwartz 473916Sschwartz time = tsc_read(); 474916Sschwartz delta = time - t->t_intr_start; 475916Sschwartz t->t_intr_start = time; 476916Sschwartz 477916Sschwartz time = mcpu->intrstat[pil][0] + delta; 478916Sschwartz ret = time - mcpu->intrstat[pil][1]; 479916Sschwartz mcpu->intrstat[pil][0] = time; 480916Sschwartz mcpu->intrstat[pil][1] = time; 4811887Sjhaslam cpu->cpu_intracct[cpu->cpu_mstate] += delta; 482916Sschwartz 483*3446Smrj sti(); 484916Sschwartz return (ret); 485916Sschwartz } 486916Sschwartz 487*3446Smrj static caddr_t 4880Sstevel@tonic-gate dosoftint_prolog( 4890Sstevel@tonic-gate struct cpu *cpu, 4900Sstevel@tonic-gate caddr_t stackptr, 4910Sstevel@tonic-gate uint32_t st_pending, 4920Sstevel@tonic-gate uint_t oldpil) 4930Sstevel@tonic-gate { 4940Sstevel@tonic-gate kthread_t *t, *volatile it; 4950Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 4960Sstevel@tonic-gate uint_t pil; 497*3446Smrj hrtime_t now; 4980Sstevel@tonic-gate 4990Sstevel@tonic-gate top: 5000Sstevel@tonic-gate ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 5010Sstevel@tonic-gate 5020Sstevel@tonic-gate pil = bsrw_insn((uint16_t)st_pending); 5030Sstevel@tonic-gate if (pil <= oldpil || pil <= cpu->cpu_base_spl) 5040Sstevel@tonic-gate return (0); 5050Sstevel@tonic-gate 5060Sstevel@tonic-gate /* 5070Sstevel@tonic-gate * XX64 Sigh. 5080Sstevel@tonic-gate * 5090Sstevel@tonic-gate * This is a transliteration of the i386 assembler code for 5100Sstevel@tonic-gate * soft interrupts. One question is "why does this need 5110Sstevel@tonic-gate * to be atomic?" One possible race is -other- processors 5120Sstevel@tonic-gate * posting soft interrupts to us in set_pending() i.e. the 5130Sstevel@tonic-gate * CPU might get preempted just after the address computation, 5140Sstevel@tonic-gate * but just before the atomic transaction, so another CPU would 5150Sstevel@tonic-gate * actually set the original CPU's st_pending bit. However, 5160Sstevel@tonic-gate * it looks like it would be simpler to disable preemption there. 5170Sstevel@tonic-gate * Are there other races for which preemption control doesn't work? 5180Sstevel@tonic-gate * 5190Sstevel@tonic-gate * The i386 assembler version -also- checks to see if the bit 5200Sstevel@tonic-gate * being cleared was actually set; if it wasn't, it rechecks 5210Sstevel@tonic-gate * for more. This seems a bit strange, as the only code that 5220Sstevel@tonic-gate * ever clears the bit is -this- code running with interrupts 5230Sstevel@tonic-gate * disabled on -this- CPU. This code would probably be cheaper: 5240Sstevel@tonic-gate * 5250Sstevel@tonic-gate * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 5260Sstevel@tonic-gate * ~(1 << pil)); 5270Sstevel@tonic-gate * 5280Sstevel@tonic-gate * and t->t_preempt--/++ around set_pending() even cheaper, 5290Sstevel@tonic-gate * but at this point, correctness is critical, so we slavishly 5300Sstevel@tonic-gate * emulate the i386 port. 5310Sstevel@tonic-gate */ 532*3446Smrj if (atomic_btr32((uint32_t *) 533*3446Smrj &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 5340Sstevel@tonic-gate st_pending = mcpu->mcpu_softinfo.st_pending; 5350Sstevel@tonic-gate goto top; 5360Sstevel@tonic-gate } 5370Sstevel@tonic-gate 5380Sstevel@tonic-gate mcpu->mcpu_pri = pil; 5390Sstevel@tonic-gate (*setspl)(pil); 5400Sstevel@tonic-gate 541*3446Smrj now = tsc_read(); 542*3446Smrj 5430Sstevel@tonic-gate /* 5440Sstevel@tonic-gate * Get set to run interrupt thread. 5450Sstevel@tonic-gate * There should always be an interrupt thread since we 5460Sstevel@tonic-gate * allocate one for each level on the CPU. 5470Sstevel@tonic-gate */ 5480Sstevel@tonic-gate it = cpu->cpu_intr_thread; 5490Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 5500Sstevel@tonic-gate 551989Sesolom /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 552989Sesolom t = cpu->cpu_thread; 553989Sesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 554*3446Smrj hrtime_t intrtime = now - t->t_intr_start; 555989Sesolom mcpu->intrstat[pil][0] += intrtime; 556989Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 557989Sesolom t->t_intr_start = 0; 558989Sesolom } 559989Sesolom 5600Sstevel@tonic-gate /* 5610Sstevel@tonic-gate * Note that the code in kcpc_overflow_intr -relies- on the 5620Sstevel@tonic-gate * ordering of events here - in particular that t->t_lwp of 5630Sstevel@tonic-gate * the interrupt thread is set to the pinned thread *before* 564989Sesolom * curthread is changed. 5650Sstevel@tonic-gate */ 5660Sstevel@tonic-gate it->t_lwp = t->t_lwp; 5670Sstevel@tonic-gate it->t_state = TS_ONPROC; 5680Sstevel@tonic-gate 5690Sstevel@tonic-gate /* 5700Sstevel@tonic-gate * Push interrupted thread onto list from new thread. 5710Sstevel@tonic-gate * Set the new thread as the current one. 5720Sstevel@tonic-gate * Set interrupted thread's T_SP because if it is the idle thread, 5730Sstevel@tonic-gate * resume() may use that stack between threads. 5740Sstevel@tonic-gate */ 5750Sstevel@tonic-gate 5760Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 5770Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; 5780Sstevel@tonic-gate 5790Sstevel@tonic-gate it->t_intr = t; 5800Sstevel@tonic-gate cpu->cpu_thread = it; 5810Sstevel@tonic-gate 5820Sstevel@tonic-gate /* 5830Sstevel@tonic-gate * Set bit for this pil in CPU's interrupt active bitmask. 5840Sstevel@tonic-gate */ 5850Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 5860Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 5870Sstevel@tonic-gate 5880Sstevel@tonic-gate /* 5890Sstevel@tonic-gate * Initialize thread priority level from intr_pri 5900Sstevel@tonic-gate */ 5910Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 5920Sstevel@tonic-gate it->t_pri = (pri_t)pil + intr_pri; 593*3446Smrj it->t_intr_start = now; 5940Sstevel@tonic-gate 5950Sstevel@tonic-gate return (it->t_stk); 5960Sstevel@tonic-gate } 5970Sstevel@tonic-gate 598*3446Smrj static void 5990Sstevel@tonic-gate dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 6000Sstevel@tonic-gate { 6010Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 6020Sstevel@tonic-gate kthread_t *t, *it; 6030Sstevel@tonic-gate uint_t pil, basespl; 604590Sesolom hrtime_t intrtime; 605*3446Smrj hrtime_t now = tsc_read(); 6060Sstevel@tonic-gate 6070Sstevel@tonic-gate it = cpu->cpu_thread; 6080Sstevel@tonic-gate pil = it->t_pil; 6090Sstevel@tonic-gate 6100Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 6110Sstevel@tonic-gate 6120Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 6130Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 614*3446Smrj intrtime = now - it->t_intr_start; 615916Sschwartz mcpu->intrstat[pil][0] += intrtime; 616590Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 6170Sstevel@tonic-gate 6180Sstevel@tonic-gate /* 6190Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 6200Sstevel@tonic-gate * then the interrupt was never blocked and the return is 6210Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 6220Sstevel@tonic-gate */ 6230Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 6240Sstevel@tonic-gate /* 6250Sstevel@tonic-gate * Put thread back on the interrupt thread list. 6260Sstevel@tonic-gate * This was an interrupt thread, so set CPU's base SPL. 6270Sstevel@tonic-gate */ 6280Sstevel@tonic-gate set_base_spl(); 6290Sstevel@tonic-gate it->t_state = TS_FREE; 6300Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 6310Sstevel@tonic-gate cpu->cpu_intr_thread = it; 6320Sstevel@tonic-gate (void) splhigh(); 633*3446Smrj sti(); 6340Sstevel@tonic-gate swtch(); 6350Sstevel@tonic-gate /*NOTREACHED*/ 636*3446Smrj panic("dosoftint_epilog: swtch returned"); 6370Sstevel@tonic-gate } 6380Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 6390Sstevel@tonic-gate cpu->cpu_intr_thread = it; 6400Sstevel@tonic-gate it->t_state = TS_FREE; 6410Sstevel@tonic-gate cpu->cpu_thread = t; 6420Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 643*3446Smrj t->t_intr_start = now; 6440Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 6450Sstevel@tonic-gate pil = MAX(oldpil, basespl); 6460Sstevel@tonic-gate mcpu->mcpu_pri = pil; 6470Sstevel@tonic-gate (*setspl)(pil); 6480Sstevel@tonic-gate } 6490Sstevel@tonic-gate 650*3446Smrj 6510Sstevel@tonic-gate /* 6520Sstevel@tonic-gate * Make the interrupted thread 'to' be runnable. 6530Sstevel@tonic-gate * 6540Sstevel@tonic-gate * Since t->t_sp has already been saved, t->t_pc is all 6550Sstevel@tonic-gate * that needs to be set in this function. 6560Sstevel@tonic-gate * 6570Sstevel@tonic-gate * Returns the interrupt level of the interrupt thread. 6580Sstevel@tonic-gate */ 6590Sstevel@tonic-gate int 6600Sstevel@tonic-gate intr_passivate( 6610Sstevel@tonic-gate kthread_t *it, /* interrupt thread */ 6620Sstevel@tonic-gate kthread_t *t) /* interrupted thread */ 6630Sstevel@tonic-gate { 6640Sstevel@tonic-gate extern void _sys_rtt(); 6650Sstevel@tonic-gate 6660Sstevel@tonic-gate ASSERT(it->t_flag & T_INTR_THREAD); 6670Sstevel@tonic-gate ASSERT(SA(t->t_sp) == t->t_sp); 6680Sstevel@tonic-gate 6690Sstevel@tonic-gate t->t_pc = (uintptr_t)_sys_rtt; 6700Sstevel@tonic-gate return (it->t_pil); 6710Sstevel@tonic-gate } 6720Sstevel@tonic-gate 6730Sstevel@tonic-gate /* 6740Sstevel@tonic-gate * Create interrupt kstats for this CPU. 6750Sstevel@tonic-gate */ 6760Sstevel@tonic-gate void 6770Sstevel@tonic-gate cpu_create_intrstat(cpu_t *cp) 6780Sstevel@tonic-gate { 6790Sstevel@tonic-gate int i; 6800Sstevel@tonic-gate kstat_t *intr_ksp; 6810Sstevel@tonic-gate kstat_named_t *knp; 6820Sstevel@tonic-gate char name[KSTAT_STRLEN]; 6830Sstevel@tonic-gate zoneid_t zoneid; 6840Sstevel@tonic-gate 6850Sstevel@tonic-gate ASSERT(MUTEX_HELD(&cpu_lock)); 6860Sstevel@tonic-gate 6870Sstevel@tonic-gate if (pool_pset_enabled()) 6880Sstevel@tonic-gate zoneid = GLOBAL_ZONEID; 6890Sstevel@tonic-gate else 6900Sstevel@tonic-gate zoneid = ALL_ZONES; 6910Sstevel@tonic-gate 6920Sstevel@tonic-gate intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 6930Sstevel@tonic-gate KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 6940Sstevel@tonic-gate 6950Sstevel@tonic-gate /* 6960Sstevel@tonic-gate * Initialize each PIL's named kstat 6970Sstevel@tonic-gate */ 6980Sstevel@tonic-gate if (intr_ksp != NULL) { 6990Sstevel@tonic-gate intr_ksp->ks_update = cpu_kstat_intrstat_update; 7000Sstevel@tonic-gate knp = (kstat_named_t *)intr_ksp->ks_data; 7010Sstevel@tonic-gate intr_ksp->ks_private = cp; 7020Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 7030Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 7040Sstevel@tonic-gate i + 1); 7050Sstevel@tonic-gate kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 7060Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 7070Sstevel@tonic-gate i + 1); 7080Sstevel@tonic-gate kstat_named_init(&knp[(i * 2) + 1], name, 7090Sstevel@tonic-gate KSTAT_DATA_UINT64); 7100Sstevel@tonic-gate } 7110Sstevel@tonic-gate kstat_install(intr_ksp); 7120Sstevel@tonic-gate } 7130Sstevel@tonic-gate } 7140Sstevel@tonic-gate 7150Sstevel@tonic-gate /* 7160Sstevel@tonic-gate * Delete interrupt kstats for this CPU. 7170Sstevel@tonic-gate */ 7180Sstevel@tonic-gate void 7190Sstevel@tonic-gate cpu_delete_intrstat(cpu_t *cp) 7200Sstevel@tonic-gate { 7210Sstevel@tonic-gate kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 7220Sstevel@tonic-gate } 7230Sstevel@tonic-gate 7240Sstevel@tonic-gate /* 7250Sstevel@tonic-gate * Convert interrupt statistics from CPU ticks to nanoseconds and 7260Sstevel@tonic-gate * update kstat. 7270Sstevel@tonic-gate */ 7280Sstevel@tonic-gate int 7290Sstevel@tonic-gate cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 7300Sstevel@tonic-gate { 7310Sstevel@tonic-gate kstat_named_t *knp = ksp->ks_data; 7320Sstevel@tonic-gate cpu_t *cpup = (cpu_t *)ksp->ks_private; 7330Sstevel@tonic-gate int i; 7340Sstevel@tonic-gate hrtime_t hrt; 7350Sstevel@tonic-gate 7360Sstevel@tonic-gate if (rw == KSTAT_WRITE) 7370Sstevel@tonic-gate return (EACCES); 7380Sstevel@tonic-gate 7390Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 740916Sschwartz hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 7410Sstevel@tonic-gate tsc_scalehrtime(&hrt); 7420Sstevel@tonic-gate knp[i * 2].value.ui64 = (uint64_t)hrt; 7430Sstevel@tonic-gate knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 7440Sstevel@tonic-gate } 7450Sstevel@tonic-gate 7460Sstevel@tonic-gate return (0); 7470Sstevel@tonic-gate } 7480Sstevel@tonic-gate 7490Sstevel@tonic-gate /* 7500Sstevel@tonic-gate * An interrupt thread is ending a time slice, so compute the interval it 7510Sstevel@tonic-gate * ran for and update the statistic for its PIL. 7520Sstevel@tonic-gate */ 7530Sstevel@tonic-gate void 7540Sstevel@tonic-gate cpu_intr_swtch_enter(kthread_id_t t) 7550Sstevel@tonic-gate { 7560Sstevel@tonic-gate uint64_t interval; 7570Sstevel@tonic-gate uint64_t start; 758590Sesolom cpu_t *cpu; 7590Sstevel@tonic-gate 7600Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 7610Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 7620Sstevel@tonic-gate 7630Sstevel@tonic-gate /* 7640Sstevel@tonic-gate * We could be here with a zero timestamp. This could happen if: 7650Sstevel@tonic-gate * an interrupt thread which no longer has a pinned thread underneath 7660Sstevel@tonic-gate * it (i.e. it blocked at some point in its past) has finished running 7670Sstevel@tonic-gate * its handler. intr_thread() updated the interrupt statistic for its 7680Sstevel@tonic-gate * PIL and zeroed its timestamp. Since there was no pinned thread to 7690Sstevel@tonic-gate * return to, swtch() gets called and we end up here. 770590Sesolom * 771590Sesolom * Note that we use atomic ops below (cas64 and atomic_add_64), which 772590Sesolom * we don't use in the functions above, because we're not called 773590Sesolom * with interrupts blocked, but the epilog/prolog functions are. 7740Sstevel@tonic-gate */ 7750Sstevel@tonic-gate if (t->t_intr_start) { 7760Sstevel@tonic-gate do { 7770Sstevel@tonic-gate start = t->t_intr_start; 7780Sstevel@tonic-gate interval = tsc_read() - start; 7790Sstevel@tonic-gate } while (cas64(&t->t_intr_start, start, 0) != start); 780590Sesolom cpu = CPU; 781916Sschwartz cpu->cpu_m.intrstat[t->t_pil][0] += interval; 782590Sesolom 783590Sesolom atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 784590Sesolom interval); 7850Sstevel@tonic-gate } else 7860Sstevel@tonic-gate ASSERT(t->t_intr == NULL); 7870Sstevel@tonic-gate } 7880Sstevel@tonic-gate 7890Sstevel@tonic-gate /* 7900Sstevel@tonic-gate * An interrupt thread is returning from swtch(). Place a starting timestamp 7910Sstevel@tonic-gate * in its thread structure. 7920Sstevel@tonic-gate */ 7930Sstevel@tonic-gate void 7940Sstevel@tonic-gate cpu_intr_swtch_exit(kthread_id_t t) 7950Sstevel@tonic-gate { 7960Sstevel@tonic-gate uint64_t ts; 7970Sstevel@tonic-gate 7980Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 7990Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 8000Sstevel@tonic-gate 8010Sstevel@tonic-gate do { 8020Sstevel@tonic-gate ts = t->t_intr_start; 8030Sstevel@tonic-gate } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 8040Sstevel@tonic-gate } 805*3446Smrj 806*3446Smrj /* 807*3446Smrj * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 808*3446Smrj */ 809*3446Smrj /*ARGSUSED*/ 810*3446Smrj static void 811*3446Smrj dispatch_hilevel(uint_t vector, uint_t arg2) 812*3446Smrj { 813*3446Smrj sti(); 814*3446Smrj av_dispatch_autovect(vector); 815*3446Smrj cli(); 816*3446Smrj } 817*3446Smrj 818*3446Smrj /* 819*3446Smrj * Dispatch a soft interrupt 820*3446Smrj */ 821*3446Smrj /*ARGSUSED*/ 822*3446Smrj static void 823*3446Smrj dispatch_softint(uint_t oldpil, uint_t arg2) 824*3446Smrj { 825*3446Smrj struct cpu *cpu = CPU; 826*3446Smrj 827*3446Smrj sti(); 828*3446Smrj av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 829*3446Smrj cli(); 830*3446Smrj 831*3446Smrj /* 832*3446Smrj * Must run softint_epilog() on the interrupt thread stack, since 833*3446Smrj * there may not be a return from it if the interrupt thread blocked. 834*3446Smrj */ 835*3446Smrj dosoftint_epilog(cpu, oldpil); 836*3446Smrj } 837*3446Smrj 838*3446Smrj /* 839*3446Smrj * Dispatch a normal interrupt 840*3446Smrj */ 841*3446Smrj static void 842*3446Smrj dispatch_hardint(uint_t vector, uint_t oldipl) 843*3446Smrj { 844*3446Smrj struct cpu *cpu = CPU; 845*3446Smrj 846*3446Smrj sti(); 847*3446Smrj av_dispatch_autovect(vector); 848*3446Smrj cli(); 849*3446Smrj 850*3446Smrj /* 851*3446Smrj * Must run intr_thread_epilog() on the interrupt thread stack, since 852*3446Smrj * there may not be a return from it if the interrupt thread blocked. 853*3446Smrj */ 854*3446Smrj intr_thread_epilog(cpu, vector, oldipl); 855*3446Smrj } 856*3446Smrj 857*3446Smrj /* 858*3446Smrj * Deliver any softints the current interrupt priority allows. 859*3446Smrj * Called with interrupts disabled. 860*3446Smrj */ 861*3446Smrj void 862*3446Smrj dosoftint(struct regs *regs) 863*3446Smrj { 864*3446Smrj struct cpu *cpu = CPU; 865*3446Smrj int oldipl; 866*3446Smrj caddr_t newsp; 867*3446Smrj 868*3446Smrj while (cpu->cpu_softinfo.st_pending) { 869*3446Smrj oldipl = cpu->cpu_pri; 870*3446Smrj newsp = dosoftint_prolog(cpu, (caddr_t)regs, 871*3446Smrj cpu->cpu_softinfo.st_pending, oldipl); 872*3446Smrj /* 873*3446Smrj * If returned stack pointer is NULL, priority is too high 874*3446Smrj * to run any of the pending softints now. 875*3446Smrj * Break out and they will be run later. 876*3446Smrj */ 877*3446Smrj if (newsp == NULL) 878*3446Smrj break; 879*3446Smrj switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 880*3446Smrj } 881*3446Smrj } 882*3446Smrj 883*3446Smrj /* 884*3446Smrj * Interrupt service routine, called with interrupts disabled. 885*3446Smrj */ 886*3446Smrj /*ARGSUSED*/ 887*3446Smrj void 888*3446Smrj do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 889*3446Smrj { 890*3446Smrj struct cpu *cpu = CPU; 891*3446Smrj int newipl, oldipl = cpu->cpu_pri; 892*3446Smrj uint_t vector; 893*3446Smrj caddr_t newsp; 894*3446Smrj 895*3446Smrj #ifdef TRAPTRACE 896*3446Smrj ttp->ttr_marker = TT_INTERRUPT; 897*3446Smrj ttp->ttr_ipl = 0xff; 898*3446Smrj ttp->ttr_pri = oldipl; 899*3446Smrj ttp->ttr_spl = cpu->cpu_base_spl; 900*3446Smrj ttp->ttr_vector = 0xff; 901*3446Smrj #endif /* TRAPTRACE */ 902*3446Smrj 903*3446Smrj /* 904*3446Smrj * If it's a softint go do it now. 905*3446Smrj */ 906*3446Smrj if (rp->r_trapno == T_SOFTINT) { 907*3446Smrj dosoftint(rp); 908*3446Smrj ASSERT(!interrupts_enabled()); 909*3446Smrj return; 910*3446Smrj } 911*3446Smrj 912*3446Smrj /* 913*3446Smrj * Raise the interrupt priority. 914*3446Smrj */ 915*3446Smrj newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 916*3446Smrj #ifdef TRAPTRACE 917*3446Smrj ttp->ttr_ipl = newipl; 918*3446Smrj #endif /* TRAPTRACE */ 919*3446Smrj 920*3446Smrj /* 921*3446Smrj * Bail if it is a spurious interrupt 922*3446Smrj */ 923*3446Smrj if (newipl == -1) 924*3446Smrj return; 925*3446Smrj cpu->cpu_pri = newipl; 926*3446Smrj vector = rp->r_trapno; 927*3446Smrj #ifdef TRAPTRACE 928*3446Smrj ttp->ttr_vector = vector; 929*3446Smrj #endif /* TRAPTRACE */ 930*3446Smrj if (newipl > LOCK_LEVEL) { 931*3446Smrj /* 932*3446Smrj * High priority interrupts run on this cpu's interrupt stack. 933*3446Smrj */ 934*3446Smrj if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 935*3446Smrj newsp = cpu->cpu_intr_stack; 936*3446Smrj switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 937*3446Smrj } else { /* already on the interrupt stack */ 938*3446Smrj dispatch_hilevel(vector, 0); 939*3446Smrj } 940*3446Smrj (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 941*3446Smrj } else { 942*3446Smrj /* 943*3446Smrj * Run this interrupt in a separate thread. 944*3446Smrj */ 945*3446Smrj newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 946*3446Smrj switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 947*3446Smrj } 948*3446Smrj 949*3446Smrj /* 950*3446Smrj * Deliver any pending soft interrupts. 951*3446Smrj */ 952*3446Smrj if (cpu->cpu_softinfo.st_pending) 953*3446Smrj dosoftint(rp); 954*3446Smrj } 955*3446Smrj 956*3446Smrj /* 957*3446Smrj * Common tasks always done by _sys_rtt, called with interrupts disabled. 958*3446Smrj * Returns 1 if returning to userland, 0 if returning to system mode. 959*3446Smrj */ 960*3446Smrj int 961*3446Smrj sys_rtt_common(struct regs *rp) 962*3446Smrj { 963*3446Smrj kthread_t *tp; 964*3446Smrj extern void mutex_exit_critical_start(); 965*3446Smrj extern long mutex_exit_critical_size; 966*3446Smrj 967*3446Smrj loop: 968*3446Smrj 969*3446Smrj /* 970*3446Smrj * Check if returning to user 971*3446Smrj */ 972*3446Smrj tp = CPU->cpu_thread; 973*3446Smrj if (USERMODE(rp->r_cs)) { 974*3446Smrj /* 975*3446Smrj * Check if AST pending. 976*3446Smrj */ 977*3446Smrj if (tp->t_astflag) { 978*3446Smrj /* 979*3446Smrj * Let trap() handle the AST 980*3446Smrj */ 981*3446Smrj sti(); 982*3446Smrj rp->r_trapno = T_AST; 983*3446Smrj trap(rp, (caddr_t)0, CPU->cpu_id); 984*3446Smrj cli(); 985*3446Smrj goto loop; 986*3446Smrj } 987*3446Smrj 988*3446Smrj #if defined(__amd64) 989*3446Smrj /* 990*3446Smrj * We are done if segment registers do not need updating. 991*3446Smrj */ 992*3446Smrj if ((tp->t_lwp->lwp_pcb.pcb_flags & RUPDATE_PENDING) == 0) 993*3446Smrj return (1); 994*3446Smrj 995*3446Smrj if (update_sregs(rp, tp->t_lwp)) { 996*3446Smrj /* 997*3446Smrj * 1 or more of the selectors is bad. 998*3446Smrj * Deliver a SIGSEGV. 999*3446Smrj */ 1000*3446Smrj proc_t *p = ttoproc(tp); 1001*3446Smrj 1002*3446Smrj sti(); 1003*3446Smrj mutex_enter(&p->p_lock); 1004*3446Smrj tp->t_lwp->lwp_cursig = SIGSEGV; 1005*3446Smrj mutex_exit(&p->p_lock); 1006*3446Smrj psig(); 1007*3446Smrj tp->t_sig_check = 1; 1008*3446Smrj cli(); 1009*3446Smrj } 1010*3446Smrj tp->t_lwp->lwp_pcb.pcb_flags &= ~RUPDATE_PENDING; 1011*3446Smrj 1012*3446Smrj #endif /* __amd64 */ 1013*3446Smrj return (1); 1014*3446Smrj } 1015*3446Smrj 1016*3446Smrj /* 1017*3446Smrj * Here if we are returning to supervisor mode. 1018*3446Smrj * Check for a kernel preemption request. 1019*3446Smrj */ 1020*3446Smrj if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1021*3446Smrj 1022*3446Smrj /* 1023*3446Smrj * Do nothing if already in kpreempt 1024*3446Smrj */ 1025*3446Smrj if (!tp->t_preempt_lk) { 1026*3446Smrj tp->t_preempt_lk = 1; 1027*3446Smrj sti(); 1028*3446Smrj kpreempt(1); /* asynchronous kpreempt call */ 1029*3446Smrj cli(); 1030*3446Smrj tp->t_preempt_lk = 0; 1031*3446Smrj } 1032*3446Smrj } 1033*3446Smrj 1034*3446Smrj /* 1035*3446Smrj * If we interrupted the mutex_exit() critical region we must 1036*3446Smrj * reset the PC back to the beginning to prevent missed wakeups 1037*3446Smrj * See the comments in mutex_exit() for details. 1038*3446Smrj */ 1039*3446Smrj if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1040*3446Smrj mutex_exit_critical_size) { 1041*3446Smrj rp->r_pc = (greg_t)mutex_exit_critical_start; 1042*3446Smrj } 1043*3446Smrj return (0); 1044*3446Smrj } 1045*3446Smrj 1046*3446Smrj void 1047*3446Smrj send_dirint(int cpuid, int int_level) 1048*3446Smrj { 1049*3446Smrj (*send_dirintf)(cpuid, int_level); 1050*3446Smrj } 1051*3446Smrj 1052*3446Smrj /* 1053*3446Smrj * do_splx routine, takes new ipl to set 1054*3446Smrj * returns the old ipl. 1055*3446Smrj * We are careful not to set priority lower than CPU->cpu_base_pri, 1056*3446Smrj * even though it seems we're raising the priority, it could be set 1057*3446Smrj * higher at any time by an interrupt routine, so we must block interrupts 1058*3446Smrj * and look at CPU->cpu_base_pri 1059*3446Smrj */ 1060*3446Smrj int 1061*3446Smrj do_splx(int newpri) 1062*3446Smrj { 1063*3446Smrj ulong_t flag; 1064*3446Smrj cpu_t *cpu; 1065*3446Smrj int curpri, basepri; 1066*3446Smrj 1067*3446Smrj flag = intr_clear(); 1068*3446Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1069*3446Smrj curpri = cpu->cpu_m.mcpu_pri; 1070*3446Smrj basepri = cpu->cpu_base_spl; 1071*3446Smrj if (newpri < basepri) 1072*3446Smrj newpri = basepri; 1073*3446Smrj cpu->cpu_m.mcpu_pri = newpri; 1074*3446Smrj (*setspl)(newpri); 1075*3446Smrj /* 1076*3446Smrj * If we are going to reenable interrupts see if new priority level 1077*3446Smrj * allows pending softint delivery. 1078*3446Smrj */ 1079*3446Smrj if ((flag & PS_IE) && 1080*3446Smrj bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1081*3446Smrj fakesoftint(); 1082*3446Smrj ASSERT(!interrupts_enabled()); 1083*3446Smrj intr_restore(flag); 1084*3446Smrj return (curpri); 1085*3446Smrj } 1086*3446Smrj 1087*3446Smrj /* 1088*3446Smrj * Common spl raise routine, takes new ipl to set 1089*3446Smrj * returns the old ipl, will not lower ipl. 1090*3446Smrj */ 1091*3446Smrj int 1092*3446Smrj splr(int newpri) 1093*3446Smrj { 1094*3446Smrj ulong_t flag; 1095*3446Smrj cpu_t *cpu; 1096*3446Smrj int curpri, basepri; 1097*3446Smrj 1098*3446Smrj flag = intr_clear(); 1099*3446Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1100*3446Smrj curpri = cpu->cpu_m.mcpu_pri; 1101*3446Smrj /* 1102*3446Smrj * Only do something if new priority is larger 1103*3446Smrj */ 1104*3446Smrj if (newpri > curpri) { 1105*3446Smrj basepri = cpu->cpu_base_spl; 1106*3446Smrj if (newpri < basepri) 1107*3446Smrj newpri = basepri; 1108*3446Smrj cpu->cpu_m.mcpu_pri = newpri; 1109*3446Smrj (*setspl)(newpri); 1110*3446Smrj /* 1111*3446Smrj * See if new priority level allows pending softint delivery 1112*3446Smrj */ 1113*3446Smrj if ((flag & PS_IE) && 1114*3446Smrj bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1115*3446Smrj fakesoftint(); 1116*3446Smrj } 1117*3446Smrj intr_restore(flag); 1118*3446Smrj return (curpri); 1119*3446Smrj } 1120*3446Smrj 1121*3446Smrj int 1122*3446Smrj getpil(void) 1123*3446Smrj { 1124*3446Smrj return (CPU->cpu_m.mcpu_pri); 1125*3446Smrj } 1126*3446Smrj 1127*3446Smrj int 1128*3446Smrj interrupts_enabled(void) 1129*3446Smrj { 1130*3446Smrj ulong_t flag; 1131*3446Smrj 1132*3446Smrj flag = getflags(); 1133*3446Smrj return ((flag & PS_IE) == PS_IE); 1134*3446Smrj } 1135*3446Smrj 1136*3446Smrj #ifdef DEBUG 1137*3446Smrj void 1138*3446Smrj assert_ints_enabled(void) 1139*3446Smrj { 1140*3446Smrj ASSERT(!interrupts_unleashed || interrupts_enabled()); 1141*3446Smrj } 1142*3446Smrj #endif /* DEBUG */ 1143