1917Selowe /*
2917Selowe  * CDDL HEADER START
3917Selowe  *
4917Selowe  * The contents of this file are subject to the terms of the
53253Smec  * Common Development and Distribution License (the "License").
63253Smec  * You may not use this file except in compliance with the License.
7917Selowe  *
8917Selowe  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9917Selowe  * or http://www.opensolaris.org/os/licensing.
10917Selowe  * See the License for the specific language governing permissions
11917Selowe  * and limitations under the License.
12917Selowe  *
13917Selowe  * When distributing Covered Code, include this CDDL HEADER in each
14917Selowe  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15917Selowe  * If applicable, add the following below this CDDL HEADER, with the
16917Selowe  * fields enclosed by brackets "[]" replaced with your own identifying
17917Selowe  * information: Portions Copyright [yyyy] [name of copyright owner]
18917Selowe  *
19917Selowe  * CDDL HEADER END
20917Selowe  */
21917Selowe /*
22*7458SChristopher.Baumbauer@Sun.COM  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23917Selowe  * Use is subject to license terms.
24917Selowe  */
25917Selowe 
26917Selowe /*
27917Selowe  * Page Retire - Big Theory Statement.
28917Selowe  *
29917Selowe  * This file handles removing sections of faulty memory from use when the
30917Selowe  * user land FMA Diagnosis Engine requests that a page be removed or when
31917Selowe  * a CE or UE is detected by the hardware.
32917Selowe  *
33917Selowe  * In the bad old days, the kernel side of Page Retire did a lot of the work
34917Selowe  * on its own. Now, with the DE keeping track of errors, the kernel side is
35917Selowe  * rather simple minded on most platforms.
36917Selowe  *
37917Selowe  * Errors are all reflected to the DE, and after digesting the error and
38917Selowe  * looking at all previously reported errors, the DE decides what should
39917Selowe  * be done about the current error. If the DE wants a particular page to
40917Selowe  * be retired, then the kernel page retire code is invoked via an ioctl.
41917Selowe  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
42917Selowe  * page retire to handle the error. Since page retire is just a simple
43917Selowe  * mechanism it doesn't need to differentiate between the different callers.
44917Selowe  *
45917Selowe  * The p_toxic field in the page_t is used to indicate which errors have
46917Selowe  * occurred and what action has been taken on a given page. Because errors are
47917Selowe  * reported without regard to the locked state of a page, no locks are used
48917Selowe  * to SET the error bits in p_toxic. However, in order to clear the error
49917Selowe  * bits, the page_t must be held exclusively locked.
50917Selowe  *
51917Selowe  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
52917Selowe  * It must not be called from high-level interrupt context.
53917Selowe  *
54917Selowe  * Depending on how the requested page is being used at the time of the retire
55917Selowe  * request (and on the availability of sufficient system resources), the page
56917Selowe  * may be retired immediately, or just marked for retirement later. For
57917Selowe  * example, locked pages are marked, while free pages are retired. Multiple
58917Selowe  * requests may be made to retire the same page, although there is no need
59917Selowe  * to: once the p_toxic flags are set, the page will be retired as soon as it
60917Selowe  * can be exclusively locked.
61917Selowe  *
62917Selowe  * The retire mechanism is driven centrally out of page_unlock(). To expedite
63917Selowe  * the retirement of pages, further requests for SE_SHARED locks are denied
64917Selowe  * as long as a page retirement is pending. In addition, as long as pages are
65917Selowe  * pending retirement a background thread runs periodically trying to retire
66917Selowe  * those pages. Pages which could not be retired while the system is running
67917Selowe  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
68917Selowe  *
691338Selowe  * UE pages without persistent errors are scrubbed and returned to service.
701338Selowe  * Recidivist pages, as well as FMA-directed requests for retirement, result
711338Selowe  * in the page being taken out of service. Once the decision is made to take
721338Selowe  * a page out of service, the page is cleared, hashed onto the retired_pages
731338Selowe  * vnode, marked as retired, and it is unlocked.  No other requesters (except
741338Selowe  * for unretire) are allowed to lock retired pages.
75917Selowe  *
76917Selowe  * The public routines return (sadly) 0 if they worked and a non-zero error
77917Selowe  * value if something went wrong. This is done for the ioctl side of the
78917Selowe  * world to allow errors to be reflected all the way out to user land. The
79917Selowe  * non-zero values are explained in comments atop each function.
80917Selowe  */
81917Selowe 
82917Selowe /*
83917Selowe  * Things to fix:
84917Selowe  *
853253Smec  * 	1. Trying to retire non-relocatable kvp pages may result in a
86917Selowe  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
87917Selowe  *      and calls page_lookup() in the free path; since kvp pages are modified
88917Selowe  *      and don't have a usable backing store, page_retire() can't do anything
89917Selowe  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
90917Selowe  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
913253Smec  *      hence only try to retire a page from page_unlock() in the free path.
92917Selowe  *      Since most kernel pages are indefinitely held anyway, and don't
93917Selowe  *      participate in I/O, this is of little consequence.
94917Selowe  *
953253Smec  *      2. Low memory situations will be interesting. If we don't have
96917Selowe  *      enough memory for page_relocate() to succeed, we won't be able to
97917Selowe  *      retire dirty pages; nobody will be able to push them out to disk
98917Selowe  *      either, since we aggressively deny the page lock. We could change
99917Selowe  *      fsflush so it can recognize this situation, grab the lock, and push
100917Selowe  *      the page out, where we'll catch it in the free path and retire it.
101917Selowe  *
1023253Smec  *	3. Beware of places that have code like this in them:
103917Selowe  *
104917Selowe  *		if (! page_tryupgrade(pp)) {
105917Selowe  *			page_unlock(pp);
106917Selowe  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
107917Selowe  *				/ *NOTHING* /
108917Selowe  *			}
109917Selowe  *		}
110917Selowe  *		page_free(pp);
111917Selowe  *
112917Selowe  *	The problem is that pp can change identity right after the
113917Selowe  *	page_unlock() call.  In particular, page_retire() can step in
114917Selowe  *	there, change pp's identity, and hash pp onto the retired_vnode.
115917Selowe  *
116917Selowe  *	Of course, other functions besides page_retire() can have the
117917Selowe  *	same effect. A kmem reader can waltz by, set up a mapping to the
118917Selowe  *	page, and then unlock the page. Page_free() will then go castors
119917Selowe  *	up. So if anybody is doing this, it's already a bug.
120917Selowe  *
1213253Smec  *      4. mdboot()'s call into page_retire_mdboot() should probably be
122917Selowe  *      moved lower. Where the call is made now, we can get into trouble
123917Selowe  *      by scrubbing a kernel page that is then accessed later.
124917Selowe  */
125917Selowe 
126917Selowe #include <sys/types.h>
127917Selowe #include <sys/param.h>
128917Selowe #include <sys/systm.h>
129917Selowe #include <sys/mman.h>
130917Selowe #include <sys/vnode.h>
1313898Srsb #include <sys/vfs_opreg.h>
132917Selowe #include <sys/cmn_err.h>
133917Selowe #include <sys/ksynch.h>
134917Selowe #include <sys/thread.h>
135917Selowe #include <sys/disp.h>
136917Selowe #include <sys/ontrap.h>
137917Selowe #include <sys/vmsystm.h>
138917Selowe #include <sys/mem_config.h>
139917Selowe #include <sys/atomic.h>
140917Selowe #include <sys/callb.h>
141917Selowe #include <vm/page.h>
142917Selowe #include <vm/vm_dep.h>
143917Selowe #include <vm/as.h>
144917Selowe #include <vm/hat.h>
145917Selowe 
146917Selowe /*
147917Selowe  * vnode for all pages which are retired from the VM system;
148917Selowe  */
149917Selowe vnode_t *retired_pages;
150917Selowe 
1513253Smec static int page_retire_pp_finish(page_t *, void *, uint_t);
152917Selowe 
153917Selowe /*
154917Selowe  * Make a list of all of the pages that have been marked for retirement
155917Selowe  * but are not yet retired.  At system shutdown, we will scrub all of the
156917Selowe  * pages in the list in case there are outstanding UEs.  Then, we
157917Selowe  * cross-check this list against the number of pages that are yet to be
158917Selowe  * retired, and if we find inconsistencies, we scan every page_t in the
159917Selowe  * whole system looking for any pages that need to be scrubbed for UEs.
160917Selowe  * The background thread also uses this queue to determine which pages
161917Selowe  * it should keep trying to retire.
162917Selowe  */
163917Selowe #ifdef	DEBUG
164917Selowe #define	PR_PENDING_QMAX	32
165917Selowe #else	/* DEBUG */
166917Selowe #define	PR_PENDING_QMAX	256
167917Selowe #endif	/* DEBUG */
168917Selowe page_t		*pr_pending_q[PR_PENDING_QMAX];
169917Selowe kmutex_t	pr_q_mutex;
170917Selowe 
171917Selowe /*
172917Selowe  * Page retire global kstats
173917Selowe  */
174917Selowe struct page_retire_kstat {
175917Selowe 	kstat_named_t	pr_retired;
176917Selowe 	kstat_named_t	pr_requested;
177917Selowe 	kstat_named_t	pr_requested_free;
178917Selowe 	kstat_named_t	pr_enqueue_fail;
179917Selowe 	kstat_named_t	pr_dequeue_fail;
180917Selowe 	kstat_named_t	pr_pending;
181917Selowe 	kstat_named_t	pr_failed;
182917Selowe 	kstat_named_t	pr_failed_kernel;
183917Selowe 	kstat_named_t	pr_limit;
184917Selowe 	kstat_named_t	pr_limit_exceeded;
185917Selowe 	kstat_named_t	pr_fma;
186917Selowe 	kstat_named_t	pr_mce;
187917Selowe 	kstat_named_t	pr_ue;
188917Selowe 	kstat_named_t	pr_ue_cleared_retire;
189917Selowe 	kstat_named_t	pr_ue_cleared_free;
190917Selowe 	kstat_named_t	pr_ue_persistent;
191917Selowe 	kstat_named_t	pr_unretired;
192917Selowe };
193917Selowe 
194917Selowe static struct page_retire_kstat page_retire_kstat = {
195917Selowe 	{ "pages_retired",		KSTAT_DATA_UINT64},
196917Selowe 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
197917Selowe 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
198917Selowe 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
199917Selowe 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
200917Selowe 	{ "pages_pending", 		KSTAT_DATA_UINT64},
201917Selowe 	{ "pages_deferred",		KSTAT_DATA_UINT64},
202917Selowe 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
203917Selowe 	{ "pages_limit",		KSTAT_DATA_UINT64},
204917Selowe 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
205917Selowe 	{ "pages_fma",			KSTAT_DATA_UINT64},
206917Selowe 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
207917Selowe 	{ "pages_ue",			KSTAT_DATA_UINT64},
208917Selowe 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
209917Selowe 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
210917Selowe 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
211917Selowe 	{ "pages_unretired",		KSTAT_DATA_UINT64},
212917Selowe };
213917Selowe 
214917Selowe static kstat_t  *page_retire_ksp = NULL;
215917Selowe 
216917Selowe #define	PR_INCR_KSTAT(stat)	\
217917Selowe 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
218917Selowe #define	PR_DECR_KSTAT(stat)	\
219917Selowe 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
220917Selowe 
221917Selowe #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
222917Selowe #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
223917Selowe #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
224917Selowe #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
225917Selowe #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
226917Selowe #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
227917Selowe 
228917Selowe /*
2293253Smec  * page retire kstats to list all retired pages
2303253Smec  */
2313253Smec static int pr_list_kstat_update(kstat_t *ksp, int rw);
2323253Smec static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
2333253Smec kmutex_t pr_list_kstat_mutex;
2343253Smec 
2353253Smec /*
236917Selowe  * Limit the number of multiple CE page retires.
237917Selowe  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
238917Selowe  * basis points, where 100 basis points equals one percent.
239917Selowe  */
240917Selowe #define	MCE_BPT	10
241917Selowe uint64_t	max_pages_retired_bps = MCE_BPT;
242917Selowe #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
243917Selowe 
244917Selowe /*
245917Selowe  * Control over the verbosity of page retirement.
246917Selowe  *
247917Selowe  * When set to zero (the default), no messages will be printed.
248917Selowe  * When set to one, summary messages will be printed.
249917Selowe  * When set > one, all messages will be printed.
250917Selowe  *
251917Selowe  * A value of one will trigger detailed messages for retirement operations,
252917Selowe  * and is intended as a platform tunable for processors where FMA's DE does
253917Selowe  * not run (e.g., spitfire). Values > one are intended for debugging only.
254917Selowe  */
255917Selowe int page_retire_messages = 0;
256917Selowe 
257917Selowe /*
258917Selowe  * Control whether or not we return scrubbed UE pages to service.
259917Selowe  * By default we do not since FMA wants to run its diagnostics first
260917Selowe  * and then ask us to unretire the page if it passes. Non-FMA platforms
261917Selowe  * may set this to zero so we will only retire recidivist pages. It should
262917Selowe  * not be changed by the user.
263917Selowe  */
264917Selowe int page_retire_first_ue = 1;
265917Selowe 
266917Selowe /*
267917Selowe  * Master enable for page retire. This prevents a CE or UE early in boot
268917Selowe  * from trying to retire a page before page_retire_init() has finished
269917Selowe  * setting things up. This is internal only and is not a tunable!
270917Selowe  */
271917Selowe static int pr_enable = 0;
272917Selowe 
273917Selowe extern struct vnode kvp;
274917Selowe 
275917Selowe #ifdef	DEBUG
276917Selowe struct page_retire_debug {
2771381Selowe 	int prd_dup1;
2781381Selowe 	int prd_dup2;
2791381Selowe 	int prd_qdup;
280917Selowe 	int prd_noaction;
281917Selowe 	int prd_queued;
282917Selowe 	int prd_notqueued;
283917Selowe 	int prd_dequeue;
284917Selowe 	int prd_top;
285917Selowe 	int prd_locked;
286917Selowe 	int prd_reloc;
287973Selowe 	int prd_relocfail;
288973Selowe 	int prd_mod;
289973Selowe 	int prd_mod_late;
290917Selowe 	int prd_kern;
291917Selowe 	int prd_free;
292917Selowe 	int prd_noreclaim;
293917Selowe 	int prd_hashout;
294917Selowe 	int prd_fma;
295917Selowe 	int prd_uescrubbed;
296917Selowe 	int prd_uenotscrubbed;
297917Selowe 	int prd_mce;
298917Selowe 	int prd_prlocked;
299917Selowe 	int prd_prnotlocked;
300917Selowe 	int prd_prretired;
301917Selowe 	int prd_ulocked;
302917Selowe 	int prd_unotretired;
303917Selowe 	int prd_udestroy;
304917Selowe 	int prd_uhashout;
305917Selowe 	int prd_uunretired;
306917Selowe 	int prd_unotlocked;
307917Selowe 	int prd_checkhit;
3081381Selowe 	int prd_checkmiss_pend;
3091381Selowe 	int prd_checkmiss_noerr;
310917Selowe 	int prd_tctop;
311917Selowe 	int prd_tclocked;
312917Selowe 	int prd_hunt;
313917Selowe 	int prd_dohunt;
314917Selowe 	int prd_earlyhunt;
315917Selowe 	int prd_latehunt;
316917Selowe 	int prd_nofreedemote;
317917Selowe 	int prd_nodemote;
318917Selowe 	int prd_demoted;
319917Selowe } pr_debug;
320917Selowe 
321917Selowe #define	PR_DEBUG(foo)	((pr_debug.foo)++)
322917Selowe 
323917Selowe /*
324917Selowe  * A type histogram. We record the incidence of the various toxic
325917Selowe  * flag combinations along with the interesting page attributes. The
326917Selowe  * goal is to get as many combinations as we can while driving all
327917Selowe  * pr_debug values nonzero (indicating we've exercised all possible
328917Selowe  * code paths across all possible page types). Not all combinations
329917Selowe  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
330917Selowe  *
331917Selowe  * pr_type offset bit encoding (when examining with a debugger):
332917Selowe  *
333917Selowe  *    PRT_NAMED  - 0x4
334917Selowe  *    PRT_KERNEL - 0x8
335917Selowe  *    PRT_FREE   - 0x10
336917Selowe  *    PRT_MOD    - 0x20
337917Selowe  *    PRT_FMA    - 0x0
338917Selowe  *    PRT_MCE    - 0x40
339917Selowe  *    PRT_UE     - 0x80
340917Selowe  */
341917Selowe 
342917Selowe #define	PRT_NAMED	0x01
343917Selowe #define	PRT_KERNEL	0x02
344917Selowe #define	PRT_FREE	0x04
345917Selowe #define	PRT_MOD		0x08
346917Selowe #define	PRT_FMA		0x00	/* yes, this is not a mistake */
347917Selowe #define	PRT_MCE		0x10
348917Selowe #define	PRT_UE		0x20
349917Selowe #define	PRT_ALL		0x3F
350917Selowe 
351917Selowe int pr_types[PRT_ALL+1];
352917Selowe 
353917Selowe #define	PR_TYPES(pp)	{			\
354917Selowe 	int whichtype = 0;			\
355917Selowe 	if (pp->p_vnode)			\
356917Selowe 		whichtype |= PRT_NAMED;		\
3573290Sjohansen 	if (PP_ISKAS(pp))			\
358917Selowe 		whichtype |= PRT_KERNEL;	\
359917Selowe 	if (PP_ISFREE(pp))			\
360917Selowe 		whichtype |= PRT_FREE;		\
361917Selowe 	if (hat_ismod(pp))			\
362917Selowe 		whichtype |= PRT_MOD;		\
363917Selowe 	if (pp->p_toxic & PR_UE)		\
364917Selowe 		whichtype |= PRT_UE;		\
365917Selowe 	if (pp->p_toxic & PR_MCE)		\
366917Selowe 		whichtype |= PRT_MCE;		\
367917Selowe 	pr_types[whichtype]++;			\
368917Selowe }
369917Selowe 
370917Selowe int recl_calls;
371917Selowe int recl_mtbf = 3;
372917Selowe int reloc_calls;
373917Selowe int reloc_mtbf = 7;
374917Selowe int pr_calls;
375917Selowe int pr_mtbf = 15;
376917Selowe 
377917Selowe #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
378917Selowe 
379917Selowe #else	/* DEBUG */
380917Selowe 
381917Selowe #define	PR_DEBUG(foo)	/* nothing */
382917Selowe #define	PR_TYPES(foo)	/* nothing */
383917Selowe #define	MTBF(v, f)	(1)
384917Selowe 
385917Selowe #endif	/* DEBUG */
386917Selowe 
387917Selowe /*
388917Selowe  * page_retire_done() - completion processing
389917Selowe  *
390917Selowe  * Used by the page_retire code for common completion processing.
391917Selowe  * It keeps track of how many times a given result has happened,
392917Selowe  * and writes out an occasional message.
393917Selowe  *
394917Selowe  * May be called with a NULL pp (PRD_INVALID_PA case).
395917Selowe  */
396917Selowe #define	PRD_INVALID_KEY		-1
397917Selowe #define	PRD_SUCCESS		0
398917Selowe #define	PRD_PENDING		1
399917Selowe #define	PRD_FAILED		2
400917Selowe #define	PRD_DUPLICATE		3
401917Selowe #define	PRD_INVALID_PA		4
402917Selowe #define	PRD_LIMIT		5
403917Selowe #define	PRD_UE_SCRUBBED		6
404917Selowe #define	PRD_UNR_SUCCESS		7
405917Selowe #define	PRD_UNR_CANTLOCK	8
406917Selowe #define	PRD_UNR_NOT		9
407917Selowe 
408917Selowe typedef struct page_retire_op {
409917Selowe 	int	pr_key;		/* one of the PRD_* defines from above */
410917Selowe 	int	pr_count;	/* How many times this has happened */
411917Selowe 	int	pr_retval;	/* return value */
412917Selowe 	int	pr_msglvl;	/* message level - when to print */
413917Selowe 	char	*pr_message;	/* Cryptic message for field service */
414917Selowe } page_retire_op_t;
415917Selowe 
416917Selowe static page_retire_op_t page_retire_ops[] = {
417917Selowe 	/* key			count	retval	msglvl	message */
418917Selowe 	{PRD_SUCCESS,		0,	0,	1,
419917Selowe 		"Page 0x%08x.%08x removed from service"},
420917Selowe 	{PRD_PENDING,		0,	EAGAIN,	2,
421917Selowe 		"Page 0x%08x.%08x will be retired on free"},
422917Selowe 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
4231381Selowe 	{PRD_DUPLICATE,		0,	EIO,	2,
4241381Selowe 		"Page 0x%08x.%08x already retired or pending"},
425917Selowe 	{PRD_INVALID_PA,	0,	EINVAL, 2,
426917Selowe 		"PA 0x%08x.%08x is not a relocatable page"},
427917Selowe 	{PRD_LIMIT,		0,	0,	1,
428917Selowe 		"Page 0x%08x.%08x not retired due to limit exceeded"},
429917Selowe 	{PRD_UE_SCRUBBED,	0,	0,	1,
430917Selowe 		"Previously reported error on page 0x%08x.%08x cleared"},
431917Selowe 	{PRD_UNR_SUCCESS,	0,	0,	1,
432917Selowe 		"Page 0x%08x.%08x returned to service"},
433917Selowe 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
434917Selowe 		"Page 0x%08x.%08x could not be unretired"},
4351381Selowe 	{PRD_UNR_NOT,		0,	EIO,	2,
436917Selowe 		"Page 0x%08x.%08x is not retired"},
437917Selowe 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
438917Selowe };
439917Selowe 
440917Selowe /*
441917Selowe  * print a message if page_retire_messages is true.
442917Selowe  */
443917Selowe #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
444917Selowe {									\
445917Selowe 	uint64_t p = (uint64_t)pa;					\
446917Selowe 	if (page_retire_messages >= msglvl && msg != NULL) {		\
447917Selowe 		cmn_err(debuglvl, msg,					\
448917Selowe 		    (uint32_t)(p >> 32), (uint32_t)p);			\
449917Selowe 	}								\
450917Selowe }
451917Selowe 
452917Selowe /*
453917Selowe  * Note that multiple bits may be set in a single settoxic operation.
454917Selowe  * May be called without the page locked.
455917Selowe  */
456917Selowe void
457917Selowe page_settoxic(page_t *pp, uchar_t bits)
458917Selowe {
459917Selowe 	atomic_or_8(&pp->p_toxic, bits);
460917Selowe }
461917Selowe 
462917Selowe /*
463917Selowe  * Note that multiple bits may cleared in a single clrtoxic operation.
4641338Selowe  * Must be called with the page exclusively locked to prevent races which
4651338Selowe  * may attempt to retire a page without any toxic bits set.
4663253Smec  * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
4673253Smec  * being held as there is a separate mutex which protects that bit.
468917Selowe  */
469917Selowe void
470917Selowe page_clrtoxic(page_t *pp, uchar_t bits)
471917Selowe {
4723253Smec 	ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
473917Selowe 	atomic_and_8(&pp->p_toxic, ~bits);
474917Selowe }
475917Selowe 
476917Selowe /*
477917Selowe  * Prints any page retire messages to the user, and decides what
478917Selowe  * error code is appropriate for the condition reported.
479917Selowe  */
480917Selowe static int
481917Selowe page_retire_done(page_t *pp, int code)
482917Selowe {
483917Selowe 	page_retire_op_t *prop;
484917Selowe 	uint64_t	pa = 0;
485917Selowe 	int		i;
486917Selowe 
487917Selowe 	if (pp != NULL) {
4881338Selowe 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
489917Selowe 	}
490917Selowe 
491917Selowe 	prop = NULL;
492917Selowe 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
493917Selowe 		if (page_retire_ops[i].pr_key == code) {
494917Selowe 			prop = &page_retire_ops[i];
495917Selowe 			break;
496917Selowe 		}
497917Selowe 	}
498917Selowe 
499917Selowe #ifdef	DEBUG
500917Selowe 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
501917Selowe 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
502917Selowe 	}
503917Selowe #endif
504917Selowe 
505917Selowe 	ASSERT(prop->pr_key == code);
506917Selowe 
507917Selowe 	prop->pr_count++;
508917Selowe 
509917Selowe 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
510917Selowe 	if (pp != NULL) {
511917Selowe 		page_settoxic(pp, PR_MSG);
512917Selowe 	}
513917Selowe 
514917Selowe 	return (prop->pr_retval);
515917Selowe }
516917Selowe 
517917Selowe /*
518917Selowe  * Act like page_destroy(), but instead of freeing the page, hash it onto
519917Selowe  * the retired_pages vnode, and mark it retired.
520917Selowe  *
521917Selowe  * For fun, we try to scrub the page until it's squeaky clean.
522917Selowe  * availrmem is adjusted here.
523917Selowe  */
524917Selowe static void
525917Selowe page_retire_destroy(page_t *pp)
526917Selowe {
527973Selowe 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
528973Selowe 
529917Selowe 	ASSERT(PAGE_EXCL(pp));
530917Selowe 	ASSERT(!PP_ISFREE(pp));
531917Selowe 	ASSERT(pp->p_szc == 0);
532917Selowe 	ASSERT(!hat_page_is_mapped(pp));
533917Selowe 	ASSERT(!pp->p_vnode);
534917Selowe 
535917Selowe 	page_clr_all_props(pp);
536917Selowe 	pagescrub(pp, 0, MMU_PAGESIZE);
537917Selowe 
538917Selowe 	pp->p_next = NULL;
539917Selowe 	pp->p_prev = NULL;
540973Selowe 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
541917Selowe 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
542917Selowe 	}
543917Selowe 
544917Selowe 	page_settoxic(pp, PR_RETIRED);
545917Selowe 	PR_INCR_KSTAT(pr_retired);
546917Selowe 
547917Selowe 	if (pp->p_toxic & PR_FMA) {
548917Selowe 		PR_INCR_KSTAT(pr_fma);
549917Selowe 	} else if (pp->p_toxic & PR_UE) {
550917Selowe 		PR_INCR_KSTAT(pr_ue);
551917Selowe 	} else {
552917Selowe 		PR_INCR_KSTAT(pr_mce);
553917Selowe 	}
554917Selowe 
555917Selowe 	mutex_enter(&freemem_lock);
556917Selowe 	availrmem--;
557917Selowe 	mutex_exit(&freemem_lock);
558917Selowe 
559917Selowe 	page_unlock(pp);
560917Selowe }
561917Selowe 
562917Selowe /*
563917Selowe  * Check whether the number of pages which have been retired already exceeds
564917Selowe  * the maximum allowable percentage of memory which may be retired.
565917Selowe  *
566917Selowe  * Returns 1 if the limit has been exceeded.
567917Selowe  */
568917Selowe static int
569917Selowe page_retire_limit(void)
570917Selowe {
571917Selowe 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
572917Selowe 		PR_INCR_KSTAT(pr_limit_exceeded);
573917Selowe 		return (1);
574917Selowe 	}
575917Selowe 
576917Selowe 	return (0);
577917Selowe }
578917Selowe 
579917Selowe #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
580917Selowe 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
581917Selowe 	"reported error; page removed from service"
582917Selowe 
583917Selowe #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
584917Selowe 	"attempting to clear previously reported error; page removed "	\
585917Selowe 	"from service"
586917Selowe 
587917Selowe /*
588917Selowe  * Attempt to clear a UE from a page.
589917Selowe  * Returns 1 if the error has been successfully cleared.
590917Selowe  */
591917Selowe static int
592917Selowe page_clear_transient_ue(page_t *pp)
593917Selowe {
594917Selowe 	caddr_t		kaddr;
595917Selowe 	uint8_t		rb, wb;
596917Selowe 	uint64_t	pa;
597917Selowe 	uint32_t	pa_hi, pa_lo;
598917Selowe 	on_trap_data_t	otd;
599917Selowe 	int		errors = 0;
600917Selowe 	int		i;
601917Selowe 
602917Selowe 	ASSERT(PAGE_EXCL(pp));
603917Selowe 	ASSERT(PP_PR_REQ(pp));
604917Selowe 	ASSERT(pp->p_szc == 0);
605917Selowe 	ASSERT(!hat_page_is_mapped(pp));
606917Selowe 
607917Selowe 	/*
608917Selowe 	 * Clear the page and attempt to clear the UE.  If we trap
609917Selowe 	 * on the next access to the page, we know the UE has recurred.
610917Selowe 	 */
611917Selowe 	pagescrub(pp, 0, PAGESIZE);
612917Selowe 
613917Selowe 	/*
614917Selowe 	 * Map the page and write a bunch of bit patterns to compare
615917Selowe 	 * what we wrote with what we read back.  This isn't a perfect
616917Selowe 	 * test but it should be good enough to catch most of the
617917Selowe 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
618917Selowe 	 * retire the page the next time we see a UE on the page.
619917Selowe 	 */
620917Selowe 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
621917Selowe 
622917Selowe 	pa = ptob((uint64_t)page_pptonum(pp));
623917Selowe 	pa_hi = (uint32_t)(pa >> 32);
624917Selowe 	pa_lo = (uint32_t)pa;
625917Selowe 
626917Selowe 	/*
627*7458SChristopher.Baumbauer@Sun.COM 	 * Disable preemption to prevent the off chance that
628*7458SChristopher.Baumbauer@Sun.COM 	 * we migrate while in the middle of running through
629*7458SChristopher.Baumbauer@Sun.COM 	 * the bit pattern and run on a different processor
630*7458SChristopher.Baumbauer@Sun.COM 	 * than what we started on.
631*7458SChristopher.Baumbauer@Sun.COM 	 */
632*7458SChristopher.Baumbauer@Sun.COM 	kpreempt_disable();
633*7458SChristopher.Baumbauer@Sun.COM 
634*7458SChristopher.Baumbauer@Sun.COM 	/*
635917Selowe 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
636917Selowe 	 * the cache in between reading and writing.  We do this under
637917Selowe 	 * on_trap() protection to avoid recursion.
638917Selowe 	 */
639917Selowe 	if (on_trap(&otd, OT_DATA_EC)) {
640917Selowe 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
641917Selowe 		errors = 1;
642917Selowe 	} else {
643917Selowe 		for (wb = 0xff; wb > 0; wb--) {
644917Selowe 			for (i = 0; i < PAGESIZE; i++) {
645917Selowe 				kaddr[i] = wb;
646917Selowe 			}
647917Selowe 
648917Selowe 			sync_data_memory(kaddr, PAGESIZE);
649917Selowe 
650917Selowe 			for (i = 0; i < PAGESIZE; i++) {
651917Selowe 				rb = kaddr[i];
652917Selowe 				if (rb != wb) {
653917Selowe 					/*
654917Selowe 					 * We had a mismatch without a trap.
655917Selowe 					 * Uh-oh. Something is really wrong
656917Selowe 					 * with this system.
657917Selowe 					 */
658917Selowe 					if (page_retire_messages) {
659917Selowe 						cmn_err(CE_WARN, MSG_DM,
660917Selowe 						    pa_hi, pa_lo, rb, wb);
661917Selowe 					}
662917Selowe 					errors = 1;
663917Selowe 					goto out;	/* double break */
664917Selowe 				}
665917Selowe 			}
666917Selowe 		}
667917Selowe 	}
668917Selowe out:
669917Selowe 	no_trap();
670*7458SChristopher.Baumbauer@Sun.COM 	kpreempt_enable();
671917Selowe 	ppmapout(kaddr);
672917Selowe 
673917Selowe 	return (errors ? 0 : 1);
674917Selowe }
675917Selowe 
676917Selowe /*
677917Selowe  * Try to clear a page_t with a single UE. If the UE was transient, it is
678917Selowe  * returned to service, and we return 1. Otherwise we return 0 meaning
679917Selowe  * that further processing is required to retire the page.
680917Selowe  */
681917Selowe static int
682917Selowe page_retire_transient_ue(page_t *pp)
683917Selowe {
684917Selowe 	ASSERT(PAGE_EXCL(pp));
685917Selowe 	ASSERT(!hat_page_is_mapped(pp));
686917Selowe 
687917Selowe 	/*
688917Selowe 	 * If this page is a repeat offender, retire him under the
689917Selowe 	 * "two strikes and you're out" rule. The caller is responsible
690917Selowe 	 * for scrubbing the page to try to clear the error.
691917Selowe 	 */
692917Selowe 	if (pp->p_toxic & PR_UE_SCRUBBED) {
693917Selowe 		PR_INCR_KSTAT(pr_ue_persistent);
694917Selowe 		return (0);
695917Selowe 	}
696917Selowe 
697917Selowe 	if (page_clear_transient_ue(pp)) {
698917Selowe 		/*
699917Selowe 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
700917Selowe 		 * page again, we will retire it, no questions asked.
701917Selowe 		 */
702917Selowe 		page_settoxic(pp, PR_UE_SCRUBBED);
703917Selowe 
704917Selowe 		if (page_retire_first_ue) {
705917Selowe 			PR_INCR_KSTAT(pr_ue_cleared_retire);
706917Selowe 			return (0);
707917Selowe 		} else {
708917Selowe 			PR_INCR_KSTAT(pr_ue_cleared_free);
709917Selowe 
7103253Smec 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
711917Selowe 
712917Selowe 			/* LINTED: CONSTCOND */
713917Selowe 			VN_DISPOSE(pp, B_FREE, 1, kcred);
714917Selowe 			return (1);
715917Selowe 		}
716917Selowe 	}
717917Selowe 
718917Selowe 	PR_INCR_KSTAT(pr_ue_persistent);
719917Selowe 	return (0);
720917Selowe }
721917Selowe 
722917Selowe /*
723917Selowe  * Update the statistics dynamically when our kstat is read.
724917Selowe  */
725917Selowe static int
726917Selowe page_retire_kstat_update(kstat_t *ksp, int rw)
727917Selowe {
728917Selowe 	struct page_retire_kstat *pr;
729917Selowe 
730917Selowe 	if (ksp == NULL)
731*7458SChristopher.Baumbauer@Sun.COM 		return (EINVAL);
732917Selowe 
733917Selowe 	switch (rw) {
734917Selowe 
735917Selowe 	case KSTAT_READ:
736917Selowe 		pr = (struct page_retire_kstat *)ksp->ks_data;
737917Selowe 		ASSERT(pr == &page_retire_kstat);
738917Selowe 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
739917Selowe 		return (0);
740917Selowe 
741917Selowe 	case KSTAT_WRITE:
742917Selowe 		return (EACCES);
743917Selowe 
744917Selowe 	default:
745917Selowe 		return (EINVAL);
746917Selowe 	}
747917Selowe 	/*NOTREACHED*/
748917Selowe }
749917Selowe 
7503253Smec static int
7513253Smec pr_list_kstat_update(kstat_t *ksp, int rw)
7523253Smec {
7533253Smec 	uint_t count;
7543253Smec 	page_t *pp;
7553253Smec 	kmutex_t *vphm;
7563253Smec 
7573253Smec 	if (rw == KSTAT_WRITE)
7583253Smec 		return (EACCES);
7593253Smec 
7603253Smec 	vphm = page_vnode_mutex(retired_pages);
7613253Smec 	mutex_enter(vphm);
7623253Smec 	/* Needs to be under a lock so that for loop will work right */
7633253Smec 	if (retired_pages->v_pages == NULL) {
7643253Smec 		mutex_exit(vphm);
7653253Smec 		ksp->ks_ndata = 0;
7663253Smec 		ksp->ks_data_size = 0;
7673253Smec 		return (0);
7683253Smec 	}
7693253Smec 
7703253Smec 	count = 1;
7713253Smec 	for (pp = retired_pages->v_pages->p_vpnext;
7723253Smec 	    pp != retired_pages->v_pages; pp = pp->p_vpnext) {
7733253Smec 		count++;
7743253Smec 	}
7753253Smec 	mutex_exit(vphm);
7763253Smec 
7773253Smec 	ksp->ks_ndata = count;
7783253Smec 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
7793253Smec 
7803253Smec 	return (0);
7813253Smec }
7823253Smec 
7833253Smec /*
7843253Smec  * all spans will be pagesize and no coalescing will be done with the
7853253Smec  * list produced.
7863253Smec  */
7873253Smec static int
7883253Smec pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
7893253Smec {
7903253Smec 	kmutex_t *vphm;
7913253Smec 	page_t *pp;
7923253Smec 	struct memunit {
7933253Smec 		uint64_t address;
7943253Smec 		uint64_t size;
7953253Smec 	} *kspmem;
7963253Smec 
7973253Smec 	if (rw == KSTAT_WRITE)
7983253Smec 		return (EACCES);
7993253Smec 
8003253Smec 	ksp->ks_snaptime = gethrtime();
8013253Smec 
8023253Smec 	kspmem = (struct memunit *)buf;
8033253Smec 
8043253Smec 	vphm = page_vnode_mutex(retired_pages);
8053253Smec 	mutex_enter(vphm);
8063253Smec 	pp = retired_pages->v_pages;
8073253Smec 	if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
8083253Smec 	    (pp == NULL)) {
8093253Smec 		mutex_exit(vphm);
8103253Smec 		return (0);
8113253Smec 	}
8123253Smec 	kspmem->address = ptob(pp->p_pagenum);
8133253Smec 	kspmem->size = PAGESIZE;
8143253Smec 	kspmem++;
8153253Smec 	for (pp = pp->p_vpnext; pp != retired_pages->v_pages;
8163253Smec 	    pp = pp->p_vpnext, kspmem++) {
8173253Smec 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
8183253Smec 			break;
8193253Smec 		kspmem->address = ptob(pp->p_pagenum);
8203253Smec 		kspmem->size = PAGESIZE;
8213253Smec 	}
8223253Smec 	mutex_exit(vphm);
8233253Smec 
8243253Smec 	return (0);
8253253Smec }
8263253Smec 
827917Selowe /*
8283480Sjfrank  * page_retire_pend_count -- helper function for page_capture_thread,
8293480Sjfrank  * returns the number of pages pending retirement.
8303480Sjfrank  */
8313480Sjfrank uint64_t
8323480Sjfrank page_retire_pend_count(void)
8333480Sjfrank {
8343480Sjfrank 	return (PR_KSTAT_PENDING);
8353480Sjfrank }
8363480Sjfrank 
8373480Sjfrank void
8383480Sjfrank page_retire_incr_pend_count(void)
8393480Sjfrank {
8403480Sjfrank 	PR_INCR_KSTAT(pr_pending);
8413480Sjfrank }
8423480Sjfrank 
8433480Sjfrank void
8443480Sjfrank page_retire_decr_pend_count(void)
8453480Sjfrank {
8463480Sjfrank 	PR_DECR_KSTAT(pr_pending);
8473480Sjfrank }
8483480Sjfrank 
8493480Sjfrank /*
850917Selowe  * Initialize the page retire mechanism:
851917Selowe  *
852917Selowe  *   - Establish the correctable error retire limit.
853917Selowe  *   - Initialize locks.
854917Selowe  *   - Build the retired_pages vnode.
855917Selowe  *   - Set up the kstats.
856917Selowe  *   - Fire off the background thread.
8573253Smec  *   - Tell page_retire() it's OK to start retiring pages.
858917Selowe  */
859917Selowe void
860917Selowe page_retire_init(void)
861917Selowe {
8623898Srsb 	const fs_operation_def_t retired_vnodeops_template[] = {
8633898Srsb 		{ NULL, NULL }
8643898Srsb 	};
865917Selowe 	struct vnodeops *vops;
8663253Smec 	kstat_t *ksp;
867917Selowe 
868917Selowe 	const uint_t page_retire_ndata =
869917Selowe 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
870917Selowe 
871917Selowe 	ASSERT(page_retire_ksp == NULL);
872917Selowe 
873917Selowe 	if (max_pages_retired_bps <= 0) {
874917Selowe 		max_pages_retired_bps = MCE_BPT;
875917Selowe 	}
876917Selowe 
877917Selowe 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
878917Selowe 
879917Selowe 	retired_pages = vn_alloc(KM_SLEEP);
880917Selowe 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
881917Selowe 		cmn_err(CE_PANIC,
882917Selowe 		    "page_retired_init: can't make retired vnodeops");
883917Selowe 	}
884917Selowe 	vn_setops(retired_pages, vops);
885917Selowe 
886917Selowe 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
887917Selowe 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
888917Selowe 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
889917Selowe 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
890917Selowe 	} else {
891917Selowe 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
892917Selowe 		page_retire_ksp->ks_update = page_retire_kstat_update;
893917Selowe 		kstat_install(page_retire_ksp);
894917Selowe 	}
895917Selowe 
8963253Smec 	mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
8973253Smec 	ksp = kstat_create("unix", 0, "page_retire_list", "misc",
8983253Smec 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
8993253Smec 	if (ksp != NULL) {
9003253Smec 		ksp->ks_update = pr_list_kstat_update;
9013253Smec 		ksp->ks_snapshot = pr_list_kstat_snapshot;
9023253Smec 		ksp->ks_lock = &pr_list_kstat_mutex;
9033253Smec 		kstat_install(ksp);
9043253Smec 	}
905917Selowe 
9063253Smec 	page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
907917Selowe 	pr_enable = 1;
908917Selowe }
909917Selowe 
910917Selowe /*
911917Selowe  * page_retire_hunt() callback for the retire thread.
912917Selowe  */
913917Selowe static void
914917Selowe page_retire_thread_cb(page_t *pp)
915917Selowe {
916917Selowe 	PR_DEBUG(prd_tctop);
9173290Sjohansen 	if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
918917Selowe 		PR_DEBUG(prd_tclocked);
919917Selowe 		page_unlock(pp);
920917Selowe 	}
921917Selowe }
922917Selowe 
923917Selowe /*
924917Selowe  * page_retire_hunt() callback for mdboot().
925917Selowe  *
926917Selowe  * It is necessary to scrub any failing pages prior to reboot in order to
927917Selowe  * prevent a latent error trap from occurring on the next boot.
928917Selowe  */
929917Selowe void
930917Selowe page_retire_mdboot_cb(page_t *pp)
931917Selowe {
932917Selowe 	/*
933917Selowe 	 * Don't scrub the kernel, since we might still need it, unless
934917Selowe 	 * we have UEs on the page, in which case we have nothing to lose.
935917Selowe 	 */
9363290Sjohansen 	if (!PP_ISKAS(pp) || PP_TOXIC(pp)) {
937917Selowe 		pp->p_selock = -1;	/* pacify ASSERTs */
938973Selowe 		PP_CLRFREE(pp);
939917Selowe 		pagescrub(pp, 0, PAGESIZE);
940917Selowe 		pp->p_selock = 0;
941917Selowe 	}
942917Selowe 	pp->p_toxic = 0;
943917Selowe }
944917Selowe 
945917Selowe 
946917Selowe /*
9473253Smec  * Callback used by page_trycapture() to finish off retiring a page.
9483253Smec  * The page has already been cleaned and we've been given sole access to
9493253Smec  * it.
9503253Smec  * Always returns 0 to indicate that callback succeded as the callback never
9513253Smec  * fails to finish retiring the given page.
952917Selowe  */
9533253Smec /*ARGSUSED*/
954917Selowe static int
9553253Smec page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
956917Selowe {
957917Selowe 	int		toxic;
958917Selowe 
959917Selowe 	ASSERT(PAGE_EXCL(pp));
960917Selowe 	ASSERT(pp->p_iolock_state == 0);
961917Selowe 	ASSERT(pp->p_szc == 0);
962917Selowe 
963917Selowe 	toxic = pp->p_toxic;
964917Selowe 
965917Selowe 	/*
966917Selowe 	 * The problem page is locked, demoted, unmapped, not free,
967917Selowe 	 * hashed out, and not COW or mlocked (whew!).
968917Selowe 	 *
969917Selowe 	 * Now we select our ammunition, take it around back, and shoot it.
970917Selowe 	 */
971917Selowe 	if (toxic & PR_UE) {
9723253Smec ue_error:
973917Selowe 		if (page_retire_transient_ue(pp)) {
974917Selowe 			PR_DEBUG(prd_uescrubbed);
9753253Smec 			(void) page_retire_done(pp, PRD_UE_SCRUBBED);
976917Selowe 		} else {
977917Selowe 			PR_DEBUG(prd_uenotscrubbed);
978917Selowe 			page_retire_destroy(pp);
9793253Smec 			(void) page_retire_done(pp, PRD_SUCCESS);
980917Selowe 		}
9813253Smec 		return (0);
982917Selowe 	} else if (toxic & PR_FMA) {
983917Selowe 		PR_DEBUG(prd_fma);
984917Selowe 		page_retire_destroy(pp);
9853253Smec 		(void) page_retire_done(pp, PRD_SUCCESS);
9863253Smec 		return (0);
987917Selowe 	} else if (toxic & PR_MCE) {
988917Selowe 		PR_DEBUG(prd_mce);
989917Selowe 		page_retire_destroy(pp);
9903253Smec 		(void) page_retire_done(pp, PRD_SUCCESS);
9913253Smec 		return (0);
992917Selowe 	}
993917Selowe 
994917Selowe 	/*
9953253Smec 	 * When page_retire_first_ue is set to zero and a UE occurs which is
9963253Smec 	 * transient, it's possible that we clear some flags set by a second
9973253Smec 	 * UE error on the page which occurs while the first is currently being
9983253Smec 	 * handled and thus we need to handle the case where none of the above
9993253Smec 	 * are set.  In this instance, PR_UE_SCRUBBED should be set and thus
10003253Smec 	 * we should execute the UE code above.
1001917Selowe 	 */
10023253Smec 	if (toxic & PR_UE_SCRUBBED) {
10033253Smec 		goto ue_error;
1004917Selowe 	}
10053253Smec 
10063253Smec 	/*
10073253Smec 	 * It's impossible to get here.
10083253Smec 	 */
10093253Smec 	panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
10103253Smec 	return (0);
1011917Selowe }
1012917Selowe 
1013917Selowe /*
1014917Selowe  * page_retire() - the front door in to retire a page.
1015917Selowe  *
1016917Selowe  * Ideally, page_retire() would instantly retire the requested page.
1017917Selowe  * Unfortunately, some pages are locked or otherwise tied up and cannot be
10183253Smec  * retired right away.  We use the page capture logic to deal with this
10193253Smec  * situation as it will continuously try to retire the page in the background
10203253Smec  * if the first attempt fails.  Success is determined by looking to see whether
10213253Smec  * the page has been retired after the page_trycapture() attempt.
1022917Selowe  *
1023917Selowe  * Returns:
1024917Selowe  *
1025917Selowe  *   - 0 on success,
1026917Selowe  *   - EINVAL when the PA is whacko,
10271381Selowe  *   - EIO if the page is already retired or already pending retirement, or
10281381Selowe  *   - EAGAIN if the page could not be _immediately_ retired but is pending.
1029917Selowe  */
1030917Selowe int
1031917Selowe page_retire(uint64_t pa, uchar_t reason)
1032917Selowe {
1033917Selowe 	page_t	*pp;
1034917Selowe 
1035917Selowe 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1036917Selowe 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1037917Selowe 
1038917Selowe 	pp = page_numtopp_nolock(mmu_btop(pa));
1039917Selowe 	if (pp == NULL) {
1040917Selowe 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1041917Selowe 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1042917Selowe 		return (page_retire_done(pp, PRD_INVALID_PA));
1043917Selowe 	}
1044917Selowe 	if (PP_RETIRED(pp)) {
10451381Selowe 		PR_DEBUG(prd_dup1);
1046917Selowe 		return (page_retire_done(pp, PRD_DUPLICATE));
1047917Selowe 	}
1048917Selowe 
10491381Selowe 	if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1050917Selowe 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1051917Selowe 		    " page 0x%08x.%08x", pa);
10521381Selowe 	} else if (PP_PR_REQ(pp)) {
10531381Selowe 		PR_DEBUG(prd_dup2);
10541381Selowe 		return (page_retire_done(pp, PRD_DUPLICATE));
1055917Selowe 	} else {
1056917Selowe 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1057917Selowe 		    " page 0x%08x.%08x", pa);
1058917Selowe 	}
10593253Smec 
10603253Smec 	/* Avoid setting toxic bits in the first place */
10613253Smec 	if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
10623253Smec 	    page_retire_limit()) {
10633253Smec 		return (page_retire_done(pp, PRD_LIMIT));
10643253Smec 	}
1065917Selowe 
10663253Smec 	if (MTBF(pr_calls, pr_mtbf)) {
10673253Smec 		page_settoxic(pp, reason);
10683253Smec 		if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) {
10693253Smec 			PR_DEBUG(prd_prlocked);
10703253Smec 		} else {
10713253Smec 			PR_DEBUG(prd_prnotlocked);
10723253Smec 		}
1073917Selowe 	} else {
1074917Selowe 		PR_DEBUG(prd_prnotlocked);
1075917Selowe 	}
1076917Selowe 
1077917Selowe 	if (PP_RETIRED(pp)) {
1078917Selowe 		PR_DEBUG(prd_prretired);
1079917Selowe 		return (0);
1080917Selowe 	} else {
10813253Smec 		cv_signal(&pc_cv);
1082917Selowe 		PR_INCR_KSTAT(pr_failed);
1083917Selowe 
1084917Selowe 		if (pp->p_toxic & PR_MSG) {
1085917Selowe 			return (page_retire_done(pp, PRD_FAILED));
1086917Selowe 		} else {
1087917Selowe 			return (page_retire_done(pp, PRD_PENDING));
1088917Selowe 		}
1089917Selowe 	}
1090917Selowe }
1091917Selowe 
1092917Selowe /*
1093917Selowe  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1094917Selowe  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1095917Selowe  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1096917Selowe  * and don't do anything else with it.
1097917Selowe  *
1098917Selowe  * Any unretire messages are printed from this routine.
1099917Selowe  *
1100917Selowe  * Returns 0 if page pp was unretired; else an error code.
11013253Smec  *
11023253Smec  * If flags is:
11033253Smec  *	PR_UNR_FREE - lock the page, clear the toxic flags and free it
11043253Smec  *	    to the freelist.
11053253Smec  *	PR_UNR_TEMP - lock the page, unretire it, leave the toxic
11063253Smec  *	    bits set as is and return it to the caller.
11073253Smec  *	PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
11083253Smec  *	    toxic flags and return it to caller as is.
1109917Selowe  */
1110917Selowe int
11113253Smec page_unretire_pp(page_t *pp, int flags)
1112917Selowe {
1113917Selowe 	/*
1114917Selowe 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1115917Selowe 	 * and have PR_RETIRED set in p_toxic.
1116917Selowe 	 */
11173253Smec 	if (flags == PR_UNR_CLEAN ||
11183253Smec 	    page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1119917Selowe 		ASSERT(PAGE_EXCL(pp));
1120917Selowe 		PR_DEBUG(prd_ulocked);
1121917Selowe 		if (!PP_RETIRED(pp)) {
1122917Selowe 			PR_DEBUG(prd_unotretired);
1123917Selowe 			page_unlock(pp);
1124917Selowe 			return (page_retire_done(pp, PRD_UNR_NOT));
1125917Selowe 		}
1126917Selowe 
1127917Selowe 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
11281338Selowe 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1129917Selowe 		if (pp->p_toxic & PR_FMA) {
1130917Selowe 			PR_DECR_KSTAT(pr_fma);
1131917Selowe 		} else if (pp->p_toxic & PR_UE) {
1132917Selowe 			PR_DECR_KSTAT(pr_ue);
1133917Selowe 		} else {
1134917Selowe 			PR_DECR_KSTAT(pr_mce);
1135917Selowe 		}
1136917Selowe 
11373253Smec 		if (flags == PR_UNR_TEMP)
11383253Smec 			page_clrtoxic(pp, PR_RETIRED);
11393253Smec 		else
11403253Smec 			page_clrtoxic(pp, PR_TOXICFLAGS);
11413253Smec 
11423253Smec 		if (flags == PR_UNR_FREE) {
1143917Selowe 			PR_DEBUG(prd_udestroy);
1144917Selowe 			page_destroy(pp, 0);
1145917Selowe 		} else {
1146917Selowe 			PR_DEBUG(prd_uhashout);
1147917Selowe 			page_hashout(pp, NULL);
1148917Selowe 		}
1149917Selowe 
1150917Selowe 		mutex_enter(&freemem_lock);
1151917Selowe 		availrmem++;
1152917Selowe 		mutex_exit(&freemem_lock);
1153917Selowe 
1154917Selowe 		PR_DEBUG(prd_uunretired);
1155917Selowe 		PR_DECR_KSTAT(pr_retired);
1156917Selowe 		PR_INCR_KSTAT(pr_unretired);
1157917Selowe 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1158917Selowe 	}
1159917Selowe 	PR_DEBUG(prd_unotlocked);
1160917Selowe 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1161917Selowe }
1162917Selowe 
1163917Selowe /*
1164917Selowe  * Return a page to service by moving it from the retired_pages vnode
1165917Selowe  * onto the freelist.
1166917Selowe  *
1167917Selowe  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1168917Selowe  *
1169917Selowe  * Returns:
1170917Selowe  *
1171917Selowe  *   - 0 if the page is unretired,
1172917Selowe  *   - EAGAIN if the pp can not be locked,
1173917Selowe  *   - EINVAL if the PA is whacko, and
11741381Selowe  *   - EIO if the pp is not retired.
1175917Selowe  */
1176917Selowe int
1177917Selowe page_unretire(uint64_t pa)
1178917Selowe {
1179917Selowe 	page_t	*pp;
1180917Selowe 
1181917Selowe 	pp = page_numtopp_nolock(mmu_btop(pa));
1182917Selowe 	if (pp == NULL) {
1183917Selowe 		return (page_retire_done(pp, PRD_INVALID_PA));
1184917Selowe 	}
1185917Selowe 
11863253Smec 	return (page_unretire_pp(pp, PR_UNR_FREE));
1187917Selowe }
1188917Selowe 
1189917Selowe /*
1190917Selowe  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1191917Selowe  * bits of the page are returned. Returns 0 on success, error code on failure.
1192917Selowe  */
1193917Selowe int
1194917Selowe page_retire_check_pp(page_t *pp, uint64_t *errors)
1195917Selowe {
1196917Selowe 	int rc;
1197917Selowe 
1198917Selowe 	if (PP_RETIRED(pp)) {
1199917Selowe 		PR_DEBUG(prd_checkhit);
1200917Selowe 		rc = 0;
12011381Selowe 	} else if (PP_PR_REQ(pp)) {
12021381Selowe 		PR_DEBUG(prd_checkmiss_pend);
12031381Selowe 		rc = EAGAIN;
1204917Selowe 	} else {
12051381Selowe 		PR_DEBUG(prd_checkmiss_noerr);
12061381Selowe 		rc = EIO;
1207917Selowe 	}
1208917Selowe 
1209917Selowe 	/*
1210917Selowe 	 * We have magically arranged the bit values returned to fmd(1M)
1211917Selowe 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1212917Selowe 	 */
1213917Selowe 	if (errors) {
1214917Selowe 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1215917Selowe 		if (toxic & PR_UE_SCRUBBED) {
1216917Selowe 			toxic &= ~PR_UE_SCRUBBED;
1217917Selowe 			toxic |= PR_UE;
1218917Selowe 		}
1219917Selowe 		*errors = toxic;
1220917Selowe 	}
1221917Selowe 
1222917Selowe 	return (rc);
1223917Selowe }
1224917Selowe 
1225917Selowe /*
1226917Selowe  * Test to see if the page_t for a given PA is retired, and return the
1227917Selowe  * hardware errors we have seen on the page if requested.
1228917Selowe  *
1229917Selowe  * Called from mmioctl_page_retire on behalf of the FMA DE.
1230917Selowe  *
1231917Selowe  * Returns:
1232917Selowe  *
1233917Selowe  *   - 0 if the page is retired,
12341381Selowe  *   - EIO if the page is not retired and has no errors,
12351381Selowe  *   - EAGAIN if the page is not retired but is pending; and
1236917Selowe  *   - EINVAL if the PA is whacko.
1237917Selowe  */
1238917Selowe int
1239917Selowe page_retire_check(uint64_t pa, uint64_t *errors)
1240917Selowe {
1241917Selowe 	page_t	*pp;
1242917Selowe 
1243917Selowe 	if (errors) {
1244917Selowe 		*errors = 0;
1245917Selowe 	}
1246917Selowe 
1247917Selowe 	pp = page_numtopp_nolock(mmu_btop(pa));
1248917Selowe 	if (pp == NULL) {
1249917Selowe 		return (page_retire_done(pp, PRD_INVALID_PA));
1250917Selowe 	}
1251917Selowe 
1252917Selowe 	return (page_retire_check_pp(pp, errors));
1253917Selowe }
1254917Selowe 
1255917Selowe /*
1256917Selowe  * Page retire self-test. For now, it always returns 0.
1257917Selowe  */
1258917Selowe int
1259917Selowe page_retire_test(void)
1260917Selowe {
1261917Selowe 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1262917Selowe 
1263917Selowe 	/*
1264917Selowe 	 * Tests the corner case where a large page can't be retired
1265917Selowe 	 * because one of the constituent pages is locked. We mark
1266917Selowe 	 * one page to be retired and try to retire it, and mark the
1267917Selowe 	 * other page to be retired but don't try to retire it, so
1268917Selowe 	 * that page_unlock() in the failure path will recurse and try
1269917Selowe 	 * to retire THAT page. This is the worst possible situation
1270917Selowe 	 * we can get ourselves into.
1271917Selowe 	 */
1272917Selowe 	memsegs_lock(0);
1273917Selowe 	pp = first = page_first();
1274917Selowe 	do {
1275917Selowe 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1276917Selowe 			cpp = pp + 1;
1277917Selowe 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1278917Selowe 			cpp2 = pp + 3;
1279917Selowe 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1280917Selowe 				continue;
1281917Selowe 			if (!page_trylock(cpp, SE_EXCL)) {
1282917Selowe 				page_unlock(lpp);
1283917Selowe 				continue;
1284917Selowe 			}
12853253Smec 
12863253Smec 			/* fails */
12873253Smec 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
12883253Smec 
1289917Selowe 			page_unlock(lpp);
12903253Smec 			page_unlock(cpp);
12913253Smec 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
12923253Smec 			(void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1293917Selowe 		}
1294917Selowe 	} while ((pp = page_next(pp)) != first);
1295917Selowe 	memsegs_unlock(0);
1296917Selowe 
1297917Selowe 	return (0);
1298917Selowe }
1299