1917Selowe /* 2917Selowe * CDDL HEADER START 3917Selowe * 4917Selowe * The contents of this file are subject to the terms of the 53253Smec * Common Development and Distribution License (the "License"). 63253Smec * You may not use this file except in compliance with the License. 7917Selowe * 8917Selowe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9917Selowe * or http://www.opensolaris.org/os/licensing. 10917Selowe * See the License for the specific language governing permissions 11917Selowe * and limitations under the License. 12917Selowe * 13917Selowe * When distributing Covered Code, include this CDDL HEADER in each 14917Selowe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15917Selowe * If applicable, add the following below this CDDL HEADER, with the 16917Selowe * fields enclosed by brackets "[]" replaced with your own identifying 17917Selowe * information: Portions Copyright [yyyy] [name of copyright owner] 18917Selowe * 19917Selowe * CDDL HEADER END 20917Selowe */ 21917Selowe /* 22*7458SChristopher.Baumbauer@Sun.COM * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23917Selowe * Use is subject to license terms. 24917Selowe */ 25917Selowe 26917Selowe /* 27917Selowe * Page Retire - Big Theory Statement. 28917Selowe * 29917Selowe * This file handles removing sections of faulty memory from use when the 30917Selowe * user land FMA Diagnosis Engine requests that a page be removed or when 31917Selowe * a CE or UE is detected by the hardware. 32917Selowe * 33917Selowe * In the bad old days, the kernel side of Page Retire did a lot of the work 34917Selowe * on its own. Now, with the DE keeping track of errors, the kernel side is 35917Selowe * rather simple minded on most platforms. 36917Selowe * 37917Selowe * Errors are all reflected to the DE, and after digesting the error and 38917Selowe * looking at all previously reported errors, the DE decides what should 39917Selowe * be done about the current error. If the DE wants a particular page to 40917Selowe * be retired, then the kernel page retire code is invoked via an ioctl. 41917Selowe * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 42917Selowe * page retire to handle the error. Since page retire is just a simple 43917Selowe * mechanism it doesn't need to differentiate between the different callers. 44917Selowe * 45917Selowe * The p_toxic field in the page_t is used to indicate which errors have 46917Selowe * occurred and what action has been taken on a given page. Because errors are 47917Selowe * reported without regard to the locked state of a page, no locks are used 48917Selowe * to SET the error bits in p_toxic. However, in order to clear the error 49917Selowe * bits, the page_t must be held exclusively locked. 50917Selowe * 51917Selowe * When page_retire() is called, it must be able to acquire locks, sleep, etc. 52917Selowe * It must not be called from high-level interrupt context. 53917Selowe * 54917Selowe * Depending on how the requested page is being used at the time of the retire 55917Selowe * request (and on the availability of sufficient system resources), the page 56917Selowe * may be retired immediately, or just marked for retirement later. For 57917Selowe * example, locked pages are marked, while free pages are retired. Multiple 58917Selowe * requests may be made to retire the same page, although there is no need 59917Selowe * to: once the p_toxic flags are set, the page will be retired as soon as it 60917Selowe * can be exclusively locked. 61917Selowe * 62917Selowe * The retire mechanism is driven centrally out of page_unlock(). To expedite 63917Selowe * the retirement of pages, further requests for SE_SHARED locks are denied 64917Selowe * as long as a page retirement is pending. In addition, as long as pages are 65917Selowe * pending retirement a background thread runs periodically trying to retire 66917Selowe * those pages. Pages which could not be retired while the system is running 67917Selowe * are scrubbed prior to rebooting to avoid latent errors on the next boot. 68917Selowe * 691338Selowe * UE pages without persistent errors are scrubbed and returned to service. 701338Selowe * Recidivist pages, as well as FMA-directed requests for retirement, result 711338Selowe * in the page being taken out of service. Once the decision is made to take 721338Selowe * a page out of service, the page is cleared, hashed onto the retired_pages 731338Selowe * vnode, marked as retired, and it is unlocked. No other requesters (except 741338Selowe * for unretire) are allowed to lock retired pages. 75917Selowe * 76917Selowe * The public routines return (sadly) 0 if they worked and a non-zero error 77917Selowe * value if something went wrong. This is done for the ioctl side of the 78917Selowe * world to allow errors to be reflected all the way out to user land. The 79917Selowe * non-zero values are explained in comments atop each function. 80917Selowe */ 81917Selowe 82917Selowe /* 83917Selowe * Things to fix: 84917Selowe * 853253Smec * 1. Trying to retire non-relocatable kvp pages may result in a 86917Selowe * quagmire. This is because seg_kmem() no longer keeps its pages locked, 87917Selowe * and calls page_lookup() in the free path; since kvp pages are modified 88917Selowe * and don't have a usable backing store, page_retire() can't do anything 89917Selowe * with them, and we'll keep denying the lock to seg_kmem_free() in a 90917Selowe * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 913253Smec * hence only try to retire a page from page_unlock() in the free path. 92917Selowe * Since most kernel pages are indefinitely held anyway, and don't 93917Selowe * participate in I/O, this is of little consequence. 94917Selowe * 953253Smec * 2. Low memory situations will be interesting. If we don't have 96917Selowe * enough memory for page_relocate() to succeed, we won't be able to 97917Selowe * retire dirty pages; nobody will be able to push them out to disk 98917Selowe * either, since we aggressively deny the page lock. We could change 99917Selowe * fsflush so it can recognize this situation, grab the lock, and push 100917Selowe * the page out, where we'll catch it in the free path and retire it. 101917Selowe * 1023253Smec * 3. Beware of places that have code like this in them: 103917Selowe * 104917Selowe * if (! page_tryupgrade(pp)) { 105917Selowe * page_unlock(pp); 106917Selowe * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 107917Selowe * / *NOTHING* / 108917Selowe * } 109917Selowe * } 110917Selowe * page_free(pp); 111917Selowe * 112917Selowe * The problem is that pp can change identity right after the 113917Selowe * page_unlock() call. In particular, page_retire() can step in 114917Selowe * there, change pp's identity, and hash pp onto the retired_vnode. 115917Selowe * 116917Selowe * Of course, other functions besides page_retire() can have the 117917Selowe * same effect. A kmem reader can waltz by, set up a mapping to the 118917Selowe * page, and then unlock the page. Page_free() will then go castors 119917Selowe * up. So if anybody is doing this, it's already a bug. 120917Selowe * 1213253Smec * 4. mdboot()'s call into page_retire_mdboot() should probably be 122917Selowe * moved lower. Where the call is made now, we can get into trouble 123917Selowe * by scrubbing a kernel page that is then accessed later. 124917Selowe */ 125917Selowe 126917Selowe #include <sys/types.h> 127917Selowe #include <sys/param.h> 128917Selowe #include <sys/systm.h> 129917Selowe #include <sys/mman.h> 130917Selowe #include <sys/vnode.h> 1313898Srsb #include <sys/vfs_opreg.h> 132917Selowe #include <sys/cmn_err.h> 133917Selowe #include <sys/ksynch.h> 134917Selowe #include <sys/thread.h> 135917Selowe #include <sys/disp.h> 136917Selowe #include <sys/ontrap.h> 137917Selowe #include <sys/vmsystm.h> 138917Selowe #include <sys/mem_config.h> 139917Selowe #include <sys/atomic.h> 140917Selowe #include <sys/callb.h> 141917Selowe #include <vm/page.h> 142917Selowe #include <vm/vm_dep.h> 143917Selowe #include <vm/as.h> 144917Selowe #include <vm/hat.h> 145917Selowe 146917Selowe /* 147917Selowe * vnode for all pages which are retired from the VM system; 148917Selowe */ 149917Selowe vnode_t *retired_pages; 150917Selowe 1513253Smec static int page_retire_pp_finish(page_t *, void *, uint_t); 152917Selowe 153917Selowe /* 154917Selowe * Make a list of all of the pages that have been marked for retirement 155917Selowe * but are not yet retired. At system shutdown, we will scrub all of the 156917Selowe * pages in the list in case there are outstanding UEs. Then, we 157917Selowe * cross-check this list against the number of pages that are yet to be 158917Selowe * retired, and if we find inconsistencies, we scan every page_t in the 159917Selowe * whole system looking for any pages that need to be scrubbed for UEs. 160917Selowe * The background thread also uses this queue to determine which pages 161917Selowe * it should keep trying to retire. 162917Selowe */ 163917Selowe #ifdef DEBUG 164917Selowe #define PR_PENDING_QMAX 32 165917Selowe #else /* DEBUG */ 166917Selowe #define PR_PENDING_QMAX 256 167917Selowe #endif /* DEBUG */ 168917Selowe page_t *pr_pending_q[PR_PENDING_QMAX]; 169917Selowe kmutex_t pr_q_mutex; 170917Selowe 171917Selowe /* 172917Selowe * Page retire global kstats 173917Selowe */ 174917Selowe struct page_retire_kstat { 175917Selowe kstat_named_t pr_retired; 176917Selowe kstat_named_t pr_requested; 177917Selowe kstat_named_t pr_requested_free; 178917Selowe kstat_named_t pr_enqueue_fail; 179917Selowe kstat_named_t pr_dequeue_fail; 180917Selowe kstat_named_t pr_pending; 181917Selowe kstat_named_t pr_failed; 182917Selowe kstat_named_t pr_failed_kernel; 183917Selowe kstat_named_t pr_limit; 184917Selowe kstat_named_t pr_limit_exceeded; 185917Selowe kstat_named_t pr_fma; 186917Selowe kstat_named_t pr_mce; 187917Selowe kstat_named_t pr_ue; 188917Selowe kstat_named_t pr_ue_cleared_retire; 189917Selowe kstat_named_t pr_ue_cleared_free; 190917Selowe kstat_named_t pr_ue_persistent; 191917Selowe kstat_named_t pr_unretired; 192917Selowe }; 193917Selowe 194917Selowe static struct page_retire_kstat page_retire_kstat = { 195917Selowe { "pages_retired", KSTAT_DATA_UINT64}, 196917Selowe { "pages_retire_request", KSTAT_DATA_UINT64}, 197917Selowe { "pages_retire_request_free", KSTAT_DATA_UINT64}, 198917Selowe { "pages_notenqueued", KSTAT_DATA_UINT64}, 199917Selowe { "pages_notdequeued", KSTAT_DATA_UINT64}, 200917Selowe { "pages_pending", KSTAT_DATA_UINT64}, 201917Selowe { "pages_deferred", KSTAT_DATA_UINT64}, 202917Selowe { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 203917Selowe { "pages_limit", KSTAT_DATA_UINT64}, 204917Selowe { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 205917Selowe { "pages_fma", KSTAT_DATA_UINT64}, 206917Selowe { "pages_multiple_ce", KSTAT_DATA_UINT64}, 207917Selowe { "pages_ue", KSTAT_DATA_UINT64}, 208917Selowe { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 209917Selowe { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 210917Selowe { "pages_ue_persistent", KSTAT_DATA_UINT64}, 211917Selowe { "pages_unretired", KSTAT_DATA_UINT64}, 212917Selowe }; 213917Selowe 214917Selowe static kstat_t *page_retire_ksp = NULL; 215917Selowe 216917Selowe #define PR_INCR_KSTAT(stat) \ 217917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 218917Selowe #define PR_DECR_KSTAT(stat) \ 219917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 220917Selowe 221917Selowe #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 222917Selowe #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 223917Selowe #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 224917Selowe #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 225917Selowe #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 226917Selowe #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 227917Selowe 228917Selowe /* 2293253Smec * page retire kstats to list all retired pages 2303253Smec */ 2313253Smec static int pr_list_kstat_update(kstat_t *ksp, int rw); 2323253Smec static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 2333253Smec kmutex_t pr_list_kstat_mutex; 2343253Smec 2353253Smec /* 236917Selowe * Limit the number of multiple CE page retires. 237917Selowe * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 238917Selowe * basis points, where 100 basis points equals one percent. 239917Selowe */ 240917Selowe #define MCE_BPT 10 241917Selowe uint64_t max_pages_retired_bps = MCE_BPT; 242917Selowe #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 243917Selowe 244917Selowe /* 245917Selowe * Control over the verbosity of page retirement. 246917Selowe * 247917Selowe * When set to zero (the default), no messages will be printed. 248917Selowe * When set to one, summary messages will be printed. 249917Selowe * When set > one, all messages will be printed. 250917Selowe * 251917Selowe * A value of one will trigger detailed messages for retirement operations, 252917Selowe * and is intended as a platform tunable for processors where FMA's DE does 253917Selowe * not run (e.g., spitfire). Values > one are intended for debugging only. 254917Selowe */ 255917Selowe int page_retire_messages = 0; 256917Selowe 257917Selowe /* 258917Selowe * Control whether or not we return scrubbed UE pages to service. 259917Selowe * By default we do not since FMA wants to run its diagnostics first 260917Selowe * and then ask us to unretire the page if it passes. Non-FMA platforms 261917Selowe * may set this to zero so we will only retire recidivist pages. It should 262917Selowe * not be changed by the user. 263917Selowe */ 264917Selowe int page_retire_first_ue = 1; 265917Selowe 266917Selowe /* 267917Selowe * Master enable for page retire. This prevents a CE or UE early in boot 268917Selowe * from trying to retire a page before page_retire_init() has finished 269917Selowe * setting things up. This is internal only and is not a tunable! 270917Selowe */ 271917Selowe static int pr_enable = 0; 272917Selowe 273917Selowe extern struct vnode kvp; 274917Selowe 275917Selowe #ifdef DEBUG 276917Selowe struct page_retire_debug { 2771381Selowe int prd_dup1; 2781381Selowe int prd_dup2; 2791381Selowe int prd_qdup; 280917Selowe int prd_noaction; 281917Selowe int prd_queued; 282917Selowe int prd_notqueued; 283917Selowe int prd_dequeue; 284917Selowe int prd_top; 285917Selowe int prd_locked; 286917Selowe int prd_reloc; 287973Selowe int prd_relocfail; 288973Selowe int prd_mod; 289973Selowe int prd_mod_late; 290917Selowe int prd_kern; 291917Selowe int prd_free; 292917Selowe int prd_noreclaim; 293917Selowe int prd_hashout; 294917Selowe int prd_fma; 295917Selowe int prd_uescrubbed; 296917Selowe int prd_uenotscrubbed; 297917Selowe int prd_mce; 298917Selowe int prd_prlocked; 299917Selowe int prd_prnotlocked; 300917Selowe int prd_prretired; 301917Selowe int prd_ulocked; 302917Selowe int prd_unotretired; 303917Selowe int prd_udestroy; 304917Selowe int prd_uhashout; 305917Selowe int prd_uunretired; 306917Selowe int prd_unotlocked; 307917Selowe int prd_checkhit; 3081381Selowe int prd_checkmiss_pend; 3091381Selowe int prd_checkmiss_noerr; 310917Selowe int prd_tctop; 311917Selowe int prd_tclocked; 312917Selowe int prd_hunt; 313917Selowe int prd_dohunt; 314917Selowe int prd_earlyhunt; 315917Selowe int prd_latehunt; 316917Selowe int prd_nofreedemote; 317917Selowe int prd_nodemote; 318917Selowe int prd_demoted; 319917Selowe } pr_debug; 320917Selowe 321917Selowe #define PR_DEBUG(foo) ((pr_debug.foo)++) 322917Selowe 323917Selowe /* 324917Selowe * A type histogram. We record the incidence of the various toxic 325917Selowe * flag combinations along with the interesting page attributes. The 326917Selowe * goal is to get as many combinations as we can while driving all 327917Selowe * pr_debug values nonzero (indicating we've exercised all possible 328917Selowe * code paths across all possible page types). Not all combinations 329917Selowe * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 330917Selowe * 331917Selowe * pr_type offset bit encoding (when examining with a debugger): 332917Selowe * 333917Selowe * PRT_NAMED - 0x4 334917Selowe * PRT_KERNEL - 0x8 335917Selowe * PRT_FREE - 0x10 336917Selowe * PRT_MOD - 0x20 337917Selowe * PRT_FMA - 0x0 338917Selowe * PRT_MCE - 0x40 339917Selowe * PRT_UE - 0x80 340917Selowe */ 341917Selowe 342917Selowe #define PRT_NAMED 0x01 343917Selowe #define PRT_KERNEL 0x02 344917Selowe #define PRT_FREE 0x04 345917Selowe #define PRT_MOD 0x08 346917Selowe #define PRT_FMA 0x00 /* yes, this is not a mistake */ 347917Selowe #define PRT_MCE 0x10 348917Selowe #define PRT_UE 0x20 349917Selowe #define PRT_ALL 0x3F 350917Selowe 351917Selowe int pr_types[PRT_ALL+1]; 352917Selowe 353917Selowe #define PR_TYPES(pp) { \ 354917Selowe int whichtype = 0; \ 355917Selowe if (pp->p_vnode) \ 356917Selowe whichtype |= PRT_NAMED; \ 3573290Sjohansen if (PP_ISKAS(pp)) \ 358917Selowe whichtype |= PRT_KERNEL; \ 359917Selowe if (PP_ISFREE(pp)) \ 360917Selowe whichtype |= PRT_FREE; \ 361917Selowe if (hat_ismod(pp)) \ 362917Selowe whichtype |= PRT_MOD; \ 363917Selowe if (pp->p_toxic & PR_UE) \ 364917Selowe whichtype |= PRT_UE; \ 365917Selowe if (pp->p_toxic & PR_MCE) \ 366917Selowe whichtype |= PRT_MCE; \ 367917Selowe pr_types[whichtype]++; \ 368917Selowe } 369917Selowe 370917Selowe int recl_calls; 371917Selowe int recl_mtbf = 3; 372917Selowe int reloc_calls; 373917Selowe int reloc_mtbf = 7; 374917Selowe int pr_calls; 375917Selowe int pr_mtbf = 15; 376917Selowe 377917Selowe #define MTBF(v, f) (((++(v)) & (f)) != (f)) 378917Selowe 379917Selowe #else /* DEBUG */ 380917Selowe 381917Selowe #define PR_DEBUG(foo) /* nothing */ 382917Selowe #define PR_TYPES(foo) /* nothing */ 383917Selowe #define MTBF(v, f) (1) 384917Selowe 385917Selowe #endif /* DEBUG */ 386917Selowe 387917Selowe /* 388917Selowe * page_retire_done() - completion processing 389917Selowe * 390917Selowe * Used by the page_retire code for common completion processing. 391917Selowe * It keeps track of how many times a given result has happened, 392917Selowe * and writes out an occasional message. 393917Selowe * 394917Selowe * May be called with a NULL pp (PRD_INVALID_PA case). 395917Selowe */ 396917Selowe #define PRD_INVALID_KEY -1 397917Selowe #define PRD_SUCCESS 0 398917Selowe #define PRD_PENDING 1 399917Selowe #define PRD_FAILED 2 400917Selowe #define PRD_DUPLICATE 3 401917Selowe #define PRD_INVALID_PA 4 402917Selowe #define PRD_LIMIT 5 403917Selowe #define PRD_UE_SCRUBBED 6 404917Selowe #define PRD_UNR_SUCCESS 7 405917Selowe #define PRD_UNR_CANTLOCK 8 406917Selowe #define PRD_UNR_NOT 9 407917Selowe 408917Selowe typedef struct page_retire_op { 409917Selowe int pr_key; /* one of the PRD_* defines from above */ 410917Selowe int pr_count; /* How many times this has happened */ 411917Selowe int pr_retval; /* return value */ 412917Selowe int pr_msglvl; /* message level - when to print */ 413917Selowe char *pr_message; /* Cryptic message for field service */ 414917Selowe } page_retire_op_t; 415917Selowe 416917Selowe static page_retire_op_t page_retire_ops[] = { 417917Selowe /* key count retval msglvl message */ 418917Selowe {PRD_SUCCESS, 0, 0, 1, 419917Selowe "Page 0x%08x.%08x removed from service"}, 420917Selowe {PRD_PENDING, 0, EAGAIN, 2, 421917Selowe "Page 0x%08x.%08x will be retired on free"}, 422917Selowe {PRD_FAILED, 0, EAGAIN, 0, NULL}, 4231381Selowe {PRD_DUPLICATE, 0, EIO, 2, 4241381Selowe "Page 0x%08x.%08x already retired or pending"}, 425917Selowe {PRD_INVALID_PA, 0, EINVAL, 2, 426917Selowe "PA 0x%08x.%08x is not a relocatable page"}, 427917Selowe {PRD_LIMIT, 0, 0, 1, 428917Selowe "Page 0x%08x.%08x not retired due to limit exceeded"}, 429917Selowe {PRD_UE_SCRUBBED, 0, 0, 1, 430917Selowe "Previously reported error on page 0x%08x.%08x cleared"}, 431917Selowe {PRD_UNR_SUCCESS, 0, 0, 1, 432917Selowe "Page 0x%08x.%08x returned to service"}, 433917Selowe {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 434917Selowe "Page 0x%08x.%08x could not be unretired"}, 4351381Selowe {PRD_UNR_NOT, 0, EIO, 2, 436917Selowe "Page 0x%08x.%08x is not retired"}, 437917Selowe {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 438917Selowe }; 439917Selowe 440917Selowe /* 441917Selowe * print a message if page_retire_messages is true. 442917Selowe */ 443917Selowe #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 444917Selowe { \ 445917Selowe uint64_t p = (uint64_t)pa; \ 446917Selowe if (page_retire_messages >= msglvl && msg != NULL) { \ 447917Selowe cmn_err(debuglvl, msg, \ 448917Selowe (uint32_t)(p >> 32), (uint32_t)p); \ 449917Selowe } \ 450917Selowe } 451917Selowe 452917Selowe /* 453917Selowe * Note that multiple bits may be set in a single settoxic operation. 454917Selowe * May be called without the page locked. 455917Selowe */ 456917Selowe void 457917Selowe page_settoxic(page_t *pp, uchar_t bits) 458917Selowe { 459917Selowe atomic_or_8(&pp->p_toxic, bits); 460917Selowe } 461917Selowe 462917Selowe /* 463917Selowe * Note that multiple bits may cleared in a single clrtoxic operation. 4641338Selowe * Must be called with the page exclusively locked to prevent races which 4651338Selowe * may attempt to retire a page without any toxic bits set. 4663253Smec * Note that the PR_CAPTURE bit can be cleared without the exclusive lock 4673253Smec * being held as there is a separate mutex which protects that bit. 468917Selowe */ 469917Selowe void 470917Selowe page_clrtoxic(page_t *pp, uchar_t bits) 471917Selowe { 4723253Smec ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp)); 473917Selowe atomic_and_8(&pp->p_toxic, ~bits); 474917Selowe } 475917Selowe 476917Selowe /* 477917Selowe * Prints any page retire messages to the user, and decides what 478917Selowe * error code is appropriate for the condition reported. 479917Selowe */ 480917Selowe static int 481917Selowe page_retire_done(page_t *pp, int code) 482917Selowe { 483917Selowe page_retire_op_t *prop; 484917Selowe uint64_t pa = 0; 485917Selowe int i; 486917Selowe 487917Selowe if (pp != NULL) { 4881338Selowe pa = mmu_ptob((uint64_t)pp->p_pagenum); 489917Selowe } 490917Selowe 491917Selowe prop = NULL; 492917Selowe for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 493917Selowe if (page_retire_ops[i].pr_key == code) { 494917Selowe prop = &page_retire_ops[i]; 495917Selowe break; 496917Selowe } 497917Selowe } 498917Selowe 499917Selowe #ifdef DEBUG 500917Selowe if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 501917Selowe cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 502917Selowe } 503917Selowe #endif 504917Selowe 505917Selowe ASSERT(prop->pr_key == code); 506917Selowe 507917Selowe prop->pr_count++; 508917Selowe 509917Selowe PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 510917Selowe if (pp != NULL) { 511917Selowe page_settoxic(pp, PR_MSG); 512917Selowe } 513917Selowe 514917Selowe return (prop->pr_retval); 515917Selowe } 516917Selowe 517917Selowe /* 518917Selowe * Act like page_destroy(), but instead of freeing the page, hash it onto 519917Selowe * the retired_pages vnode, and mark it retired. 520917Selowe * 521917Selowe * For fun, we try to scrub the page until it's squeaky clean. 522917Selowe * availrmem is adjusted here. 523917Selowe */ 524917Selowe static void 525917Selowe page_retire_destroy(page_t *pp) 526917Selowe { 527973Selowe u_offset_t off = (u_offset_t)((uintptr_t)pp); 528973Selowe 529917Selowe ASSERT(PAGE_EXCL(pp)); 530917Selowe ASSERT(!PP_ISFREE(pp)); 531917Selowe ASSERT(pp->p_szc == 0); 532917Selowe ASSERT(!hat_page_is_mapped(pp)); 533917Selowe ASSERT(!pp->p_vnode); 534917Selowe 535917Selowe page_clr_all_props(pp); 536917Selowe pagescrub(pp, 0, MMU_PAGESIZE); 537917Selowe 538917Selowe pp->p_next = NULL; 539917Selowe pp->p_prev = NULL; 540973Selowe if (page_hashin(pp, retired_pages, off, NULL) == 0) { 541917Selowe cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 542917Selowe } 543917Selowe 544917Selowe page_settoxic(pp, PR_RETIRED); 545917Selowe PR_INCR_KSTAT(pr_retired); 546917Selowe 547917Selowe if (pp->p_toxic & PR_FMA) { 548917Selowe PR_INCR_KSTAT(pr_fma); 549917Selowe } else if (pp->p_toxic & PR_UE) { 550917Selowe PR_INCR_KSTAT(pr_ue); 551917Selowe } else { 552917Selowe PR_INCR_KSTAT(pr_mce); 553917Selowe } 554917Selowe 555917Selowe mutex_enter(&freemem_lock); 556917Selowe availrmem--; 557917Selowe mutex_exit(&freemem_lock); 558917Selowe 559917Selowe page_unlock(pp); 560917Selowe } 561917Selowe 562917Selowe /* 563917Selowe * Check whether the number of pages which have been retired already exceeds 564917Selowe * the maximum allowable percentage of memory which may be retired. 565917Selowe * 566917Selowe * Returns 1 if the limit has been exceeded. 567917Selowe */ 568917Selowe static int 569917Selowe page_retire_limit(void) 570917Selowe { 571917Selowe if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 572917Selowe PR_INCR_KSTAT(pr_limit_exceeded); 573917Selowe return (1); 574917Selowe } 575917Selowe 576917Selowe return (0); 577917Selowe } 578917Selowe 579917Selowe #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 580917Selowe "[ 0x%x != 0x%x ] while attempting to clear previously " \ 581917Selowe "reported error; page removed from service" 582917Selowe 583917Selowe #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 584917Selowe "attempting to clear previously reported error; page removed " \ 585917Selowe "from service" 586917Selowe 587917Selowe /* 588917Selowe * Attempt to clear a UE from a page. 589917Selowe * Returns 1 if the error has been successfully cleared. 590917Selowe */ 591917Selowe static int 592917Selowe page_clear_transient_ue(page_t *pp) 593917Selowe { 594917Selowe caddr_t kaddr; 595917Selowe uint8_t rb, wb; 596917Selowe uint64_t pa; 597917Selowe uint32_t pa_hi, pa_lo; 598917Selowe on_trap_data_t otd; 599917Selowe int errors = 0; 600917Selowe int i; 601917Selowe 602917Selowe ASSERT(PAGE_EXCL(pp)); 603917Selowe ASSERT(PP_PR_REQ(pp)); 604917Selowe ASSERT(pp->p_szc == 0); 605917Selowe ASSERT(!hat_page_is_mapped(pp)); 606917Selowe 607917Selowe /* 608917Selowe * Clear the page and attempt to clear the UE. If we trap 609917Selowe * on the next access to the page, we know the UE has recurred. 610917Selowe */ 611917Selowe pagescrub(pp, 0, PAGESIZE); 612917Selowe 613917Selowe /* 614917Selowe * Map the page and write a bunch of bit patterns to compare 615917Selowe * what we wrote with what we read back. This isn't a perfect 616917Selowe * test but it should be good enough to catch most of the 617917Selowe * recurring UEs. If this fails to catch a recurrent UE, we'll 618917Selowe * retire the page the next time we see a UE on the page. 619917Selowe */ 620917Selowe kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 621917Selowe 622917Selowe pa = ptob((uint64_t)page_pptonum(pp)); 623917Selowe pa_hi = (uint32_t)(pa >> 32); 624917Selowe pa_lo = (uint32_t)pa; 625917Selowe 626917Selowe /* 627*7458SChristopher.Baumbauer@Sun.COM * Disable preemption to prevent the off chance that 628*7458SChristopher.Baumbauer@Sun.COM * we migrate while in the middle of running through 629*7458SChristopher.Baumbauer@Sun.COM * the bit pattern and run on a different processor 630*7458SChristopher.Baumbauer@Sun.COM * than what we started on. 631*7458SChristopher.Baumbauer@Sun.COM */ 632*7458SChristopher.Baumbauer@Sun.COM kpreempt_disable(); 633*7458SChristopher.Baumbauer@Sun.COM 634*7458SChristopher.Baumbauer@Sun.COM /* 635917Selowe * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 636917Selowe * the cache in between reading and writing. We do this under 637917Selowe * on_trap() protection to avoid recursion. 638917Selowe */ 639917Selowe if (on_trap(&otd, OT_DATA_EC)) { 640917Selowe PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 641917Selowe errors = 1; 642917Selowe } else { 643917Selowe for (wb = 0xff; wb > 0; wb--) { 644917Selowe for (i = 0; i < PAGESIZE; i++) { 645917Selowe kaddr[i] = wb; 646917Selowe } 647917Selowe 648917Selowe sync_data_memory(kaddr, PAGESIZE); 649917Selowe 650917Selowe for (i = 0; i < PAGESIZE; i++) { 651917Selowe rb = kaddr[i]; 652917Selowe if (rb != wb) { 653917Selowe /* 654917Selowe * We had a mismatch without a trap. 655917Selowe * Uh-oh. Something is really wrong 656917Selowe * with this system. 657917Selowe */ 658917Selowe if (page_retire_messages) { 659917Selowe cmn_err(CE_WARN, MSG_DM, 660917Selowe pa_hi, pa_lo, rb, wb); 661917Selowe } 662917Selowe errors = 1; 663917Selowe goto out; /* double break */ 664917Selowe } 665917Selowe } 666917Selowe } 667917Selowe } 668917Selowe out: 669917Selowe no_trap(); 670*7458SChristopher.Baumbauer@Sun.COM kpreempt_enable(); 671917Selowe ppmapout(kaddr); 672917Selowe 673917Selowe return (errors ? 0 : 1); 674917Selowe } 675917Selowe 676917Selowe /* 677917Selowe * Try to clear a page_t with a single UE. If the UE was transient, it is 678917Selowe * returned to service, and we return 1. Otherwise we return 0 meaning 679917Selowe * that further processing is required to retire the page. 680917Selowe */ 681917Selowe static int 682917Selowe page_retire_transient_ue(page_t *pp) 683917Selowe { 684917Selowe ASSERT(PAGE_EXCL(pp)); 685917Selowe ASSERT(!hat_page_is_mapped(pp)); 686917Selowe 687917Selowe /* 688917Selowe * If this page is a repeat offender, retire him under the 689917Selowe * "two strikes and you're out" rule. The caller is responsible 690917Selowe * for scrubbing the page to try to clear the error. 691917Selowe */ 692917Selowe if (pp->p_toxic & PR_UE_SCRUBBED) { 693917Selowe PR_INCR_KSTAT(pr_ue_persistent); 694917Selowe return (0); 695917Selowe } 696917Selowe 697917Selowe if (page_clear_transient_ue(pp)) { 698917Selowe /* 699917Selowe * We set the PR_SCRUBBED_UE bit; if we ever see this 700917Selowe * page again, we will retire it, no questions asked. 701917Selowe */ 702917Selowe page_settoxic(pp, PR_UE_SCRUBBED); 703917Selowe 704917Selowe if (page_retire_first_ue) { 705917Selowe PR_INCR_KSTAT(pr_ue_cleared_retire); 706917Selowe return (0); 707917Selowe } else { 708917Selowe PR_INCR_KSTAT(pr_ue_cleared_free); 709917Selowe 7103253Smec page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG); 711917Selowe 712917Selowe /* LINTED: CONSTCOND */ 713917Selowe VN_DISPOSE(pp, B_FREE, 1, kcred); 714917Selowe return (1); 715917Selowe } 716917Selowe } 717917Selowe 718917Selowe PR_INCR_KSTAT(pr_ue_persistent); 719917Selowe return (0); 720917Selowe } 721917Selowe 722917Selowe /* 723917Selowe * Update the statistics dynamically when our kstat is read. 724917Selowe */ 725917Selowe static int 726917Selowe page_retire_kstat_update(kstat_t *ksp, int rw) 727917Selowe { 728917Selowe struct page_retire_kstat *pr; 729917Selowe 730917Selowe if (ksp == NULL) 731*7458SChristopher.Baumbauer@Sun.COM return (EINVAL); 732917Selowe 733917Selowe switch (rw) { 734917Selowe 735917Selowe case KSTAT_READ: 736917Selowe pr = (struct page_retire_kstat *)ksp->ks_data; 737917Selowe ASSERT(pr == &page_retire_kstat); 738917Selowe pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 739917Selowe return (0); 740917Selowe 741917Selowe case KSTAT_WRITE: 742917Selowe return (EACCES); 743917Selowe 744917Selowe default: 745917Selowe return (EINVAL); 746917Selowe } 747917Selowe /*NOTREACHED*/ 748917Selowe } 749917Selowe 7503253Smec static int 7513253Smec pr_list_kstat_update(kstat_t *ksp, int rw) 7523253Smec { 7533253Smec uint_t count; 7543253Smec page_t *pp; 7553253Smec kmutex_t *vphm; 7563253Smec 7573253Smec if (rw == KSTAT_WRITE) 7583253Smec return (EACCES); 7593253Smec 7603253Smec vphm = page_vnode_mutex(retired_pages); 7613253Smec mutex_enter(vphm); 7623253Smec /* Needs to be under a lock so that for loop will work right */ 7633253Smec if (retired_pages->v_pages == NULL) { 7643253Smec mutex_exit(vphm); 7653253Smec ksp->ks_ndata = 0; 7663253Smec ksp->ks_data_size = 0; 7673253Smec return (0); 7683253Smec } 7693253Smec 7703253Smec count = 1; 7713253Smec for (pp = retired_pages->v_pages->p_vpnext; 7723253Smec pp != retired_pages->v_pages; pp = pp->p_vpnext) { 7733253Smec count++; 7743253Smec } 7753253Smec mutex_exit(vphm); 7763253Smec 7773253Smec ksp->ks_ndata = count; 7783253Smec ksp->ks_data_size = count * 2 * sizeof (uint64_t); 7793253Smec 7803253Smec return (0); 7813253Smec } 7823253Smec 7833253Smec /* 7843253Smec * all spans will be pagesize and no coalescing will be done with the 7853253Smec * list produced. 7863253Smec */ 7873253Smec static int 7883253Smec pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 7893253Smec { 7903253Smec kmutex_t *vphm; 7913253Smec page_t *pp; 7923253Smec struct memunit { 7933253Smec uint64_t address; 7943253Smec uint64_t size; 7953253Smec } *kspmem; 7963253Smec 7973253Smec if (rw == KSTAT_WRITE) 7983253Smec return (EACCES); 7993253Smec 8003253Smec ksp->ks_snaptime = gethrtime(); 8013253Smec 8023253Smec kspmem = (struct memunit *)buf; 8033253Smec 8043253Smec vphm = page_vnode_mutex(retired_pages); 8053253Smec mutex_enter(vphm); 8063253Smec pp = retired_pages->v_pages; 8073253Smec if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) || 8083253Smec (pp == NULL)) { 8093253Smec mutex_exit(vphm); 8103253Smec return (0); 8113253Smec } 8123253Smec kspmem->address = ptob(pp->p_pagenum); 8133253Smec kspmem->size = PAGESIZE; 8143253Smec kspmem++; 8153253Smec for (pp = pp->p_vpnext; pp != retired_pages->v_pages; 8163253Smec pp = pp->p_vpnext, kspmem++) { 8173253Smec if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 8183253Smec break; 8193253Smec kspmem->address = ptob(pp->p_pagenum); 8203253Smec kspmem->size = PAGESIZE; 8213253Smec } 8223253Smec mutex_exit(vphm); 8233253Smec 8243253Smec return (0); 8253253Smec } 8263253Smec 827917Selowe /* 8283480Sjfrank * page_retire_pend_count -- helper function for page_capture_thread, 8293480Sjfrank * returns the number of pages pending retirement. 8303480Sjfrank */ 8313480Sjfrank uint64_t 8323480Sjfrank page_retire_pend_count(void) 8333480Sjfrank { 8343480Sjfrank return (PR_KSTAT_PENDING); 8353480Sjfrank } 8363480Sjfrank 8373480Sjfrank void 8383480Sjfrank page_retire_incr_pend_count(void) 8393480Sjfrank { 8403480Sjfrank PR_INCR_KSTAT(pr_pending); 8413480Sjfrank } 8423480Sjfrank 8433480Sjfrank void 8443480Sjfrank page_retire_decr_pend_count(void) 8453480Sjfrank { 8463480Sjfrank PR_DECR_KSTAT(pr_pending); 8473480Sjfrank } 8483480Sjfrank 8493480Sjfrank /* 850917Selowe * Initialize the page retire mechanism: 851917Selowe * 852917Selowe * - Establish the correctable error retire limit. 853917Selowe * - Initialize locks. 854917Selowe * - Build the retired_pages vnode. 855917Selowe * - Set up the kstats. 856917Selowe * - Fire off the background thread. 8573253Smec * - Tell page_retire() it's OK to start retiring pages. 858917Selowe */ 859917Selowe void 860917Selowe page_retire_init(void) 861917Selowe { 8623898Srsb const fs_operation_def_t retired_vnodeops_template[] = { 8633898Srsb { NULL, NULL } 8643898Srsb }; 865917Selowe struct vnodeops *vops; 8663253Smec kstat_t *ksp; 867917Selowe 868917Selowe const uint_t page_retire_ndata = 869917Selowe sizeof (page_retire_kstat) / sizeof (kstat_named_t); 870917Selowe 871917Selowe ASSERT(page_retire_ksp == NULL); 872917Selowe 873917Selowe if (max_pages_retired_bps <= 0) { 874917Selowe max_pages_retired_bps = MCE_BPT; 875917Selowe } 876917Selowe 877917Selowe mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 878917Selowe 879917Selowe retired_pages = vn_alloc(KM_SLEEP); 880917Selowe if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 881917Selowe cmn_err(CE_PANIC, 882917Selowe "page_retired_init: can't make retired vnodeops"); 883917Selowe } 884917Selowe vn_setops(retired_pages, vops); 885917Selowe 886917Selowe if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 887917Selowe "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 888917Selowe KSTAT_FLAG_VIRTUAL)) == NULL) { 889917Selowe cmn_err(CE_WARN, "kstat_create for page_retire failed"); 890917Selowe } else { 891917Selowe page_retire_ksp->ks_data = (void *)&page_retire_kstat; 892917Selowe page_retire_ksp->ks_update = page_retire_kstat_update; 893917Selowe kstat_install(page_retire_ksp); 894917Selowe } 895917Selowe 8963253Smec mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL); 8973253Smec ksp = kstat_create("unix", 0, "page_retire_list", "misc", 8983253Smec KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 8993253Smec if (ksp != NULL) { 9003253Smec ksp->ks_update = pr_list_kstat_update; 9013253Smec ksp->ks_snapshot = pr_list_kstat_snapshot; 9023253Smec ksp->ks_lock = &pr_list_kstat_mutex; 9033253Smec kstat_install(ksp); 9043253Smec } 905917Selowe 9063253Smec page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish); 907917Selowe pr_enable = 1; 908917Selowe } 909917Selowe 910917Selowe /* 911917Selowe * page_retire_hunt() callback for the retire thread. 912917Selowe */ 913917Selowe static void 914917Selowe page_retire_thread_cb(page_t *pp) 915917Selowe { 916917Selowe PR_DEBUG(prd_tctop); 9173290Sjohansen if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) { 918917Selowe PR_DEBUG(prd_tclocked); 919917Selowe page_unlock(pp); 920917Selowe } 921917Selowe } 922917Selowe 923917Selowe /* 924917Selowe * page_retire_hunt() callback for mdboot(). 925917Selowe * 926917Selowe * It is necessary to scrub any failing pages prior to reboot in order to 927917Selowe * prevent a latent error trap from occurring on the next boot. 928917Selowe */ 929917Selowe void 930917Selowe page_retire_mdboot_cb(page_t *pp) 931917Selowe { 932917Selowe /* 933917Selowe * Don't scrub the kernel, since we might still need it, unless 934917Selowe * we have UEs on the page, in which case we have nothing to lose. 935917Selowe */ 9363290Sjohansen if (!PP_ISKAS(pp) || PP_TOXIC(pp)) { 937917Selowe pp->p_selock = -1; /* pacify ASSERTs */ 938973Selowe PP_CLRFREE(pp); 939917Selowe pagescrub(pp, 0, PAGESIZE); 940917Selowe pp->p_selock = 0; 941917Selowe } 942917Selowe pp->p_toxic = 0; 943917Selowe } 944917Selowe 945917Selowe 946917Selowe /* 9473253Smec * Callback used by page_trycapture() to finish off retiring a page. 9483253Smec * The page has already been cleaned and we've been given sole access to 9493253Smec * it. 9503253Smec * Always returns 0 to indicate that callback succeded as the callback never 9513253Smec * fails to finish retiring the given page. 952917Selowe */ 9533253Smec /*ARGSUSED*/ 954917Selowe static int 9553253Smec page_retire_pp_finish(page_t *pp, void *notused, uint_t flags) 956917Selowe { 957917Selowe int toxic; 958917Selowe 959917Selowe ASSERT(PAGE_EXCL(pp)); 960917Selowe ASSERT(pp->p_iolock_state == 0); 961917Selowe ASSERT(pp->p_szc == 0); 962917Selowe 963917Selowe toxic = pp->p_toxic; 964917Selowe 965917Selowe /* 966917Selowe * The problem page is locked, demoted, unmapped, not free, 967917Selowe * hashed out, and not COW or mlocked (whew!). 968917Selowe * 969917Selowe * Now we select our ammunition, take it around back, and shoot it. 970917Selowe */ 971917Selowe if (toxic & PR_UE) { 9723253Smec ue_error: 973917Selowe if (page_retire_transient_ue(pp)) { 974917Selowe PR_DEBUG(prd_uescrubbed); 9753253Smec (void) page_retire_done(pp, PRD_UE_SCRUBBED); 976917Selowe } else { 977917Selowe PR_DEBUG(prd_uenotscrubbed); 978917Selowe page_retire_destroy(pp); 9793253Smec (void) page_retire_done(pp, PRD_SUCCESS); 980917Selowe } 9813253Smec return (0); 982917Selowe } else if (toxic & PR_FMA) { 983917Selowe PR_DEBUG(prd_fma); 984917Selowe page_retire_destroy(pp); 9853253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9863253Smec return (0); 987917Selowe } else if (toxic & PR_MCE) { 988917Selowe PR_DEBUG(prd_mce); 989917Selowe page_retire_destroy(pp); 9903253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9913253Smec return (0); 992917Selowe } 993917Selowe 994917Selowe /* 9953253Smec * When page_retire_first_ue is set to zero and a UE occurs which is 9963253Smec * transient, it's possible that we clear some flags set by a second 9973253Smec * UE error on the page which occurs while the first is currently being 9983253Smec * handled and thus we need to handle the case where none of the above 9993253Smec * are set. In this instance, PR_UE_SCRUBBED should be set and thus 10003253Smec * we should execute the UE code above. 1001917Selowe */ 10023253Smec if (toxic & PR_UE_SCRUBBED) { 10033253Smec goto ue_error; 1004917Selowe } 10053253Smec 10063253Smec /* 10073253Smec * It's impossible to get here. 10083253Smec */ 10093253Smec panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic); 10103253Smec return (0); 1011917Selowe } 1012917Selowe 1013917Selowe /* 1014917Selowe * page_retire() - the front door in to retire a page. 1015917Selowe * 1016917Selowe * Ideally, page_retire() would instantly retire the requested page. 1017917Selowe * Unfortunately, some pages are locked or otherwise tied up and cannot be 10183253Smec * retired right away. We use the page capture logic to deal with this 10193253Smec * situation as it will continuously try to retire the page in the background 10203253Smec * if the first attempt fails. Success is determined by looking to see whether 10213253Smec * the page has been retired after the page_trycapture() attempt. 1022917Selowe * 1023917Selowe * Returns: 1024917Selowe * 1025917Selowe * - 0 on success, 1026917Selowe * - EINVAL when the PA is whacko, 10271381Selowe * - EIO if the page is already retired or already pending retirement, or 10281381Selowe * - EAGAIN if the page could not be _immediately_ retired but is pending. 1029917Selowe */ 1030917Selowe int 1031917Selowe page_retire(uint64_t pa, uchar_t reason) 1032917Selowe { 1033917Selowe page_t *pp; 1034917Selowe 1035917Selowe ASSERT(reason & PR_REASONS); /* there must be a reason */ 1036917Selowe ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1037917Selowe 1038917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1039917Selowe if (pp == NULL) { 1040917Selowe PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1041917Selowe " page 0x%08x.%08x; page is not relocatable memory", pa); 1042917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1043917Selowe } 1044917Selowe if (PP_RETIRED(pp)) { 10451381Selowe PR_DEBUG(prd_dup1); 1046917Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1047917Selowe } 1048917Selowe 10491381Selowe if ((reason & PR_UE) && !PP_TOXIC(pp)) { 1050917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1051917Selowe " page 0x%08x.%08x", pa); 10521381Selowe } else if (PP_PR_REQ(pp)) { 10531381Selowe PR_DEBUG(prd_dup2); 10541381Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1055917Selowe } else { 1056917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1057917Selowe " page 0x%08x.%08x", pa); 1058917Selowe } 10593253Smec 10603253Smec /* Avoid setting toxic bits in the first place */ 10613253Smec if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) && 10623253Smec page_retire_limit()) { 10633253Smec return (page_retire_done(pp, PRD_LIMIT)); 10643253Smec } 1065917Selowe 10663253Smec if (MTBF(pr_calls, pr_mtbf)) { 10673253Smec page_settoxic(pp, reason); 10683253Smec if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) { 10693253Smec PR_DEBUG(prd_prlocked); 10703253Smec } else { 10713253Smec PR_DEBUG(prd_prnotlocked); 10723253Smec } 1073917Selowe } else { 1074917Selowe PR_DEBUG(prd_prnotlocked); 1075917Selowe } 1076917Selowe 1077917Selowe if (PP_RETIRED(pp)) { 1078917Selowe PR_DEBUG(prd_prretired); 1079917Selowe return (0); 1080917Selowe } else { 10813253Smec cv_signal(&pc_cv); 1082917Selowe PR_INCR_KSTAT(pr_failed); 1083917Selowe 1084917Selowe if (pp->p_toxic & PR_MSG) { 1085917Selowe return (page_retire_done(pp, PRD_FAILED)); 1086917Selowe } else { 1087917Selowe return (page_retire_done(pp, PRD_PENDING)); 1088917Selowe } 1089917Selowe } 1090917Selowe } 1091917Selowe 1092917Selowe /* 1093917Selowe * Take a retired page off the retired-pages vnode and clear the toxic flags. 1094917Selowe * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1095917Selowe * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1096917Selowe * and don't do anything else with it. 1097917Selowe * 1098917Selowe * Any unretire messages are printed from this routine. 1099917Selowe * 1100917Selowe * Returns 0 if page pp was unretired; else an error code. 11013253Smec * 11023253Smec * If flags is: 11033253Smec * PR_UNR_FREE - lock the page, clear the toxic flags and free it 11043253Smec * to the freelist. 11053253Smec * PR_UNR_TEMP - lock the page, unretire it, leave the toxic 11063253Smec * bits set as is and return it to the caller. 11073253Smec * PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the 11083253Smec * toxic flags and return it to caller as is. 1109917Selowe */ 1110917Selowe int 11113253Smec page_unretire_pp(page_t *pp, int flags) 1112917Selowe { 1113917Selowe /* 1114917Selowe * To be retired, a page has to be hashed onto the retired_pages vnode 1115917Selowe * and have PR_RETIRED set in p_toxic. 1116917Selowe */ 11173253Smec if (flags == PR_UNR_CLEAN || 11183253Smec page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1119917Selowe ASSERT(PAGE_EXCL(pp)); 1120917Selowe PR_DEBUG(prd_ulocked); 1121917Selowe if (!PP_RETIRED(pp)) { 1122917Selowe PR_DEBUG(prd_unotretired); 1123917Selowe page_unlock(pp); 1124917Selowe return (page_retire_done(pp, PRD_UNR_NOT)); 1125917Selowe } 1126917Selowe 1127917Selowe PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 11281338Selowe " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum)); 1129917Selowe if (pp->p_toxic & PR_FMA) { 1130917Selowe PR_DECR_KSTAT(pr_fma); 1131917Selowe } else if (pp->p_toxic & PR_UE) { 1132917Selowe PR_DECR_KSTAT(pr_ue); 1133917Selowe } else { 1134917Selowe PR_DECR_KSTAT(pr_mce); 1135917Selowe } 1136917Selowe 11373253Smec if (flags == PR_UNR_TEMP) 11383253Smec page_clrtoxic(pp, PR_RETIRED); 11393253Smec else 11403253Smec page_clrtoxic(pp, PR_TOXICFLAGS); 11413253Smec 11423253Smec if (flags == PR_UNR_FREE) { 1143917Selowe PR_DEBUG(prd_udestroy); 1144917Selowe page_destroy(pp, 0); 1145917Selowe } else { 1146917Selowe PR_DEBUG(prd_uhashout); 1147917Selowe page_hashout(pp, NULL); 1148917Selowe } 1149917Selowe 1150917Selowe mutex_enter(&freemem_lock); 1151917Selowe availrmem++; 1152917Selowe mutex_exit(&freemem_lock); 1153917Selowe 1154917Selowe PR_DEBUG(prd_uunretired); 1155917Selowe PR_DECR_KSTAT(pr_retired); 1156917Selowe PR_INCR_KSTAT(pr_unretired); 1157917Selowe return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1158917Selowe } 1159917Selowe PR_DEBUG(prd_unotlocked); 1160917Selowe return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1161917Selowe } 1162917Selowe 1163917Selowe /* 1164917Selowe * Return a page to service by moving it from the retired_pages vnode 1165917Selowe * onto the freelist. 1166917Selowe * 1167917Selowe * Called from mmioctl_page_retire() on behalf of the FMA DE. 1168917Selowe * 1169917Selowe * Returns: 1170917Selowe * 1171917Selowe * - 0 if the page is unretired, 1172917Selowe * - EAGAIN if the pp can not be locked, 1173917Selowe * - EINVAL if the PA is whacko, and 11741381Selowe * - EIO if the pp is not retired. 1175917Selowe */ 1176917Selowe int 1177917Selowe page_unretire(uint64_t pa) 1178917Selowe { 1179917Selowe page_t *pp; 1180917Selowe 1181917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1182917Selowe if (pp == NULL) { 1183917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1184917Selowe } 1185917Selowe 11863253Smec return (page_unretire_pp(pp, PR_UNR_FREE)); 1187917Selowe } 1188917Selowe 1189917Selowe /* 1190917Selowe * Test a page to see if it is retired. If errors is non-NULL, the toxic 1191917Selowe * bits of the page are returned. Returns 0 on success, error code on failure. 1192917Selowe */ 1193917Selowe int 1194917Selowe page_retire_check_pp(page_t *pp, uint64_t *errors) 1195917Selowe { 1196917Selowe int rc; 1197917Selowe 1198917Selowe if (PP_RETIRED(pp)) { 1199917Selowe PR_DEBUG(prd_checkhit); 1200917Selowe rc = 0; 12011381Selowe } else if (PP_PR_REQ(pp)) { 12021381Selowe PR_DEBUG(prd_checkmiss_pend); 12031381Selowe rc = EAGAIN; 1204917Selowe } else { 12051381Selowe PR_DEBUG(prd_checkmiss_noerr); 12061381Selowe rc = EIO; 1207917Selowe } 1208917Selowe 1209917Selowe /* 1210917Selowe * We have magically arranged the bit values returned to fmd(1M) 1211917Selowe * to line up with the FMA, MCE, and UE bits of the page_t. 1212917Selowe */ 1213917Selowe if (errors) { 1214917Selowe uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1215917Selowe if (toxic & PR_UE_SCRUBBED) { 1216917Selowe toxic &= ~PR_UE_SCRUBBED; 1217917Selowe toxic |= PR_UE; 1218917Selowe } 1219917Selowe *errors = toxic; 1220917Selowe } 1221917Selowe 1222917Selowe return (rc); 1223917Selowe } 1224917Selowe 1225917Selowe /* 1226917Selowe * Test to see if the page_t for a given PA is retired, and return the 1227917Selowe * hardware errors we have seen on the page if requested. 1228917Selowe * 1229917Selowe * Called from mmioctl_page_retire on behalf of the FMA DE. 1230917Selowe * 1231917Selowe * Returns: 1232917Selowe * 1233917Selowe * - 0 if the page is retired, 12341381Selowe * - EIO if the page is not retired and has no errors, 12351381Selowe * - EAGAIN if the page is not retired but is pending; and 1236917Selowe * - EINVAL if the PA is whacko. 1237917Selowe */ 1238917Selowe int 1239917Selowe page_retire_check(uint64_t pa, uint64_t *errors) 1240917Selowe { 1241917Selowe page_t *pp; 1242917Selowe 1243917Selowe if (errors) { 1244917Selowe *errors = 0; 1245917Selowe } 1246917Selowe 1247917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1248917Selowe if (pp == NULL) { 1249917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1250917Selowe } 1251917Selowe 1252917Selowe return (page_retire_check_pp(pp, errors)); 1253917Selowe } 1254917Selowe 1255917Selowe /* 1256917Selowe * Page retire self-test. For now, it always returns 0. 1257917Selowe */ 1258917Selowe int 1259917Selowe page_retire_test(void) 1260917Selowe { 1261917Selowe page_t *first, *pp, *cpp, *cpp2, *lpp; 1262917Selowe 1263917Selowe /* 1264917Selowe * Tests the corner case where a large page can't be retired 1265917Selowe * because one of the constituent pages is locked. We mark 1266917Selowe * one page to be retired and try to retire it, and mark the 1267917Selowe * other page to be retired but don't try to retire it, so 1268917Selowe * that page_unlock() in the failure path will recurse and try 1269917Selowe * to retire THAT page. This is the worst possible situation 1270917Selowe * we can get ourselves into. 1271917Selowe */ 1272917Selowe memsegs_lock(0); 1273917Selowe pp = first = page_first(); 1274917Selowe do { 1275917Selowe if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1276917Selowe cpp = pp + 1; 1277917Selowe lpp = PP_ISFREE(pp)? pp : pp + 2; 1278917Selowe cpp2 = pp + 3; 1279917Selowe if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1280917Selowe continue; 1281917Selowe if (!page_trylock(cpp, SE_EXCL)) { 1282917Selowe page_unlock(lpp); 1283917Selowe continue; 1284917Selowe } 12853253Smec 12863253Smec /* fails */ 12873253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12883253Smec 1289917Selowe page_unlock(lpp); 12903253Smec page_unlock(cpp); 12913253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12923253Smec (void) page_retire(ptob(cpp2->p_pagenum), PR_FMA); 1293917Selowe } 1294917Selowe } while ((pp = page_next(pp)) != first); 1295917Selowe memsegs_unlock(0); 1296917Selowe 1297917Selowe return (0); 1298917Selowe } 1299