1917Selowe /* 2917Selowe * CDDL HEADER START 3917Selowe * 4917Selowe * The contents of this file are subject to the terms of the 53253Smec * Common Development and Distribution License (the "License"). 63253Smec * You may not use this file except in compliance with the License. 7917Selowe * 8917Selowe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9917Selowe * or http://www.opensolaris.org/os/licensing. 10917Selowe * See the License for the specific language governing permissions 11917Selowe * and limitations under the License. 12917Selowe * 13917Selowe * When distributing Covered Code, include this CDDL HEADER in each 14917Selowe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15917Selowe * If applicable, add the following below this CDDL HEADER, with the 16917Selowe * fields enclosed by brackets "[]" replaced with your own identifying 17917Selowe * information: Portions Copyright [yyyy] [name of copyright owner] 18917Selowe * 19917Selowe * CDDL HEADER END 20917Selowe */ 21917Selowe /* 22*3480Sjfrank * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23917Selowe * Use is subject to license terms. 24917Selowe */ 25917Selowe 26917Selowe #pragma ident "%Z%%M% %I% %E% SMI" 27917Selowe 28917Selowe /* 29917Selowe * Page Retire - Big Theory Statement. 30917Selowe * 31917Selowe * This file handles removing sections of faulty memory from use when the 32917Selowe * user land FMA Diagnosis Engine requests that a page be removed or when 33917Selowe * a CE or UE is detected by the hardware. 34917Selowe * 35917Selowe * In the bad old days, the kernel side of Page Retire did a lot of the work 36917Selowe * on its own. Now, with the DE keeping track of errors, the kernel side is 37917Selowe * rather simple minded on most platforms. 38917Selowe * 39917Selowe * Errors are all reflected to the DE, and after digesting the error and 40917Selowe * looking at all previously reported errors, the DE decides what should 41917Selowe * be done about the current error. If the DE wants a particular page to 42917Selowe * be retired, then the kernel page retire code is invoked via an ioctl. 43917Selowe * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 44917Selowe * page retire to handle the error. Since page retire is just a simple 45917Selowe * mechanism it doesn't need to differentiate between the different callers. 46917Selowe * 47917Selowe * The p_toxic field in the page_t is used to indicate which errors have 48917Selowe * occurred and what action has been taken on a given page. Because errors are 49917Selowe * reported without regard to the locked state of a page, no locks are used 50917Selowe * to SET the error bits in p_toxic. However, in order to clear the error 51917Selowe * bits, the page_t must be held exclusively locked. 52917Selowe * 53917Selowe * When page_retire() is called, it must be able to acquire locks, sleep, etc. 54917Selowe * It must not be called from high-level interrupt context. 55917Selowe * 56917Selowe * Depending on how the requested page is being used at the time of the retire 57917Selowe * request (and on the availability of sufficient system resources), the page 58917Selowe * may be retired immediately, or just marked for retirement later. For 59917Selowe * example, locked pages are marked, while free pages are retired. Multiple 60917Selowe * requests may be made to retire the same page, although there is no need 61917Selowe * to: once the p_toxic flags are set, the page will be retired as soon as it 62917Selowe * can be exclusively locked. 63917Selowe * 64917Selowe * The retire mechanism is driven centrally out of page_unlock(). To expedite 65917Selowe * the retirement of pages, further requests for SE_SHARED locks are denied 66917Selowe * as long as a page retirement is pending. In addition, as long as pages are 67917Selowe * pending retirement a background thread runs periodically trying to retire 68917Selowe * those pages. Pages which could not be retired while the system is running 69917Selowe * are scrubbed prior to rebooting to avoid latent errors on the next boot. 70917Selowe * 711338Selowe * UE pages without persistent errors are scrubbed and returned to service. 721338Selowe * Recidivist pages, as well as FMA-directed requests for retirement, result 731338Selowe * in the page being taken out of service. Once the decision is made to take 741338Selowe * a page out of service, the page is cleared, hashed onto the retired_pages 751338Selowe * vnode, marked as retired, and it is unlocked. No other requesters (except 761338Selowe * for unretire) are allowed to lock retired pages. 77917Selowe * 78917Selowe * The public routines return (sadly) 0 if they worked and a non-zero error 79917Selowe * value if something went wrong. This is done for the ioctl side of the 80917Selowe * world to allow errors to be reflected all the way out to user land. The 81917Selowe * non-zero values are explained in comments atop each function. 82917Selowe */ 83917Selowe 84917Selowe /* 85917Selowe * Things to fix: 86917Selowe * 873253Smec * 1. Trying to retire non-relocatable kvp pages may result in a 88917Selowe * quagmire. This is because seg_kmem() no longer keeps its pages locked, 89917Selowe * and calls page_lookup() in the free path; since kvp pages are modified 90917Selowe * and don't have a usable backing store, page_retire() can't do anything 91917Selowe * with them, and we'll keep denying the lock to seg_kmem_free() in a 92917Selowe * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 933253Smec * hence only try to retire a page from page_unlock() in the free path. 94917Selowe * Since most kernel pages are indefinitely held anyway, and don't 95917Selowe * participate in I/O, this is of little consequence. 96917Selowe * 973253Smec * 2. Low memory situations will be interesting. If we don't have 98917Selowe * enough memory for page_relocate() to succeed, we won't be able to 99917Selowe * retire dirty pages; nobody will be able to push them out to disk 100917Selowe * either, since we aggressively deny the page lock. We could change 101917Selowe * fsflush so it can recognize this situation, grab the lock, and push 102917Selowe * the page out, where we'll catch it in the free path and retire it. 103917Selowe * 1043253Smec * 3. Beware of places that have code like this in them: 105917Selowe * 106917Selowe * if (! page_tryupgrade(pp)) { 107917Selowe * page_unlock(pp); 108917Selowe * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 109917Selowe * / *NOTHING* / 110917Selowe * } 111917Selowe * } 112917Selowe * page_free(pp); 113917Selowe * 114917Selowe * The problem is that pp can change identity right after the 115917Selowe * page_unlock() call. In particular, page_retire() can step in 116917Selowe * there, change pp's identity, and hash pp onto the retired_vnode. 117917Selowe * 118917Selowe * Of course, other functions besides page_retire() can have the 119917Selowe * same effect. A kmem reader can waltz by, set up a mapping to the 120917Selowe * page, and then unlock the page. Page_free() will then go castors 121917Selowe * up. So if anybody is doing this, it's already a bug. 122917Selowe * 1233253Smec * 4. mdboot()'s call into page_retire_mdboot() should probably be 124917Selowe * moved lower. Where the call is made now, we can get into trouble 125917Selowe * by scrubbing a kernel page that is then accessed later. 126917Selowe */ 127917Selowe 128917Selowe #include <sys/types.h> 129917Selowe #include <sys/param.h> 130917Selowe #include <sys/systm.h> 131917Selowe #include <sys/mman.h> 132917Selowe #include <sys/vnode.h> 133917Selowe #include <sys/cmn_err.h> 134917Selowe #include <sys/ksynch.h> 135917Selowe #include <sys/thread.h> 136917Selowe #include <sys/disp.h> 137917Selowe #include <sys/ontrap.h> 138917Selowe #include <sys/vmsystm.h> 139917Selowe #include <sys/mem_config.h> 140917Selowe #include <sys/atomic.h> 141917Selowe #include <sys/callb.h> 142917Selowe #include <vm/page.h> 143917Selowe #include <vm/vm_dep.h> 144917Selowe #include <vm/as.h> 145917Selowe #include <vm/hat.h> 146917Selowe 147917Selowe /* 148917Selowe * vnode for all pages which are retired from the VM system; 149917Selowe */ 150917Selowe vnode_t *retired_pages; 151917Selowe 1523253Smec static int page_retire_pp_finish(page_t *, void *, uint_t); 153917Selowe 154917Selowe /* 155917Selowe * Make a list of all of the pages that have been marked for retirement 156917Selowe * but are not yet retired. At system shutdown, we will scrub all of the 157917Selowe * pages in the list in case there are outstanding UEs. Then, we 158917Selowe * cross-check this list against the number of pages that are yet to be 159917Selowe * retired, and if we find inconsistencies, we scan every page_t in the 160917Selowe * whole system looking for any pages that need to be scrubbed for UEs. 161917Selowe * The background thread also uses this queue to determine which pages 162917Selowe * it should keep trying to retire. 163917Selowe */ 164917Selowe #ifdef DEBUG 165917Selowe #define PR_PENDING_QMAX 32 166917Selowe #else /* DEBUG */ 167917Selowe #define PR_PENDING_QMAX 256 168917Selowe #endif /* DEBUG */ 169917Selowe page_t *pr_pending_q[PR_PENDING_QMAX]; 170917Selowe kmutex_t pr_q_mutex; 171917Selowe 172917Selowe /* 173917Selowe * Page retire global kstats 174917Selowe */ 175917Selowe struct page_retire_kstat { 176917Selowe kstat_named_t pr_retired; 177917Selowe kstat_named_t pr_requested; 178917Selowe kstat_named_t pr_requested_free; 179917Selowe kstat_named_t pr_enqueue_fail; 180917Selowe kstat_named_t pr_dequeue_fail; 181917Selowe kstat_named_t pr_pending; 182917Selowe kstat_named_t pr_failed; 183917Selowe kstat_named_t pr_failed_kernel; 184917Selowe kstat_named_t pr_limit; 185917Selowe kstat_named_t pr_limit_exceeded; 186917Selowe kstat_named_t pr_fma; 187917Selowe kstat_named_t pr_mce; 188917Selowe kstat_named_t pr_ue; 189917Selowe kstat_named_t pr_ue_cleared_retire; 190917Selowe kstat_named_t pr_ue_cleared_free; 191917Selowe kstat_named_t pr_ue_persistent; 192917Selowe kstat_named_t pr_unretired; 193917Selowe }; 194917Selowe 195917Selowe static struct page_retire_kstat page_retire_kstat = { 196917Selowe { "pages_retired", KSTAT_DATA_UINT64}, 197917Selowe { "pages_retire_request", KSTAT_DATA_UINT64}, 198917Selowe { "pages_retire_request_free", KSTAT_DATA_UINT64}, 199917Selowe { "pages_notenqueued", KSTAT_DATA_UINT64}, 200917Selowe { "pages_notdequeued", KSTAT_DATA_UINT64}, 201917Selowe { "pages_pending", KSTAT_DATA_UINT64}, 202917Selowe { "pages_deferred", KSTAT_DATA_UINT64}, 203917Selowe { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 204917Selowe { "pages_limit", KSTAT_DATA_UINT64}, 205917Selowe { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 206917Selowe { "pages_fma", KSTAT_DATA_UINT64}, 207917Selowe { "pages_multiple_ce", KSTAT_DATA_UINT64}, 208917Selowe { "pages_ue", KSTAT_DATA_UINT64}, 209917Selowe { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 210917Selowe { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 211917Selowe { "pages_ue_persistent", KSTAT_DATA_UINT64}, 212917Selowe { "pages_unretired", KSTAT_DATA_UINT64}, 213917Selowe }; 214917Selowe 215917Selowe static kstat_t *page_retire_ksp = NULL; 216917Selowe 217917Selowe #define PR_INCR_KSTAT(stat) \ 218917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 219917Selowe #define PR_DECR_KSTAT(stat) \ 220917Selowe atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 221917Selowe 222917Selowe #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 223917Selowe #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 224917Selowe #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 225917Selowe #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 226917Selowe #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 227917Selowe #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 228917Selowe 229917Selowe /* 2303253Smec * page retire kstats to list all retired pages 2313253Smec */ 2323253Smec static int pr_list_kstat_update(kstat_t *ksp, int rw); 2333253Smec static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 2343253Smec kmutex_t pr_list_kstat_mutex; 2353253Smec 2363253Smec /* 237917Selowe * Limit the number of multiple CE page retires. 238917Selowe * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 239917Selowe * basis points, where 100 basis points equals one percent. 240917Selowe */ 241917Selowe #define MCE_BPT 10 242917Selowe uint64_t max_pages_retired_bps = MCE_BPT; 243917Selowe #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 244917Selowe 245917Selowe /* 246917Selowe * Control over the verbosity of page retirement. 247917Selowe * 248917Selowe * When set to zero (the default), no messages will be printed. 249917Selowe * When set to one, summary messages will be printed. 250917Selowe * When set > one, all messages will be printed. 251917Selowe * 252917Selowe * A value of one will trigger detailed messages for retirement operations, 253917Selowe * and is intended as a platform tunable for processors where FMA's DE does 254917Selowe * not run (e.g., spitfire). Values > one are intended for debugging only. 255917Selowe */ 256917Selowe int page_retire_messages = 0; 257917Selowe 258917Selowe /* 259917Selowe * Control whether or not we return scrubbed UE pages to service. 260917Selowe * By default we do not since FMA wants to run its diagnostics first 261917Selowe * and then ask us to unretire the page if it passes. Non-FMA platforms 262917Selowe * may set this to zero so we will only retire recidivist pages. It should 263917Selowe * not be changed by the user. 264917Selowe */ 265917Selowe int page_retire_first_ue = 1; 266917Selowe 267917Selowe /* 268917Selowe * Master enable for page retire. This prevents a CE or UE early in boot 269917Selowe * from trying to retire a page before page_retire_init() has finished 270917Selowe * setting things up. This is internal only and is not a tunable! 271917Selowe */ 272917Selowe static int pr_enable = 0; 273917Selowe 274917Selowe extern struct vnode kvp; 275917Selowe 276917Selowe #ifdef DEBUG 277917Selowe struct page_retire_debug { 2781381Selowe int prd_dup1; 2791381Selowe int prd_dup2; 2801381Selowe int prd_qdup; 281917Selowe int prd_noaction; 282917Selowe int prd_queued; 283917Selowe int prd_notqueued; 284917Selowe int prd_dequeue; 285917Selowe int prd_top; 286917Selowe int prd_locked; 287917Selowe int prd_reloc; 288973Selowe int prd_relocfail; 289973Selowe int prd_mod; 290973Selowe int prd_mod_late; 291917Selowe int prd_kern; 292917Selowe int prd_free; 293917Selowe int prd_noreclaim; 294917Selowe int prd_hashout; 295917Selowe int prd_fma; 296917Selowe int prd_uescrubbed; 297917Selowe int prd_uenotscrubbed; 298917Selowe int prd_mce; 299917Selowe int prd_prlocked; 300917Selowe int prd_prnotlocked; 301917Selowe int prd_prretired; 302917Selowe int prd_ulocked; 303917Selowe int prd_unotretired; 304917Selowe int prd_udestroy; 305917Selowe int prd_uhashout; 306917Selowe int prd_uunretired; 307917Selowe int prd_unotlocked; 308917Selowe int prd_checkhit; 3091381Selowe int prd_checkmiss_pend; 3101381Selowe int prd_checkmiss_noerr; 311917Selowe int prd_tctop; 312917Selowe int prd_tclocked; 313917Selowe int prd_hunt; 314917Selowe int prd_dohunt; 315917Selowe int prd_earlyhunt; 316917Selowe int prd_latehunt; 317917Selowe int prd_nofreedemote; 318917Selowe int prd_nodemote; 319917Selowe int prd_demoted; 320917Selowe } pr_debug; 321917Selowe 322917Selowe #define PR_DEBUG(foo) ((pr_debug.foo)++) 323917Selowe 324917Selowe /* 325917Selowe * A type histogram. We record the incidence of the various toxic 326917Selowe * flag combinations along with the interesting page attributes. The 327917Selowe * goal is to get as many combinations as we can while driving all 328917Selowe * pr_debug values nonzero (indicating we've exercised all possible 329917Selowe * code paths across all possible page types). Not all combinations 330917Selowe * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 331917Selowe * 332917Selowe * pr_type offset bit encoding (when examining with a debugger): 333917Selowe * 334917Selowe * PRT_NAMED - 0x4 335917Selowe * PRT_KERNEL - 0x8 336917Selowe * PRT_FREE - 0x10 337917Selowe * PRT_MOD - 0x20 338917Selowe * PRT_FMA - 0x0 339917Selowe * PRT_MCE - 0x40 340917Selowe * PRT_UE - 0x80 341917Selowe */ 342917Selowe 343917Selowe #define PRT_NAMED 0x01 344917Selowe #define PRT_KERNEL 0x02 345917Selowe #define PRT_FREE 0x04 346917Selowe #define PRT_MOD 0x08 347917Selowe #define PRT_FMA 0x00 /* yes, this is not a mistake */ 348917Selowe #define PRT_MCE 0x10 349917Selowe #define PRT_UE 0x20 350917Selowe #define PRT_ALL 0x3F 351917Selowe 352917Selowe int pr_types[PRT_ALL+1]; 353917Selowe 354917Selowe #define PR_TYPES(pp) { \ 355917Selowe int whichtype = 0; \ 356917Selowe if (pp->p_vnode) \ 357917Selowe whichtype |= PRT_NAMED; \ 3583290Sjohansen if (PP_ISKAS(pp)) \ 359917Selowe whichtype |= PRT_KERNEL; \ 360917Selowe if (PP_ISFREE(pp)) \ 361917Selowe whichtype |= PRT_FREE; \ 362917Selowe if (hat_ismod(pp)) \ 363917Selowe whichtype |= PRT_MOD; \ 364917Selowe if (pp->p_toxic & PR_UE) \ 365917Selowe whichtype |= PRT_UE; \ 366917Selowe if (pp->p_toxic & PR_MCE) \ 367917Selowe whichtype |= PRT_MCE; \ 368917Selowe pr_types[whichtype]++; \ 369917Selowe } 370917Selowe 371917Selowe int recl_calls; 372917Selowe int recl_mtbf = 3; 373917Selowe int reloc_calls; 374917Selowe int reloc_mtbf = 7; 375917Selowe int pr_calls; 376917Selowe int pr_mtbf = 15; 377917Selowe 378917Selowe #define MTBF(v, f) (((++(v)) & (f)) != (f)) 379917Selowe 380917Selowe #else /* DEBUG */ 381917Selowe 382917Selowe #define PR_DEBUG(foo) /* nothing */ 383917Selowe #define PR_TYPES(foo) /* nothing */ 384917Selowe #define MTBF(v, f) (1) 385917Selowe 386917Selowe #endif /* DEBUG */ 387917Selowe 388917Selowe /* 389917Selowe * page_retire_done() - completion processing 390917Selowe * 391917Selowe * Used by the page_retire code for common completion processing. 392917Selowe * It keeps track of how many times a given result has happened, 393917Selowe * and writes out an occasional message. 394917Selowe * 395917Selowe * May be called with a NULL pp (PRD_INVALID_PA case). 396917Selowe */ 397917Selowe #define PRD_INVALID_KEY -1 398917Selowe #define PRD_SUCCESS 0 399917Selowe #define PRD_PENDING 1 400917Selowe #define PRD_FAILED 2 401917Selowe #define PRD_DUPLICATE 3 402917Selowe #define PRD_INVALID_PA 4 403917Selowe #define PRD_LIMIT 5 404917Selowe #define PRD_UE_SCRUBBED 6 405917Selowe #define PRD_UNR_SUCCESS 7 406917Selowe #define PRD_UNR_CANTLOCK 8 407917Selowe #define PRD_UNR_NOT 9 408917Selowe 409917Selowe typedef struct page_retire_op { 410917Selowe int pr_key; /* one of the PRD_* defines from above */ 411917Selowe int pr_count; /* How many times this has happened */ 412917Selowe int pr_retval; /* return value */ 413917Selowe int pr_msglvl; /* message level - when to print */ 414917Selowe char *pr_message; /* Cryptic message for field service */ 415917Selowe } page_retire_op_t; 416917Selowe 417917Selowe static page_retire_op_t page_retire_ops[] = { 418917Selowe /* key count retval msglvl message */ 419917Selowe {PRD_SUCCESS, 0, 0, 1, 420917Selowe "Page 0x%08x.%08x removed from service"}, 421917Selowe {PRD_PENDING, 0, EAGAIN, 2, 422917Selowe "Page 0x%08x.%08x will be retired on free"}, 423917Selowe {PRD_FAILED, 0, EAGAIN, 0, NULL}, 4241381Selowe {PRD_DUPLICATE, 0, EIO, 2, 4251381Selowe "Page 0x%08x.%08x already retired or pending"}, 426917Selowe {PRD_INVALID_PA, 0, EINVAL, 2, 427917Selowe "PA 0x%08x.%08x is not a relocatable page"}, 428917Selowe {PRD_LIMIT, 0, 0, 1, 429917Selowe "Page 0x%08x.%08x not retired due to limit exceeded"}, 430917Selowe {PRD_UE_SCRUBBED, 0, 0, 1, 431917Selowe "Previously reported error on page 0x%08x.%08x cleared"}, 432917Selowe {PRD_UNR_SUCCESS, 0, 0, 1, 433917Selowe "Page 0x%08x.%08x returned to service"}, 434917Selowe {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 435917Selowe "Page 0x%08x.%08x could not be unretired"}, 4361381Selowe {PRD_UNR_NOT, 0, EIO, 2, 437917Selowe "Page 0x%08x.%08x is not retired"}, 438917Selowe {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 439917Selowe }; 440917Selowe 441917Selowe /* 442917Selowe * print a message if page_retire_messages is true. 443917Selowe */ 444917Selowe #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 445917Selowe { \ 446917Selowe uint64_t p = (uint64_t)pa; \ 447917Selowe if (page_retire_messages >= msglvl && msg != NULL) { \ 448917Selowe cmn_err(debuglvl, msg, \ 449917Selowe (uint32_t)(p >> 32), (uint32_t)p); \ 450917Selowe } \ 451917Selowe } 452917Selowe 453917Selowe /* 454917Selowe * Note that multiple bits may be set in a single settoxic operation. 455917Selowe * May be called without the page locked. 456917Selowe */ 457917Selowe void 458917Selowe page_settoxic(page_t *pp, uchar_t bits) 459917Selowe { 460917Selowe atomic_or_8(&pp->p_toxic, bits); 461917Selowe } 462917Selowe 463917Selowe /* 464917Selowe * Note that multiple bits may cleared in a single clrtoxic operation. 4651338Selowe * Must be called with the page exclusively locked to prevent races which 4661338Selowe * may attempt to retire a page without any toxic bits set. 4673253Smec * Note that the PR_CAPTURE bit can be cleared without the exclusive lock 4683253Smec * being held as there is a separate mutex which protects that bit. 469917Selowe */ 470917Selowe void 471917Selowe page_clrtoxic(page_t *pp, uchar_t bits) 472917Selowe { 4733253Smec ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp)); 474917Selowe atomic_and_8(&pp->p_toxic, ~bits); 475917Selowe } 476917Selowe 477917Selowe /* 478917Selowe * Prints any page retire messages to the user, and decides what 479917Selowe * error code is appropriate for the condition reported. 480917Selowe */ 481917Selowe static int 482917Selowe page_retire_done(page_t *pp, int code) 483917Selowe { 484917Selowe page_retire_op_t *prop; 485917Selowe uint64_t pa = 0; 486917Selowe int i; 487917Selowe 488917Selowe if (pp != NULL) { 4891338Selowe pa = mmu_ptob((uint64_t)pp->p_pagenum); 490917Selowe } 491917Selowe 492917Selowe prop = NULL; 493917Selowe for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 494917Selowe if (page_retire_ops[i].pr_key == code) { 495917Selowe prop = &page_retire_ops[i]; 496917Selowe break; 497917Selowe } 498917Selowe } 499917Selowe 500917Selowe #ifdef DEBUG 501917Selowe if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 502917Selowe cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 503917Selowe } 504917Selowe #endif 505917Selowe 506917Selowe ASSERT(prop->pr_key == code); 507917Selowe 508917Selowe prop->pr_count++; 509917Selowe 510917Selowe PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 511917Selowe if (pp != NULL) { 512917Selowe page_settoxic(pp, PR_MSG); 513917Selowe } 514917Selowe 515917Selowe return (prop->pr_retval); 516917Selowe } 517917Selowe 518917Selowe /* 519917Selowe * Act like page_destroy(), but instead of freeing the page, hash it onto 520917Selowe * the retired_pages vnode, and mark it retired. 521917Selowe * 522917Selowe * For fun, we try to scrub the page until it's squeaky clean. 523917Selowe * availrmem is adjusted here. 524917Selowe */ 525917Selowe static void 526917Selowe page_retire_destroy(page_t *pp) 527917Selowe { 528973Selowe u_offset_t off = (u_offset_t)((uintptr_t)pp); 529973Selowe 530917Selowe ASSERT(PAGE_EXCL(pp)); 531917Selowe ASSERT(!PP_ISFREE(pp)); 532917Selowe ASSERT(pp->p_szc == 0); 533917Selowe ASSERT(!hat_page_is_mapped(pp)); 534917Selowe ASSERT(!pp->p_vnode); 535917Selowe 536917Selowe page_clr_all_props(pp); 537917Selowe pagescrub(pp, 0, MMU_PAGESIZE); 538917Selowe 539917Selowe pp->p_next = NULL; 540917Selowe pp->p_prev = NULL; 541973Selowe if (page_hashin(pp, retired_pages, off, NULL) == 0) { 542917Selowe cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 543917Selowe } 544917Selowe 545917Selowe page_settoxic(pp, PR_RETIRED); 546917Selowe PR_INCR_KSTAT(pr_retired); 547917Selowe 548917Selowe if (pp->p_toxic & PR_FMA) { 549917Selowe PR_INCR_KSTAT(pr_fma); 550917Selowe } else if (pp->p_toxic & PR_UE) { 551917Selowe PR_INCR_KSTAT(pr_ue); 552917Selowe } else { 553917Selowe PR_INCR_KSTAT(pr_mce); 554917Selowe } 555917Selowe 556917Selowe mutex_enter(&freemem_lock); 557917Selowe availrmem--; 558917Selowe mutex_exit(&freemem_lock); 559917Selowe 560917Selowe page_unlock(pp); 561917Selowe } 562917Selowe 563917Selowe /* 564917Selowe * Check whether the number of pages which have been retired already exceeds 565917Selowe * the maximum allowable percentage of memory which may be retired. 566917Selowe * 567917Selowe * Returns 1 if the limit has been exceeded. 568917Selowe */ 569917Selowe static int 570917Selowe page_retire_limit(void) 571917Selowe { 572917Selowe if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 573917Selowe PR_INCR_KSTAT(pr_limit_exceeded); 574917Selowe return (1); 575917Selowe } 576917Selowe 577917Selowe return (0); 578917Selowe } 579917Selowe 580917Selowe #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 581917Selowe "[ 0x%x != 0x%x ] while attempting to clear previously " \ 582917Selowe "reported error; page removed from service" 583917Selowe 584917Selowe #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 585917Selowe "attempting to clear previously reported error; page removed " \ 586917Selowe "from service" 587917Selowe 588917Selowe /* 589917Selowe * Attempt to clear a UE from a page. 590917Selowe * Returns 1 if the error has been successfully cleared. 591917Selowe */ 592917Selowe static int 593917Selowe page_clear_transient_ue(page_t *pp) 594917Selowe { 595917Selowe caddr_t kaddr; 596917Selowe uint8_t rb, wb; 597917Selowe uint64_t pa; 598917Selowe uint32_t pa_hi, pa_lo; 599917Selowe on_trap_data_t otd; 600917Selowe int errors = 0; 601917Selowe int i; 602917Selowe 603917Selowe ASSERT(PAGE_EXCL(pp)); 604917Selowe ASSERT(PP_PR_REQ(pp)); 605917Selowe ASSERT(pp->p_szc == 0); 606917Selowe ASSERT(!hat_page_is_mapped(pp)); 607917Selowe 608917Selowe /* 609917Selowe * Clear the page and attempt to clear the UE. If we trap 610917Selowe * on the next access to the page, we know the UE has recurred. 611917Selowe */ 612917Selowe pagescrub(pp, 0, PAGESIZE); 613917Selowe 614917Selowe /* 615917Selowe * Map the page and write a bunch of bit patterns to compare 616917Selowe * what we wrote with what we read back. This isn't a perfect 617917Selowe * test but it should be good enough to catch most of the 618917Selowe * recurring UEs. If this fails to catch a recurrent UE, we'll 619917Selowe * retire the page the next time we see a UE on the page. 620917Selowe */ 621917Selowe kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 622917Selowe 623917Selowe pa = ptob((uint64_t)page_pptonum(pp)); 624917Selowe pa_hi = (uint32_t)(pa >> 32); 625917Selowe pa_lo = (uint32_t)pa; 626917Selowe 627917Selowe /* 628917Selowe * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 629917Selowe * the cache in between reading and writing. We do this under 630917Selowe * on_trap() protection to avoid recursion. 631917Selowe */ 632917Selowe if (on_trap(&otd, OT_DATA_EC)) { 633917Selowe PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 634917Selowe errors = 1; 635917Selowe } else { 636917Selowe for (wb = 0xff; wb > 0; wb--) { 637917Selowe for (i = 0; i < PAGESIZE; i++) { 638917Selowe kaddr[i] = wb; 639917Selowe } 640917Selowe 641917Selowe sync_data_memory(kaddr, PAGESIZE); 642917Selowe 643917Selowe for (i = 0; i < PAGESIZE; i++) { 644917Selowe rb = kaddr[i]; 645917Selowe if (rb != wb) { 646917Selowe /* 647917Selowe * We had a mismatch without a trap. 648917Selowe * Uh-oh. Something is really wrong 649917Selowe * with this system. 650917Selowe */ 651917Selowe if (page_retire_messages) { 652917Selowe cmn_err(CE_WARN, MSG_DM, 653917Selowe pa_hi, pa_lo, rb, wb); 654917Selowe } 655917Selowe errors = 1; 656917Selowe goto out; /* double break */ 657917Selowe } 658917Selowe } 659917Selowe } 660917Selowe } 661917Selowe out: 662917Selowe no_trap(); 663917Selowe ppmapout(kaddr); 664917Selowe 665917Selowe return (errors ? 0 : 1); 666917Selowe } 667917Selowe 668917Selowe /* 669917Selowe * Try to clear a page_t with a single UE. If the UE was transient, it is 670917Selowe * returned to service, and we return 1. Otherwise we return 0 meaning 671917Selowe * that further processing is required to retire the page. 672917Selowe */ 673917Selowe static int 674917Selowe page_retire_transient_ue(page_t *pp) 675917Selowe { 676917Selowe ASSERT(PAGE_EXCL(pp)); 677917Selowe ASSERT(!hat_page_is_mapped(pp)); 678917Selowe 679917Selowe /* 680917Selowe * If this page is a repeat offender, retire him under the 681917Selowe * "two strikes and you're out" rule. The caller is responsible 682917Selowe * for scrubbing the page to try to clear the error. 683917Selowe */ 684917Selowe if (pp->p_toxic & PR_UE_SCRUBBED) { 685917Selowe PR_INCR_KSTAT(pr_ue_persistent); 686917Selowe return (0); 687917Selowe } 688917Selowe 689917Selowe if (page_clear_transient_ue(pp)) { 690917Selowe /* 691917Selowe * We set the PR_SCRUBBED_UE bit; if we ever see this 692917Selowe * page again, we will retire it, no questions asked. 693917Selowe */ 694917Selowe page_settoxic(pp, PR_UE_SCRUBBED); 695917Selowe 696917Selowe if (page_retire_first_ue) { 697917Selowe PR_INCR_KSTAT(pr_ue_cleared_retire); 698917Selowe return (0); 699917Selowe } else { 700917Selowe PR_INCR_KSTAT(pr_ue_cleared_free); 701917Selowe 7023253Smec page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG); 703917Selowe 704917Selowe /* LINTED: CONSTCOND */ 705917Selowe VN_DISPOSE(pp, B_FREE, 1, kcred); 706917Selowe return (1); 707917Selowe } 708917Selowe } 709917Selowe 710917Selowe PR_INCR_KSTAT(pr_ue_persistent); 711917Selowe return (0); 712917Selowe } 713917Selowe 714917Selowe /* 715917Selowe * Update the statistics dynamically when our kstat is read. 716917Selowe */ 717917Selowe static int 718917Selowe page_retire_kstat_update(kstat_t *ksp, int rw) 719917Selowe { 720917Selowe struct page_retire_kstat *pr; 721917Selowe 722917Selowe if (ksp == NULL) 723917Selowe return (EINVAL); 724917Selowe 725917Selowe switch (rw) { 726917Selowe 727917Selowe case KSTAT_READ: 728917Selowe pr = (struct page_retire_kstat *)ksp->ks_data; 729917Selowe ASSERT(pr == &page_retire_kstat); 730917Selowe pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 731917Selowe return (0); 732917Selowe 733917Selowe case KSTAT_WRITE: 734917Selowe return (EACCES); 735917Selowe 736917Selowe default: 737917Selowe return (EINVAL); 738917Selowe } 739917Selowe /*NOTREACHED*/ 740917Selowe } 741917Selowe 7423253Smec static int 7433253Smec pr_list_kstat_update(kstat_t *ksp, int rw) 7443253Smec { 7453253Smec uint_t count; 7463253Smec page_t *pp; 7473253Smec kmutex_t *vphm; 7483253Smec 7493253Smec if (rw == KSTAT_WRITE) 7503253Smec return (EACCES); 7513253Smec 7523253Smec vphm = page_vnode_mutex(retired_pages); 7533253Smec mutex_enter(vphm); 7543253Smec /* Needs to be under a lock so that for loop will work right */ 7553253Smec if (retired_pages->v_pages == NULL) { 7563253Smec mutex_exit(vphm); 7573253Smec ksp->ks_ndata = 0; 7583253Smec ksp->ks_data_size = 0; 7593253Smec return (0); 7603253Smec } 7613253Smec 7623253Smec count = 1; 7633253Smec for (pp = retired_pages->v_pages->p_vpnext; 7643253Smec pp != retired_pages->v_pages; pp = pp->p_vpnext) { 7653253Smec count++; 7663253Smec } 7673253Smec mutex_exit(vphm); 7683253Smec 7693253Smec ksp->ks_ndata = count; 7703253Smec ksp->ks_data_size = count * 2 * sizeof (uint64_t); 7713253Smec 7723253Smec return (0); 7733253Smec } 7743253Smec 7753253Smec /* 7763253Smec * all spans will be pagesize and no coalescing will be done with the 7773253Smec * list produced. 7783253Smec */ 7793253Smec static int 7803253Smec pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 7813253Smec { 7823253Smec kmutex_t *vphm; 7833253Smec page_t *pp; 7843253Smec struct memunit { 7853253Smec uint64_t address; 7863253Smec uint64_t size; 7873253Smec } *kspmem; 7883253Smec 7893253Smec if (rw == KSTAT_WRITE) 7903253Smec return (EACCES); 7913253Smec 7923253Smec ksp->ks_snaptime = gethrtime(); 7933253Smec 7943253Smec kspmem = (struct memunit *)buf; 7953253Smec 7963253Smec vphm = page_vnode_mutex(retired_pages); 7973253Smec mutex_enter(vphm); 7983253Smec pp = retired_pages->v_pages; 7993253Smec if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) || 8003253Smec (pp == NULL)) { 8013253Smec mutex_exit(vphm); 8023253Smec return (0); 8033253Smec } 8043253Smec kspmem->address = ptob(pp->p_pagenum); 8053253Smec kspmem->size = PAGESIZE; 8063253Smec kspmem++; 8073253Smec for (pp = pp->p_vpnext; pp != retired_pages->v_pages; 8083253Smec pp = pp->p_vpnext, kspmem++) { 8093253Smec if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 8103253Smec break; 8113253Smec kspmem->address = ptob(pp->p_pagenum); 8123253Smec kspmem->size = PAGESIZE; 8133253Smec } 8143253Smec mutex_exit(vphm); 8153253Smec 8163253Smec return (0); 8173253Smec } 8183253Smec 819917Selowe /* 820*3480Sjfrank * page_retire_pend_count -- helper function for page_capture_thread, 821*3480Sjfrank * returns the number of pages pending retirement. 822*3480Sjfrank */ 823*3480Sjfrank uint64_t 824*3480Sjfrank page_retire_pend_count(void) 825*3480Sjfrank { 826*3480Sjfrank return (PR_KSTAT_PENDING); 827*3480Sjfrank } 828*3480Sjfrank 829*3480Sjfrank void 830*3480Sjfrank page_retire_incr_pend_count(void) 831*3480Sjfrank { 832*3480Sjfrank PR_INCR_KSTAT(pr_pending); 833*3480Sjfrank } 834*3480Sjfrank 835*3480Sjfrank void 836*3480Sjfrank page_retire_decr_pend_count(void) 837*3480Sjfrank { 838*3480Sjfrank PR_DECR_KSTAT(pr_pending); 839*3480Sjfrank } 840*3480Sjfrank 841*3480Sjfrank /* 842917Selowe * Initialize the page retire mechanism: 843917Selowe * 844917Selowe * - Establish the correctable error retire limit. 845917Selowe * - Initialize locks. 846917Selowe * - Build the retired_pages vnode. 847917Selowe * - Set up the kstats. 848917Selowe * - Fire off the background thread. 8493253Smec * - Tell page_retire() it's OK to start retiring pages. 850917Selowe */ 851917Selowe void 852917Selowe page_retire_init(void) 853917Selowe { 854917Selowe const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL}; 855917Selowe struct vnodeops *vops; 8563253Smec kstat_t *ksp; 857917Selowe 858917Selowe const uint_t page_retire_ndata = 859917Selowe sizeof (page_retire_kstat) / sizeof (kstat_named_t); 860917Selowe 861917Selowe ASSERT(page_retire_ksp == NULL); 862917Selowe 863917Selowe if (max_pages_retired_bps <= 0) { 864917Selowe max_pages_retired_bps = MCE_BPT; 865917Selowe } 866917Selowe 867917Selowe mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 868917Selowe 869917Selowe retired_pages = vn_alloc(KM_SLEEP); 870917Selowe if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 871917Selowe cmn_err(CE_PANIC, 872917Selowe "page_retired_init: can't make retired vnodeops"); 873917Selowe } 874917Selowe vn_setops(retired_pages, vops); 875917Selowe 876917Selowe if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 877917Selowe "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 878917Selowe KSTAT_FLAG_VIRTUAL)) == NULL) { 879917Selowe cmn_err(CE_WARN, "kstat_create for page_retire failed"); 880917Selowe } else { 881917Selowe page_retire_ksp->ks_data = (void *)&page_retire_kstat; 882917Selowe page_retire_ksp->ks_update = page_retire_kstat_update; 883917Selowe kstat_install(page_retire_ksp); 884917Selowe } 885917Selowe 8863253Smec mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL); 8873253Smec ksp = kstat_create("unix", 0, "page_retire_list", "misc", 8883253Smec KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 8893253Smec if (ksp != NULL) { 8903253Smec ksp->ks_update = pr_list_kstat_update; 8913253Smec ksp->ks_snapshot = pr_list_kstat_snapshot; 8923253Smec ksp->ks_lock = &pr_list_kstat_mutex; 8933253Smec kstat_install(ksp); 8943253Smec } 895917Selowe 8963253Smec page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish); 897917Selowe pr_enable = 1; 898917Selowe } 899917Selowe 900917Selowe /* 901917Selowe * page_retire_hunt() callback for the retire thread. 902917Selowe */ 903917Selowe static void 904917Selowe page_retire_thread_cb(page_t *pp) 905917Selowe { 906917Selowe PR_DEBUG(prd_tctop); 9073290Sjohansen if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) { 908917Selowe PR_DEBUG(prd_tclocked); 909917Selowe page_unlock(pp); 910917Selowe } 911917Selowe } 912917Selowe 913917Selowe /* 914917Selowe * page_retire_hunt() callback for mdboot(). 915917Selowe * 916917Selowe * It is necessary to scrub any failing pages prior to reboot in order to 917917Selowe * prevent a latent error trap from occurring on the next boot. 918917Selowe */ 919917Selowe void 920917Selowe page_retire_mdboot_cb(page_t *pp) 921917Selowe { 922917Selowe /* 923917Selowe * Don't scrub the kernel, since we might still need it, unless 924917Selowe * we have UEs on the page, in which case we have nothing to lose. 925917Selowe */ 9263290Sjohansen if (!PP_ISKAS(pp) || PP_TOXIC(pp)) { 927917Selowe pp->p_selock = -1; /* pacify ASSERTs */ 928973Selowe PP_CLRFREE(pp); 929917Selowe pagescrub(pp, 0, PAGESIZE); 930917Selowe pp->p_selock = 0; 931917Selowe } 932917Selowe pp->p_toxic = 0; 933917Selowe } 934917Selowe 935917Selowe 936917Selowe /* 9373253Smec * Callback used by page_trycapture() to finish off retiring a page. 9383253Smec * The page has already been cleaned and we've been given sole access to 9393253Smec * it. 9403253Smec * Always returns 0 to indicate that callback succeded as the callback never 9413253Smec * fails to finish retiring the given page. 942917Selowe */ 9433253Smec /*ARGSUSED*/ 944917Selowe static int 9453253Smec page_retire_pp_finish(page_t *pp, void *notused, uint_t flags) 946917Selowe { 947917Selowe int toxic; 948917Selowe 949917Selowe ASSERT(PAGE_EXCL(pp)); 950917Selowe ASSERT(pp->p_iolock_state == 0); 951917Selowe ASSERT(pp->p_szc == 0); 952917Selowe 953917Selowe toxic = pp->p_toxic; 954917Selowe 955917Selowe /* 956917Selowe * The problem page is locked, demoted, unmapped, not free, 957917Selowe * hashed out, and not COW or mlocked (whew!). 958917Selowe * 959917Selowe * Now we select our ammunition, take it around back, and shoot it. 960917Selowe */ 961917Selowe if (toxic & PR_UE) { 9623253Smec ue_error: 963917Selowe if (page_retire_transient_ue(pp)) { 964917Selowe PR_DEBUG(prd_uescrubbed); 9653253Smec (void) page_retire_done(pp, PRD_UE_SCRUBBED); 966917Selowe } else { 967917Selowe PR_DEBUG(prd_uenotscrubbed); 968917Selowe page_retire_destroy(pp); 9693253Smec (void) page_retire_done(pp, PRD_SUCCESS); 970917Selowe } 9713253Smec return (0); 972917Selowe } else if (toxic & PR_FMA) { 973917Selowe PR_DEBUG(prd_fma); 974917Selowe page_retire_destroy(pp); 9753253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9763253Smec return (0); 977917Selowe } else if (toxic & PR_MCE) { 978917Selowe PR_DEBUG(prd_mce); 979917Selowe page_retire_destroy(pp); 9803253Smec (void) page_retire_done(pp, PRD_SUCCESS); 9813253Smec return (0); 982917Selowe } 983917Selowe 984917Selowe /* 9853253Smec * When page_retire_first_ue is set to zero and a UE occurs which is 9863253Smec * transient, it's possible that we clear some flags set by a second 9873253Smec * UE error on the page which occurs while the first is currently being 9883253Smec * handled and thus we need to handle the case where none of the above 9893253Smec * are set. In this instance, PR_UE_SCRUBBED should be set and thus 9903253Smec * we should execute the UE code above. 991917Selowe */ 9923253Smec if (toxic & PR_UE_SCRUBBED) { 9933253Smec goto ue_error; 994917Selowe } 9953253Smec 9963253Smec /* 9973253Smec * It's impossible to get here. 9983253Smec */ 9993253Smec panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic); 10003253Smec return (0); 1001917Selowe } 1002917Selowe 1003917Selowe /* 1004917Selowe * page_retire() - the front door in to retire a page. 1005917Selowe * 1006917Selowe * Ideally, page_retire() would instantly retire the requested page. 1007917Selowe * Unfortunately, some pages are locked or otherwise tied up and cannot be 10083253Smec * retired right away. We use the page capture logic to deal with this 10093253Smec * situation as it will continuously try to retire the page in the background 10103253Smec * if the first attempt fails. Success is determined by looking to see whether 10113253Smec * the page has been retired after the page_trycapture() attempt. 1012917Selowe * 1013917Selowe * Returns: 1014917Selowe * 1015917Selowe * - 0 on success, 1016917Selowe * - EINVAL when the PA is whacko, 10171381Selowe * - EIO if the page is already retired or already pending retirement, or 10181381Selowe * - EAGAIN if the page could not be _immediately_ retired but is pending. 1019917Selowe */ 1020917Selowe int 1021917Selowe page_retire(uint64_t pa, uchar_t reason) 1022917Selowe { 1023917Selowe page_t *pp; 1024917Selowe 1025917Selowe ASSERT(reason & PR_REASONS); /* there must be a reason */ 1026917Selowe ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1027917Selowe 1028917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1029917Selowe if (pp == NULL) { 1030917Selowe PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1031917Selowe " page 0x%08x.%08x; page is not relocatable memory", pa); 1032917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1033917Selowe } 1034917Selowe if (PP_RETIRED(pp)) { 10351381Selowe PR_DEBUG(prd_dup1); 1036917Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1037917Selowe } 1038917Selowe 10391381Selowe if ((reason & PR_UE) && !PP_TOXIC(pp)) { 1040917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1041917Selowe " page 0x%08x.%08x", pa); 10421381Selowe } else if (PP_PR_REQ(pp)) { 10431381Selowe PR_DEBUG(prd_dup2); 10441381Selowe return (page_retire_done(pp, PRD_DUPLICATE)); 1045917Selowe } else { 1046917Selowe PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1047917Selowe " page 0x%08x.%08x", pa); 1048917Selowe } 10493253Smec 10503253Smec /* Avoid setting toxic bits in the first place */ 10513253Smec if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) && 10523253Smec page_retire_limit()) { 10533253Smec return (page_retire_done(pp, PRD_LIMIT)); 10543253Smec } 1055917Selowe 10563253Smec if (MTBF(pr_calls, pr_mtbf)) { 10573253Smec page_settoxic(pp, reason); 10583253Smec if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) { 10593253Smec PR_DEBUG(prd_prlocked); 10603253Smec } else { 10613253Smec PR_DEBUG(prd_prnotlocked); 10623253Smec } 1063917Selowe } else { 1064917Selowe PR_DEBUG(prd_prnotlocked); 1065917Selowe } 1066917Selowe 1067917Selowe if (PP_RETIRED(pp)) { 1068917Selowe PR_DEBUG(prd_prretired); 1069917Selowe return (0); 1070917Selowe } else { 10713253Smec cv_signal(&pc_cv); 1072917Selowe PR_INCR_KSTAT(pr_failed); 1073917Selowe 1074917Selowe if (pp->p_toxic & PR_MSG) { 1075917Selowe return (page_retire_done(pp, PRD_FAILED)); 1076917Selowe } else { 1077917Selowe return (page_retire_done(pp, PRD_PENDING)); 1078917Selowe } 1079917Selowe } 1080917Selowe } 1081917Selowe 1082917Selowe /* 1083917Selowe * Take a retired page off the retired-pages vnode and clear the toxic flags. 1084917Selowe * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1085917Selowe * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1086917Selowe * and don't do anything else with it. 1087917Selowe * 1088917Selowe * Any unretire messages are printed from this routine. 1089917Selowe * 1090917Selowe * Returns 0 if page pp was unretired; else an error code. 10913253Smec * 10923253Smec * If flags is: 10933253Smec * PR_UNR_FREE - lock the page, clear the toxic flags and free it 10943253Smec * to the freelist. 10953253Smec * PR_UNR_TEMP - lock the page, unretire it, leave the toxic 10963253Smec * bits set as is and return it to the caller. 10973253Smec * PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the 10983253Smec * toxic flags and return it to caller as is. 1099917Selowe */ 1100917Selowe int 11013253Smec page_unretire_pp(page_t *pp, int flags) 1102917Selowe { 1103917Selowe /* 1104917Selowe * To be retired, a page has to be hashed onto the retired_pages vnode 1105917Selowe * and have PR_RETIRED set in p_toxic. 1106917Selowe */ 11073253Smec if (flags == PR_UNR_CLEAN || 11083253Smec page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1109917Selowe ASSERT(PAGE_EXCL(pp)); 1110917Selowe PR_DEBUG(prd_ulocked); 1111917Selowe if (!PP_RETIRED(pp)) { 1112917Selowe PR_DEBUG(prd_unotretired); 1113917Selowe page_unlock(pp); 1114917Selowe return (page_retire_done(pp, PRD_UNR_NOT)); 1115917Selowe } 1116917Selowe 1117917Selowe PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 11181338Selowe " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum)); 1119917Selowe if (pp->p_toxic & PR_FMA) { 1120917Selowe PR_DECR_KSTAT(pr_fma); 1121917Selowe } else if (pp->p_toxic & PR_UE) { 1122917Selowe PR_DECR_KSTAT(pr_ue); 1123917Selowe } else { 1124917Selowe PR_DECR_KSTAT(pr_mce); 1125917Selowe } 1126917Selowe 11273253Smec if (flags == PR_UNR_TEMP) 11283253Smec page_clrtoxic(pp, PR_RETIRED); 11293253Smec else 11303253Smec page_clrtoxic(pp, PR_TOXICFLAGS); 11313253Smec 11323253Smec if (flags == PR_UNR_FREE) { 1133917Selowe PR_DEBUG(prd_udestroy); 1134917Selowe page_destroy(pp, 0); 1135917Selowe } else { 1136917Selowe PR_DEBUG(prd_uhashout); 1137917Selowe page_hashout(pp, NULL); 1138917Selowe } 1139917Selowe 1140917Selowe mutex_enter(&freemem_lock); 1141917Selowe availrmem++; 1142917Selowe mutex_exit(&freemem_lock); 1143917Selowe 1144917Selowe PR_DEBUG(prd_uunretired); 1145917Selowe PR_DECR_KSTAT(pr_retired); 1146917Selowe PR_INCR_KSTAT(pr_unretired); 1147917Selowe return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1148917Selowe } 1149917Selowe PR_DEBUG(prd_unotlocked); 1150917Selowe return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1151917Selowe } 1152917Selowe 1153917Selowe /* 1154917Selowe * Return a page to service by moving it from the retired_pages vnode 1155917Selowe * onto the freelist. 1156917Selowe * 1157917Selowe * Called from mmioctl_page_retire() on behalf of the FMA DE. 1158917Selowe * 1159917Selowe * Returns: 1160917Selowe * 1161917Selowe * - 0 if the page is unretired, 1162917Selowe * - EAGAIN if the pp can not be locked, 1163917Selowe * - EINVAL if the PA is whacko, and 11641381Selowe * - EIO if the pp is not retired. 1165917Selowe */ 1166917Selowe int 1167917Selowe page_unretire(uint64_t pa) 1168917Selowe { 1169917Selowe page_t *pp; 1170917Selowe 1171917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1172917Selowe if (pp == NULL) { 1173917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1174917Selowe } 1175917Selowe 11763253Smec return (page_unretire_pp(pp, PR_UNR_FREE)); 1177917Selowe } 1178917Selowe 1179917Selowe /* 1180917Selowe * Test a page to see if it is retired. If errors is non-NULL, the toxic 1181917Selowe * bits of the page are returned. Returns 0 on success, error code on failure. 1182917Selowe */ 1183917Selowe int 1184917Selowe page_retire_check_pp(page_t *pp, uint64_t *errors) 1185917Selowe { 1186917Selowe int rc; 1187917Selowe 1188917Selowe if (PP_RETIRED(pp)) { 1189917Selowe PR_DEBUG(prd_checkhit); 1190917Selowe rc = 0; 11911381Selowe } else if (PP_PR_REQ(pp)) { 11921381Selowe PR_DEBUG(prd_checkmiss_pend); 11931381Selowe rc = EAGAIN; 1194917Selowe } else { 11951381Selowe PR_DEBUG(prd_checkmiss_noerr); 11961381Selowe rc = EIO; 1197917Selowe } 1198917Selowe 1199917Selowe /* 1200917Selowe * We have magically arranged the bit values returned to fmd(1M) 1201917Selowe * to line up with the FMA, MCE, and UE bits of the page_t. 1202917Selowe */ 1203917Selowe if (errors) { 1204917Selowe uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1205917Selowe if (toxic & PR_UE_SCRUBBED) { 1206917Selowe toxic &= ~PR_UE_SCRUBBED; 1207917Selowe toxic |= PR_UE; 1208917Selowe } 1209917Selowe *errors = toxic; 1210917Selowe } 1211917Selowe 1212917Selowe return (rc); 1213917Selowe } 1214917Selowe 1215917Selowe /* 1216917Selowe * Test to see if the page_t for a given PA is retired, and return the 1217917Selowe * hardware errors we have seen on the page if requested. 1218917Selowe * 1219917Selowe * Called from mmioctl_page_retire on behalf of the FMA DE. 1220917Selowe * 1221917Selowe * Returns: 1222917Selowe * 1223917Selowe * - 0 if the page is retired, 12241381Selowe * - EIO if the page is not retired and has no errors, 12251381Selowe * - EAGAIN if the page is not retired but is pending; and 1226917Selowe * - EINVAL if the PA is whacko. 1227917Selowe */ 1228917Selowe int 1229917Selowe page_retire_check(uint64_t pa, uint64_t *errors) 1230917Selowe { 1231917Selowe page_t *pp; 1232917Selowe 1233917Selowe if (errors) { 1234917Selowe *errors = 0; 1235917Selowe } 1236917Selowe 1237917Selowe pp = page_numtopp_nolock(mmu_btop(pa)); 1238917Selowe if (pp == NULL) { 1239917Selowe return (page_retire_done(pp, PRD_INVALID_PA)); 1240917Selowe } 1241917Selowe 1242917Selowe return (page_retire_check_pp(pp, errors)); 1243917Selowe } 1244917Selowe 1245917Selowe /* 1246917Selowe * Page retire self-test. For now, it always returns 0. 1247917Selowe */ 1248917Selowe int 1249917Selowe page_retire_test(void) 1250917Selowe { 1251917Selowe page_t *first, *pp, *cpp, *cpp2, *lpp; 1252917Selowe 1253917Selowe /* 1254917Selowe * Tests the corner case where a large page can't be retired 1255917Selowe * because one of the constituent pages is locked. We mark 1256917Selowe * one page to be retired and try to retire it, and mark the 1257917Selowe * other page to be retired but don't try to retire it, so 1258917Selowe * that page_unlock() in the failure path will recurse and try 1259917Selowe * to retire THAT page. This is the worst possible situation 1260917Selowe * we can get ourselves into. 1261917Selowe */ 1262917Selowe memsegs_lock(0); 1263917Selowe pp = first = page_first(); 1264917Selowe do { 1265917Selowe if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1266917Selowe cpp = pp + 1; 1267917Selowe lpp = PP_ISFREE(pp)? pp : pp + 2; 1268917Selowe cpp2 = pp + 3; 1269917Selowe if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1270917Selowe continue; 1271917Selowe if (!page_trylock(cpp, SE_EXCL)) { 1272917Selowe page_unlock(lpp); 1273917Selowe continue; 1274917Selowe } 12753253Smec 12763253Smec /* fails */ 12773253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12783253Smec 1279917Selowe page_unlock(lpp); 12803253Smec page_unlock(cpp); 12813253Smec (void) page_retire(ptob(cpp->p_pagenum), PR_FMA); 12823253Smec (void) page_retire(ptob(cpp2->p_pagenum), PR_FMA); 1283917Selowe } 1284917Selowe } while ((pp = page_next(pp)) != first); 1285917Selowe memsegs_unlock(0); 1286917Selowe 1287917Selowe return (0); 1288917Selowe } 1289