1917Selowe /* 2917Selowe * CDDL HEADER START 3917Selowe * 4917Selowe * The contents of this file are subject to the terms of the 53253Smec * Common Development and Distribution License (the "License"). 63253Smec * You may not use this file except in compliance with the License. 7917Selowe * 8917Selowe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9917Selowe * or http://www.opensolaris.org/os/licensing. 10917Selowe * See the License for the specific language governing permissions 11917Selowe * and limitations under the License. 12917Selowe * 13917Selowe * When distributing Covered Code, include this CDDL HEADER in each 14917Selowe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15917Selowe * If applicable, add the following below this CDDL HEADER, with the 16917Selowe * fields enclosed by brackets "[]" replaced with your own identifying 17917Selowe * information: Portions Copyright [yyyy] [name of copyright owner] 18917Selowe * 19917Selowe * CDDL HEADER END 20917Selowe */ 21917Selowe /* 223480Sjfrank * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23917Selowe * Use is subject to license terms. 24917Selowe */ 25917Selowe 26917Selowe #pragma ident "%Z%%M% %I% %E% SMI" 27917Selowe 28917Selowe /* 29917Selowe * Page Retire - Big Theory Statement. 30917Selowe * 31917Selowe * This file handles removing sections of faulty memory from use when the 32917Selowe * user land FMA Diagnosis Engine requests that a page be removed or when 33917Selowe * a CE or UE is detected by the hardware. 34917Selowe * 35917Selowe * In the bad old days, the kernel side of Page Retire did a lot of the work 36917Selowe * on its own. Now, with the DE keeping track of errors, the kernel side is 37917Selowe * rather simple minded on most platforms. 38917Selowe * 39917Selowe * Errors are all reflected to the DE, and after digesting the error and 40917Selowe * looking at all previously reported errors, the DE decides what should 41917Selowe * be done about the current error. If the DE wants a particular page to 42917Selowe * be retired, then the kernel page retire code is invoked via an ioctl. 43917Selowe * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 44917Selowe * page retire to handle the error. Since page retire is just a simple 45917Selowe * mechanism it doesn't need to differentiate between the different callers. 46917Selowe * 47917Selowe * The p_toxic field in the page_t is used to indicate which errors have 48917Selowe * occurred and what action has been taken on a given page. Because errors are 49917Selowe * reported without regard to the locked state of a page, no locks are used 50917Selowe * to SET the error bits in p_toxic. However, in order to clear the error 51917Selowe * bits, the page_t must be held exclusively locked. 52917Selowe * 53917Selowe * When page_retire() is called, it must be able to acquire locks, sleep, etc. 54917Selowe * It must not be called from high-level interrupt context. 55917Selowe * 56917Selowe * Depending on how the requested page is being used at the time of the retire 57917Selowe * request (and on the availability of sufficient system resources), the page 58917Selowe * may be retired immediately, or just marked for retirement later. For 59917Selowe * example, locked pages are marked, while free pages are retired. Multiple 60917Selowe * requests may be made to retire the same page, although there is no need 61917Selowe * to: once the p_toxic flags are set, the page will be retired as soon as it 62917Selowe * can be exclusively locked. 63917Selowe * 64917Selowe * The retire mechanism is driven centrally out of page_unlock(). To expedite 65917Selowe * the retirement of pages, further requests for SE_SHARED locks are denied 66917Selowe * as long as a page retirement is pending. In addition, as long as pages are 67917Selowe * pending retirement a background thread runs periodically trying to retire 68917Selowe * those pages. Pages which could not be retired while the system is running 69917Selowe * are scrubbed prior to rebooting to avoid latent errors on the next boot. 70917Selowe * 711338Selowe * UE pages without persistent errors are scrubbed and returned to service. 721338Selowe * Recidivist pages, as well as FMA-directed requests for retirement, result 731338Selowe * in the page being taken out of service. Once the decision is made to take 741338Selowe * a page out of service, the page is cleared, hashed onto the retired_pages 751338Selowe * vnode, marked as retired, and it is unlocked. No other requesters (except 761338Selowe * for unretire) are allowed to lock retired pages. 77917Selowe * 78917Selowe * The public routines return (sadly) 0 if they worked and a non-zero error 79917Selowe * value if something went wrong. This is done for the ioctl side of the 80917Selowe * world to allow errors to be reflected all the way out to user land. The 81917Selowe * non-zero values are explained in comments atop each function. 82917Selowe */ 83917Selowe 84917Selowe /* 85917Selowe * Things to fix: 86917Selowe * 873253Smec * 1. Trying to retire non-relocatable kvp pages may result in a 88917Selowe * quagmire. This is because seg_kmem() no longer keeps its pages locked, 89917Selowe * and calls page_lookup() in the free path; since kvp pages are modified 90917Selowe * and don't have a usable backing store, page_retire() can't do anything 91917Selowe * with them, and we'll keep denying the lock to seg_kmem_free() in a 92917Selowe * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 933253Smec * hence only try to retire a page from page_unlock() in the free path. 94917Selowe * Since most kernel pages are indefinitely held anyway, and don't 95917Selowe * participate in I/O, this is of little consequence. 96917Selowe * 973253Smec * 2. Low memory situations will be interesting. If we don't have 98917Selowe * enough memory for page_relocate() to succeed, we won't be able to 99917Selowe * retire dirty pages; nobody will be able to push them out to disk 100917Selowe * either, since we aggressively deny the page lock. We could change 101917Selowe * fsflush so it can recognize this situation, grab the lock, and push 102917Selowe * the page out, where we'll catch it in the free path and retire it. 103917Selowe * 1043253Smec * 3. Beware of places that have code like this in them: 105917Selowe * 106917Selowe * if (! page_tryupgrade(pp)) { 107917Selowe * page_unlock(pp); 108917Selowe * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 109917Selowe * / *NOTHING* / 110917Selowe * } 111917Selowe * } 112917Selowe * page_free(pp); 113917Selowe * 114917Selowe * The problem is that pp can change identity right after the 115917Selowe * page_unlock() call. In particular, page_retire() can step in 116917Selowe * there, change pp's identity, and hash pp onto the retired_vnode. 117917Selowe * 118917Selowe * Of course, other functions besides page_retire() can have the 119917Selowe * same effect. A kmem reader can waltz by, set up a mapping to the 120917Selowe * page, and then unlock the page. Page_free() will then go castors 121917Selowe * up. So if anybody is doing this, it's already a bug. 122917Selowe * 1233253Smec * 4. mdboot()'s call into page_retire_mdboot() should probably be 124917Selowe * moved lower. Where the call is made now, we can get into trouble 125917Selowe * by scrubbing a kernel page that is then accessed later. 126917Selowe */ 127917Selowe 128917Selowe #include <sys/types.h> 129917Selowe #include <sys/param.h> 130917Selowe #include <sys/systm.h> 131917Selowe #include <sys/mman.h> 132917Selowe #include <sys/vnode.h> 133*3898Srsb #include <sys/vfs_opreg.h> 134917Selowe #include <sys/cmn_err.h> 135917Selowe #include <sys/ksynch.h> 136917Selowe #include <sys/thread.h> 137917Selowe #include <sys/disp.h> 138917Selowe #include <sys/ontrap.h> 139917Selowe #include <sys/vmsystm.h> 140917Selowe #include <sys/mem_config.h> 141917Selowe #include <sys/atomic.h> 142917Selowe #include <sys/callb.h> 143917Selowe #include <vm/page.h> 144917Selowe #include <vm/vm_dep.h> 145917Selowe #include <vm/as.h> 146917Selowe #include <vm/hat.h> 147917Selowe 148917Selowe /* 149917Selowe * vnode for all pages which are retired from the VM system; 150917Selowe */ 151917Selowe vnode_t *retired_pages; 152917Selowe 1533253Smec static int page_retire_pp_finish(page_t *, void *, uint_t); 154917Selowe 155917Selowe /* 156917Selowe * Make a list of all of the pages that have been marked for retirement 157917Selowe * but are not yet retired. At system shutdown, we will scrub all of the 158917Selowe * pages in the list in case there are outstanding UEs. Then, we 159917Selowe * cross-check this list against the number of pages that are yet to be 160917Selowe * retired, and if we find inconsistencies, we scan every page_t in the 161917Selowe * whole system looking for any pages that need to be scrubbed for UEs. 162917Selowe * The background thread also uses this queue to determine which pages 163917Selowe * it should keep trying to retire. 164917Selowe */ 165917Selowe #ifdef DEBUG 166917Selowe #define PR_PENDING_QMAX 32 167917Selowe #else /* DEBUG */ 168917Selowe #define PR_PENDING_QMAX 256 169917Selowe #endif /* DEBUG */ 170917Selowe page_t *pr_pending_q[PR_PENDING_QMAX]; 171917Selowe kmutex_t pr_q_mutex; 172917Selowe 173917Selowe /* 174917Selowe * Page retire global kstats 175917Selowe */ 176917Selowe struct page_retire_kstat { 177917Selowe kstat_named_t pr_retired; 178917Selowe kstat_named_t pr_requested; 179917Selowe kstat_named_t pr_requested_free; 180917Selowe kstat_named_t pr_enqueue_fail; 181917Selowe kstat_named_t pr_dequeue_fail; 182917Selowe kstat_named_t pr_pending; 183917Selowe kstat_named_t pr_failed; 184917Selowe kstat_named_t pr_failed_kernel; 185917Selowe kstat_named_t pr_limit; 186917Selowe kstat_named_t pr_limit_exceeded; 187917Selowe kstat_named_t pr_fma; 188917Selowe kstat_named_t pr_mce; 189917Selowe kstat_named_t pr_ue; 190917Selowe kstat_named_t pr_ue_cleared_retire; 191917Selowe kstat_named_t pr_ue_cleared_free; 192917Selowe kstat_named_t pr_ue_persistent; 193917Selowe kstat_named_t pr_unretired; 194917Selowe }; 195917Selowe 196917Selowe static struct page_retire_kstat page_retire_kstat = { 197917Selowe { "pages_retired", KSTAT_DATA_UINT64}, 198917Selowe { "pages_retire_request", KSTAT_DATA_UINT64}, 199917Selowe { "pages_retire_request_free", KSTAT_DATA_UINT64}, 200917Selowe { "pages_notenqueued", KSTAT_DATA_UINT64}, 201917Selowe { "pages_notdequeued", KSTAT_DATA_UINT64}, 202917Selowe { "pages_pending", KSTAT_DATA_UINT64}, 203917Selowe { "pages_deferred", KSTAT_DATA_UINT64}, 204917Selowe { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 205917Selowe { "pages_limit", KSTAT_DATA_UINT64}, 206917Selowe { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 207917Selowe { "pages_fma", KSTAT_DATA_UINT64}, 208917Selowe { "pages_multiple_ce", KSTAT_DATA_UINT64}, 209917Selowe { "pages_ue", KSTAT_DATA_UINT64}, 210917Selowe { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 211917Selowe { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 212917Selowe { "pages_ue_persistent", KSTAT_DATA_UINT64}, 213917Selowe { "pages_unretired", KSTAT_DATA_UINT64}, 214917Selowe }; 215917Selowe 216917Selowe static kstat_t *page_retire_ksp = NULL; 217917Selowe 218917Selowe #define PR_INCR_KSTAT(stat) \ 219917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 220917Selowe #define PR_DECR_KSTAT(stat) \ 221917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 222917Selowe 223917Selowe #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 224917Selowe #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 225917Selowe #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 226917Selowe #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 227917Selowe #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 228917Selowe #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 229917Selowe 230917Selowe /* 2313253Smec * page retire kstats to list all retired pages 2323253Smec */ 2333253Smec static int pr_list_kstat_update(kstat_t *ksp, int rw); 2343253Smec static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 2353253Smec kmutex_t pr_list_kstat_mutex; 2363253Smec 2373253Smec /* 238917Selowe * Limit the number of multiple CE page retires. 239917Selowe * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 240917Selowe * basis points, where 100 basis points equals one percent. 241917Selowe */ 242917Selowe #define MCE_BPT 10 243917Selowe uint64_t max_pages_retired_bps = MCE_BPT; 244917Selowe #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 245917Selowe 246917Selowe /* 247917Selowe * Control over the verbosity of page retirement. 248917Selowe * 249917Selowe * When set to zero (the default), no messages will be printed. 250917Selowe * When set to one, summary messages will be printed. 251917Selowe * When set > one, all messages will be printed. 252917Selowe * 253917Selowe * A value of one will trigger detailed messages for retirement operations, 254917Selowe * and is intended as a platform tunable for processors where FMA's DE does 255917Selowe * not run (e.g., spitfire). Values > one are intended for debugging only. 256917Selowe */ 257917Selowe int page_retire_messages = 0; 258917Selowe 259917Selowe /* 260917Selowe * Control whether or not we return scrubbed UE pages to service. 261917Selowe * By default we do not since FMA wants to run its diagnostics first 262917Selowe * and then ask us to unretire the page if it passes. Non-FMA platforms 263917Selowe * may set this to zero so we will only retire recidivist pages. It should 264917Selowe * not be changed by the user. 265917Selowe */ 266917Selowe int page_retire_first_ue = 1; 267917Selowe 268917Selowe /* 269917Selowe * Master enable for page retire. This prevents a CE or UE early in boot 270917Selowe * from trying to retire a page before page_retire_init() has finished 271917Selowe * setting things up. This is internal only and is not a tunable! 272917Selowe */ 273917Selowe static int pr_enable = 0; 274917Selowe 275917Selowe extern struct vnode kvp; 276917Selowe 277917Selowe #ifdef DEBUG 278917Selowe struct page_retire_debug { 2791381Selowe int prd_dup1; 2801381Selowe int prd_dup2; 2811381Selowe int prd_qdup; 282917Selowe int prd_noaction; 283917Selowe int prd_queued; 284917Selowe int prd_notqueued; 285917Selowe int prd_dequeue; 286917Selowe int prd_top; 287917Selowe int prd_locked; 288917Selowe int prd_reloc; 289973Selowe int prd_relocfail; 290973Selowe int prd_mod; 291973Selowe int prd_mod_late; 292917Selowe int prd_kern; 293917Selowe int prd_free; 294917Selowe int prd_noreclaim; 295917Selowe int prd_hashout; 296917Selowe int prd_fma; 297917Selowe int prd_uescrubbed; 298917Selowe int prd_uenotscrubbed; 299917Selowe int prd_mce; 300917Selowe int prd_prlocked; 301917Selowe int prd_prnotlocked; 302917Selowe int prd_prretired; 303917Selowe int prd_ulocked; 304917Selowe int prd_unotretired; 305917Selowe int prd_udestroy; 306917Selowe int prd_uhashout; 307917Selowe int prd_uunretired; 308917Selowe int prd_unotlocked; 309917Selowe int prd_checkhit; 3101381Selowe int prd_checkmiss_pend; 3111381Selowe int prd_checkmiss_noerr; 312917Selowe int prd_tctop; 313917Selowe int prd_tclocked; 314917Selowe int prd_hunt; 315917Selowe int prd_dohunt; 316917Selowe int prd_earlyhunt; 317917Selowe int prd_latehunt; 318917Selowe int prd_nofreedemote; 319917Selowe int prd_nodemote; 320917Selowe int prd_demoted; 321917Selowe } pr_debug; 322917Selowe 323917Selowe #define PR_DEBUG(foo) ((pr_debug.foo)++) 324917Selowe 325917Selowe /* 326917Selowe * A type histogram. We record the incidence of the various toxic 327917Selowe * flag combinations along with the interesting page attributes. The 328917Selowe * goal is to get as many combinations as we can while driving all 329917Selowe * pr_debug values nonzero (indicating we've exercised all possible 330917Selowe * code paths across all possible page types). Not all combinations 331917Selowe * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 332917Selowe * 333917Selowe * pr_type offset bit encoding (when examining with a debugger): 334917Selowe * 335917Selowe * PRT_NAMED - 0x4 336917Selowe * PRT_KERNEL - 0x8 337917Selowe * PRT_FREE - 0x10 338917Selowe * PRT_MOD - 0x20 339917Selowe * PRT_FMA - 0x0 340917Selowe * PRT_MCE - 0x40 341917Selowe * PRT_UE - 0x80 342917Selowe */ 343917Selowe 344917Selowe #define PRT_NAMED 0x01 345917Selowe #define PRT_KERNEL 0x02 346917Selowe #define PRT_FREE 0x04 347917Selowe #define PRT_MOD 0x08 348917Selowe #define PRT_FMA 0x00 /* yes, this is not a mistake */ 349917Selowe #define PRT_MCE 0x10 350917Selowe #define PRT_UE 0x20 351917Selowe #define PRT_ALL 0x3F 352917Selowe 353917Selowe int pr_types[PRT_ALL+1]; 354917Selowe 355917Selowe #define PR_TYPES(pp) { \ 356917Selowe int whichtype = 0; \ 357917Selowe if (pp->p_vnode) \ 358917Selowe whichtype |= PRT_NAMED; \ 3593290Sjohansen if (PP_ISKAS(pp)) \ 360917Selowe whichtype |= PRT_KERNEL; \ 361917Selowe if (PP_ISFREE(pp)) \ 362917Selowe whichtype |= PRT_FREE; \ 363917Selowe if (hat_ismod(pp)) \ 364917Selowe whichtype |= PRT_MOD; \ 365917Selowe if (pp->p_toxic & PR_UE) \ 366917Selowe whichtype |= PRT_UE; \ 367917Selowe if (pp->p_toxic & PR_MCE) \ 368917Selowe whichtype |= PRT_MCE; \ 369917Selowe pr_types[whichtype]++; \ 370917Selowe } 371917Selowe 372917Selowe int recl_calls; 373917Selowe int recl_mtbf = 3; 374917Selowe int reloc_calls; 375917Selowe int reloc_mtbf = 7; 376917Selowe int pr_calls; 377917Selowe int pr_mtbf = 15; 378917Selowe 379917Selowe #define MTBF(v, f) (((++(v)) & (f)) != (f)) 380917Selowe 381917Selowe #else /* DEBUG */ 382917Selowe 383917Selowe #define PR_DEBUG(foo) /* nothing */ 384917Selowe #define PR_TYPES(foo) /* nothing */ 385917Selowe #define MTBF(v, f) (1) 386917Selowe 387917Selowe #endif /* DEBUG */ 388917Selowe 389917Selowe /* 390917Selowe * page_retire_done() - completion processing 391917Selowe * 392917Selowe * Used by the page_retire code for common completion processing. 393917Selowe * It keeps track of how many times a given result has happened, 394917Selowe * and writes out an occasional message. 395917Selowe * 396917Selowe * May be called with a NULL pp (PRD_INVALID_PA case). 397917Selowe */ 398917Selowe #define PRD_INVALID_KEY -1 399917Selowe #define PRD_SUCCESS 0 400917Selowe #define PRD_PENDING 1 401917Selowe #define PRD_FAILED 2 402917Selowe #define PRD_DUPLICATE 3 403917Selowe #define PRD_INVALID_PA 4 404917Selowe #define PRD_LIMIT 5 405917Selowe #define PRD_UE_SCRUBBED 6 406917Selowe #define PRD_UNR_SUCCESS 7 407917Selowe #define PRD_UNR_CANTLOCK 8 408917Selowe #define PRD_UNR_NOT 9 409917Selowe 410917Selowe typedef struct page_retire_op { 411917Selowe int pr_key; /* one of the PRD_* defines from above */ 412917Selowe int pr_count; /* How many times this has happened */ 413917Selowe int pr_retval; /* return value */ 414917Selowe int pr_msglvl; /* message level - when to print */ 415917Selowe char *pr_message; /* Cryptic message for field service */ 416917Selowe } page_retire_op_t; 417917Selowe 418917Selowe static page_retire_op_t page_retire_ops[] = { 419917Selowe /* key count retval msglvl message */ 420917Selowe {PRD_SUCCESS, 0, 0, 1, 421917Selowe "Page 0x%08x.%08x removed from service"}, 422917Selowe {PRD_PENDING, 0, EAGAIN, 2, 423917Selowe "Page 0x%08x.%08x will be retired on free"}, 424917Selowe {PRD_FAILED, 0, EAGAIN, 0, NULL}, 4251381Selowe {PRD_DUPLICATE, 0, EIO, 2, 4261381Selowe "Page 0x%08x.%08x already retired or pending"}, 427917Selowe {PRD_INVALID_PA, 0, EINVAL, 2, 428917Selowe "PA 0x%08x.%08x is not a relocatable page"}, 429917Selowe {PRD_LIMIT, 0, 0, 1, 430917Selowe "Page 0x%08x.%08x not retired due to limit exceeded"}, 431917Selowe {PRD_UE_SCRUBBED, 0, 0, 1, 432917Selowe "Previously reported error on page 0x%08x.%08x cleared"}, 433917Selowe {PRD_UNR_SUCCESS, 0, 0, 1, 434917Selowe "Page 0x%08x.%08x returned to service"}, 435917Selowe {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 436917Selowe "Page 0x%08x.%08x could not be unretired"}, 4371381Selowe {PRD_UNR_NOT, 0, EIO, 2, 438917Selowe "Page 0x%08x.%08x is not retired"}, 439917Selowe {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 440917Selowe }; 441917Selowe 442917Selowe /* 443917Selowe * print a message if page_retire_messages is true. 444917Selowe */ 445917Selowe #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 446917Selowe { \ 447917Selowe uint64_t p = (uint64_t)pa; \ 448917Selowe if (page_retire_messages >= msglvl && msg != NULL) { \ 449917Selowe cmn_err(debuglvl, msg, \ 450917Selowe (uint32_t)(p >> 32), (uint32_t)p); \ 451917Selowe } \ 452917Selowe } 453917Selowe 454917Selowe /* 455917Selowe * Note that multiple bits may be set in a single settoxic operation. 456917Selowe * May be called without the page locked. 457917Selowe */ 458917Selowe void 459917Selowe page_settoxic(page_t *pp, uchar_t bits) 460917Selowe { 461917Selowe atomic_or_8(&pp->p_toxic, bits); 462917Selowe } 463917Selowe 464917Selowe /* 465917Selowe * Note that multiple bits may cleared in a single clrtoxic operation. 4661338Selowe * Must be called with the page exclusively locked to prevent races which 4671338Selowe * may attempt to retire a page without any toxic bits set. 4683253Smec * Note that the PR_CAPTURE bit can be cleared without the exclusive lock 4693253Smec * being held as there is a separate mutex which protects that bit. 470917Selowe */ 471917Selowe void 472917Selowe page_clrtoxic(page_t *pp, uchar_t bits) 473917Selowe { 4743253Smec ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp)); 475917Selowe atomic_and_8(&pp->p_toxic, ~bits); 476917Selowe } 477917Selowe 478917Selowe /* 479917Selowe * Prints any page retire messages to the user, and decides what 480917Selowe * error code is appropriate for the condition reported. 481917Selowe */ 482917Selowe static int 483917Selowe page_retire_done(page_t *pp, int code) 484917Selowe { 485917Selowe page_retire_op_t *prop; 486917Selowe uint64_t pa = 0; 487917Selowe int i; 488917Selowe 489917Selowe if (pp != NULL) { 4901338Selowe pa = mmu_ptob((uint64_t)pp->p_pagenum); 491917Selowe } 492917Selowe 493917Selowe prop = NULL; 494917Selowe for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 495917Selowe if (page_retire_ops[i].pr_key == code) { 496917Selowe prop = &page_retire_ops[i]; 497917Selowe break; 498917Selowe } 499917Selowe } 500917Selowe 501917Selowe #ifdef DEBUG 502917Selowe if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 503917Selowe cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 504917Selowe } 505917Selowe #endif 506917Selowe 507917Selowe ASSERT(prop->pr_key == code); 508917Selowe 509917Selowe prop->pr_count++; 510917Selowe 511917Selowe PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 512917Selowe if (pp != NULL) { 513917Selowe page_settoxic(pp, PR_MSG); 514917Selowe } 515917Selowe 516917Selowe return (prop->pr_retval); 517917Selowe } 518917Selowe 519917Selowe /* 520917Selowe * Act like page_destroy(), but instead of freeing the page, hash it onto 521917Selowe * the retired_pages vnode, and mark it retired. 522917Selowe * 523917Selowe * For fun, we try to scrub the page until it's squeaky clean. 524917Selowe * availrmem is adjusted here. 525917Selowe */ 526917Selowe static void 527917Selowe page_retire_destroy(page_t *pp) 528917Selowe { 529973Selowe u_offset_t off = (u_offset_t)((uintptr_t)pp); 530973Selowe 531917Selowe ASSERT(PAGE_EXCL(pp)); 532917Selowe ASSERT(!PP_ISFREE(pp)); 533917Selowe ASSERT(pp->p_szc == 0); 534917Selowe ASSERT(!hat_page_is_mapped(pp)); 535917Selowe ASSERT(!pp->p_vnode); 536917Selowe 537917Selowe page_clr_all_props(pp); 538917Selowe pagescrub(pp, 0, MMU_PAGESIZE); 539917Selowe 540917Selowe pp->p_next = NULL; 541917Selowe pp->p_prev = NULL; 542973Selowe if (page_hashin(pp, retired_pages, off, NULL) == 0) { 543917Selowe cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 544917Selowe } 545917Selowe 546917Selowe page_settoxic(pp, PR_RETIRED); 547917Selowe PR_INCR_KSTAT(pr_retired); 548917Selowe 549917Selowe if (pp->p_toxic & PR_FMA) { 550917Selowe PR_INCR_KSTAT(pr_fma); 551917Selowe } else if (pp->p_toxic & PR_UE) { 552917Selowe PR_INCR_KSTAT(pr_ue); 553917Selowe } else { 554917Selowe PR_INCR_KSTAT(pr_mce); 555917Selowe } 556917Selowe 557917Selowe mutex_enter(&freemem_lock); 558917Selowe availrmem--; 559917Selowe mutex_exit(&freemem_lock); 560917Selowe 561917Selowe page_unlock(pp); 562917Selowe } 563917Selowe 564917Selowe /* 565917Selowe * Check whether the number of pages which have been retired already exceeds 566917Selowe * the maximum allowable percentage of memory which may be retired. 567917Selowe * 568917Selowe * Returns 1 if the limit has been exceeded. 569917Selowe */ 570917Selowe static int 571917Selowe page_retire_limit(void) 572917Selowe { 573917Selowe if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 574917Selowe PR_INCR_KSTAT(pr_limit_exceeded); 575917Selowe return (1); 576917Selowe } 577917Selowe 578917Selowe return (0); 579917Selowe } 580917Selowe 581917Selowe #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 582917Selowe "[ 0x%x != 0x%x ] while attempting to clear previously " \ 583917Selowe "reported error; page removed from service" 584917Selowe 585917Selowe #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 586917Selowe "attempting to clear previously reported error; page removed " \ 587917Selowe "from service" 588917Selowe 589917Selowe /* 590917Selowe * Attempt to clear a UE from a page. 591917Selowe * Returns 1 if the error has been successfully cleared. 592917Selowe */ 593917Selowe static int 594917Selowe page_clear_transient_ue(page_t *pp) 595917Selowe { 596917Selowe caddr_t kaddr; 597917Selowe uint8_t rb, wb; 598917Selowe uint64_t pa; 599917Selowe uint32_t pa_hi, pa_lo; 600917Selowe on_trap_data_t otd; 601917Selowe int errors = 0; 602917Selowe int i; 603917Selowe 604917Selowe ASSERT(PAGE_EXCL(pp)); 605917Selowe ASSERT(PP_PR_REQ(pp)); 606917Selowe ASSERT(pp->p_szc == 0); 607917Selowe ASSERT(!hat_page_is_mapped(pp)); 608917Selowe 609917Selowe /* 610917Selowe * Clear the page and attempt to clear the UE. If we trap 611917Selowe * on the next access to the page, we know the UE has recurred. 612917Selowe */ 613917Selowe pagescrub(pp, 0, PAGESIZE); 614917Selowe 615917Selowe /* 616917Selowe * Map the page and write a bunch of bit patterns to compare 617917Selowe * what we wrote with what we read back. This isn't a perfect 618917Selowe * test but it should be good enough to catch most of the 619917Selowe * recurring UEs. If this fails to catch a recurrent UE, we'll 620917Selowe * retire the page the next time we see a UE on the page. 621917Selowe */ 622917Selowe kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 623917Selowe 624917Selowe pa = ptob((uint64_t)page_pptonum(pp)); 625917Selowe pa_hi = (uint32_t)(pa >> 32); 626917Selowe pa_lo = (uint32_t)pa; 627917Selowe 628917Selowe /* 629917Selowe * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 630917Selowe * the cache in between reading and writing. We do this under 631917Selowe * on_trap() protection to avoid recursion. 632917Selowe */ 633917Selowe if (on_trap(&otd, OT_DATA_EC)) { 634917Selowe PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 635917Selowe errors = 1; 636917Selowe } else { 637917Selowe for (wb = 0xff; wb > 0; wb--) { 638917Selowe for (i = 0; i < PAGESIZE; i++) { 639917Selowe kaddr[i] = wb; 640917Selowe } 641917Selowe 642917Selowe sync_data_memory(kaddr, PAGESIZE); 643917Selowe 644917Selowe for (i = 0; i < PAGESIZE; i++) { 645917Selowe rb = kaddr[i]; 646917Selowe if (rb != wb) { 647917Selowe /* 648917Selowe * We had a mismatch without a trap. 649917Selowe * Uh-oh. Something is really wrong 650917Selowe * with this system. 651917Selowe */ 652917Selowe if (page_retire_messages) { 653917Selowe cmn_err(CE_WARN, MSG_DM, 654917Selowe pa_hi, pa_lo, rb, wb); 655917Selowe } 656917Selowe errors = 1; 657917Selowe goto out; /* double break */ 658917Selowe } 659917Selowe } 660917Selowe } 661917Selowe } 662917Selowe out: 663917Selowe no_trap(); 664917Selowe ppmapout(kaddr); 665917Selowe 666917Selowe return (errors ? 0 : 1); 667917Selowe } 668917Selowe 669917Selowe /* 670917Selowe * Try to clear a page_t with a single UE. If the UE was transient, it is 671917Selowe * returned to service, and we return 1. Otherwise we return 0 meaning 672917Selowe * that further processing is required to retire the page. 673917Selowe */ 674917Selowe static int 675917Selowe page_retire_transient_ue(page_t *pp) 676917Selowe { 677917Selowe ASSERT(PAGE_EXCL(pp)); 678917Selowe ASSERT(!hat_page_is_mapped(pp)); 679917Selowe 680917Selowe /* 681917Selowe * If this page is a repeat offender, retire him under the 682917Selowe * "two strikes and you're out" rule. The caller is responsible 683917Selowe * for scrubbing the page to try to clear the error. 684917Selowe */ 685917Selowe if (pp->p_toxic & PR_UE_SCRUBBED) { 686917Selowe PR_INCR_KSTAT(pr_ue_persistent); 687917Selowe return (0); 688917Selowe } 689917Selowe 690917Selowe if (page_clear_transient_ue(pp)) { 691917Selowe /* 692917Selowe * We set the PR_SCRUBBED_UE bit; if we ever see this 693917Selowe * page again, we will retire it, no questions asked. 694917Selowe */ 695917Selowe page_settoxic(pp, PR_UE_SCRUBBED); 696917Selowe 697917Selowe if (page_retire_first_ue) { 698917Selowe PR_INCR_KSTAT(pr_ue_cleared_retire); 699917Selowe return (0); 700917Selowe } else { 701917Selowe PR_INCR_KSTAT(pr_ue_cleared_free); 702917Selowe 7033253Smec page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG); 704917Selowe 705917Selowe /* LINTED: CONSTCOND */ 706917Selowe VN_DISPOSE(pp, B_FREE, 1, kcred); 707917Selowe return (1); 708917Selowe } 709917Selowe } 710917Selowe 711917Selowe PR_INCR_KSTAT(pr_ue_persistent); 712917Selowe return (0); 713917Selowe } 714917Selowe 715917Selowe /* 716917Selowe * Update the statistics dynamically when our kstat is read. 717917Selowe */ 718917Selowe static int 719917Selowe page_retire_kstat_update(kstat_t *ksp, int rw) 720917Selowe { 721917Selowe struct page_retire_kstat *pr; 722917Selowe 723917Selowe if (ksp == NULL) 724917Selowe return (EINVAL); 725917Selowe 726917Selowe switch (rw) { 727917Selowe 728917Selowe case KSTAT_READ: 729917Selowe pr = (struct page_retire_kstat *)ksp->ks_data; 730917Selowe ASSERT(pr == &page_retire_kstat); 731917Selowe pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 732917Selowe return (0); 733917Selowe 734917Selowe case KSTAT_WRITE: 735917Selowe return (EACCES); 736917Selowe 737917Selowe default: 738917Selowe return (EINVAL); 739917Selowe } 740917Selowe /*NOTREACHED*/ 741917Selowe } 742917Selowe 7433253Smec static int 7443253Smec pr_list_kstat_update(kstat_t *ksp, int rw) 7453253Smec { 7463253Smec uint_t count; 7473253Smec page_t *pp; 7483253Smec kmutex_t *vphm; 7493253Smec 7503253Smec if (rw == KSTAT_WRITE) 7513253Smec return (EACCES); 7523253Smec 7533253Smec vphm = page_vnode_mutex(retired_pages); 7543253Smec mutex_enter(vphm); 7553253Smec /* Needs to be under a lock so that for loop will work right */ 7563253Smec if (retired_pages->v_pages == NULL) { 7573253Smec mutex_exit(vphm); 7583253Smec ksp->ks_ndata = 0; 7593253Smec ksp->ks_data_size = 0; 7603253Smec return (0); 7613253Smec } 7623253Smec 7633253Smec count = 1; 7643253Smec for (pp = retired_pages->v_pages->p_vpnext; 7653253Smec pp != retired_pages->v_pages; pp = pp->p_vpnext) { 7663253Smec count++; 7673253Smec } 7683253Smec mutex_exit(vphm); 7693253Smec 7703253Smec ksp->ks_ndata = count; 7713253Smec ksp->ks_data_size = count * 2 * sizeof (uint64_t); 7723253Smec 7733253Smec return (0); 7743253Smec } 7753253Smec 7763253Smec /* 7773253Smec * all spans will be pagesize and no coalescing will be done with the 7783253Smec * list produced. 7793253Smec */ 7803253Smec static int 7813253Smec pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 7823253Smec { 7833253Smec kmutex_t *vphm; 7843253Smec page_t *pp; 7853253Smec struct memunit { 7863253Smec uint64_t address; 7873253Smec uint64_t size; 7883253Smec } *kspmem; 7893253Smec 7903253Smec if (rw == KSTAT_WRITE) 7913253Smec return (EACCES); 7923253Smec 7933253Smec ksp->ks_snaptime = gethrtime(); 7943253Smec 7953253Smec kspmem = (struct memunit *)buf; 7963253Smec 7973253Smec vphm = page_vnode_mutex(retired_pages); 7983253Smec mutex_enter(vphm); 7993253Smec pp = retired_pages->v_pages; 8003253Smec if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) || 8013253Smec (pp == NULL)) { 8023253Smec mutex_exit(vphm); 8033253Smec return (0); 8043253Smec } 8053253Smec kspmem->address = ptob(pp->p_pagenum); 8063253Smec kspmem->size = PAGESIZE; 8073253Smec kspmem++; 8083253Smec for (pp = pp->p_vpnext; pp != retired_pages->v_pages; 8093253Smec pp = pp->p_vpnext, kspmem++) { 8103253Smec if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 8113253Smec break; 8123253Smec kspmem->address = ptob(pp->p_pagenum); 8133253Smec kspmem->size = PAGESIZE; 8143253Smec } 8153253Smec mutex_exit(vphm); 8163253Smec 8173253Smec return (0); 8183253Smec } 8193253Smec 820917Selowe /* 8213480Sjfrank * page_retire_pend_count -- helper function for page_capture_thread, 8223480Sjfrank * returns the number of pages pending retirement. 8233480Sjfrank */ 8243480Sjfrank uint64_t 8253480Sjfrank page_retire_pend_count(void) 8263480Sjfrank { 8273480Sjfrank return (PR_KSTAT_PENDING); 8283480Sjfrank } 8293480Sjfrank 8303480Sjfrank void 8313480Sjfrank page_retire_incr_pend_count(void) 8323480Sjfrank { 8333480Sjfrank PR_INCR_KSTAT(pr_pending); 8343480Sjfrank } 8353480Sjfrank 8363480Sjfrank void 8373480Sjfrank page_retire_decr_pend_count(void) 8383480Sjfrank { 8393480Sjfrank PR_DECR_KSTAT(pr_pending); 8403480Sjfrank } 8413480Sjfrank 8423480Sjfrank /* 843917Selowe * Initialize the page retire mechanism: 844917Selowe * 845917Selowe * - Establish the correctable error retire limit. 846917Selowe * - Initialize locks. 847917Selowe * - Build the retired_pages vnode. 848917Selowe * - Set up the kstats. 849917Selowe * - Fire off the background thread. 8503253Smec * - Tell page_retire() it's OK to start retiring pages. 851917Selowe */ 852917Selowe void 853917Selowe page_retire_init(void) 854917Selowe { 855*3898Srsb const fs_operation_def_t retired_vnodeops_template[] = { 856*3898Srsb { NULL, NULL } 857*3898Srsb }; 858917Selowe struct vnodeops *vops; 8593253Smec kstat_t *ksp; 860917Selowe 861917Selowe const uint_t page_retire_ndata = 862917Selowe sizeof (page_retire_kstat) / sizeof (kstat_named_t); 863917Selowe 864917Selowe ASSERT(page_retire_ksp == NULL); 865917Selowe 866917Selowe if (max_pages_retired_bps <= 0) { 867917Selowe max_pages_retired_bps = MCE_BPT; 868917Selowe } 869917Selowe 870917Selowe mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 871917Selowe 872917Selowe retired_pages = vn_alloc(KM_SLEEP); 873917Selowe if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 874917Selowe cmn_err(CE_PANIC, 875917Selowe "page_retired_init: can't make retired vnodeops"); 876917Selowe } 877917Selowe vn_setops(retired_pages, vops); 878917Selowe 879917Selowe if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 880917Selowe "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 881917Selowe KSTAT_FLAG_VIRTUAL)) == NULL) { 882917Selowe cmn_err(CE_WARN, "kstat_create for page_retire failed"); 883917Selowe } else { 884917Selowe page_retire_ksp->ks_data = (void *)&page_retire_kstat; 885917Selowe page_retire_ksp->ks_update = page_retire_kstat_update; 886917Selowe kstat_install(page_retire_ksp); 887917Selowe } 888917Selowe 8893253Smec mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL); 8903253Smec ksp = kstat_create("unix", 0, "page_retire_list", "misc", 8913253Smec KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 8923253Smec if (ksp != NULL) { 8933253Smec ksp->ks_update = pr_list_kstat_update; 8943253Smec ksp->ks_snapshot = pr_list_kstat_snapshot; 8953253Smec ksp->ks_lock = &pr_list_kstat_mutex; 8963253Smec kstat_install(ksp); 8973253Smec } 898917Selowe 8993253Smec page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish); 900917Selowe pr_enable = 1; 901917Selowe } 902917Selowe 903917Selowe /* 904917Selowe * page_retire_hunt() callback for the retire thread. 905917Selowe */ 906917Selowe static void 907917Selowe page_retire_thread_cb(page_t *pp) 908917Selowe { 909917Selowe PR_DEBUG(prd_tctop); 9103290Sjohansen if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) { 911917Selowe PR_DEBUG(prd_tclocked); 912917Selowe page_unlock(pp); 913917Selowe } 914917Selowe } 915917Selowe 916917Selowe /* 917917Selowe * page_retire_hunt() callback for mdboot(). 918917Selowe * 919917Selowe * It is necessary to scrub any failing pages prior to reboot in order to 920917Selowe * prevent a latent error trap from occurring on the next boot. 921917Selowe */ 922917Selowe void 923917Selowe page_retire_mdboot_cb(page_t *pp) 924917Selowe { 925917Selowe /* 926917Selowe * Don't scrub the kernel, since we might still need it, unless 927917Selowe * we have UEs on the page, in which case we have nothing to lose. 928917Selowe */ 9293290Sjohansen if (!PP_ISKAS(pp) || PP_TOXIC(pp)) { 930917Selowe pp->p_selock = -1; /* pacify ASSERTs */ 931973Selowe PP_CLRFREE(pp); 932917Selowe pagescrub(pp, 0, PAGESIZE); 933917Selowe pp->p_selock = 0; 934917Selowe } 935917Selowe pp->p_toxic = 0; 936917Selowe } 937917Selowe 938917Selowe 939917Selowe /* 9403253Smec * Callback used by page_trycapture() to finish off retiring a page. 9413253Smec * The page has already been cleaned and we've been given sole access to 9423253Smec * it. 9433253Smec * Always returns 0 to indicate that callback succeded as the callback never 9443253Smec * fails to finish retiring the given page. 945917Selowe */ 9463253Smec /*ARGSUSED*/ 947917Selowe static int 9483253Smec page_retire_pp_finish(page_t *pp, void *notused, uint_t flags) 949917Selowe { 950917Selowe int toxic; 951917Selowe 952917Selowe ASSERT(PAGE_EXCL(pp)); 953917Selowe ASSERT(pp->p_iolock_state == 0); 954917Selowe ASSERT(pp->p_szc == 0); 955917Selowe 956917Selowe toxic = pp->p_toxic; 957917Selowe 958917Selowe /* 959917Selowe * The problem page is locked, demoted, unmapped, not free, 960917Selowe * hashed out, and not COW or mlocked (whew!). 961917Selowe * 962917Selowe * Now we select our ammunition, take it around back, and shoot it. 963917Selowe */ 964917Selowe if (toxic & PR_UE) { 9653253Smec ue_error: 966917Selowe if (page_retire_transient_ue(pp)) { 967917Selowe PR_DEBUG(prd_uescrubbed); 9683253Smec (void) page_retire_done(pp, PRD_UE_SCRUBBED); 969917Selowe } else { 970917Selowe PR_DEBUG(prd_uenotscrubbed); 971917Selowe page_retire_destroy(pp); 9723253Smec (void) page_retire_done(pp, PRD_SUCCESS); 973917Selowe } 9743253Smec return (0); 975917Selowe } else if (toxic & PR_FMA) { 976917Selowe PR_DEBUG(prd_fma); 977917Selowe page_retire_destroy(pp); 9783253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9793253Smec return (0); 980917Selowe } else if (toxic & PR_MCE) { 981917Selowe PR_DEBUG(prd_mce); 982917Selowe page_retire_destroy(pp); 9833253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9843253Smec return (0); 985917Selowe } 986917Selowe 987917Selowe /* 9883253Smec * When page_retire_first_ue is set to zero and a UE occurs which is 9893253Smec * transient, it's possible that we clear some flags set by a second 9903253Smec * UE error on the page which occurs while the first is currently being 9913253Smec * handled and thus we need to handle the case where none of the above 9923253Smec * are set. In this instance, PR_UE_SCRUBBED should be set and thus 9933253Smec * we should execute the UE code above. 994917Selowe */ 9953253Smec if (toxic & PR_UE_SCRUBBED) { 9963253Smec goto ue_error; 997917Selowe } 9983253Smec 9993253Smec /* 10003253Smec * It's impossible to get here. 10013253Smec */ 10023253Smec panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic); 10033253Smec return (0); 1004917Selowe } 1005917Selowe 1006917Selowe /* 1007917Selowe * page_retire() - the front door in to retire a page. 1008917Selowe * 1009917Selowe * Ideally, page_retire() would instantly retire the requested page. 1010917Selowe * Unfortunately, some pages are locked or otherwise tied up and cannot be 10113253Smec * retired right away. We use the page capture logic to deal with this 10123253Smec * situation as it will continuously try to retire the page in the background 10133253Smec * if the first attempt fails. Success is determined by looking to see whether 10143253Smec * the page has been retired after the page_trycapture() attempt. 1015917Selowe * 1016917Selowe * Returns: 1017917Selowe * 1018917Selowe * - 0 on success, 1019917Selowe * - EINVAL when the PA is whacko, 10201381Selowe * - EIO if the page is already retired or already pending retirement, or 10211381Selowe * - EAGAIN if the page could not be _immediately_ retired but is pending. 1022917Selowe */ 1023917Selowe int 1024917Selowe page_retire(uint64_t pa, uchar_t reason) 1025917Selowe { 1026917Selowe page_t *pp; 1027917Selowe 1028917Selowe ASSERT(reason & PR_REASONS); /* there must be a reason */ 1029917Selowe ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1030917Selowe 1031917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1032917Selowe if (pp == NULL) { 1033917Selowe PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1034917Selowe " page 0x%08x.%08x; page is not relocatable memory", pa); 1035917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1036917Selowe } 1037917Selowe if (PP_RETIRED(pp)) { 10381381Selowe PR_DEBUG(prd_dup1); 1039917Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1040917Selowe } 1041917Selowe 10421381Selowe if ((reason & PR_UE) && !PP_TOXIC(pp)) { 1043917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1044917Selowe " page 0x%08x.%08x", pa); 10451381Selowe } else if (PP_PR_REQ(pp)) { 10461381Selowe PR_DEBUG(prd_dup2); 10471381Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1048917Selowe } else { 1049917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1050917Selowe " page 0x%08x.%08x", pa); 1051917Selowe } 10523253Smec 10533253Smec /* Avoid setting toxic bits in the first place */ 10543253Smec if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) && 10553253Smec page_retire_limit()) { 10563253Smec return (page_retire_done(pp, PRD_LIMIT)); 10573253Smec } 1058917Selowe 10593253Smec if (MTBF(pr_calls, pr_mtbf)) { 10603253Smec page_settoxic(pp, reason); 10613253Smec if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) { 10623253Smec PR_DEBUG(prd_prlocked); 10633253Smec } else { 10643253Smec PR_DEBUG(prd_prnotlocked); 10653253Smec } 1066917Selowe } else { 1067917Selowe PR_DEBUG(prd_prnotlocked); 1068917Selowe } 1069917Selowe 1070917Selowe if (PP_RETIRED(pp)) { 1071917Selowe PR_DEBUG(prd_prretired); 1072917Selowe return (0); 1073917Selowe } else { 10743253Smec cv_signal(&pc_cv); 1075917Selowe PR_INCR_KSTAT(pr_failed); 1076917Selowe 1077917Selowe if (pp->p_toxic & PR_MSG) { 1078917Selowe return (page_retire_done(pp, PRD_FAILED)); 1079917Selowe } else { 1080917Selowe return (page_retire_done(pp, PRD_PENDING)); 1081917Selowe } 1082917Selowe } 1083917Selowe } 1084917Selowe 1085917Selowe /* 1086917Selowe * Take a retired page off the retired-pages vnode and clear the toxic flags. 1087917Selowe * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1088917Selowe * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1089917Selowe * and don't do anything else with it. 1090917Selowe * 1091917Selowe * Any unretire messages are printed from this routine. 1092917Selowe * 1093917Selowe * Returns 0 if page pp was unretired; else an error code. 10943253Smec * 10953253Smec * If flags is: 10963253Smec * PR_UNR_FREE - lock the page, clear the toxic flags and free it 10973253Smec * to the freelist. 10983253Smec * PR_UNR_TEMP - lock the page, unretire it, leave the toxic 10993253Smec * bits set as is and return it to the caller. 11003253Smec * PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the 11013253Smec * toxic flags and return it to caller as is. 1102917Selowe */ 1103917Selowe int 11043253Smec page_unretire_pp(page_t *pp, int flags) 1105917Selowe { 1106917Selowe /* 1107917Selowe * To be retired, a page has to be hashed onto the retired_pages vnode 1108917Selowe * and have PR_RETIRED set in p_toxic. 1109917Selowe */ 11103253Smec if (flags == PR_UNR_CLEAN || 11113253Smec page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1112917Selowe ASSERT(PAGE_EXCL(pp)); 1113917Selowe PR_DEBUG(prd_ulocked); 1114917Selowe if (!PP_RETIRED(pp)) { 1115917Selowe PR_DEBUG(prd_unotretired); 1116917Selowe page_unlock(pp); 1117917Selowe return (page_retire_done(pp, PRD_UNR_NOT)); 1118917Selowe } 1119917Selowe 1120917Selowe PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 11211338Selowe " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum)); 1122917Selowe if (pp->p_toxic & PR_FMA) { 1123917Selowe PR_DECR_KSTAT(pr_fma); 1124917Selowe } else if (pp->p_toxic & PR_UE) { 1125917Selowe PR_DECR_KSTAT(pr_ue); 1126917Selowe } else { 1127917Selowe PR_DECR_KSTAT(pr_mce); 1128917Selowe } 1129917Selowe 11303253Smec if (flags == PR_UNR_TEMP) 11313253Smec page_clrtoxic(pp, PR_RETIRED); 11323253Smec else 11333253Smec page_clrtoxic(pp, PR_TOXICFLAGS); 11343253Smec 11353253Smec if (flags == PR_UNR_FREE) { 1136917Selowe PR_DEBUG(prd_udestroy); 1137917Selowe page_destroy(pp, 0); 1138917Selowe } else { 1139917Selowe PR_DEBUG(prd_uhashout); 1140917Selowe page_hashout(pp, NULL); 1141917Selowe } 1142917Selowe 1143917Selowe mutex_enter(&freemem_lock); 1144917Selowe availrmem++; 1145917Selowe mutex_exit(&freemem_lock); 1146917Selowe 1147917Selowe PR_DEBUG(prd_uunretired); 1148917Selowe PR_DECR_KSTAT(pr_retired); 1149917Selowe PR_INCR_KSTAT(pr_unretired); 1150917Selowe return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1151917Selowe } 1152917Selowe PR_DEBUG(prd_unotlocked); 1153917Selowe return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1154917Selowe } 1155917Selowe 1156917Selowe /* 1157917Selowe * Return a page to service by moving it from the retired_pages vnode 1158917Selowe * onto the freelist. 1159917Selowe * 1160917Selowe * Called from mmioctl_page_retire() on behalf of the FMA DE. 1161917Selowe * 1162917Selowe * Returns: 1163917Selowe * 1164917Selowe * - 0 if the page is unretired, 1165917Selowe * - EAGAIN if the pp can not be locked, 1166917Selowe * - EINVAL if the PA is whacko, and 11671381Selowe * - EIO if the pp is not retired. 1168917Selowe */ 1169917Selowe int 1170917Selowe page_unretire(uint64_t pa) 1171917Selowe { 1172917Selowe page_t *pp; 1173917Selowe 1174917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1175917Selowe if (pp == NULL) { 1176917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1177917Selowe } 1178917Selowe 11793253Smec return (page_unretire_pp(pp, PR_UNR_FREE)); 1180917Selowe } 1181917Selowe 1182917Selowe /* 1183917Selowe * Test a page to see if it is retired. If errors is non-NULL, the toxic 1184917Selowe * bits of the page are returned. Returns 0 on success, error code on failure. 1185917Selowe */ 1186917Selowe int 1187917Selowe page_retire_check_pp(page_t *pp, uint64_t *errors) 1188917Selowe { 1189917Selowe int rc; 1190917Selowe 1191917Selowe if (PP_RETIRED(pp)) { 1192917Selowe PR_DEBUG(prd_checkhit); 1193917Selowe rc = 0; 11941381Selowe } else if (PP_PR_REQ(pp)) { 11951381Selowe PR_DEBUG(prd_checkmiss_pend); 11961381Selowe rc = EAGAIN; 1197917Selowe } else { 11981381Selowe PR_DEBUG(prd_checkmiss_noerr); 11991381Selowe rc = EIO; 1200917Selowe } 1201917Selowe 1202917Selowe /* 1203917Selowe * We have magically arranged the bit values returned to fmd(1M) 1204917Selowe * to line up with the FMA, MCE, and UE bits of the page_t. 1205917Selowe */ 1206917Selowe if (errors) { 1207917Selowe uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1208917Selowe if (toxic & PR_UE_SCRUBBED) { 1209917Selowe toxic &= ~PR_UE_SCRUBBED; 1210917Selowe toxic |= PR_UE; 1211917Selowe } 1212917Selowe *errors = toxic; 1213917Selowe } 1214917Selowe 1215917Selowe return (rc); 1216917Selowe } 1217917Selowe 1218917Selowe /* 1219917Selowe * Test to see if the page_t for a given PA is retired, and return the 1220917Selowe * hardware errors we have seen on the page if requested. 1221917Selowe * 1222917Selowe * Called from mmioctl_page_retire on behalf of the FMA DE. 1223917Selowe * 1224917Selowe * Returns: 1225917Selowe * 1226917Selowe * - 0 if the page is retired, 12271381Selowe * - EIO if the page is not retired and has no errors, 12281381Selowe * - EAGAIN if the page is not retired but is pending; and 1229917Selowe * - EINVAL if the PA is whacko. 1230917Selowe */ 1231917Selowe int 1232917Selowe page_retire_check(uint64_t pa, uint64_t *errors) 1233917Selowe { 1234917Selowe page_t *pp; 1235917Selowe 1236917Selowe if (errors) { 1237917Selowe *errors = 0; 1238917Selowe } 1239917Selowe 1240917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1241917Selowe if (pp == NULL) { 1242917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1243917Selowe } 1244917Selowe 1245917Selowe return (page_retire_check_pp(pp, errors)); 1246917Selowe } 1247917Selowe 1248917Selowe /* 1249917Selowe * Page retire self-test. For now, it always returns 0. 1250917Selowe */ 1251917Selowe int 1252917Selowe page_retire_test(void) 1253917Selowe { 1254917Selowe page_t *first, *pp, *cpp, *cpp2, *lpp; 1255917Selowe 1256917Selowe /* 1257917Selowe * Tests the corner case where a large page can't be retired 1258917Selowe * because one of the constituent pages is locked. We mark 1259917Selowe * one page to be retired and try to retire it, and mark the 1260917Selowe * other page to be retired but don't try to retire it, so 1261917Selowe * that page_unlock() in the failure path will recurse and try 1262917Selowe * to retire THAT page. This is the worst possible situation 1263917Selowe * we can get ourselves into. 1264917Selowe */ 1265917Selowe memsegs_lock(0); 1266917Selowe pp = first = page_first(); 1267917Selowe do { 1268917Selowe if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1269917Selowe cpp = pp + 1; 1270917Selowe lpp = PP_ISFREE(pp)? pp : pp + 2; 1271917Selowe cpp2 = pp + 3; 1272917Selowe if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1273917Selowe continue; 1274917Selowe if (!page_trylock(cpp, SE_EXCL)) { 1275917Selowe page_unlock(lpp); 1276917Selowe continue; 1277917Selowe } 12783253Smec 12793253Smec /* fails */ 12803253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12813253Smec 1282917Selowe page_unlock(lpp); 12833253Smec page_unlock(cpp); 12843253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12853253Smec (void) page_retire(ptob(cpp2->p_pagenum), PR_FMA); 1286917Selowe } 1287917Selowe } while ((pp = page_next(pp)) != first); 1288917Selowe memsegs_unlock(0); 1289917Selowe 1290917Selowe return (0); 1291917Selowe } 1292