1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/types.h>
26 #include <sys/t_lock.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <sys/tuneable.h>
30 #include <sys/systm.h>
31 #include <sys/vm.h>
32 #include <sys/kmem.h>
33 #include <sys/vmem.h>
34 #include <sys/mman.h>
35 #include <sys/cmn_err.h>
36 #include <sys/debug.h>
37 #include <sys/dumphdr.h>
38 #include <sys/bootconf.h>
39 #include <sys/lgrp.h>
40 #include <vm/seg_kmem.h>
41 #include <vm/hat.h>
42 #include <vm/page.h>
43 #include <vm/vm_dep.h>
44 #include <vm/faultcode.h>
45 #include <sys/promif.h>
46 #include <vm/seg_kp.h>
47 #include <sys/bitmap.h>
48 #include <sys/mem_cage.h>
49
50 #ifdef __sparc
51 #include <sys/ivintr.h>
52 #include <sys/panic.h>
53 #endif
54
55 /*
56 * seg_kmem is the primary kernel memory segment driver. It
57 * maps the kernel heap [kernelheap, ekernelheap), module text,
58 * and all memory which was allocated before the VM was initialized
59 * into kas.
60 *
61 * Pages which belong to seg_kmem are hashed into &kvp vnode at
62 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
63 * They must never be paged out since segkmem_fault() is a no-op to
64 * prevent recursive faults.
65 *
66 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
67 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86
68 * supports relocation the #ifdef kludges can be removed.
69 *
70 * seg_kmem pages may be subject to relocation by page_relocate(),
71 * provided that the HAT supports it; if this is so, segkmem_reloc
72 * will be set to a nonzero value. All boot time allocated memory as
73 * well as static memory is considered off limits to relocation.
74 * Pages are "relocatable" if p_state does not have P_NORELOC set, so
75 * we request P_NORELOC pages for memory that isn't safe to relocate.
76 *
77 * The kernel heap is logically divided up into four pieces:
78 *
79 * heap32_arena is for allocations that require 32-bit absolute
80 * virtual addresses (e.g. code that uses 32-bit pointers/offsets).
81 *
82 * heap_core is for allocations that require 2GB *relative*
83 * offsets; in other words all memory from heap_core is within
84 * 2GB of all other memory from the same arena. This is a requirement
85 * of the addressing modes of some processors in supervisor code.
86 *
87 * heap_arena is the general heap arena.
88 *
89 * static_arena is the static memory arena. Allocations from it
90 * are not subject to relocation so it is safe to use the memory
91 * physical address as well as the virtual address (e.g. the VA to
92 * PA translations are static). Caches may import from static_arena;
93 * all other static memory allocations should use static_alloc_arena.
94 *
95 * On some platforms which have limited virtual address space, seg_kmem
96 * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
97 * segkp_bitmap is non-NULL, and each bit represents a page of virtual
98 * address space which is actually seg_kp mapped.
99 */
100
101 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */
102
103 char *kernelheap; /* start of primary kernel heap */
104 char *ekernelheap; /* end of primary kernel heap */
105 struct seg kvseg; /* primary kernel heap segment */
106 struct seg kvseg_core; /* "core" kernel heap segment */
107 struct seg kzioseg; /* Segment for zio mappings */
108 vmem_t *heap_arena; /* primary kernel heap arena */
109 vmem_t *heap_core_arena; /* core kernel heap arena */
110 char *heap_core_base; /* start of core kernel heap arena */
111 char *heap_lp_base; /* start of kernel large page heap arena */
112 char *heap_lp_end; /* end of kernel large page heap arena */
113 vmem_t *hat_memload_arena; /* HAT translation data */
114 struct seg kvseg32; /* 32-bit kernel heap segment */
115 vmem_t *heap32_arena; /* 32-bit kernel heap arena */
116 vmem_t *heaptext_arena; /* heaptext arena */
117 struct as kas; /* kernel address space */
118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */
119 vmem_t *static_arena; /* arena for caches to import static memory */
120 vmem_t *static_alloc_arena; /* arena for allocating static memory */
121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */
122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */
123
124 /*
125 * seg_kmem driver can map part of the kernel heap with large pages.
126 * Currently this functionality is implemented for sparc platforms only.
127 *
128 * The large page size "segkmem_lpsize" for kernel heap is selected in the
129 * platform specific code. It can also be modified via /etc/system file.
130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
132 * match segkmem_lpsize.
133 *
134 * At boot time we carve from kernel heap arena a range of virtual addresses
135 * that will be used for large page mappings. This range [heap_lp_base,
136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
137 * create "kmem_lp_arena" that caches memory already backed up by large
138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
139 */
140
141 size_t segkmem_lpsize;
142 static uint_t segkmem_lpshift = PAGESHIFT;
143 int segkmem_lpszc = 0;
144
145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */
146 size_t segkmem_heaplp_quantum;
147 vmem_t *heap_lp_arena;
148 static vmem_t *kmem_lp_arena;
149 static vmem_t *segkmem_ppa_arena;
150 static segkmem_lpcb_t segkmem_lpcb;
151
152 /*
153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
154 * consumed by the large page heap. By default this parameter is set to 1/8 of
155 * physmem but can be adjusted through /etc/system either directly or
156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
157 * we allow for large page heap.
158 */
159 size_t segkmem_kmemlp_max;
160 static uint_t segkmem_kmemlp_pcnt;
161
162 /*
163 * Getting large pages for kernel heap could be problematic due to
164 * physical memory fragmentation. That's why we allow to preallocate
165 * "segkmem_kmemlp_min" bytes at boot time.
166 */
167 static size_t segkmem_kmemlp_min;
168
169 /*
170 * Throttling is used to avoid expensive tries to allocate large pages
171 * for kernel heap when a lot of succesive attempts to do so fail.
172 */
173 static ulong_t segkmem_lpthrottle_max = 0x400000;
174 static ulong_t segkmem_lpthrottle_start = 0x40;
175 static ulong_t segkmem_use_lpthrottle = 1;
176
177 /*
178 * Freed pages accumulate on a garbage list until segkmem is ready,
179 * at which point we call segkmem_gc() to free it all.
180 */
181 typedef struct segkmem_gc_list {
182 struct segkmem_gc_list *gc_next;
183 vmem_t *gc_arena;
184 size_t gc_size;
185 } segkmem_gc_list_t;
186
187 static segkmem_gc_list_t *segkmem_gc_list;
188
189 /*
190 * Allocations from the hat_memload arena add VM_MEMLOAD to their
191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
192 * to take steps to prevent infinite recursion. HAT allocations also
193 * must be non-relocatable to prevent recursive page faults.
194 */
195 static void *
hat_memload_alloc(vmem_t * vmp,size_t size,int flags)196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
197 {
198 flags |= (VM_MEMLOAD | VM_NORELOC);
199 return (segkmem_alloc(vmp, size, flags));
200 }
201
202 /*
203 * Allocations from static_arena arena (or any other arena that uses
204 * segkmem_alloc_permanent()) require non-relocatable (permanently
205 * wired) memory pages, since these pages are referenced by physical
206 * as well as virtual address.
207 */
208 void *
segkmem_alloc_permanent(vmem_t * vmp,size_t size,int flags)209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
210 {
211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
212 }
213
214 /*
215 * Initialize kernel heap boundaries.
216 */
217 void
kernelheap_init(void * heap_start,void * heap_end,char * first_avail,void * core_start,void * core_end)218 kernelheap_init(
219 void *heap_start,
220 void *heap_end,
221 char *first_avail,
222 void *core_start,
223 void *core_end)
224 {
225 uintptr_t textbase;
226 size_t core_size;
227 size_t heap_size;
228 vmem_t *heaptext_parent;
229 size_t heap_lp_size = 0;
230 #ifdef __sparc
231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base;
232 #endif /* __sparc */
233
234 kernelheap = heap_start;
235 ekernelheap = heap_end;
236
237 #ifdef __sparc
238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
239 /*
240 * Bias heap_lp start address by kmem64_sz to reduce collisions
241 * in 4M kernel TSB between kmem64 area and heap_lp
242 */
243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M);
244 if (kmem64_sz <= heap_lp_size / 2)
245 heap_lp_size -= kmem64_sz;
246 heap_lp_base = ekernelheap - heap_lp_size;
247 heap_lp_end = heap_lp_base + heap_lp_size;
248 #endif /* __sparc */
249
250 /*
251 * If this platform has a 'core' heap area, then the space for
252 * overflow module text should be carved out of the end of that
253 * heap. Otherwise, it gets carved out of the general purpose
254 * heap.
255 */
256 core_size = (uintptr_t)core_end - (uintptr_t)core_start;
257 if (core_size > 0) {
258 ASSERT(core_size >= HEAPTEXT_SIZE);
259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
260 core_size -= HEAPTEXT_SIZE;
261 }
262 #ifndef __sparc
263 else {
264 ekernelheap -= HEAPTEXT_SIZE;
265 textbase = (uintptr_t)ekernelheap;
266 }
267 #endif
268
269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
271 segkmem_alloc, segkmem_free);
272
273 if (core_size > 0) {
274 heap_core_arena = vmem_create("heap_core", core_start,
275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
276 heap_core_base = core_start;
277 } else {
278 heap_core_arena = heap_arena;
279 heap_core_base = kernelheap;
280 }
281
282 /*
283 * reserve space for the large page heap. If large pages for kernel
284 * heap is enabled large page heap arean will be created later in the
285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
286 * range will be returned back to the heap_arena.
287 */
288 if (heap_lp_size) {
289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
290 heap_lp_base, heap_lp_end,
291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
292 }
293
294 /*
295 * Remove the already-spoken-for memory range [kernelheap, first_avail).
296 */
297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
299
300 #ifdef __sparc
301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
303 NULL, NULL, 0, VM_SLEEP);
304 /*
305 * Prom claims the physical and virtual resources used by panicbuf
306 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table,
307 * reserved interrupt vector data structures from 32-bit heap.
308 */
309 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
310 panicbuf, panicbuf + PANICBUFSIZE,
311 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
312
313 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
314 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
315 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
316
317 textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
318 heaptext_parent = NULL;
319 #else /* __sparc */
320 heap32_arena = heap_core_arena;
321 heaptext_parent = heap_core_arena;
322 #endif /* __sparc */
323
324 heaptext_arena = vmem_create("heaptext", (void *)textbase,
325 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);
326
327 /*
328 * Create a set of arenas for memory with static translations
329 * (e.g. VA -> PA translations cannot change). Since using
330 * kernel pages by physical address implies it isn't safe to
331 * walk across page boundaries, the static_arena quantum must
332 * be PAGESIZE. Any kmem caches that require static memory
333 * should source from static_arena, while direct allocations
334 * should only use static_alloc_arena.
335 */
336 static_arena = vmem_create("static", NULL, 0, PAGESIZE,
337 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
338 static_alloc_arena = vmem_create("static_alloc", NULL, 0,
339 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
340 0, VM_SLEEP);
341
342 /*
343 * Create an arena for translation data (ptes, hmes, or hblks).
344 * We need an arena for this because hat_memload() is essential
345 * to vmem_populate() (see comments in common/os/vmem.c).
346 *
347 * Note: any kmem cache that allocates from hat_memload_arena
348 * must be created as a KMC_NOHASH cache (i.e. no external slab
349 * and bufctl structures to allocate) so that slab creation doesn't
350 * require anything more than a single vmem_alloc().
351 */
352 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
353 hat_memload_alloc, segkmem_free, heap_arena, 0,
354 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE);
355 }
356
357 void
boot_mapin(caddr_t addr,size_t size)358 boot_mapin(caddr_t addr, size_t size)
359 {
360 caddr_t eaddr;
361 page_t *pp;
362 pfn_t pfnum;
363
364 if (page_resv(btop(size), KM_NOSLEEP) == 0)
365 panic("boot_mapin: page_resv failed");
366
367 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
368 pfnum = va_to_pfn(addr);
369 if (pfnum == PFN_INVALID)
370 continue;
371 if ((pp = page_numtopp_nolock(pfnum)) == NULL)
372 panic("boot_mapin(): No pp for pfnum = %lx", pfnum);
373
374 /*
375 * must break up any large pages that may have constituent
376 * pages being utilized for BOP_ALLOC()'s before calling
377 * page_numtopp().The locking code (ie. page_reclaim())
378 * can't handle them
379 */
380 if (pp->p_szc != 0)
381 page_boot_demote(pp);
382
383 pp = page_numtopp(pfnum, SE_EXCL);
384 if (pp == NULL || PP_ISFREE(pp))
385 panic("boot_alloc: pp is NULL or free");
386
387 /*
388 * If the cage is on but doesn't yet contain this page,
389 * mark it as non-relocatable.
390 */
391 if (kcage_on && !PP_ISNORELOC(pp)) {
392 PP_SETNORELOC(pp);
393 PLCNT_XFER_NORELOC(pp);
394 }
395
396 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
397 pp->p_lckcnt = 1;
398 #if defined(__x86)
399 page_downgrade(pp);
400 #else
401 page_unlock(pp);
402 #endif
403 }
404 }
405
406 /*
407 * Get pages from boot and hash them into the kernel's vp.
408 * Used after page structs have been allocated, but before segkmem is ready.
409 */
410 void *
boot_alloc(void * inaddr,size_t size,uint_t align)411 boot_alloc(void *inaddr, size_t size, uint_t align)
412 {
413 caddr_t addr = inaddr;
414
415 if (bootops == NULL)
416 prom_panic("boot_alloc: attempt to allocate memory after "
417 "BOP_GONE");
418
419 size = ptob(btopr(size));
420 #ifdef __sparc
421 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr)
422 panic("boot_alloc: bop_alloc_chunk failed");
423 #else
424 if (BOP_ALLOC(bootops, addr, size, align) != addr)
425 panic("boot_alloc: BOP_ALLOC failed");
426 #endif
427 boot_mapin((caddr_t)addr, size);
428 return (addr);
429 }
430
431 static void
segkmem_badop()432 segkmem_badop()
433 {
434 panic("segkmem_badop");
435 }
436
437 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop
438
439 /*ARGSUSED*/
440 static faultcode_t
segkmem_fault(struct hat * hat,struct seg * seg,caddr_t addr,size_t size,enum fault_type type,enum seg_rw rw)441 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
442 enum fault_type type, enum seg_rw rw)
443 {
444 pgcnt_t npages;
445 spgcnt_t pg;
446 page_t *pp;
447 struct vnode *vp = seg->s_data;
448
449 ASSERT(RW_READ_HELD(&seg->s_as->a_lock));
450
451 if (seg->s_as != &kas || size > seg->s_size ||
452 addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
453 panic("segkmem_fault: bad args");
454
455 /*
456 * If it is one of segkp pages, call segkp_fault.
457 */
458 if (segkp_bitmap && seg == &kvseg &&
459 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
460 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw));
461
462 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER)
463 return (FC_NOSUPPORT);
464
465 npages = btopr(size);
466
467 switch (type) {
468 case F_SOFTLOCK: /* lock down already-loaded translations */
469 for (pg = 0; pg < npages; pg++) {
470 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
471 SE_SHARED);
472 if (pp == NULL) {
473 /*
474 * Hmm, no page. Does a kernel mapping
475 * exist for it?
476 */
477 if (!hat_probe(kas.a_hat, addr)) {
478 addr -= PAGESIZE;
479 while (--pg >= 0) {
480 pp = page_find(vp, (u_offset_t)
481 (uintptr_t)addr);
482 if (pp)
483 page_unlock(pp);
484 addr -= PAGESIZE;
485 }
486 return (FC_NOMAP);
487 }
488 }
489 addr += PAGESIZE;
490 }
491 if (rw == S_OTHER)
492 hat_reserve(seg->s_as, addr, size);
493 return (0);
494 case F_SOFTUNLOCK:
495 while (npages--) {
496 pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
497 if (pp)
498 page_unlock(pp);
499 addr += PAGESIZE;
500 }
501 return (0);
502 default:
503 return (FC_NOSUPPORT);
504 }
505 /*NOTREACHED*/
506 }
507
508 static int
segkmem_setprot(struct seg * seg,caddr_t addr,size_t size,uint_t prot)509 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
510 {
511 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
512
513 if (seg->s_as != &kas || size > seg->s_size ||
514 addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
515 panic("segkmem_setprot: bad args");
516
517 /*
518 * If it is one of segkp pages, call segkp.
519 */
520 if (segkp_bitmap && seg == &kvseg &&
521 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
522 return (SEGOP_SETPROT(segkp, addr, size, prot));
523
524 if (prot == 0)
525 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
526 else
527 hat_chgprot(kas.a_hat, addr, size, prot);
528 return (0);
529 }
530
531 /*
532 * This is a dummy segkmem function overloaded to call segkp
533 * when segkp is under the heap.
534 */
535 /* ARGSUSED */
536 static int
segkmem_checkprot(struct seg * seg,caddr_t addr,size_t size,uint_t prot)537 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
538 {
539 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
540
541 if (seg->s_as != &kas)
542 segkmem_badop();
543
544 /*
545 * If it is one of segkp pages, call into segkp.
546 */
547 if (segkp_bitmap && seg == &kvseg &&
548 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
549 return (SEGOP_CHECKPROT(segkp, addr, size, prot));
550
551 segkmem_badop();
552 return (0);
553 }
554
555 /*
556 * This is a dummy segkmem function overloaded to call segkp
557 * when segkp is under the heap.
558 */
559 /* ARGSUSED */
560 static int
segkmem_kluster(struct seg * seg,caddr_t addr,ssize_t delta)561 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
562 {
563 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
564
565 if (seg->s_as != &kas)
566 segkmem_badop();
567
568 /*
569 * If it is one of segkp pages, call into segkp.
570 */
571 if (segkp_bitmap && seg == &kvseg &&
572 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
573 return (SEGOP_KLUSTER(segkp, addr, delta));
574
575 segkmem_badop();
576 return (0);
577 }
578
579 static void
segkmem_xdump_range(void * arg,void * start,size_t size)580 segkmem_xdump_range(void *arg, void *start, size_t size)
581 {
582 struct as *as = arg;
583 caddr_t addr = start;
584 caddr_t addr_end = addr + size;
585
586 while (addr < addr_end) {
587 pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
588 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
589 dump_addpage(as, addr, pfn);
590 addr += PAGESIZE;
591 dump_timeleft = dump_timeout;
592 }
593 }
594
595 static void
segkmem_dump_range(void * arg,void * start,size_t size)596 segkmem_dump_range(void *arg, void *start, size_t size)
597 {
598 caddr_t addr = start;
599 caddr_t addr_end = addr + size;
600
601 /*
602 * If we are about to start dumping the range of addresses we
603 * carved out of the kernel heap for the large page heap walk
604 * heap_lp_arena to find what segments are actually populated
605 */
606 if (SEGKMEM_USE_LARGEPAGES &&
607 addr == heap_lp_base && addr_end == heap_lp_end &&
608 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
609 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
610 segkmem_xdump_range, arg);
611 } else {
612 segkmem_xdump_range(arg, start, size);
613 }
614 }
615
616 static void
segkmem_dump(struct seg * seg)617 segkmem_dump(struct seg *seg)
618 {
619 /*
620 * The kernel's heap_arena (represented by kvseg) is a very large
621 * VA space, most of which is typically unused. To speed up dumping
622 * we use vmem_walk() to quickly find the pieces of heap_arena that
623 * are actually in use. We do the same for heap32_arena and
624 * heap_core.
625 *
626 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
627 * may ultimately need to allocate memory. Reentrant walks are
628 * necessarily imperfect snapshots. The kernel heap continues
629 * to change during a live crash dump, for example. For a normal
630 * crash dump, however, we know that there won't be any other threads
631 * messing with the heap. Therefore, at worst, we may fail to dump
632 * the pages that get allocated by the act of dumping; but we will
633 * always dump every page that was allocated when the walk began.
634 *
635 * The other segkmem segments are dense (fully populated), so there's
636 * no need to use this technique when dumping them.
637 *
638 * Note: when adding special dump handling for any new sparsely-
639 * populated segments, be sure to add similar handling to the ::kgrep
640 * code in mdb.
641 */
642 if (seg == &kvseg) {
643 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
644 segkmem_dump_range, seg->s_as);
645 #ifndef __sparc
646 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
647 segkmem_dump_range, seg->s_as);
648 #endif
649 } else if (seg == &kvseg_core) {
650 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
651 segkmem_dump_range, seg->s_as);
652 } else if (seg == &kvseg32) {
653 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
654 segkmem_dump_range, seg->s_as);
655 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
656 segkmem_dump_range, seg->s_as);
657 } else if (seg == &kzioseg) {
658 /*
659 * We don't want to dump pages attached to kzioseg since they
660 * contain file data from ZFS. If this page's segment is
661 * kzioseg return instead of writing it to the dump device.
662 */
663 return;
664 } else {
665 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
666 }
667 }
668
669 /*
670 * lock/unlock kmem pages over a given range [addr, addr+len).
671 * Returns a shadow list of pages in ppp. If there are holes
672 * in the range (e.g. some of the kernel mappings do not have
673 * underlying page_ts) returns ENOTSUP so that as_pagelock()
674 * will handle the range via as_fault(F_SOFTLOCK).
675 */
676 /*ARGSUSED*/
677 static int
segkmem_pagelock(struct seg * seg,caddr_t addr,size_t len,page_t *** ppp,enum lock_type type,enum seg_rw rw)678 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
679 page_t ***ppp, enum lock_type type, enum seg_rw rw)
680 {
681 page_t **pplist, *pp;
682 pgcnt_t npages;
683 spgcnt_t pg;
684 size_t nb;
685 struct vnode *vp = seg->s_data;
686
687 ASSERT(ppp != NULL);
688
689 /*
690 * If it is one of segkp pages, call into segkp.
691 */
692 if (segkp_bitmap && seg == &kvseg &&
693 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
694 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw));
695
696 npages = btopr(len);
697 nb = sizeof (page_t *) * npages;
698
699 if (type == L_PAGEUNLOCK) {
700 pplist = *ppp;
701 ASSERT(pplist != NULL);
702
703 for (pg = 0; pg < npages; pg++) {
704 pp = pplist[pg];
705 page_unlock(pp);
706 }
707 kmem_free(pplist, nb);
708 return (0);
709 }
710
711 ASSERT(type == L_PAGELOCK);
712
713 pplist = kmem_alloc(nb, KM_NOSLEEP);
714 if (pplist == NULL) {
715 *ppp = NULL;
716 return (ENOTSUP); /* take the slow path */
717 }
718
719 for (pg = 0; pg < npages; pg++) {
720 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
721 if (pp == NULL) {
722 while (--pg >= 0)
723 page_unlock(pplist[pg]);
724 kmem_free(pplist, nb);
725 *ppp = NULL;
726 return (ENOTSUP);
727 }
728 pplist[pg] = pp;
729 addr += PAGESIZE;
730 }
731
732 *ppp = pplist;
733 return (0);
734 }
735
736 /*
737 * This is a dummy segkmem function overloaded to call segkp
738 * when segkp is under the heap.
739 */
740 /* ARGSUSED */
741 static int
segkmem_getmemid(struct seg * seg,caddr_t addr,memid_t * memidp)742 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
743 {
744 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
745
746 if (seg->s_as != &kas)
747 segkmem_badop();
748
749 /*
750 * If it is one of segkp pages, call into segkp.
751 */
752 if (segkp_bitmap && seg == &kvseg &&
753 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
754 return (SEGOP_GETMEMID(segkp, addr, memidp));
755
756 segkmem_badop();
757 return (0);
758 }
759
760 /*ARGSUSED*/
761 static lgrp_mem_policy_info_t *
segkmem_getpolicy(struct seg * seg,caddr_t addr)762 segkmem_getpolicy(struct seg *seg, caddr_t addr)
763 {
764 return (NULL);
765 }
766
767 /*ARGSUSED*/
768 static int
segkmem_capable(struct seg * seg,segcapability_t capability)769 segkmem_capable(struct seg *seg, segcapability_t capability)
770 {
771 if (capability == S_CAPABILITY_NOMINFLT)
772 return (1);
773 return (0);
774 }
775
776 static struct seg_ops segkmem_ops = {
777 SEGKMEM_BADOP(int), /* dup */
778 SEGKMEM_BADOP(int), /* unmap */
779 SEGKMEM_BADOP(void), /* free */
780 segkmem_fault,
781 SEGKMEM_BADOP(faultcode_t), /* faulta */
782 segkmem_setprot,
783 segkmem_checkprot,
784 segkmem_kluster,
785 SEGKMEM_BADOP(size_t), /* swapout */
786 SEGKMEM_BADOP(int), /* sync */
787 SEGKMEM_BADOP(size_t), /* incore */
788 SEGKMEM_BADOP(int), /* lockop */
789 SEGKMEM_BADOP(int), /* getprot */
790 SEGKMEM_BADOP(u_offset_t), /* getoffset */
791 SEGKMEM_BADOP(int), /* gettype */
792 SEGKMEM_BADOP(int), /* getvp */
793 SEGKMEM_BADOP(int), /* advise */
794 segkmem_dump,
795 segkmem_pagelock,
796 SEGKMEM_BADOP(int), /* setpgsz */
797 segkmem_getmemid,
798 segkmem_getpolicy, /* getpolicy */
799 segkmem_capable, /* capable */
800 };
801
802 int
segkmem_zio_create(struct seg * seg)803 segkmem_zio_create(struct seg *seg)
804 {
805 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
806 seg->s_ops = &segkmem_ops;
807 seg->s_data = &zvp;
808 kas.a_size += seg->s_size;
809 return (0);
810 }
811
812 int
segkmem_create(struct seg * seg)813 segkmem_create(struct seg *seg)
814 {
815 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
816 seg->s_ops = &segkmem_ops;
817 seg->s_data = &kvp;
818 kas.a_size += seg->s_size;
819 return (0);
820 }
821
822 /*ARGSUSED*/
823 page_t *
segkmem_page_create(void * addr,size_t size,int vmflag,void * arg)824 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
825 {
826 struct seg kseg;
827 int pgflags;
828 struct vnode *vp = arg;
829
830 if (vp == NULL)
831 vp = &kvp;
832
833 kseg.s_as = &kas;
834 pgflags = PG_EXCL;
835
836 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
837 pgflags |= PG_NORELOC;
838 if ((vmflag & VM_NOSLEEP) == 0)
839 pgflags |= PG_WAIT;
840 if (vmflag & VM_PANIC)
841 pgflags |= PG_PANIC;
842 if (vmflag & VM_PUSHPAGE)
843 pgflags |= PG_PUSHPAGE;
844 if (vmflag & VM_NORMALPRI) {
845 ASSERT(vmflag & VM_NOSLEEP);
846 pgflags |= PG_NORMALPRI;
847 }
848
849 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size,
850 pgflags, &kseg, addr));
851 }
852
853 /*
854 * Allocate pages to back the virtual address range [addr, addr + size).
855 * If addr is NULL, allocate the virtual address space as well.
856 */
857 void *
segkmem_xalloc(vmem_t * vmp,void * inaddr,size_t size,int vmflag,uint_t attr,page_t * (* page_create_func)(void *,size_t,int,void *),void * pcarg)858 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
859 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
860 {
861 page_t *ppl;
862 caddr_t addr = inaddr;
863 pgcnt_t npages = btopr(size);
864 int allocflag;
865
866 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
867 return (NULL);
868
869 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
870
871 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
872 if (inaddr == NULL)
873 vmem_free(vmp, addr, size);
874 return (NULL);
875 }
876
877 ppl = page_create_func(addr, size, vmflag, pcarg);
878 if (ppl == NULL) {
879 if (inaddr == NULL)
880 vmem_free(vmp, addr, size);
881 page_unresv(npages);
882 return (NULL);
883 }
884
885 /*
886 * Under certain conditions, we need to let the HAT layer know
887 * that it cannot safely allocate memory. Allocations from
888 * the hat_memload vmem arena always need this, to prevent
889 * infinite recursion.
890 *
891 * In addition, the x86 hat cannot safely do memory
892 * allocations while in vmem_populate(), because there
893 * is no simple bound on its usage.
894 */
895 if (vmflag & VM_MEMLOAD)
896 allocflag = HAT_NO_KALLOC;
897 #if defined(__x86)
898 else if (vmem_is_populator())
899 allocflag = HAT_NO_KALLOC;
900 #endif
901 else
902 allocflag = 0;
903
904 while (ppl != NULL) {
905 page_t *pp = ppl;
906 page_sub(&ppl, pp);
907 ASSERT(page_iolock_assert(pp));
908 ASSERT(PAGE_EXCL(pp));
909 page_io_unlock(pp);
910 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
911 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
912 HAT_LOAD_LOCK | allocflag);
913 pp->p_lckcnt = 1;
914 #if defined(__x86)
915 page_downgrade(pp);
916 #else
917 if (vmflag & SEGKMEM_SHARELOCKED)
918 page_downgrade(pp);
919 else
920 page_unlock(pp);
921 #endif
922 }
923
924 return (addr);
925 }
926
927 static void *
segkmem_alloc_vn(vmem_t * vmp,size_t size,int vmflag,struct vnode * vp)928 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp)
929 {
930 void *addr;
931 segkmem_gc_list_t *gcp, **prev_gcpp;
932
933 ASSERT(vp != NULL);
934
935 if (kvseg.s_base == NULL) {
936 #ifndef __sparc
937 if (bootops->bsys_alloc == NULL)
938 halt("Memory allocation between bop_alloc() and "
939 "kmem_alloc().\n");
940 #endif
941
942 /*
943 * There's not a lot of memory to go around during boot,
944 * so recycle it if we can.
945 */
946 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
947 prev_gcpp = &gcp->gc_next) {
948 if (gcp->gc_arena == vmp && gcp->gc_size == size) {
949 *prev_gcpp = gcp->gc_next;
950 return (gcp);
951 }
952 }
953
954 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
955 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
956 panic("segkmem_alloc: boot_alloc failed");
957 return (addr);
958 }
959 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
960 segkmem_page_create, vp));
961 }
962
963 void *
segkmem_alloc(vmem_t * vmp,size_t size,int vmflag)964 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
965 {
966 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp));
967 }
968
969 void *
segkmem_zio_alloc(vmem_t * vmp,size_t size,int vmflag)970 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag)
971 {
972 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp));
973 }
974
975 /*
976 * Any changes to this routine must also be carried over to
977 * devmap_free_pages() in the seg_dev driver. This is because
978 * we currently don't have a special kernel segment for non-paged
979 * kernel memory that is exported by drivers to user space.
980 */
981 static void
segkmem_free_vn(vmem_t * vmp,void * inaddr,size_t size,struct vnode * vp,void (* func)(page_t *))982 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp,
983 void (*func)(page_t *))
984 {
985 page_t *pp;
986 caddr_t addr = inaddr;
987 caddr_t eaddr;
988 pgcnt_t npages = btopr(size);
989
990 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
991 ASSERT(vp != NULL);
992
993 if (kvseg.s_base == NULL) {
994 segkmem_gc_list_t *gc = inaddr;
995 gc->gc_arena = vmp;
996 gc->gc_size = size;
997 gc->gc_next = segkmem_gc_list;
998 segkmem_gc_list = gc;
999 return;
1000 }
1001
1002 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1003
1004 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1005 #if defined(__x86)
1006 pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
1007 if (pp == NULL)
1008 panic("segkmem_free: page not found");
1009 if (!page_tryupgrade(pp)) {
1010 /*
1011 * Some other thread has a sharelock. Wait for
1012 * it to drop the lock so we can free this page.
1013 */
1014 page_unlock(pp);
1015 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
1016 SE_EXCL);
1017 }
1018 #else
1019 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1020 #endif
1021 if (pp == NULL)
1022 panic("segkmem_free: page not found");
1023 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */
1024 pp->p_lckcnt = 0;
1025 if (func)
1026 func(pp);
1027 else
1028 page_destroy(pp, 0);
1029 }
1030 if (func == NULL)
1031 page_unresv(npages);
1032
1033 if (vmp != NULL)
1034 vmem_free(vmp, inaddr, size);
1035
1036 }
1037
1038 void
segkmem_xfree(vmem_t * vmp,void * inaddr,size_t size,void (* func)(page_t *))1039 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *))
1040 {
1041 segkmem_free_vn(vmp, inaddr, size, &kvp, func);
1042 }
1043
1044 void
segkmem_free(vmem_t * vmp,void * inaddr,size_t size)1045 segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1046 {
1047 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL);
1048 }
1049
1050 void
segkmem_zio_free(vmem_t * vmp,void * inaddr,size_t size)1051 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size)
1052 {
1053 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL);
1054 }
1055
1056 void
segkmem_gc(void)1057 segkmem_gc(void)
1058 {
1059 ASSERT(kvseg.s_base != NULL);
1060 while (segkmem_gc_list != NULL) {
1061 segkmem_gc_list_t *gc = segkmem_gc_list;
1062 segkmem_gc_list = gc->gc_next;
1063 segkmem_free(gc->gc_arena, gc, gc->gc_size);
1064 }
1065 }
1066
1067 /*
1068 * Legacy entry points from here to end of file.
1069 */
1070 void
segkmem_mapin(struct seg * seg,void * addr,size_t size,uint_t vprot,pfn_t pfn,uint_t flags)1071 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
1072 pfn_t pfn, uint_t flags)
1073 {
1074 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1075 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
1076 flags | HAT_LOAD_LOCK);
1077 }
1078
1079 void
segkmem_mapout(struct seg * seg,void * addr,size_t size)1080 segkmem_mapout(struct seg *seg, void *addr, size_t size)
1081 {
1082 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1083 }
1084
1085 void *
kmem_getpages(pgcnt_t npages,int kmflag)1086 kmem_getpages(pgcnt_t npages, int kmflag)
1087 {
1088 return (kmem_alloc(ptob(npages), kmflag));
1089 }
1090
1091 void
kmem_freepages(void * addr,pgcnt_t npages)1092 kmem_freepages(void *addr, pgcnt_t npages)
1093 {
1094 kmem_free(addr, ptob(npages));
1095 }
1096
1097 /*
1098 * segkmem_page_create_large() allocates a large page to be used for the kmem
1099 * caches. If kpr is enabled we ask for a relocatable page unless requested
1100 * otherwise. If kpr is disabled we have to ask for a non-reloc page
1101 */
1102 static page_t *
segkmem_page_create_large(void * addr,size_t size,int vmflag,void * arg)1103 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
1104 {
1105 int pgflags;
1106
1107 pgflags = PG_EXCL;
1108
1109 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
1110 pgflags |= PG_NORELOC;
1111 if (!(vmflag & VM_NOSLEEP))
1112 pgflags |= PG_WAIT;
1113 if (vmflag & VM_PUSHPAGE)
1114 pgflags |= PG_PUSHPAGE;
1115 if (vmflag & VM_NORMALPRI)
1116 pgflags |= PG_NORMALPRI;
1117
1118 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1119 pgflags, &kvseg, addr, arg));
1120 }
1121
1122 /*
1123 * Allocate a large page to back the virtual address range
1124 * [addr, addr + size). If addr is NULL, allocate the virtual address
1125 * space as well.
1126 */
1127 static void *
segkmem_xalloc_lp(vmem_t * vmp,void * inaddr,size_t size,int vmflag,uint_t attr,page_t * (* page_create_func)(void *,size_t,int,void *),void * pcarg)1128 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1129 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1130 void *pcarg)
1131 {
1132 caddr_t addr = inaddr, pa;
1133 size_t lpsize = segkmem_lpsize;
1134 pgcnt_t npages = btopr(size);
1135 pgcnt_t nbpages = btop(lpsize);
1136 pgcnt_t nlpages = size >> segkmem_lpshift;
1137 size_t ppasize = nbpages * sizeof (page_t *);
1138 page_t *pp, *rootpp, **ppa, *pplist = NULL;
1139 int i;
1140
1141 vmflag |= VM_NOSLEEP;
1142
1143 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1144 return (NULL);
1145 }
1146
1147 /*
1148 * allocate an array we need for hat_memload_array.
1149 * we use a separate arena to avoid recursion.
1150 * we will not need this array when hat_memload_array learns pp++
1151 */
1152 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
1153 goto fail_array_alloc;
1154 }
1155
1156 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
1157 goto fail_vmem_alloc;
1158
1159 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);
1160
1161 /* create all the pages */
1162 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
1163 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
1164 goto fail_page_create;
1165 page_list_concat(&pplist, &pp);
1166 }
1167
1168 /* at this point we have all the resource to complete the request */
1169 while ((rootpp = pplist) != NULL) {
1170 for (i = 0; i < nbpages; i++) {
1171 ASSERT(pplist != NULL);
1172 pp = pplist;
1173 page_sub(&pplist, pp);
1174 ASSERT(page_iolock_assert(pp));
1175 page_io_unlock(pp);
1176 ppa[i] = pp;
1177 }
1178 /*
1179 * Load the locked entry. It's OK to preload the entry into the
1180 * TSB since we now support large mappings in the kernel TSB.
1181 */
1182 hat_memload_array(kas.a_hat,
1183 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
1184 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
1185 HAT_LOAD_LOCK);
1186
1187 for (--i; i >= 0; --i) {
1188 ppa[i]->p_lckcnt = 1;
1189 page_unlock(ppa[i]);
1190 }
1191 }
1192
1193 vmem_free(segkmem_ppa_arena, ppa, ppasize);
1194 return (addr);
1195
1196 fail_page_create:
1197 while ((rootpp = pplist) != NULL) {
1198 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
1199 ASSERT(pp != NULL);
1200 page_sub(&pplist, pp);
1201 ASSERT(page_iolock_assert(pp));
1202 page_io_unlock(pp);
1203 }
1204 page_destroy_pages(rootpp);
1205 }
1206
1207 if (inaddr == NULL)
1208 vmem_free(vmp, addr, size);
1209
1210 fail_vmem_alloc:
1211 vmem_free(segkmem_ppa_arena, ppa, ppasize);
1212
1213 fail_array_alloc:
1214 page_unresv(npages);
1215
1216 return (NULL);
1217 }
1218
1219 static void
segkmem_free_one_lp(caddr_t addr,size_t size)1220 segkmem_free_one_lp(caddr_t addr, size_t size)
1221 {
1222 page_t *pp, *rootpp = NULL;
1223 pgcnt_t pgs_left = btopr(size);
1224
1225 ASSERT(size == segkmem_lpsize);
1226
1227 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1228
1229 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
1230 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1231 if (pp == NULL)
1232 panic("segkmem_free_one_lp: page not found");
1233 ASSERT(PAGE_EXCL(pp));
1234 pp->p_lckcnt = 0;
1235 if (rootpp == NULL)
1236 rootpp = pp;
1237 }
1238 ASSERT(rootpp != NULL);
1239 page_destroy_pages(rootpp);
1240
1241 /* page_unresv() is done by the caller */
1242 }
1243
1244 /*
1245 * This function is called to import new spans into the vmem arenas like
1246 * kmem_default_arena and kmem_oversize_arena. It first tries to import
1247 * spans from large page arena - kmem_lp_arena. In order to do this it might
1248 * have to "upgrade the requested size" to kmem_lp_arena quantum. If
1249 * it was not able to satisfy the upgraded request it then calls regular
1250 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
1251 */
1252 /*ARGSUSED*/
1253 void *
segkmem_alloc_lp(vmem_t * vmp,size_t * sizep,size_t align,int vmflag)1254 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
1255 {
1256 size_t size;
1257 kthread_t *t = curthread;
1258 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1259
1260 ASSERT(sizep != NULL);
1261
1262 size = *sizep;
1263
1264 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
1265 !(vmflag & SEGKMEM_SHARELOCKED)) {
1266
1267 size_t kmemlp_qnt = segkmem_kmemlp_quantum;
1268 size_t asize = P2ROUNDUP(size, kmemlp_qnt);
1269 void *addr = NULL;
1270 ulong_t *lpthrtp = &lpcb->lp_throttle;
1271 ulong_t lpthrt = *lpthrtp;
1272 int dowakeup = 0;
1273 int doalloc = 1;
1274
1275 ASSERT(kmem_lp_arena != NULL);
1276 ASSERT(asize >= size);
1277
1278 if (lpthrt != 0) {
1279 /* try to update the throttle value */
1280 lpthrt = atomic_add_long_nv(lpthrtp, 1);
1281 if (lpthrt >= segkmem_lpthrottle_max) {
1282 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
1283 segkmem_lpthrottle_max / 4);
1284 }
1285
1286 /*
1287 * when we get above throttle start do an exponential
1288 * backoff at trying large pages and reaping
1289 */
1290 if (lpthrt > segkmem_lpthrottle_start &&
1291 (lpthrt & (lpthrt - 1))) {
1292 lpcb->allocs_throttled++;
1293 lpthrt--;
1294 if ((lpthrt & (lpthrt - 1)) == 0)
1295 kmem_reap();
1296 return (segkmem_alloc(vmp, size, vmflag));
1297 }
1298 }
1299
1300 if (!(vmflag & VM_NOSLEEP) &&
1301 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
1302 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
1303 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {
1304
1305 /*
1306 * we are low on free memory in kmem_lp_arena
1307 * we let only one guy to allocate heap_lp
1308 * quantum size chunk that everybody is going to
1309 * share
1310 */
1311 mutex_enter(&lpcb->lp_lock);
1312
1313 if (lpcb->lp_wait) {
1314
1315 /* we are not the first one - wait */
1316 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
1317 if (vmem_size(kmem_lp_arena, VMEM_FREE) <
1318 kmemlp_qnt) {
1319 doalloc = 0;
1320 }
1321 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
1322 kmemlp_qnt) {
1323
1324 /*
1325 * we are the first one, make sure we import
1326 * a large page
1327 */
1328 if (asize == kmemlp_qnt)
1329 asize += kmemlp_qnt;
1330 dowakeup = 1;
1331 lpcb->lp_wait = 1;
1332 }
1333
1334 mutex_exit(&lpcb->lp_lock);
1335 }
1336
1337 /*
1338 * VM_ABORT flag prevents sleeps in vmem_xalloc when
1339 * large pages are not available. In that case this allocation
1340 * attempt will fail and we will retry allocation with small
1341 * pages. We also do not want to panic if this allocation fails
1342 * because we are going to retry.
1343 */
1344 if (doalloc) {
1345 addr = vmem_alloc(kmem_lp_arena, asize,
1346 (vmflag | VM_ABORT) & ~VM_PANIC);
1347
1348 if (dowakeup) {
1349 mutex_enter(&lpcb->lp_lock);
1350 ASSERT(lpcb->lp_wait != 0);
1351 lpcb->lp_wait = 0;
1352 cv_broadcast(&lpcb->lp_cv);
1353 mutex_exit(&lpcb->lp_lock);
1354 }
1355 }
1356
1357 if (addr != NULL) {
1358 *sizep = asize;
1359 *lpthrtp = 0;
1360 return (addr);
1361 }
1362
1363 if (vmflag & VM_NOSLEEP)
1364 lpcb->nosleep_allocs_failed++;
1365 else
1366 lpcb->sleep_allocs_failed++;
1367 lpcb->alloc_bytes_failed += size;
1368
1369 /* if large page throttling is not started yet do it */
1370 if (segkmem_use_lpthrottle && lpthrt == 0) {
1371 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
1372 }
1373 }
1374 return (segkmem_alloc(vmp, size, vmflag));
1375 }
1376
1377 void
segkmem_free_lp(vmem_t * vmp,void * inaddr,size_t size)1378 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
1379 {
1380 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
1381 segkmem_free(vmp, inaddr, size);
1382 } else {
1383 vmem_free(kmem_lp_arena, inaddr, size);
1384 }
1385 }
1386
1387 /*
1388 * segkmem_alloc_lpi() imports virtual memory from large page heap arena
1389 * into kmem_lp arena. In the process it maps the imported segment with
1390 * large pages
1391 */
1392 static void *
segkmem_alloc_lpi(vmem_t * vmp,size_t size,int vmflag)1393 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
1394 {
1395 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1396 void *addr;
1397
1398 ASSERT(size != 0);
1399 ASSERT(vmp == heap_lp_arena);
1400
1401 /* do not allow large page heap grow beyound limits */
1402 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
1403 lpcb->allocs_limited++;
1404 return (NULL);
1405 }
1406
1407 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
1408 segkmem_page_create_large, NULL);
1409 return (addr);
1410 }
1411
1412 /*
1413 * segkmem_free_lpi() returns virtual memory back into large page heap arena
1414 * from kmem_lp arena. Beore doing this it unmaps the segment and frees
1415 * large pages used to map it.
1416 */
1417 static void
segkmem_free_lpi(vmem_t * vmp,void * inaddr,size_t size)1418 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
1419 {
1420 pgcnt_t nlpages = size >> segkmem_lpshift;
1421 size_t lpsize = segkmem_lpsize;
1422 caddr_t addr = inaddr;
1423 pgcnt_t npages = btopr(size);
1424 int i;
1425
1426 ASSERT(vmp == heap_lp_arena);
1427 ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
1428 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);
1429
1430 for (i = 0; i < nlpages; i++) {
1431 segkmem_free_one_lp(addr, lpsize);
1432 addr += lpsize;
1433 }
1434
1435 page_unresv(npages);
1436
1437 vmem_free(vmp, inaddr, size);
1438 }
1439
1440 /*
1441 * This function is called at system boot time by kmem_init right after
1442 * /etc/system file has been read. It checks based on hardware configuration
1443 * and /etc/system settings if system is going to use large pages. The
1444 * initialiazation necessary to actually start using large pages
1445 * happens later in the process after segkmem_heap_lp_init() is called.
1446 */
1447 int
segkmem_lpsetup()1448 segkmem_lpsetup()
1449 {
1450 int use_large_pages = 0;
1451
1452 #ifdef __sparc
1453
1454 size_t memtotal = physmem * PAGESIZE;
1455
1456 if (heap_lp_base == NULL) {
1457 segkmem_lpsize = PAGESIZE;
1458 return (0);
1459 }
1460
1461 /* get a platform dependent value of large page size for kernel heap */
1462 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);
1463
1464 if (segkmem_lpsize <= PAGESIZE) {
1465 /*
1466 * put virtual space reserved for the large page kernel
1467 * back to the regular heap
1468 */
1469 vmem_xfree(heap_arena, heap_lp_base,
1470 heap_lp_end - heap_lp_base);
1471 heap_lp_base = NULL;
1472 heap_lp_end = NULL;
1473 segkmem_lpsize = PAGESIZE;
1474 return (0);
1475 }
1476
1477 /* set heap_lp quantum if necessary */
1478 if (segkmem_heaplp_quantum == 0 ||
1479 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) ||
1480 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
1481 segkmem_heaplp_quantum = segkmem_lpsize;
1482 }
1483
1484 /* set kmem_lp quantum if necessary */
1485 if (segkmem_kmemlp_quantum == 0 ||
1486 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) ||
1487 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
1488 segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
1489 }
1490
1491 /* set total amount of memory allowed for large page kernel heap */
1492 if (segkmem_kmemlp_max == 0) {
1493 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
1494 segkmem_kmemlp_pcnt = 12;
1495 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
1496 }
1497 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
1498 segkmem_heaplp_quantum);
1499
1500 /* fix lp kmem preallocation request if necesssary */
1501 if (segkmem_kmemlp_min) {
1502 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
1503 segkmem_heaplp_quantum);
1504 if (segkmem_kmemlp_min > segkmem_kmemlp_max)
1505 segkmem_kmemlp_min = segkmem_kmemlp_max;
1506 }
1507
1508 use_large_pages = 1;
1509 segkmem_lpszc = page_szc(segkmem_lpsize);
1510 segkmem_lpshift = page_get_shift(segkmem_lpszc);
1511
1512 #endif
1513 return (use_large_pages);
1514 }
1515
1516 void
segkmem_zio_init(void * zio_mem_base,size_t zio_mem_size)1517 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size)
1518 {
1519 ASSERT(zio_mem_base != NULL);
1520 ASSERT(zio_mem_size != 0);
1521
1522 /*
1523 * To reduce VA space fragmentation, we set up quantum caches for the
1524 * smaller sizes; we chose 32k because that translates to 128k VA
1525 * slabs, which matches nicely with the common 128k zio_data bufs.
1526 */
1527 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size,
1528 PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP);
1529
1530 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE,
1531 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP);
1532
1533 ASSERT(zio_arena != NULL);
1534 ASSERT(zio_alloc_arena != NULL);
1535 }
1536
1537 #ifdef __sparc
1538
1539
1540 static void *
segkmem_alloc_ppa(vmem_t * vmp,size_t size,int vmflag)1541 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
1542 {
1543 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1544 void *addr;
1545
1546 if (ppaquantum <= PAGESIZE)
1547 return (segkmem_alloc(vmp, size, vmflag));
1548
1549 ASSERT((size & (ppaquantum - 1)) == 0);
1550
1551 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
1552 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
1553 segkmem_page_create, NULL) == NULL) {
1554 vmem_xfree(vmp, addr, size);
1555 addr = NULL;
1556 }
1557
1558 return (addr);
1559 }
1560
1561 static void
segkmem_free_ppa(vmem_t * vmp,void * addr,size_t size)1562 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
1563 {
1564 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1565
1566 ASSERT(addr != NULL);
1567
1568 if (ppaquantum <= PAGESIZE) {
1569 segkmem_free(vmp, addr, size);
1570 } else {
1571 segkmem_free(NULL, addr, size);
1572 vmem_xfree(vmp, addr, size);
1573 }
1574 }
1575
1576 void
segkmem_heap_lp_init()1577 segkmem_heap_lp_init()
1578 {
1579 segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1580 size_t heap_lp_size = heap_lp_end - heap_lp_base;
1581 size_t lpsize = segkmem_lpsize;
1582 size_t ppaquantum;
1583 void *addr;
1584
1585 if (segkmem_lpsize <= PAGESIZE) {
1586 ASSERT(heap_lp_base == NULL);
1587 ASSERT(heap_lp_end == NULL);
1588 return;
1589 }
1590
1591 ASSERT(segkmem_heaplp_quantum >= lpsize);
1592 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
1593 ASSERT(lpcb->lp_uselp == 0);
1594 ASSERT(heap_lp_base != NULL);
1595 ASSERT(heap_lp_end != NULL);
1596 ASSERT(heap_lp_base < heap_lp_end);
1597 ASSERT(heap_lp_arena == NULL);
1598 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
1599 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);
1600
1601 /* create large page heap arena */
1602 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
1603 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);
1604
1605 ASSERT(heap_lp_arena != NULL);
1606
1607 /* This arena caches memory already mapped by large pages */
1608 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
1609 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);
1610
1611 ASSERT(kmem_lp_arena != NULL);
1612
1613 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
1614 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);
1615
1616 /*
1617 * this arena is used for the array of page_t pointers necessary
1618 * to call hat_mem_load_array
1619 */
1620 ppaquantum = btopr(lpsize) * sizeof (page_t *);
1621 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
1622 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
1623 VM_SLEEP);
1624
1625 ASSERT(segkmem_ppa_arena != NULL);
1626
1627 /* prealloacate some memory for the lp kernel heap */
1628 if (segkmem_kmemlp_min) {
1629
1630 ASSERT(P2PHASE(segkmem_kmemlp_min,
1631 segkmem_heaplp_quantum) == 0);
1632
1633 if ((addr = segkmem_alloc_lpi(heap_lp_arena,
1634 segkmem_kmemlp_min, VM_SLEEP)) != NULL) {
1635
1636 addr = vmem_add(kmem_lp_arena, addr,
1637 segkmem_kmemlp_min, VM_SLEEP);
1638 ASSERT(addr != NULL);
1639 }
1640 }
1641
1642 lpcb->lp_uselp = 1;
1643 }
1644
1645 #endif
1646