1917Selowe /* 2917Selowe * CDDL HEADER START 3917Selowe * 4917Selowe * The contents of this file are subject to the terms of the 5917Selowe * Common Development and Distribution License, Version 1.0 only 6917Selowe * (the "License"). You may not use this file except in compliance 7917Selowe * with the License. 8917Selowe * 9917Selowe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10917Selowe * or http://www.opensolaris.org/os/licensing. 11917Selowe * See the License for the specific language governing permissions 12917Selowe * and limitations under the License. 13917Selowe * 14917Selowe * When distributing Covered Code, include this CDDL HEADER in each 15917Selowe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16917Selowe * If applicable, add the following below this CDDL HEADER, with the 17917Selowe * fields enclosed by brackets "[]" replaced with your own identifying 18917Selowe * information: Portions Copyright [yyyy] [name of copyright owner] 19917Selowe * 20917Selowe * CDDL HEADER END 21917Selowe */ 22917Selowe /* 23917Selowe * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24917Selowe * Use is subject to license terms. 25917Selowe */ 26917Selowe 27917Selowe #pragma ident "%Z%%M% %I% %E% SMI" 28917Selowe 29917Selowe /* 30917Selowe * Page Retire - Big Theory Statement. 31917Selowe * 32917Selowe * This file handles removing sections of faulty memory from use when the 33917Selowe * user land FMA Diagnosis Engine requests that a page be removed or when 34917Selowe * a CE or UE is detected by the hardware. 35917Selowe * 36917Selowe * In the bad old days, the kernel side of Page Retire did a lot of the work 37917Selowe * on its own. Now, with the DE keeping track of errors, the kernel side is 38917Selowe * rather simple minded on most platforms. 39917Selowe * 40917Selowe * Errors are all reflected to the DE, and after digesting the error and 41917Selowe * looking at all previously reported errors, the DE decides what should 42917Selowe * be done about the current error. If the DE wants a particular page to 43917Selowe * be retired, then the kernel page retire code is invoked via an ioctl. 44917Selowe * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 45917Selowe * page retire to handle the error. Since page retire is just a simple 46917Selowe * mechanism it doesn't need to differentiate between the different callers. 47917Selowe * 48917Selowe * The p_toxic field in the page_t is used to indicate which errors have 49917Selowe * occurred and what action has been taken on a given page. Because errors are 50917Selowe * reported without regard to the locked state of a page, no locks are used 51917Selowe * to SET the error bits in p_toxic. However, in order to clear the error 52917Selowe * bits, the page_t must be held exclusively locked. 53917Selowe * 54917Selowe * When page_retire() is called, it must be able to acquire locks, sleep, etc. 55917Selowe * It must not be called from high-level interrupt context. 56917Selowe * 57917Selowe * Depending on how the requested page is being used at the time of the retire 58917Selowe * request (and on the availability of sufficient system resources), the page 59917Selowe * may be retired immediately, or just marked for retirement later. For 60917Selowe * example, locked pages are marked, while free pages are retired. Multiple 61917Selowe * requests may be made to retire the same page, although there is no need 62917Selowe * to: once the p_toxic flags are set, the page will be retired as soon as it 63917Selowe * can be exclusively locked. 64917Selowe * 65917Selowe * The retire mechanism is driven centrally out of page_unlock(). To expedite 66917Selowe * the retirement of pages, further requests for SE_SHARED locks are denied 67917Selowe * as long as a page retirement is pending. In addition, as long as pages are 68917Selowe * pending retirement a background thread runs periodically trying to retire 69917Selowe * those pages. Pages which could not be retired while the system is running 70917Selowe * are scrubbed prior to rebooting to avoid latent errors on the next boot. 71917Selowe * 72917Selowe * Single CE pages and UE pages without persistent errors are scrubbed and 73917Selowe * returned to service. Recidivist pages, as well as FMA-directed requests 74917Selowe * for retirement, result in the page being taken out of service. Once the 75917Selowe * decision is made to take a page out of service, the page is cleared, hashed 76917Selowe * onto the retired_pages vnode, marked as retired, and it is unlocked. No 77917Selowe * other requesters (except for unretire) are allowed to lock retired pages. 78917Selowe * 79917Selowe * The public routines return (sadly) 0 if they worked and a non-zero error 80917Selowe * value if something went wrong. This is done for the ioctl side of the 81917Selowe * world to allow errors to be reflected all the way out to user land. The 82917Selowe * non-zero values are explained in comments atop each function. 83917Selowe */ 84917Selowe 85917Selowe /* 86917Selowe * Things to fix: 87917Selowe * 88917Selowe * 1. Cleanup SE_EWANTED. Since we're aggressive about trying to retire 89917Selowe * pages, we can use page_retire_pp() to replace SE_EWANTED and all 90917Selowe * the special delete_memory_thread() code just goes away. 91917Selowe * 92917Selowe * 2. Trying to retire non-relocatable kvp pages may result in a 93917Selowe * quagmire. This is because seg_kmem() no longer keeps its pages locked, 94917Selowe * and calls page_lookup() in the free path; since kvp pages are modified 95917Selowe * and don't have a usable backing store, page_retire() can't do anything 96917Selowe * with them, and we'll keep denying the lock to seg_kmem_free() in a 97917Selowe * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 98917Selowe * hence only call page_retire_pp() from page_unlock() in the free path. 99917Selowe * Since most kernel pages are indefinitely held anyway, and don't 100917Selowe * participate in I/O, this is of little consequence. 101917Selowe * 102917Selowe * 3. Low memory situations will be interesting. If we don't have 103917Selowe * enough memory for page_relocate() to succeed, we won't be able to 104917Selowe * retire dirty pages; nobody will be able to push them out to disk 105917Selowe * either, since we aggressively deny the page lock. We could change 106917Selowe * fsflush so it can recognize this situation, grab the lock, and push 107917Selowe * the page out, where we'll catch it in the free path and retire it. 108917Selowe * 109917Selowe * 4. Beware of places that have code like this in them: 110917Selowe * 111917Selowe * if (! page_tryupgrade(pp)) { 112917Selowe * page_unlock(pp); 113917Selowe * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 114917Selowe * / *NOTHING* / 115917Selowe * } 116917Selowe * } 117917Selowe * page_free(pp); 118917Selowe * 119917Selowe * The problem is that pp can change identity right after the 120917Selowe * page_unlock() call. In particular, page_retire() can step in 121917Selowe * there, change pp's identity, and hash pp onto the retired_vnode. 122917Selowe * 123917Selowe * Of course, other functions besides page_retire() can have the 124917Selowe * same effect. A kmem reader can waltz by, set up a mapping to the 125917Selowe * page, and then unlock the page. Page_free() will then go castors 126917Selowe * up. So if anybody is doing this, it's already a bug. 127917Selowe * 128917Selowe * 5. mdboot()'s call into page_retire_hunt() should probably be 129917Selowe * moved lower. Where the call is made now, we can get into trouble 130917Selowe * by scrubbing a kernel page that is then accessed later. 131917Selowe */ 132917Selowe 133917Selowe #include <sys/types.h> 134917Selowe #include <sys/param.h> 135917Selowe #include <sys/systm.h> 136917Selowe #include <sys/mman.h> 137917Selowe #include <sys/vnode.h> 138917Selowe #include <sys/cmn_err.h> 139917Selowe #include <sys/ksynch.h> 140917Selowe #include <sys/thread.h> 141917Selowe #include <sys/disp.h> 142917Selowe #include <sys/ontrap.h> 143917Selowe #include <sys/vmsystm.h> 144917Selowe #include <sys/mem_config.h> 145917Selowe #include <sys/atomic.h> 146917Selowe #include <sys/callb.h> 147917Selowe #include <vm/page.h> 148917Selowe #include <vm/vm_dep.h> 149917Selowe #include <vm/as.h> 150917Selowe #include <vm/hat.h> 151917Selowe 152917Selowe /* 153917Selowe * vnode for all pages which are retired from the VM system; 154917Selowe */ 155917Selowe vnode_t *retired_pages; 156917Selowe 157917Selowe /* 158917Selowe * Background thread that wakes up periodically to try to retire pending 159917Selowe * pages. This prevents threads from becoming blocked indefinitely in 160917Selowe * page_lookup() or some other routine should the page(s) they are waiting 161917Selowe * on become eligible for social security. 162917Selowe */ 163917Selowe static void page_retire_thread(void); 164917Selowe static kthread_t *pr_thread_id; 165917Selowe static kcondvar_t pr_cv; 166917Selowe static kmutex_t pr_thread_mutex; 167917Selowe static clock_t pr_thread_shortwait; 168917Selowe static clock_t pr_thread_longwait; 169917Selowe 170917Selowe /* 171917Selowe * Make a list of all of the pages that have been marked for retirement 172917Selowe * but are not yet retired. At system shutdown, we will scrub all of the 173917Selowe * pages in the list in case there are outstanding UEs. Then, we 174917Selowe * cross-check this list against the number of pages that are yet to be 175917Selowe * retired, and if we find inconsistencies, we scan every page_t in the 176917Selowe * whole system looking for any pages that need to be scrubbed for UEs. 177917Selowe * The background thread also uses this queue to determine which pages 178917Selowe * it should keep trying to retire. 179917Selowe */ 180917Selowe #ifdef DEBUG 181917Selowe #define PR_PENDING_QMAX 32 182917Selowe #else /* DEBUG */ 183917Selowe #define PR_PENDING_QMAX 256 184917Selowe #endif /* DEBUG */ 185917Selowe page_t *pr_pending_q[PR_PENDING_QMAX]; 186917Selowe kmutex_t pr_q_mutex; 187917Selowe 188917Selowe /* 189917Selowe * Page retire global kstats 190917Selowe */ 191917Selowe struct page_retire_kstat { 192917Selowe kstat_named_t pr_retired; 193917Selowe kstat_named_t pr_requested; 194917Selowe kstat_named_t pr_requested_free; 195917Selowe kstat_named_t pr_enqueue_fail; 196917Selowe kstat_named_t pr_dequeue_fail; 197917Selowe kstat_named_t pr_pending; 198917Selowe kstat_named_t pr_failed; 199917Selowe kstat_named_t pr_failed_kernel; 200917Selowe kstat_named_t pr_limit; 201917Selowe kstat_named_t pr_limit_exceeded; 202917Selowe kstat_named_t pr_fma; 203917Selowe kstat_named_t pr_mce; 204917Selowe kstat_named_t pr_ue; 205917Selowe kstat_named_t pr_ue_cleared_retire; 206917Selowe kstat_named_t pr_ue_cleared_free; 207917Selowe kstat_named_t pr_ue_persistent; 208917Selowe kstat_named_t pr_unretired; 209917Selowe }; 210917Selowe 211917Selowe static struct page_retire_kstat page_retire_kstat = { 212917Selowe { "pages_retired", KSTAT_DATA_UINT64}, 213917Selowe { "pages_retire_request", KSTAT_DATA_UINT64}, 214917Selowe { "pages_retire_request_free", KSTAT_DATA_UINT64}, 215917Selowe { "pages_notenqueued", KSTAT_DATA_UINT64}, 216917Selowe { "pages_notdequeued", KSTAT_DATA_UINT64}, 217917Selowe { "pages_pending", KSTAT_DATA_UINT64}, 218917Selowe { "pages_deferred", KSTAT_DATA_UINT64}, 219917Selowe { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 220917Selowe { "pages_limit", KSTAT_DATA_UINT64}, 221917Selowe { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 222917Selowe { "pages_fma", KSTAT_DATA_UINT64}, 223917Selowe { "pages_multiple_ce", KSTAT_DATA_UINT64}, 224917Selowe { "pages_ue", KSTAT_DATA_UINT64}, 225917Selowe { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 226917Selowe { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 227917Selowe { "pages_ue_persistent", KSTAT_DATA_UINT64}, 228917Selowe { "pages_unretired", KSTAT_DATA_UINT64}, 229917Selowe }; 230917Selowe 231917Selowe static kstat_t *page_retire_ksp = NULL; 232917Selowe 233917Selowe #define PR_INCR_KSTAT(stat) \ 234917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 235917Selowe #define PR_DECR_KSTAT(stat) \ 236917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 237917Selowe 238917Selowe #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 239917Selowe #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 240917Selowe #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 241917Selowe #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 242917Selowe #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 243917Selowe #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 244917Selowe 245917Selowe /* 246917Selowe * Limit the number of multiple CE page retires. 247917Selowe * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 248917Selowe * basis points, where 100 basis points equals one percent. 249917Selowe */ 250917Selowe #define MCE_BPT 10 251917Selowe uint64_t max_pages_retired_bps = MCE_BPT; 252917Selowe #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 253917Selowe 254917Selowe /* 255917Selowe * Control over the verbosity of page retirement. 256917Selowe * 257917Selowe * When set to zero (the default), no messages will be printed. 258917Selowe * When set to one, summary messages will be printed. 259917Selowe * When set > one, all messages will be printed. 260917Selowe * 261917Selowe * A value of one will trigger detailed messages for retirement operations, 262917Selowe * and is intended as a platform tunable for processors where FMA's DE does 263917Selowe * not run (e.g., spitfire). Values > one are intended for debugging only. 264917Selowe */ 265917Selowe int page_retire_messages = 0; 266917Selowe 267917Selowe /* 268917Selowe * Control whether or not we return scrubbed UE pages to service. 269917Selowe * By default we do not since FMA wants to run its diagnostics first 270917Selowe * and then ask us to unretire the page if it passes. Non-FMA platforms 271917Selowe * may set this to zero so we will only retire recidivist pages. It should 272917Selowe * not be changed by the user. 273917Selowe */ 274917Selowe int page_retire_first_ue = 1; 275917Selowe 276917Selowe /* 277917Selowe * Master enable for page retire. This prevents a CE or UE early in boot 278917Selowe * from trying to retire a page before page_retire_init() has finished 279917Selowe * setting things up. This is internal only and is not a tunable! 280917Selowe */ 281917Selowe static int pr_enable = 0; 282917Selowe 283917Selowe extern struct vnode kvp; 284917Selowe 285917Selowe #ifdef DEBUG 286917Selowe struct page_retire_debug { 287917Selowe int prd_dup; 288917Selowe int prd_noaction; 289917Selowe int prd_queued; 290917Selowe int prd_notqueued; 291917Selowe int prd_dequeue; 292917Selowe int prd_top; 293917Selowe int prd_locked; 294917Selowe int prd_reloc; 295*973Selowe int prd_relocfail; 296*973Selowe int prd_mod; 297*973Selowe int prd_mod_late; 298917Selowe int prd_kern; 299917Selowe int prd_free; 300917Selowe int prd_noreclaim; 301917Selowe int prd_hashout; 302917Selowe int prd_fma; 303917Selowe int prd_uescrubbed; 304917Selowe int prd_uenotscrubbed; 305917Selowe int prd_mce; 306917Selowe int prd_prlocked; 307917Selowe int prd_prnotlocked; 308917Selowe int prd_prretired; 309917Selowe int prd_ulocked; 310917Selowe int prd_unotretired; 311917Selowe int prd_udestroy; 312917Selowe int prd_uhashout; 313917Selowe int prd_uunretired; 314917Selowe int prd_unotlocked; 315917Selowe int prd_checkhit; 316917Selowe int prd_checkmiss; 317917Selowe int prd_tctop; 318917Selowe int prd_tclocked; 319917Selowe int prd_hunt; 320917Selowe int prd_dohunt; 321917Selowe int prd_earlyhunt; 322917Selowe int prd_latehunt; 323917Selowe int prd_nofreedemote; 324917Selowe int prd_nodemote; 325917Selowe int prd_demoted; 326917Selowe } pr_debug; 327917Selowe 328917Selowe #define PR_DEBUG(foo) ((pr_debug.foo)++) 329917Selowe 330917Selowe /* 331917Selowe * A type histogram. We record the incidence of the various toxic 332917Selowe * flag combinations along with the interesting page attributes. The 333917Selowe * goal is to get as many combinations as we can while driving all 334917Selowe * pr_debug values nonzero (indicating we've exercised all possible 335917Selowe * code paths across all possible page types). Not all combinations 336917Selowe * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 337917Selowe * 338917Selowe * pr_type offset bit encoding (when examining with a debugger): 339917Selowe * 340917Selowe * PRT_NAMED - 0x4 341917Selowe * PRT_KERNEL - 0x8 342917Selowe * PRT_FREE - 0x10 343917Selowe * PRT_MOD - 0x20 344917Selowe * PRT_FMA - 0x0 345917Selowe * PRT_MCE - 0x40 346917Selowe * PRT_UE - 0x80 347917Selowe */ 348917Selowe 349917Selowe #define PRT_NAMED 0x01 350917Selowe #define PRT_KERNEL 0x02 351917Selowe #define PRT_FREE 0x04 352917Selowe #define PRT_MOD 0x08 353917Selowe #define PRT_FMA 0x00 /* yes, this is not a mistake */ 354917Selowe #define PRT_MCE 0x10 355917Selowe #define PRT_UE 0x20 356917Selowe #define PRT_ALL 0x3F 357917Selowe 358917Selowe int pr_types[PRT_ALL+1]; 359917Selowe 360917Selowe #define PR_TYPES(pp) { \ 361917Selowe int whichtype = 0; \ 362917Selowe if (pp->p_vnode) \ 363917Selowe whichtype |= PRT_NAMED; \ 364*973Selowe if (PP_ISKVP(pp)) \ 365917Selowe whichtype |= PRT_KERNEL; \ 366917Selowe if (PP_ISFREE(pp)) \ 367917Selowe whichtype |= PRT_FREE; \ 368917Selowe if (hat_ismod(pp)) \ 369917Selowe whichtype |= PRT_MOD; \ 370917Selowe if (pp->p_toxic & PR_UE) \ 371917Selowe whichtype |= PRT_UE; \ 372917Selowe if (pp->p_toxic & PR_MCE) \ 373917Selowe whichtype |= PRT_MCE; \ 374917Selowe pr_types[whichtype]++; \ 375917Selowe } 376917Selowe 377917Selowe int recl_calls; 378917Selowe int recl_mtbf = 3; 379917Selowe int reloc_calls; 380917Selowe int reloc_mtbf = 7; 381917Selowe int pr_calls; 382917Selowe int pr_mtbf = 15; 383917Selowe 384917Selowe #define MTBF(v, f) (((++(v)) & (f)) != (f)) 385917Selowe 386917Selowe #else /* DEBUG */ 387917Selowe 388917Selowe #define PR_DEBUG(foo) /* nothing */ 389917Selowe #define PR_TYPES(foo) /* nothing */ 390917Selowe #define MTBF(v, f) (1) 391917Selowe 392917Selowe #endif /* DEBUG */ 393917Selowe 394917Selowe /* 395917Selowe * page_retire_done() - completion processing 396917Selowe * 397917Selowe * Used by the page_retire code for common completion processing. 398917Selowe * It keeps track of how many times a given result has happened, 399917Selowe * and writes out an occasional message. 400917Selowe * 401917Selowe * May be called with a NULL pp (PRD_INVALID_PA case). 402917Selowe */ 403917Selowe #define PRD_INVALID_KEY -1 404917Selowe #define PRD_SUCCESS 0 405917Selowe #define PRD_PENDING 1 406917Selowe #define PRD_FAILED 2 407917Selowe #define PRD_DUPLICATE 3 408917Selowe #define PRD_INVALID_PA 4 409917Selowe #define PRD_LIMIT 5 410917Selowe #define PRD_UE_SCRUBBED 6 411917Selowe #define PRD_UNR_SUCCESS 7 412917Selowe #define PRD_UNR_CANTLOCK 8 413917Selowe #define PRD_UNR_NOT 9 414917Selowe 415917Selowe typedef struct page_retire_op { 416917Selowe int pr_key; /* one of the PRD_* defines from above */ 417917Selowe int pr_count; /* How many times this has happened */ 418917Selowe int pr_retval; /* return value */ 419917Selowe int pr_msglvl; /* message level - when to print */ 420917Selowe char *pr_message; /* Cryptic message for field service */ 421917Selowe } page_retire_op_t; 422917Selowe 423917Selowe static page_retire_op_t page_retire_ops[] = { 424917Selowe /* key count retval msglvl message */ 425917Selowe {PRD_SUCCESS, 0, 0, 1, 426917Selowe "Page 0x%08x.%08x removed from service"}, 427917Selowe {PRD_PENDING, 0, EAGAIN, 2, 428917Selowe "Page 0x%08x.%08x will be retired on free"}, 429917Selowe {PRD_FAILED, 0, EAGAIN, 0, NULL}, 430917Selowe {PRD_DUPLICATE, 0, EBUSY, 2, 431917Selowe "Page 0x%08x.%08x already retired"}, 432917Selowe {PRD_INVALID_PA, 0, EINVAL, 2, 433917Selowe "PA 0x%08x.%08x is not a relocatable page"}, 434917Selowe {PRD_LIMIT, 0, 0, 1, 435917Selowe "Page 0x%08x.%08x not retired due to limit exceeded"}, 436917Selowe {PRD_UE_SCRUBBED, 0, 0, 1, 437917Selowe "Previously reported error on page 0x%08x.%08x cleared"}, 438917Selowe {PRD_UNR_SUCCESS, 0, 0, 1, 439917Selowe "Page 0x%08x.%08x returned to service"}, 440917Selowe {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 441917Selowe "Page 0x%08x.%08x could not be unretired"}, 442917Selowe {PRD_UNR_NOT, 0, EBADF, 2, 443917Selowe "Page 0x%08x.%08x is not retired"}, 444917Selowe {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 445917Selowe }; 446917Selowe 447917Selowe /* 448917Selowe * print a message if page_retire_messages is true. 449917Selowe */ 450917Selowe #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 451917Selowe { \ 452917Selowe uint64_t p = (uint64_t)pa; \ 453917Selowe if (page_retire_messages >= msglvl && msg != NULL) { \ 454917Selowe cmn_err(debuglvl, msg, \ 455917Selowe (uint32_t)(p >> 32), (uint32_t)p); \ 456917Selowe } \ 457917Selowe } 458917Selowe 459917Selowe /* 460917Selowe * Note that multiple bits may be set in a single settoxic operation. 461917Selowe * May be called without the page locked. 462917Selowe */ 463917Selowe void 464917Selowe page_settoxic(page_t *pp, uchar_t bits) 465917Selowe { 466917Selowe atomic_or_8(&pp->p_toxic, bits); 467917Selowe } 468917Selowe 469917Selowe /* 470917Selowe * Note that multiple bits may cleared in a single clrtoxic operation. 471917Selowe * Must be called with the page exclusively locked. 472917Selowe */ 473917Selowe void 474917Selowe page_clrtoxic(page_t *pp, uchar_t bits) 475917Selowe { 476917Selowe ASSERT(PAGE_EXCL(pp)); 477917Selowe atomic_and_8(&pp->p_toxic, ~bits); 478917Selowe } 479917Selowe 480917Selowe /* 481917Selowe * Prints any page retire messages to the user, and decides what 482917Selowe * error code is appropriate for the condition reported. 483917Selowe */ 484917Selowe static int 485917Selowe page_retire_done(page_t *pp, int code) 486917Selowe { 487917Selowe page_retire_op_t *prop; 488917Selowe uint64_t pa = 0; 489917Selowe int i; 490917Selowe 491917Selowe if (pp != NULL) { 492917Selowe pa = mmu_ptob(pp->p_pagenum); 493917Selowe } 494917Selowe 495917Selowe prop = NULL; 496917Selowe for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 497917Selowe if (page_retire_ops[i].pr_key == code) { 498917Selowe prop = &page_retire_ops[i]; 499917Selowe break; 500917Selowe } 501917Selowe } 502917Selowe 503917Selowe #ifdef DEBUG 504917Selowe if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 505917Selowe cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 506917Selowe } 507917Selowe #endif 508917Selowe 509917Selowe ASSERT(prop->pr_key == code); 510917Selowe 511917Selowe prop->pr_count++; 512917Selowe 513917Selowe PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 514917Selowe if (pp != NULL) { 515917Selowe page_settoxic(pp, PR_MSG); 516917Selowe } 517917Selowe 518917Selowe return (prop->pr_retval); 519917Selowe } 520917Selowe 521917Selowe /* 522917Selowe * On a reboot, our friend mdboot() wants to clear up any PP_PR_REQ() pages 523917Selowe * that we were not able to retire. On large machines, walking the complete 524917Selowe * page_t array and looking at every page_t takes too long. So, as a page is 525917Selowe * marked toxic, we track it using a list that can be processed at reboot 526917Selowe * time. page_retire_enqueue() will do its best to try to avoid duplicate 527917Selowe * entries, but if we get too many errors at once the queue can overflow, 528917Selowe * in which case we will end up walking every page_t as a last resort. 529917Selowe * The background thread also makes use of this queue to find which pages 530917Selowe * are pending retirement. 531917Selowe */ 532917Selowe static void 533917Selowe page_retire_enqueue(page_t *pp) 534917Selowe { 535917Selowe int nslot = -1; 536917Selowe int i; 537917Selowe 538917Selowe mutex_enter(&pr_q_mutex); 539917Selowe 540917Selowe /* 541917Selowe * Check to make sure retire hasn't already dequeued it. 542917Selowe * In the meantime if the page was cleaned up, no need 543917Selowe * to enqueue it. 544917Selowe */ 545917Selowe if (PP_RETIRED(pp) || pp->p_toxic == 0) { 546917Selowe mutex_exit(&pr_q_mutex); 547917Selowe PR_DEBUG(prd_noaction); 548917Selowe return; 549917Selowe } 550917Selowe 551917Selowe for (i = 0; i < PR_PENDING_QMAX; i++) { 552917Selowe if (pr_pending_q[i] == pp) { 553917Selowe mutex_exit(&pr_q_mutex); 554917Selowe PR_DEBUG(prd_dup); 555917Selowe return; 556917Selowe } else if (nslot == -1 && pr_pending_q[i] == NULL) { 557917Selowe nslot = i; 558917Selowe } 559917Selowe } 560917Selowe 561917Selowe PR_INCR_KSTAT(pr_pending); 562917Selowe 563917Selowe if (nslot != -1) { 564917Selowe pr_pending_q[nslot] = pp; 565917Selowe PR_DEBUG(prd_queued); 566917Selowe } else { 567917Selowe PR_INCR_KSTAT(pr_enqueue_fail); 568917Selowe PR_DEBUG(prd_notqueued); 569917Selowe } 570917Selowe mutex_exit(&pr_q_mutex); 571917Selowe } 572917Selowe 573917Selowe static void 574917Selowe page_retire_dequeue(page_t *pp) 575917Selowe { 576917Selowe int i; 577917Selowe 578917Selowe mutex_enter(&pr_q_mutex); 579917Selowe 580917Selowe for (i = 0; i < PR_PENDING_QMAX; i++) { 581917Selowe if (pr_pending_q[i] == pp) { 582917Selowe pr_pending_q[i] = NULL; 583917Selowe break; 584917Selowe } 585917Selowe } 586917Selowe 587917Selowe if (i == PR_PENDING_QMAX) { 588917Selowe PR_INCR_KSTAT(pr_dequeue_fail); 589917Selowe } 590917Selowe 591917Selowe PR_DECR_KSTAT(pr_pending); 592917Selowe PR_DEBUG(prd_dequeue); 593917Selowe 594917Selowe mutex_exit(&pr_q_mutex); 595917Selowe } 596917Selowe 597917Selowe /* 598917Selowe * Act like page_destroy(), but instead of freeing the page, hash it onto 599917Selowe * the retired_pages vnode, and mark it retired. 600917Selowe * 601917Selowe * For fun, we try to scrub the page until it's squeaky clean. 602917Selowe * availrmem is adjusted here. 603917Selowe */ 604917Selowe static void 605917Selowe page_retire_destroy(page_t *pp) 606917Selowe { 607*973Selowe u_offset_t off = (u_offset_t)((uintptr_t)pp); 608*973Selowe 609917Selowe ASSERT(PAGE_EXCL(pp)); 610917Selowe ASSERT(!PP_ISFREE(pp)); 611917Selowe ASSERT(pp->p_szc == 0); 612917Selowe ASSERT(!hat_page_is_mapped(pp)); 613917Selowe ASSERT(!pp->p_vnode); 614917Selowe 615917Selowe page_clr_all_props(pp); 616917Selowe pagescrub(pp, 0, MMU_PAGESIZE); 617917Selowe 618917Selowe pp->p_next = NULL; 619917Selowe pp->p_prev = NULL; 620*973Selowe if (page_hashin(pp, retired_pages, off, NULL) == 0) { 621917Selowe cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 622917Selowe } 623917Selowe 624917Selowe page_settoxic(pp, PR_RETIRED); 625917Selowe page_clrtoxic(pp, PR_BUSY); 626917Selowe page_retire_dequeue(pp); 627917Selowe PR_INCR_KSTAT(pr_retired); 628917Selowe 629917Selowe if (pp->p_toxic & PR_FMA) { 630917Selowe PR_INCR_KSTAT(pr_fma); 631917Selowe } else if (pp->p_toxic & PR_UE) { 632917Selowe PR_INCR_KSTAT(pr_ue); 633917Selowe } else { 634917Selowe PR_INCR_KSTAT(pr_mce); 635917Selowe } 636917Selowe 637917Selowe mutex_enter(&freemem_lock); 638917Selowe availrmem--; 639917Selowe mutex_exit(&freemem_lock); 640917Selowe 641917Selowe page_unlock(pp); 642917Selowe } 643917Selowe 644917Selowe /* 645917Selowe * Check whether the number of pages which have been retired already exceeds 646917Selowe * the maximum allowable percentage of memory which may be retired. 647917Selowe * 648917Selowe * Returns 1 if the limit has been exceeded. 649917Selowe */ 650917Selowe static int 651917Selowe page_retire_limit(void) 652917Selowe { 653917Selowe if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 654917Selowe PR_INCR_KSTAT(pr_limit_exceeded); 655917Selowe return (1); 656917Selowe } 657917Selowe 658917Selowe return (0); 659917Selowe } 660917Selowe 661917Selowe #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 662917Selowe "[ 0x%x != 0x%x ] while attempting to clear previously " \ 663917Selowe "reported error; page removed from service" 664917Selowe 665917Selowe #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 666917Selowe "attempting to clear previously reported error; page removed " \ 667917Selowe "from service" 668917Selowe 669917Selowe /* 670917Selowe * Attempt to clear a UE from a page. 671917Selowe * Returns 1 if the error has been successfully cleared. 672917Selowe */ 673917Selowe static int 674917Selowe page_clear_transient_ue(page_t *pp) 675917Selowe { 676917Selowe caddr_t kaddr; 677917Selowe uint8_t rb, wb; 678917Selowe uint64_t pa; 679917Selowe uint32_t pa_hi, pa_lo; 680917Selowe on_trap_data_t otd; 681917Selowe int errors = 0; 682917Selowe int i; 683917Selowe 684917Selowe ASSERT(PAGE_EXCL(pp)); 685917Selowe ASSERT(PP_PR_REQ(pp)); 686917Selowe ASSERT(pp->p_szc == 0); 687917Selowe ASSERT(!hat_page_is_mapped(pp)); 688917Selowe 689917Selowe /* 690917Selowe * Clear the page and attempt to clear the UE. If we trap 691917Selowe * on the next access to the page, we know the UE has recurred. 692917Selowe */ 693917Selowe pagescrub(pp, 0, PAGESIZE); 694917Selowe 695917Selowe /* 696917Selowe * Map the page and write a bunch of bit patterns to compare 697917Selowe * what we wrote with what we read back. This isn't a perfect 698917Selowe * test but it should be good enough to catch most of the 699917Selowe * recurring UEs. If this fails to catch a recurrent UE, we'll 700917Selowe * retire the page the next time we see a UE on the page. 701917Selowe */ 702917Selowe kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 703917Selowe 704917Selowe pa = ptob((uint64_t)page_pptonum(pp)); 705917Selowe pa_hi = (uint32_t)(pa >> 32); 706917Selowe pa_lo = (uint32_t)pa; 707917Selowe 708917Selowe /* 709917Selowe * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 710917Selowe * the cache in between reading and writing. We do this under 711917Selowe * on_trap() protection to avoid recursion. 712917Selowe */ 713917Selowe if (on_trap(&otd, OT_DATA_EC)) { 714917Selowe PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 715917Selowe errors = 1; 716917Selowe } else { 717917Selowe for (wb = 0xff; wb > 0; wb--) { 718917Selowe for (i = 0; i < PAGESIZE; i++) { 719917Selowe kaddr[i] = wb; 720917Selowe } 721917Selowe 722917Selowe sync_data_memory(kaddr, PAGESIZE); 723917Selowe 724917Selowe for (i = 0; i < PAGESIZE; i++) { 725917Selowe rb = kaddr[i]; 726917Selowe if (rb != wb) { 727917Selowe /* 728917Selowe * We had a mismatch without a trap. 729917Selowe * Uh-oh. Something is really wrong 730917Selowe * with this system. 731917Selowe */ 732917Selowe if (page_retire_messages) { 733917Selowe cmn_err(CE_WARN, MSG_DM, 734917Selowe pa_hi, pa_lo, rb, wb); 735917Selowe } 736917Selowe errors = 1; 737917Selowe goto out; /* double break */ 738917Selowe } 739917Selowe } 740917Selowe } 741917Selowe } 742917Selowe out: 743917Selowe no_trap(); 744917Selowe ppmapout(kaddr); 745917Selowe 746917Selowe return (errors ? 0 : 1); 747917Selowe } 748917Selowe 749917Selowe /* 750917Selowe * Try to clear a page_t with a single UE. If the UE was transient, it is 751917Selowe * returned to service, and we return 1. Otherwise we return 0 meaning 752917Selowe * that further processing is required to retire the page. 753917Selowe */ 754917Selowe static int 755917Selowe page_retire_transient_ue(page_t *pp) 756917Selowe { 757917Selowe ASSERT(PAGE_EXCL(pp)); 758917Selowe ASSERT(!hat_page_is_mapped(pp)); 759917Selowe 760917Selowe /* 761917Selowe * If this page is a repeat offender, retire him under the 762917Selowe * "two strikes and you're out" rule. The caller is responsible 763917Selowe * for scrubbing the page to try to clear the error. 764917Selowe */ 765917Selowe if (pp->p_toxic & PR_UE_SCRUBBED) { 766917Selowe PR_INCR_KSTAT(pr_ue_persistent); 767917Selowe return (0); 768917Selowe } 769917Selowe 770917Selowe if (page_clear_transient_ue(pp)) { 771917Selowe /* 772917Selowe * We set the PR_SCRUBBED_UE bit; if we ever see this 773917Selowe * page again, we will retire it, no questions asked. 774917Selowe */ 775917Selowe page_settoxic(pp, PR_UE_SCRUBBED); 776917Selowe 777917Selowe if (page_retire_first_ue) { 778917Selowe PR_INCR_KSTAT(pr_ue_cleared_retire); 779917Selowe return (0); 780917Selowe } else { 781917Selowe PR_INCR_KSTAT(pr_ue_cleared_free); 782917Selowe 783917Selowe page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG | PR_BUSY); 784917Selowe page_retire_dequeue(pp); 785917Selowe 786917Selowe /* LINTED: CONSTCOND */ 787917Selowe VN_DISPOSE(pp, B_FREE, 1, kcred); 788917Selowe return (1); 789917Selowe } 790917Selowe } 791917Selowe 792917Selowe PR_INCR_KSTAT(pr_ue_persistent); 793917Selowe return (0); 794917Selowe } 795917Selowe 796917Selowe /* 797917Selowe * Update the statistics dynamically when our kstat is read. 798917Selowe */ 799917Selowe static int 800917Selowe page_retire_kstat_update(kstat_t *ksp, int rw) 801917Selowe { 802917Selowe struct page_retire_kstat *pr; 803917Selowe 804917Selowe if (ksp == NULL) 805917Selowe return (EINVAL); 806917Selowe 807917Selowe switch (rw) { 808917Selowe 809917Selowe case KSTAT_READ: 810917Selowe pr = (struct page_retire_kstat *)ksp->ks_data; 811917Selowe ASSERT(pr == &page_retire_kstat); 812917Selowe pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 813917Selowe return (0); 814917Selowe 815917Selowe case KSTAT_WRITE: 816917Selowe return (EACCES); 817917Selowe 818917Selowe default: 819917Selowe return (EINVAL); 820917Selowe } 821917Selowe /*NOTREACHED*/ 822917Selowe } 823917Selowe 824917Selowe /* 825917Selowe * Initialize the page retire mechanism: 826917Selowe * 827917Selowe * - Establish the correctable error retire limit. 828917Selowe * - Initialize locks. 829917Selowe * - Build the retired_pages vnode. 830917Selowe * - Set up the kstats. 831917Selowe * - Fire off the background thread. 832917Selowe * - Tell page_tryretire() it's OK to start retiring pages. 833917Selowe */ 834917Selowe void 835917Selowe page_retire_init(void) 836917Selowe { 837917Selowe const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL}; 838917Selowe struct vnodeops *vops; 839917Selowe 840917Selowe const uint_t page_retire_ndata = 841917Selowe sizeof (page_retire_kstat) / sizeof (kstat_named_t); 842917Selowe 843917Selowe ASSERT(page_retire_ksp == NULL); 844917Selowe 845917Selowe if (max_pages_retired_bps <= 0) { 846917Selowe max_pages_retired_bps = MCE_BPT; 847917Selowe } 848917Selowe 849917Selowe mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 850917Selowe 851917Selowe retired_pages = vn_alloc(KM_SLEEP); 852917Selowe if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 853917Selowe cmn_err(CE_PANIC, 854917Selowe "page_retired_init: can't make retired vnodeops"); 855917Selowe } 856917Selowe vn_setops(retired_pages, vops); 857917Selowe 858917Selowe if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 859917Selowe "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 860917Selowe KSTAT_FLAG_VIRTUAL)) == NULL) { 861917Selowe cmn_err(CE_WARN, "kstat_create for page_retire failed"); 862917Selowe } else { 863917Selowe page_retire_ksp->ks_data = (void *)&page_retire_kstat; 864917Selowe page_retire_ksp->ks_update = page_retire_kstat_update; 865917Selowe kstat_install(page_retire_ksp); 866917Selowe } 867917Selowe 868917Selowe pr_thread_shortwait = 23 * hz; 869917Selowe pr_thread_longwait = 1201 * hz; 870917Selowe mutex_init(&pr_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 871917Selowe cv_init(&pr_cv, NULL, CV_DEFAULT, NULL); 872917Selowe pr_thread_id = thread_create(NULL, 0, page_retire_thread, NULL, 0, &p0, 873917Selowe TS_RUN, minclsyspri); 874917Selowe 875917Selowe pr_enable = 1; 876917Selowe } 877917Selowe 878917Selowe /* 879917Selowe * page_retire_hunt() callback for the retire thread. 880917Selowe */ 881917Selowe static void 882917Selowe page_retire_thread_cb(page_t *pp) 883917Selowe { 884917Selowe PR_DEBUG(prd_tctop); 885*973Selowe if (!PP_ISKVP(pp) && page_trylock(pp, SE_EXCL)) { 886917Selowe PR_DEBUG(prd_tclocked); 887917Selowe page_unlock(pp); 888917Selowe } 889917Selowe } 890917Selowe 891917Selowe /* 892917Selowe * page_retire_hunt() callback for mdboot(). 893917Selowe * 894917Selowe * It is necessary to scrub any failing pages prior to reboot in order to 895917Selowe * prevent a latent error trap from occurring on the next boot. 896917Selowe */ 897917Selowe void 898917Selowe page_retire_mdboot_cb(page_t *pp) 899917Selowe { 900917Selowe /* 901917Selowe * Don't scrub the kernel, since we might still need it, unless 902917Selowe * we have UEs on the page, in which case we have nothing to lose. 903917Selowe */ 904*973Selowe if (!PP_ISKVP(pp) || PP_TOXIC(pp)) { 905917Selowe pp->p_selock = -1; /* pacify ASSERTs */ 906*973Selowe PP_CLRFREE(pp); 907917Selowe pagescrub(pp, 0, PAGESIZE); 908917Selowe pp->p_selock = 0; 909917Selowe } 910917Selowe pp->p_toxic = 0; 911917Selowe } 912917Selowe 913917Selowe /* 914917Selowe * Hunt down any pages in the system that have not yet been retired, invoking 915917Selowe * the provided callback function on each of them. 916917Selowe */ 917917Selowe void 918917Selowe page_retire_hunt(void (*callback)(page_t *)) 919917Selowe { 920917Selowe page_t *pp; 921917Selowe page_t *first; 922*973Selowe uint64_t tbr, found; 923*973Selowe int i; 924917Selowe 925917Selowe PR_DEBUG(prd_hunt); 926917Selowe 927917Selowe if (PR_KSTAT_PENDING == 0) { 928917Selowe return; 929917Selowe } 930917Selowe 931917Selowe PR_DEBUG(prd_dohunt); 932917Selowe 933917Selowe found = 0; 934917Selowe mutex_enter(&pr_q_mutex); 935917Selowe 936*973Selowe tbr = PR_KSTAT_PENDING; 937*973Selowe 938917Selowe for (i = 0; i < PR_PENDING_QMAX; i++) { 939917Selowe if ((pp = pr_pending_q[i]) != NULL) { 940917Selowe mutex_exit(&pr_q_mutex); 941917Selowe callback(pp); 942917Selowe mutex_enter(&pr_q_mutex); 943917Selowe found++; 944917Selowe } 945917Selowe } 946917Selowe 947*973Selowe if (PR_KSTAT_EQFAIL == PR_KSTAT_DQFAIL && found == tbr) { 948917Selowe mutex_exit(&pr_q_mutex); 949917Selowe PR_DEBUG(prd_earlyhunt); 950917Selowe return; 951917Selowe } 952917Selowe mutex_exit(&pr_q_mutex); 953917Selowe 954917Selowe PR_DEBUG(prd_latehunt); 955917Selowe 956917Selowe /* 957917Selowe * We've lost track of a page somewhere. Hunt it down. 958917Selowe */ 959917Selowe memsegs_lock(0); 960917Selowe pp = first = page_first(); 961917Selowe do { 962917Selowe if (PP_PR_REQ(pp)) { 963917Selowe callback(pp); 964*973Selowe if (++found == tbr) { 965917Selowe break; /* got 'em all */ 966917Selowe } 967917Selowe } 968917Selowe } while ((pp = page_next(pp)) != first); 969917Selowe memsegs_unlock(0); 970917Selowe } 971917Selowe 972917Selowe /* 973917Selowe * The page_retire_thread loops forever, looking to see if there are 974917Selowe * pages still waiting to be retired. 975917Selowe */ 976917Selowe static void 977917Selowe page_retire_thread(void) 978917Selowe { 979917Selowe callb_cpr_t c; 980917Selowe 981917Selowe CALLB_CPR_INIT(&c, &pr_thread_mutex, callb_generic_cpr, "page_retire"); 982917Selowe 983917Selowe mutex_enter(&pr_thread_mutex); 984917Selowe for (;;) { 985917Selowe if (pr_enable && PR_KSTAT_PENDING) { 986917Selowe kmem_reap(); 987917Selowe seg_preap(); 988917Selowe page_retire_hunt(page_retire_thread_cb); 989917Selowe CALLB_CPR_SAFE_BEGIN(&c); 990917Selowe (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 991917Selowe lbolt + pr_thread_shortwait); 992917Selowe CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 993917Selowe } else { 994917Selowe CALLB_CPR_SAFE_BEGIN(&c); 995917Selowe (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 996917Selowe lbolt + pr_thread_longwait); 997917Selowe CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 998917Selowe } 999917Selowe } 1000917Selowe /*NOTREACHED*/ 1001917Selowe } 1002917Selowe 1003917Selowe /* 1004917Selowe * page_retire_pp() decides what to do with a failing page. 1005917Selowe * 1006917Selowe * When we get a free page (e.g. the scrubber or in the free path) life is 1007917Selowe * nice because the page is clean and marked free -- those always retire 1008917Selowe * nicely. From there we go by order of difficulty. If the page has data, 1009917Selowe * we attempt to relocate its contents to a suitable replacement page. If 1010917Selowe * that does not succeed, we look to see if it is clean. If after all of 1011917Selowe * this we have a clean, unmapped page (which we usually do!), we retire it. 1012917Selowe * If the page is not clean, we still process it regardless on a UE; for 1013917Selowe * CEs or FMA requests, we fail leaving the page in service. The page will 1014917Selowe * eventually be tried again later. We always return with the page unlocked 1015917Selowe * since we are called from page_unlock(). 1016917Selowe * 1017917Selowe * We don't call panic or do anything fancy down in here. Our boss the DE 1018917Selowe * gets paid handsomely to do his job of figuring out what to do when errors 1019917Selowe * occur. We just do what he tells us to do. 1020917Selowe */ 1021917Selowe static int 1022917Selowe page_retire_pp(page_t *pp) 1023917Selowe { 1024917Selowe int toxic; 1025917Selowe 1026917Selowe ASSERT(PAGE_EXCL(pp)); 1027917Selowe ASSERT(pp->p_iolock_state == 0); 1028917Selowe ASSERT(pp->p_szc == 0); 1029917Selowe 1030917Selowe PR_DEBUG(prd_top); 1031917Selowe PR_TYPES(pp); 1032917Selowe 1033917Selowe toxic = pp->p_toxic; 1034917Selowe ASSERT(toxic & PR_REASONS); 1035917Selowe 1036917Selowe if ((toxic & (PR_FMA | PR_MCE)) && !(toxic & PR_UE) && 1037917Selowe page_retire_limit()) { 1038917Selowe page_clrtoxic(pp, PR_FMA | PR_MCE | PR_MSG | PR_BUSY); 1039917Selowe page_retire_dequeue(pp); 1040917Selowe page_unlock(pp); 1041917Selowe return (page_retire_done(pp, PRD_LIMIT)); 1042917Selowe } 1043917Selowe 1044917Selowe if (PP_ISFREE(pp)) { 1045917Selowe PR_DEBUG(prd_free); 1046917Selowe if (!MTBF(recl_calls, recl_mtbf) || !page_reclaim(pp, NULL)) { 1047917Selowe PR_DEBUG(prd_noreclaim); 1048917Selowe PR_INCR_KSTAT(pr_failed); 1049917Selowe page_unlock(pp); 1050917Selowe return (page_retire_done(pp, PRD_FAILED)); 1051917Selowe } 1052917Selowe } 1053917Selowe 1054917Selowe if ((toxic & PR_UE) == 0 && pp->p_vnode && !PP_ISFREE(pp) && 1055*973Selowe !PP_ISNORELOCKERNEL(pp) && MTBF(reloc_calls, reloc_mtbf)) { 1056917Selowe page_t *newpp; 1057917Selowe spgcnt_t count; 1058917Selowe 1059917Selowe /* 1060917Selowe * If we can relocate the page, great! newpp will go 1061917Selowe * on without us, and everything is fine. Regardless 1062917Selowe * of whether the relocation succeeds, we are still 1063917Selowe * going to take `pp' around back and shoot it. 1064917Selowe */ 1065917Selowe newpp = NULL; 1066917Selowe if (page_relocate(&pp, &newpp, 0, 0, &count, NULL) == 0) { 1067*973Selowe PR_DEBUG(prd_reloc); 1068917Selowe page_unlock(newpp); 1069917Selowe ASSERT(hat_page_getattr(pp, P_MOD) == 0); 1070*973Selowe } else { 1071*973Selowe PR_DEBUG(prd_relocfail); 1072917Selowe } 1073917Selowe } 1074917Selowe 1075*973Selowe if (hat_ismod(pp)) { 1076*973Selowe PR_DEBUG(prd_mod); 1077*973Selowe PR_INCR_KSTAT(pr_failed); 1078*973Selowe page_unlock(pp); 1079*973Selowe return (page_retire_done(pp, PRD_FAILED)); 1080*973Selowe } 1081*973Selowe 1082*973Selowe if (PP_ISKVP(pp)) { 1083917Selowe PR_DEBUG(prd_kern); 1084917Selowe PR_INCR_KSTAT(pr_failed_kernel); 1085917Selowe page_unlock(pp); 1086917Selowe return (page_retire_done(pp, PRD_FAILED)); 1087917Selowe } 1088917Selowe 1089917Selowe if (pp->p_lckcnt || pp->p_cowcnt) { 1090*973Selowe PR_DEBUG(prd_locked); 1091*973Selowe PR_INCR_KSTAT(pr_failed); 1092*973Selowe page_unlock(pp); 1093*973Selowe return (page_retire_done(pp, PRD_FAILED)); 1094917Selowe } 1095917Selowe 1096917Selowe (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1097917Selowe ASSERT(!PP_ISFREE(pp)); 1098917Selowe ASSERT(!hat_page_is_mapped(pp)); 1099917Selowe 1100917Selowe /* 1101*973Selowe * If the page is modified, and was not relocated; we can't 1102*973Selowe * retire it without dropping data on the floor. We have to 1103*973Selowe * recheck after unloading since the dirty bit could have been 1104*973Selowe * set since we last checked. 1105917Selowe */ 1106917Selowe if (hat_ismod(pp)) { 1107*973Selowe PR_DEBUG(prd_mod_late); 1108*973Selowe PR_INCR_KSTAT(pr_failed); 1109*973Selowe page_unlock(pp); 1110*973Selowe return (page_retire_done(pp, PRD_FAILED)); 1111917Selowe } 1112917Selowe 1113917Selowe if (pp->p_vnode) { 1114917Selowe PR_DEBUG(prd_hashout); 1115917Selowe page_hashout(pp, NULL); 1116917Selowe } 1117917Selowe ASSERT(!pp->p_vnode); 1118917Selowe 1119917Selowe /* 1120917Selowe * The problem page is locked, demoted, unmapped, not free, 1121917Selowe * hashed out, and not COW or mlocked (whew!). 1122917Selowe * 1123917Selowe * Now we select our ammunition, take it around back, and shoot it. 1124917Selowe */ 1125917Selowe if (toxic & PR_UE) { 1126917Selowe if (page_retire_transient_ue(pp)) { 1127917Selowe PR_DEBUG(prd_uescrubbed); 1128917Selowe return (page_retire_done(pp, PRD_UE_SCRUBBED)); 1129917Selowe } else { 1130917Selowe PR_DEBUG(prd_uenotscrubbed); 1131917Selowe page_retire_destroy(pp); 1132917Selowe return (page_retire_done(pp, PRD_SUCCESS)); 1133917Selowe } 1134917Selowe } else if (toxic & PR_FMA) { 1135917Selowe PR_DEBUG(prd_fma); 1136917Selowe page_retire_destroy(pp); 1137917Selowe return (page_retire_done(pp, PRD_SUCCESS)); 1138917Selowe } else if (toxic & PR_MCE) { 1139917Selowe PR_DEBUG(prd_mce); 1140917Selowe page_retire_destroy(pp); 1141917Selowe return (page_retire_done(pp, PRD_SUCCESS)); 1142917Selowe } 1143917Selowe panic("page_retire_pp: bad toxic flags %d", toxic); 1144917Selowe /*NOTREACHED*/ 1145917Selowe } 1146917Selowe 1147917Selowe /* 1148917Selowe * Try to retire a page when we stumble onto it in the page lock routines. 1149917Selowe */ 1150917Selowe void 1151917Selowe page_tryretire(page_t *pp) 1152917Selowe { 1153917Selowe ASSERT(PAGE_EXCL(pp)); 1154917Selowe 1155917Selowe if (!pr_enable) { 1156917Selowe page_unlock(pp); 1157917Selowe return; 1158917Selowe } 1159917Selowe 1160917Selowe /* 1161917Selowe * If the page is a big page, try to break it up. 1162917Selowe * 1163917Selowe * If there are other bad pages besides `pp', they will be 1164917Selowe * recursively retired for us thanks to a bit of magic. 1165917Selowe * If the page is a small page with errors, try to retire it. 1166917Selowe */ 1167917Selowe if (pp->p_szc > 0) { 1168917Selowe if (PP_ISFREE(pp) && !page_try_demote_free_pages(pp)) { 1169917Selowe page_unlock(pp); 1170917Selowe PR_DEBUG(prd_nofreedemote); 1171917Selowe return; 1172917Selowe } else if (!page_try_demote_pages(pp)) { 1173917Selowe page_unlock(pp); 1174917Selowe PR_DEBUG(prd_nodemote); 1175917Selowe return; 1176917Selowe } 1177917Selowe PR_DEBUG(prd_demoted); 1178917Selowe page_unlock(pp); 1179917Selowe } else { 1180917Selowe (void) page_retire_pp(pp); 1181917Selowe } 1182917Selowe } 1183917Selowe 1184917Selowe /* 1185917Selowe * page_retire() - the front door in to retire a page. 1186917Selowe * 1187917Selowe * Ideally, page_retire() would instantly retire the requested page. 1188917Selowe * Unfortunately, some pages are locked or otherwise tied up and cannot be 1189917Selowe * retired right away. To deal with that, bits are set in p_toxic of the 1190917Selowe * page_t. An attempt is made to lock the page; if the attempt is successful, 1191917Selowe * we instantly unlock the page counting on page_unlock() to notice p_toxic 1192917Selowe * is nonzero and to call back into page_retire_pp(). Success is determined 1193917Selowe * by looking to see whether the page has been retired once it has been 1194917Selowe * unlocked. 1195917Selowe * 1196917Selowe * Returns: 1197917Selowe * 1198917Selowe * - 0 on success, 1199917Selowe * - EINVAL when the PA is whacko, 1200917Selowe * - EBUSY if the page is already retired, or 1201917Selowe * - EAGAIN if the page could not be _immediately_ retired. 1202917Selowe */ 1203917Selowe int 1204917Selowe page_retire(uint64_t pa, uchar_t reason) 1205917Selowe { 1206917Selowe page_t *pp; 1207917Selowe 1208917Selowe ASSERT(reason & PR_REASONS); /* there must be a reason */ 1209917Selowe ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1210917Selowe 1211917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1212917Selowe if (pp == NULL) { 1213917Selowe PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1214917Selowe " page 0x%08x.%08x; page is not relocatable memory", pa); 1215917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1216917Selowe } 1217917Selowe if (PP_RETIRED(pp)) { 1218917Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1219917Selowe } 1220917Selowe 1221917Selowe if (reason & PR_UE) { 1222917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1223917Selowe " page 0x%08x.%08x", pa); 1224917Selowe } else { 1225917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1226917Selowe " page 0x%08x.%08x", pa); 1227917Selowe } 1228917Selowe page_settoxic(pp, reason); 1229917Selowe page_retire_enqueue(pp); 1230917Selowe 1231917Selowe /* 1232917Selowe * And now for some magic. 1233917Selowe * 1234917Selowe * We marked this page toxic up above. All there is left to do is 1235917Selowe * to try to lock the page and then unlock it. The page lock routines 1236917Selowe * will intercept the page and retire it if they can. If the page 1237917Selowe * cannot be locked, 's okay -- page_unlock() will eventually get it, 1238917Selowe * or the background thread, until then the lock routines will deny 1239917Selowe * further locks on it. 1240917Selowe */ 1241917Selowe if (MTBF(pr_calls, pr_mtbf) && page_trylock(pp, SE_EXCL)) { 1242917Selowe PR_DEBUG(prd_prlocked); 1243917Selowe page_unlock(pp); 1244917Selowe } else { 1245917Selowe PR_DEBUG(prd_prnotlocked); 1246917Selowe } 1247917Selowe 1248917Selowe if (PP_RETIRED(pp)) { 1249917Selowe PR_DEBUG(prd_prretired); 1250917Selowe return (0); 1251917Selowe } else { 1252917Selowe cv_signal(&pr_cv); 1253917Selowe PR_INCR_KSTAT(pr_failed); 1254917Selowe 1255917Selowe if (pp->p_toxic & PR_MSG) { 1256917Selowe return (page_retire_done(pp, PRD_FAILED)); 1257917Selowe } else { 1258917Selowe return (page_retire_done(pp, PRD_PENDING)); 1259917Selowe } 1260917Selowe } 1261917Selowe } 1262917Selowe 1263917Selowe /* 1264917Selowe * Take a retired page off the retired-pages vnode and clear the toxic flags. 1265917Selowe * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1266917Selowe * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1267917Selowe * and don't do anything else with it. 1268917Selowe * 1269917Selowe * Any unretire messages are printed from this routine. 1270917Selowe * 1271917Selowe * Returns 0 if page pp was unretired; else an error code. 1272917Selowe */ 1273917Selowe int 1274917Selowe page_unretire_pp(page_t *pp, int free) 1275917Selowe { 1276917Selowe /* 1277917Selowe * To be retired, a page has to be hashed onto the retired_pages vnode 1278917Selowe * and have PR_RETIRED set in p_toxic. 1279917Selowe */ 1280917Selowe if (free == 0 || page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1281917Selowe ASSERT(PAGE_EXCL(pp)); 1282917Selowe PR_DEBUG(prd_ulocked); 1283917Selowe if (!PP_RETIRED(pp)) { 1284917Selowe PR_DEBUG(prd_unotretired); 1285917Selowe page_unlock(pp); 1286917Selowe return (page_retire_done(pp, PRD_UNR_NOT)); 1287917Selowe } 1288917Selowe 1289917Selowe PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 1290917Selowe " page 0x%08x.%08x", mmu_ptob(pp->p_pagenum)); 1291917Selowe if (pp->p_toxic & PR_FMA) { 1292917Selowe PR_DECR_KSTAT(pr_fma); 1293917Selowe } else if (pp->p_toxic & PR_UE) { 1294917Selowe PR_DECR_KSTAT(pr_ue); 1295917Selowe } else { 1296917Selowe PR_DECR_KSTAT(pr_mce); 1297917Selowe } 1298917Selowe page_clrtoxic(pp, PR_ALLFLAGS); 1299917Selowe 1300917Selowe if (free) { 1301917Selowe PR_DEBUG(prd_udestroy); 1302917Selowe page_destroy(pp, 0); 1303917Selowe } else { 1304917Selowe PR_DEBUG(prd_uhashout); 1305917Selowe page_hashout(pp, NULL); 1306917Selowe } 1307917Selowe 1308917Selowe mutex_enter(&freemem_lock); 1309917Selowe availrmem++; 1310917Selowe mutex_exit(&freemem_lock); 1311917Selowe 1312917Selowe PR_DEBUG(prd_uunretired); 1313917Selowe PR_DECR_KSTAT(pr_retired); 1314917Selowe PR_INCR_KSTAT(pr_unretired); 1315917Selowe return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1316917Selowe } 1317917Selowe PR_DEBUG(prd_unotlocked); 1318917Selowe return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1319917Selowe } 1320917Selowe 1321917Selowe /* 1322917Selowe * Return a page to service by moving it from the retired_pages vnode 1323917Selowe * onto the freelist. 1324917Selowe * 1325917Selowe * Called from mmioctl_page_retire() on behalf of the FMA DE. 1326917Selowe * 1327917Selowe * Returns: 1328917Selowe * 1329917Selowe * - 0 if the page is unretired, 1330917Selowe * - EAGAIN if the pp can not be locked, 1331917Selowe * - EINVAL if the PA is whacko, and 1332917Selowe * - EBADF if the pp is not retired. 1333917Selowe */ 1334917Selowe int 1335917Selowe page_unretire(uint64_t pa) 1336917Selowe { 1337917Selowe page_t *pp; 1338917Selowe 1339917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1340917Selowe if (pp == NULL) { 1341917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1342917Selowe } 1343917Selowe 1344917Selowe return (page_unretire_pp(pp, 1)); 1345917Selowe } 1346917Selowe 1347917Selowe /* 1348917Selowe * Test a page to see if it is retired. If errors is non-NULL, the toxic 1349917Selowe * bits of the page are returned. Returns 0 on success, error code on failure. 1350917Selowe */ 1351917Selowe int 1352917Selowe page_retire_check_pp(page_t *pp, uint64_t *errors) 1353917Selowe { 1354917Selowe int rc; 1355917Selowe 1356917Selowe if (PP_RETIRED(pp)) { 1357917Selowe PR_DEBUG(prd_checkhit); 1358917Selowe rc = 0; 1359917Selowe } else { 1360917Selowe PR_DEBUG(prd_checkmiss); 1361917Selowe rc = EAGAIN; 1362917Selowe } 1363917Selowe 1364917Selowe /* 1365917Selowe * We have magically arranged the bit values returned to fmd(1M) 1366917Selowe * to line up with the FMA, MCE, and UE bits of the page_t. 1367917Selowe */ 1368917Selowe if (errors) { 1369917Selowe uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1370917Selowe if (toxic & PR_UE_SCRUBBED) { 1371917Selowe toxic &= ~PR_UE_SCRUBBED; 1372917Selowe toxic |= PR_UE; 1373917Selowe } 1374917Selowe *errors = toxic; 1375917Selowe } 1376917Selowe 1377917Selowe return (rc); 1378917Selowe } 1379917Selowe 1380917Selowe /* 1381917Selowe * Test to see if the page_t for a given PA is retired, and return the 1382917Selowe * hardware errors we have seen on the page if requested. 1383917Selowe * 1384917Selowe * Called from mmioctl_page_retire on behalf of the FMA DE. 1385917Selowe * 1386917Selowe * Returns: 1387917Selowe * 1388917Selowe * - 0 if the page is retired, 1389917Selowe * - EAGAIN if it is not, and 1390917Selowe * - EINVAL if the PA is whacko. 1391917Selowe */ 1392917Selowe int 1393917Selowe page_retire_check(uint64_t pa, uint64_t *errors) 1394917Selowe { 1395917Selowe page_t *pp; 1396917Selowe 1397917Selowe if (errors) { 1398917Selowe *errors = 0; 1399917Selowe } 1400917Selowe 1401917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1402917Selowe if (pp == NULL) { 1403917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1404917Selowe } 1405917Selowe 1406917Selowe return (page_retire_check_pp(pp, errors)); 1407917Selowe } 1408917Selowe 1409917Selowe /* 1410917Selowe * Page retire self-test. For now, it always returns 0. 1411917Selowe */ 1412917Selowe int 1413917Selowe page_retire_test(void) 1414917Selowe { 1415917Selowe page_t *first, *pp, *cpp, *cpp2, *lpp; 1416917Selowe 1417917Selowe /* 1418917Selowe * Tests the corner case where a large page can't be retired 1419917Selowe * because one of the constituent pages is locked. We mark 1420917Selowe * one page to be retired and try to retire it, and mark the 1421917Selowe * other page to be retired but don't try to retire it, so 1422917Selowe * that page_unlock() in the failure path will recurse and try 1423917Selowe * to retire THAT page. This is the worst possible situation 1424917Selowe * we can get ourselves into. 1425917Selowe */ 1426917Selowe memsegs_lock(0); 1427917Selowe pp = first = page_first(); 1428917Selowe do { 1429917Selowe if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1430917Selowe cpp = pp + 1; 1431917Selowe lpp = PP_ISFREE(pp)? pp : pp + 2; 1432917Selowe cpp2 = pp + 3; 1433917Selowe if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1434917Selowe continue; 1435917Selowe if (!page_trylock(cpp, SE_EXCL)) { 1436917Selowe page_unlock(lpp); 1437917Selowe continue; 1438917Selowe } 1439917Selowe page_settoxic(cpp, PR_FMA | PR_BUSY); 1440917Selowe page_settoxic(cpp2, PR_FMA); 1441917Selowe page_tryretire(cpp); /* will fail */ 1442917Selowe page_unlock(lpp); 1443917Selowe (void) page_retire(cpp->p_pagenum, PR_FMA); 1444917Selowe (void) page_retire(cpp2->p_pagenum, PR_FMA); 1445917Selowe } 1446917Selowe } while ((pp = page_next(pp)) != first); 1447917Selowe memsegs_unlock(0); 1448917Selowe 1449917Selowe return (0); 1450917Selowe } 1451