10Sstevel@tonic-gate /* 23642Sqiao * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 30Sstevel@tonic-gate * Use is subject to license terms. 40Sstevel@tonic-gate */ 50Sstevel@tonic-gate 60Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 70Sstevel@tonic-gate 80Sstevel@tonic-gate /* 90Sstevel@tonic-gate * Copyright (c) 1982, 1986 Regents of the University of California. 100Sstevel@tonic-gate * All rights reserved. The Berkeley software License Agreement 110Sstevel@tonic-gate * specifies the terms and conditions for redistribution. 120Sstevel@tonic-gate */ 130Sstevel@tonic-gate 140Sstevel@tonic-gate #include <sys/param.h> 150Sstevel@tonic-gate #include <sys/user.h> 160Sstevel@tonic-gate #include <sys/vnode.h> 170Sstevel@tonic-gate #include <sys/proc.h> 180Sstevel@tonic-gate #include <sys/time.h> 190Sstevel@tonic-gate #include <sys/systm.h> 200Sstevel@tonic-gate #include <sys/kmem.h> 210Sstevel@tonic-gate #include <sys/cmn_err.h> 220Sstevel@tonic-gate #include <sys/cpuvar.h> 230Sstevel@tonic-gate #include <sys/timer.h> 240Sstevel@tonic-gate #include <sys/debug.h> 250Sstevel@tonic-gate #include <sys/sysmacros.h> 260Sstevel@tonic-gate #include <sys/cyclic.h> 270Sstevel@tonic-gate 280Sstevel@tonic-gate static void realitexpire(void *); 290Sstevel@tonic-gate static void realprofexpire(void *); 300Sstevel@tonic-gate static void timeval_advance(struct timeval *, struct timeval *); 310Sstevel@tonic-gate 320Sstevel@tonic-gate kmutex_t tod_lock; /* protects time-of-day stuff */ 330Sstevel@tonic-gate 340Sstevel@tonic-gate /* 350Sstevel@tonic-gate * Constant to define the minimum interval value of the ITIMER_REALPROF timer. 360Sstevel@tonic-gate * Value is in microseconds; defaults to 500 usecs. Setting this value 370Sstevel@tonic-gate * significantly lower may allow for denial-of-service attacks. 380Sstevel@tonic-gate */ 390Sstevel@tonic-gate int itimer_realprof_minimum = 500; 400Sstevel@tonic-gate 410Sstevel@tonic-gate /* 420Sstevel@tonic-gate * macro to compare a timeval to a timestruc 430Sstevel@tonic-gate */ 440Sstevel@tonic-gate 450Sstevel@tonic-gate #define TVTSCMP(tvp, tsp, cmp) \ 460Sstevel@tonic-gate /* CSTYLED */ \ 470Sstevel@tonic-gate ((tvp)->tv_sec cmp (tsp)->tv_sec || \ 480Sstevel@tonic-gate ((tvp)->tv_sec == (tsp)->tv_sec && \ 490Sstevel@tonic-gate /* CSTYLED */ \ 500Sstevel@tonic-gate (tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec)) 510Sstevel@tonic-gate 520Sstevel@tonic-gate /* 530Sstevel@tonic-gate * Time of day and interval timer support. 540Sstevel@tonic-gate * 550Sstevel@tonic-gate * These routines provide the kernel entry points to get and set 560Sstevel@tonic-gate * the time-of-day and per-process interval timers. Subroutines 570Sstevel@tonic-gate * here provide support for adding and subtracting timeval structures 580Sstevel@tonic-gate * and decrementing interval timers, optionally reloading the interval 590Sstevel@tonic-gate * timers when they expire. 600Sstevel@tonic-gate */ 610Sstevel@tonic-gate 620Sstevel@tonic-gate /* 630Sstevel@tonic-gate * SunOS function to generate monotonically increasing time values. 640Sstevel@tonic-gate */ 650Sstevel@tonic-gate void 660Sstevel@tonic-gate uniqtime(struct timeval *tv) 670Sstevel@tonic-gate { 680Sstevel@tonic-gate static struct timeval last; 690Sstevel@tonic-gate timestruc_t ts; 700Sstevel@tonic-gate time_t sec; 710Sstevel@tonic-gate int usec, nsec; 720Sstevel@tonic-gate 730Sstevel@tonic-gate /* 740Sstevel@tonic-gate * protect modification of last 750Sstevel@tonic-gate */ 760Sstevel@tonic-gate mutex_enter(&tod_lock); 770Sstevel@tonic-gate gethrestime(&ts); 780Sstevel@tonic-gate 790Sstevel@tonic-gate /* 800Sstevel@tonic-gate * Fast algorithm to convert nsec to usec -- see hrt2ts() 810Sstevel@tonic-gate * in common/os/timers.c for a full description. 820Sstevel@tonic-gate */ 830Sstevel@tonic-gate nsec = ts.tv_nsec; 840Sstevel@tonic-gate usec = nsec + (nsec >> 2); 850Sstevel@tonic-gate usec = nsec + (usec >> 1); 860Sstevel@tonic-gate usec = nsec + (usec >> 2); 870Sstevel@tonic-gate usec = nsec + (usec >> 4); 880Sstevel@tonic-gate usec = nsec - (usec >> 3); 890Sstevel@tonic-gate usec = nsec + (usec >> 2); 900Sstevel@tonic-gate usec = nsec + (usec >> 3); 910Sstevel@tonic-gate usec = nsec + (usec >> 4); 920Sstevel@tonic-gate usec = nsec + (usec >> 1); 930Sstevel@tonic-gate usec = nsec + (usec >> 6); 940Sstevel@tonic-gate usec = usec >> 10; 950Sstevel@tonic-gate sec = ts.tv_sec; 960Sstevel@tonic-gate 970Sstevel@tonic-gate /* 980Sstevel@tonic-gate * Try to keep timestamps unique, but don't be obsessive about 990Sstevel@tonic-gate * it in the face of large differences. 1000Sstevel@tonic-gate */ 1010Sstevel@tonic-gate if ((sec <= last.tv_sec) && /* same or lower seconds, and */ 1020Sstevel@tonic-gate ((sec != last.tv_sec) || /* either different second or */ 1030Sstevel@tonic-gate (usec <= last.tv_usec)) && /* lower microsecond, and */ 1040Sstevel@tonic-gate ((last.tv_sec - sec) <= 5)) { /* not way back in time */ 1050Sstevel@tonic-gate sec = last.tv_sec; 1060Sstevel@tonic-gate usec = last.tv_usec + 1; 1070Sstevel@tonic-gate if (usec >= MICROSEC) { 1080Sstevel@tonic-gate usec -= MICROSEC; 1090Sstevel@tonic-gate sec++; 1100Sstevel@tonic-gate } 1110Sstevel@tonic-gate } 1120Sstevel@tonic-gate last.tv_sec = sec; 1130Sstevel@tonic-gate last.tv_usec = usec; 1140Sstevel@tonic-gate mutex_exit(&tod_lock); 1150Sstevel@tonic-gate 1160Sstevel@tonic-gate tv->tv_sec = sec; 1170Sstevel@tonic-gate tv->tv_usec = usec; 1180Sstevel@tonic-gate } 1190Sstevel@tonic-gate 1200Sstevel@tonic-gate /* 1210Sstevel@tonic-gate * Timestamps are exported from the kernel in several places. 1220Sstevel@tonic-gate * Such timestamps are commonly used for either uniqueness or for 1230Sstevel@tonic-gate * sequencing - truncation to 32-bits is fine for uniqueness, 1240Sstevel@tonic-gate * but sequencing is going to take more work as we get closer to 2038! 1250Sstevel@tonic-gate */ 1260Sstevel@tonic-gate void 1270Sstevel@tonic-gate uniqtime32(struct timeval32 *tv32p) 1280Sstevel@tonic-gate { 1290Sstevel@tonic-gate struct timeval tv; 1300Sstevel@tonic-gate 1310Sstevel@tonic-gate uniqtime(&tv); 1320Sstevel@tonic-gate TIMEVAL_TO_TIMEVAL32(tv32p, &tv); 1330Sstevel@tonic-gate } 1340Sstevel@tonic-gate 1350Sstevel@tonic-gate int 1360Sstevel@tonic-gate gettimeofday(struct timeval *tp) 1370Sstevel@tonic-gate { 1380Sstevel@tonic-gate struct timeval atv; 1390Sstevel@tonic-gate 1400Sstevel@tonic-gate if (tp) { 1410Sstevel@tonic-gate uniqtime(&atv); 1420Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) { 1430Sstevel@tonic-gate if (copyout(&atv, tp, sizeof (atv))) 1440Sstevel@tonic-gate return (set_errno(EFAULT)); 1450Sstevel@tonic-gate } else { 1460Sstevel@tonic-gate struct timeval32 tv32; 1470Sstevel@tonic-gate 1480Sstevel@tonic-gate if (TIMEVAL_OVERFLOW(&atv)) 1490Sstevel@tonic-gate return (set_errno(EOVERFLOW)); 1500Sstevel@tonic-gate TIMEVAL_TO_TIMEVAL32(&tv32, &atv); 1510Sstevel@tonic-gate 1520Sstevel@tonic-gate if (copyout(&tv32, tp, sizeof (tv32))) 1530Sstevel@tonic-gate return (set_errno(EFAULT)); 1540Sstevel@tonic-gate } 1550Sstevel@tonic-gate } 1560Sstevel@tonic-gate return (0); 1570Sstevel@tonic-gate } 1580Sstevel@tonic-gate 1590Sstevel@tonic-gate int 1600Sstevel@tonic-gate getitimer(uint_t which, struct itimerval *itv) 1610Sstevel@tonic-gate { 1620Sstevel@tonic-gate int error; 1630Sstevel@tonic-gate 1640Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) 1650Sstevel@tonic-gate error = xgetitimer(which, itv, 0); 1660Sstevel@tonic-gate else { 1670Sstevel@tonic-gate struct itimerval kitv; 1680Sstevel@tonic-gate 1690Sstevel@tonic-gate if ((error = xgetitimer(which, &kitv, 1)) == 0) { 1700Sstevel@tonic-gate if (ITIMERVAL_OVERFLOW(&kitv)) { 1710Sstevel@tonic-gate error = EOVERFLOW; 1720Sstevel@tonic-gate } else { 1730Sstevel@tonic-gate struct itimerval32 itv32; 1740Sstevel@tonic-gate 1750Sstevel@tonic-gate ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv); 1760Sstevel@tonic-gate if (copyout(&itv32, itv, sizeof (itv32)) != 0) 1770Sstevel@tonic-gate error = EFAULT; 1780Sstevel@tonic-gate } 1790Sstevel@tonic-gate } 1800Sstevel@tonic-gate } 1810Sstevel@tonic-gate 1820Sstevel@tonic-gate return (error ? (set_errno(error)) : 0); 1830Sstevel@tonic-gate } 1840Sstevel@tonic-gate 1850Sstevel@tonic-gate int 1860Sstevel@tonic-gate xgetitimer(uint_t which, struct itimerval *itv, int iskaddr) 1870Sstevel@tonic-gate { 1880Sstevel@tonic-gate struct proc *p = curproc; 1890Sstevel@tonic-gate struct timeval now; 1900Sstevel@tonic-gate struct itimerval aitv; 1910Sstevel@tonic-gate hrtime_t ts, first, interval, remain; 1920Sstevel@tonic-gate 1930Sstevel@tonic-gate mutex_enter(&p->p_lock); 1940Sstevel@tonic-gate 1950Sstevel@tonic-gate switch (which) { 1960Sstevel@tonic-gate case ITIMER_VIRTUAL: 1970Sstevel@tonic-gate case ITIMER_PROF: 1980Sstevel@tonic-gate aitv = ttolwp(curthread)->lwp_timer[which]; 1990Sstevel@tonic-gate break; 2000Sstevel@tonic-gate 2010Sstevel@tonic-gate case ITIMER_REAL: 2020Sstevel@tonic-gate uniqtime(&now); 2030Sstevel@tonic-gate aitv = p->p_realitimer; 2040Sstevel@tonic-gate 2050Sstevel@tonic-gate if (timerisset(&aitv.it_value)) { 2060Sstevel@tonic-gate /*CSTYLED*/ 2070Sstevel@tonic-gate if (timercmp(&aitv.it_value, &now, <)) { 2080Sstevel@tonic-gate timerclear(&aitv.it_value); 2090Sstevel@tonic-gate } else { 2100Sstevel@tonic-gate timevalsub(&aitv.it_value, &now); 2110Sstevel@tonic-gate } 2120Sstevel@tonic-gate } 2130Sstevel@tonic-gate break; 2140Sstevel@tonic-gate 2150Sstevel@tonic-gate case ITIMER_REALPROF: 2160Sstevel@tonic-gate if (curproc->p_rprof_cyclic == CYCLIC_NONE) { 2170Sstevel@tonic-gate bzero(&aitv, sizeof (aitv)); 2180Sstevel@tonic-gate break; 2190Sstevel@tonic-gate } 2200Sstevel@tonic-gate 2210Sstevel@tonic-gate aitv = curproc->p_rprof_timer; 2220Sstevel@tonic-gate 2230Sstevel@tonic-gate first = tv2hrt(&aitv.it_value); 2240Sstevel@tonic-gate interval = tv2hrt(&aitv.it_interval); 2250Sstevel@tonic-gate 2260Sstevel@tonic-gate if ((ts = gethrtime()) < first) { 2270Sstevel@tonic-gate /* 2280Sstevel@tonic-gate * We haven't gone off for the first time; the time 2290Sstevel@tonic-gate * remaining is simply the first time we will go 2300Sstevel@tonic-gate * off minus the current time. 2310Sstevel@tonic-gate */ 2320Sstevel@tonic-gate remain = first - ts; 2330Sstevel@tonic-gate } else { 2340Sstevel@tonic-gate if (interval == 0) { 2350Sstevel@tonic-gate /* 2360Sstevel@tonic-gate * This was set as a one-shot, and we've 2370Sstevel@tonic-gate * already gone off; there is no time 2380Sstevel@tonic-gate * remaining. 2390Sstevel@tonic-gate */ 2400Sstevel@tonic-gate remain = 0; 2410Sstevel@tonic-gate } else { 2420Sstevel@tonic-gate /* 2430Sstevel@tonic-gate * We have a non-zero interval; we need to 2440Sstevel@tonic-gate * determine how far we are into the current 2450Sstevel@tonic-gate * interval, and subtract that from the 2460Sstevel@tonic-gate * interval to determine the time remaining. 2470Sstevel@tonic-gate */ 2480Sstevel@tonic-gate remain = interval - ((ts - first) % interval); 2490Sstevel@tonic-gate } 2500Sstevel@tonic-gate } 2510Sstevel@tonic-gate 2520Sstevel@tonic-gate hrt2tv(remain, &aitv.it_value); 2530Sstevel@tonic-gate break; 2540Sstevel@tonic-gate 2550Sstevel@tonic-gate default: 2560Sstevel@tonic-gate mutex_exit(&p->p_lock); 2570Sstevel@tonic-gate return (EINVAL); 2580Sstevel@tonic-gate } 2590Sstevel@tonic-gate 2600Sstevel@tonic-gate mutex_exit(&p->p_lock); 2610Sstevel@tonic-gate 2620Sstevel@tonic-gate if (iskaddr) { 2630Sstevel@tonic-gate bcopy(&aitv, itv, sizeof (*itv)); 2640Sstevel@tonic-gate } else { 2650Sstevel@tonic-gate ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 2660Sstevel@tonic-gate if (copyout(&aitv, itv, sizeof (*itv))) 2670Sstevel@tonic-gate return (EFAULT); 2680Sstevel@tonic-gate } 2690Sstevel@tonic-gate 2700Sstevel@tonic-gate return (0); 2710Sstevel@tonic-gate } 2720Sstevel@tonic-gate 2730Sstevel@tonic-gate 2740Sstevel@tonic-gate int 2750Sstevel@tonic-gate setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv) 2760Sstevel@tonic-gate { 2770Sstevel@tonic-gate int error; 2780Sstevel@tonic-gate 2790Sstevel@tonic-gate if (oitv != NULL) 2800Sstevel@tonic-gate if ((error = getitimer(which, oitv)) != 0) 2810Sstevel@tonic-gate return (error); 2820Sstevel@tonic-gate 2830Sstevel@tonic-gate if (itv == NULL) 2840Sstevel@tonic-gate return (0); 2850Sstevel@tonic-gate 2860Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) 2870Sstevel@tonic-gate error = xsetitimer(which, itv, 0); 2880Sstevel@tonic-gate else { 2890Sstevel@tonic-gate struct itimerval32 itv32; 2900Sstevel@tonic-gate struct itimerval kitv; 2910Sstevel@tonic-gate 2920Sstevel@tonic-gate if (copyin(itv, &itv32, sizeof (itv32))) 2930Sstevel@tonic-gate error = EFAULT; 2940Sstevel@tonic-gate ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32); 2950Sstevel@tonic-gate error = xsetitimer(which, &kitv, 1); 2960Sstevel@tonic-gate } 2970Sstevel@tonic-gate 2980Sstevel@tonic-gate return (error ? (set_errno(error)) : 0); 2990Sstevel@tonic-gate } 3000Sstevel@tonic-gate 3010Sstevel@tonic-gate int 3020Sstevel@tonic-gate xsetitimer(uint_t which, struct itimerval *itv, int iskaddr) 3030Sstevel@tonic-gate { 3040Sstevel@tonic-gate struct itimerval aitv; 3050Sstevel@tonic-gate struct timeval now; 3060Sstevel@tonic-gate struct proc *p = curproc; 3070Sstevel@tonic-gate kthread_t *t; 3080Sstevel@tonic-gate timeout_id_t tmp_id; 3090Sstevel@tonic-gate cyc_handler_t hdlr; 3100Sstevel@tonic-gate cyc_time_t when; 3110Sstevel@tonic-gate cyclic_id_t cyclic; 3120Sstevel@tonic-gate hrtime_t ts; 3130Sstevel@tonic-gate int min; 3140Sstevel@tonic-gate 3150Sstevel@tonic-gate if (itv == NULL) 3160Sstevel@tonic-gate return (0); 3170Sstevel@tonic-gate 3180Sstevel@tonic-gate if (iskaddr) { 3190Sstevel@tonic-gate bcopy(itv, &aitv, sizeof (aitv)); 3200Sstevel@tonic-gate } else { 3210Sstevel@tonic-gate ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 3220Sstevel@tonic-gate if (copyin(itv, &aitv, sizeof (aitv))) 3230Sstevel@tonic-gate return (EFAULT); 3240Sstevel@tonic-gate } 3250Sstevel@tonic-gate 3260Sstevel@tonic-gate if (which == ITIMER_REALPROF) { 3270Sstevel@tonic-gate min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)), 3280Sstevel@tonic-gate itimer_realprof_minimum); 3290Sstevel@tonic-gate } else { 3300Sstevel@tonic-gate min = usec_per_tick; 3310Sstevel@tonic-gate } 3320Sstevel@tonic-gate 3330Sstevel@tonic-gate if (itimerfix(&aitv.it_value, min) || 3340Sstevel@tonic-gate (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value))) 3350Sstevel@tonic-gate return (EINVAL); 3360Sstevel@tonic-gate 3370Sstevel@tonic-gate mutex_enter(&p->p_lock); 3380Sstevel@tonic-gate switch (which) { 3390Sstevel@tonic-gate case ITIMER_REAL: 3400Sstevel@tonic-gate /* 3410Sstevel@tonic-gate * The SITBUSY flag prevents conflicts with multiple 3420Sstevel@tonic-gate * threads attempting to perform setitimer(ITIMER_REAL) 3430Sstevel@tonic-gate * at the same time, even when we drop p->p_lock below. 3440Sstevel@tonic-gate * Any blocked thread returns successfully because the 3450Sstevel@tonic-gate * effect is the same as if it got here first, finished, 3460Sstevel@tonic-gate * and the other thread then came through and destroyed 3470Sstevel@tonic-gate * what it did. We are just protecting the system from 3480Sstevel@tonic-gate * malfunctioning due to the race condition. 3490Sstevel@tonic-gate */ 3500Sstevel@tonic-gate if (p->p_flag & SITBUSY) { 3510Sstevel@tonic-gate mutex_exit(&p->p_lock); 3520Sstevel@tonic-gate return (0); 3530Sstevel@tonic-gate } 3540Sstevel@tonic-gate p->p_flag |= SITBUSY; 3550Sstevel@tonic-gate while ((tmp_id = p->p_itimerid) != 0) { 3560Sstevel@tonic-gate /* 3570Sstevel@tonic-gate * Avoid deadlock in callout_delete (called from 3580Sstevel@tonic-gate * untimeout) which may go to sleep (while holding 3590Sstevel@tonic-gate * p_lock). Drop p_lock and re-acquire it after 3600Sstevel@tonic-gate * untimeout returns. Need to clear p_itimerid 3610Sstevel@tonic-gate * while holding p_lock. 3620Sstevel@tonic-gate */ 3630Sstevel@tonic-gate p->p_itimerid = 0; 3640Sstevel@tonic-gate mutex_exit(&p->p_lock); 3650Sstevel@tonic-gate (void) untimeout(tmp_id); 3660Sstevel@tonic-gate mutex_enter(&p->p_lock); 3670Sstevel@tonic-gate } 3680Sstevel@tonic-gate if (timerisset(&aitv.it_value)) { 3690Sstevel@tonic-gate uniqtime(&now); 3700Sstevel@tonic-gate timevaladd(&aitv.it_value, &now); 3710Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, 3720Sstevel@tonic-gate p, hzto(&aitv.it_value)); 3730Sstevel@tonic-gate } 3740Sstevel@tonic-gate p->p_realitimer = aitv; 3750Sstevel@tonic-gate p->p_flag &= ~SITBUSY; 3760Sstevel@tonic-gate break; 3770Sstevel@tonic-gate 3780Sstevel@tonic-gate case ITIMER_REALPROF: 3790Sstevel@tonic-gate cyclic = p->p_rprof_cyclic; 3800Sstevel@tonic-gate p->p_rprof_cyclic = CYCLIC_NONE; 3810Sstevel@tonic-gate 3820Sstevel@tonic-gate mutex_exit(&p->p_lock); 3830Sstevel@tonic-gate 3840Sstevel@tonic-gate /* 3850Sstevel@tonic-gate * We're now going to acquire cpu_lock, remove the old cyclic 3860Sstevel@tonic-gate * if necessary, and add our new cyclic. 3870Sstevel@tonic-gate */ 3880Sstevel@tonic-gate mutex_enter(&cpu_lock); 3890Sstevel@tonic-gate 3900Sstevel@tonic-gate if (cyclic != CYCLIC_NONE) 3910Sstevel@tonic-gate cyclic_remove(cyclic); 3920Sstevel@tonic-gate 3930Sstevel@tonic-gate if (!timerisset(&aitv.it_value)) { 3940Sstevel@tonic-gate /* 3950Sstevel@tonic-gate * If we were passed a value of 0, we're done. 3960Sstevel@tonic-gate */ 3970Sstevel@tonic-gate mutex_exit(&cpu_lock); 3980Sstevel@tonic-gate return (0); 3990Sstevel@tonic-gate } 4000Sstevel@tonic-gate 4010Sstevel@tonic-gate hdlr.cyh_func = realprofexpire; 4020Sstevel@tonic-gate hdlr.cyh_arg = p; 4030Sstevel@tonic-gate hdlr.cyh_level = CY_LOW_LEVEL; 4040Sstevel@tonic-gate 4050Sstevel@tonic-gate when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value)); 4060Sstevel@tonic-gate when.cyt_interval = tv2hrt(&aitv.it_interval); 4070Sstevel@tonic-gate 4080Sstevel@tonic-gate if (when.cyt_interval == 0) { 4090Sstevel@tonic-gate /* 4100Sstevel@tonic-gate * Using the same logic as for CLOCK_HIGHRES timers, we 4110Sstevel@tonic-gate * set the interval to be INT64_MAX - when.cyt_when to 4120Sstevel@tonic-gate * effect a one-shot; see the comment in clock_highres.c 4130Sstevel@tonic-gate * for more details on why this works. 4140Sstevel@tonic-gate */ 4150Sstevel@tonic-gate when.cyt_interval = INT64_MAX - when.cyt_when; 4160Sstevel@tonic-gate } 4170Sstevel@tonic-gate 4180Sstevel@tonic-gate cyclic = cyclic_add(&hdlr, &when); 4190Sstevel@tonic-gate 4200Sstevel@tonic-gate mutex_exit(&cpu_lock); 4210Sstevel@tonic-gate 4220Sstevel@tonic-gate /* 4230Sstevel@tonic-gate * We have now successfully added the cyclic. Reacquire 4240Sstevel@tonic-gate * p_lock, and see if anyone has snuck in. 4250Sstevel@tonic-gate */ 4260Sstevel@tonic-gate mutex_enter(&p->p_lock); 4270Sstevel@tonic-gate 4280Sstevel@tonic-gate if (p->p_rprof_cyclic != CYCLIC_NONE) { 4290Sstevel@tonic-gate /* 4300Sstevel@tonic-gate * We're racing with another thread establishing an 4310Sstevel@tonic-gate * ITIMER_REALPROF interval timer. We'll let the other 4320Sstevel@tonic-gate * thread win (this is a race at the application level, 4330Sstevel@tonic-gate * so letting the other thread win is acceptable). 4340Sstevel@tonic-gate */ 4350Sstevel@tonic-gate mutex_exit(&p->p_lock); 4360Sstevel@tonic-gate mutex_enter(&cpu_lock); 4370Sstevel@tonic-gate cyclic_remove(cyclic); 4380Sstevel@tonic-gate mutex_exit(&cpu_lock); 4390Sstevel@tonic-gate 4400Sstevel@tonic-gate return (0); 4410Sstevel@tonic-gate } 4420Sstevel@tonic-gate 4430Sstevel@tonic-gate /* 4440Sstevel@tonic-gate * Success. Set our tracking variables in the proc structure, 4450Sstevel@tonic-gate * cancel any outstanding ITIMER_PROF, and allocate the 4460Sstevel@tonic-gate * per-thread SIGPROF buffers, if possible. 4470Sstevel@tonic-gate */ 4480Sstevel@tonic-gate hrt2tv(ts, &aitv.it_value); 4490Sstevel@tonic-gate p->p_rprof_timer = aitv; 4500Sstevel@tonic-gate p->p_rprof_cyclic = cyclic; 4510Sstevel@tonic-gate 4520Sstevel@tonic-gate t = p->p_tlist; 4530Sstevel@tonic-gate do { 4540Sstevel@tonic-gate struct itimerval *itvp; 4550Sstevel@tonic-gate 4560Sstevel@tonic-gate itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF]; 4570Sstevel@tonic-gate timerclear(&itvp->it_interval); 4580Sstevel@tonic-gate timerclear(&itvp->it_value); 4590Sstevel@tonic-gate 4600Sstevel@tonic-gate if (t->t_rprof != NULL) 4610Sstevel@tonic-gate continue; 4620Sstevel@tonic-gate 4630Sstevel@tonic-gate t->t_rprof = 4640Sstevel@tonic-gate kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP); 4650Sstevel@tonic-gate aston(t); 4660Sstevel@tonic-gate } while ((t = t->t_forw) != p->p_tlist); 4670Sstevel@tonic-gate 4680Sstevel@tonic-gate break; 4690Sstevel@tonic-gate 4700Sstevel@tonic-gate case ITIMER_VIRTUAL: 4710Sstevel@tonic-gate ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv; 4720Sstevel@tonic-gate break; 4730Sstevel@tonic-gate 4740Sstevel@tonic-gate case ITIMER_PROF: 4750Sstevel@tonic-gate if (p->p_rprof_cyclic != CYCLIC_NONE) { 4760Sstevel@tonic-gate /* 4770Sstevel@tonic-gate * Silently ignore ITIMER_PROF if ITIMER_REALPROF 4780Sstevel@tonic-gate * is in effect. 4790Sstevel@tonic-gate */ 4800Sstevel@tonic-gate break; 4810Sstevel@tonic-gate } 4820Sstevel@tonic-gate 4830Sstevel@tonic-gate ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv; 4840Sstevel@tonic-gate break; 4850Sstevel@tonic-gate 4860Sstevel@tonic-gate default: 4870Sstevel@tonic-gate mutex_exit(&p->p_lock); 4880Sstevel@tonic-gate return (EINVAL); 4890Sstevel@tonic-gate } 4900Sstevel@tonic-gate mutex_exit(&p->p_lock); 4910Sstevel@tonic-gate return (0); 4920Sstevel@tonic-gate } 4930Sstevel@tonic-gate 4940Sstevel@tonic-gate /* 4950Sstevel@tonic-gate * Real interval timer expired: 4960Sstevel@tonic-gate * send process whose timer expired an alarm signal. 4970Sstevel@tonic-gate * If time is not set up to reload, then just return. 4980Sstevel@tonic-gate * Else compute next time timer should go off which is > current time. 4990Sstevel@tonic-gate * This is where delay in processing this timeout causes multiple 5000Sstevel@tonic-gate * SIGALRM calls to be compressed into one. 5010Sstevel@tonic-gate */ 5020Sstevel@tonic-gate static void 5030Sstevel@tonic-gate realitexpire(void *arg) 5040Sstevel@tonic-gate { 5050Sstevel@tonic-gate struct proc *p = arg; 5060Sstevel@tonic-gate struct timeval *valp = &p->p_realitimer.it_value; 5070Sstevel@tonic-gate struct timeval *intervalp = &p->p_realitimer.it_interval; 5080Sstevel@tonic-gate #if !defined(_LP64) 5090Sstevel@tonic-gate clock_t ticks; 5100Sstevel@tonic-gate #endif 5110Sstevel@tonic-gate 5120Sstevel@tonic-gate mutex_enter(&p->p_lock); 5130Sstevel@tonic-gate #if !defined(_LP64) 5140Sstevel@tonic-gate if ((ticks = hzto(valp)) > 1) { 5150Sstevel@tonic-gate /* 5160Sstevel@tonic-gate * If we are executing before we were meant to, it must be 5170Sstevel@tonic-gate * because of an overflow in a prior hzto() calculation. 5180Sstevel@tonic-gate * In this case, we want to go to sleep for the recalculated 5190Sstevel@tonic-gate * number of ticks. For the special meaning of the value "1" 5200Sstevel@tonic-gate * see comment in timespectohz(). 5210Sstevel@tonic-gate */ 5220Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, p, ticks); 5230Sstevel@tonic-gate mutex_exit(&p->p_lock); 5240Sstevel@tonic-gate return; 5250Sstevel@tonic-gate } 5260Sstevel@tonic-gate #endif 5270Sstevel@tonic-gate sigtoproc(p, NULL, SIGALRM); 5280Sstevel@tonic-gate if (!timerisset(intervalp)) { 5290Sstevel@tonic-gate timerclear(valp); 5300Sstevel@tonic-gate p->p_itimerid = 0; 5310Sstevel@tonic-gate } else { 5320Sstevel@tonic-gate /* advance timer value past current time */ 5330Sstevel@tonic-gate timeval_advance(valp, intervalp); 5340Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp)); 5350Sstevel@tonic-gate } 5360Sstevel@tonic-gate mutex_exit(&p->p_lock); 5370Sstevel@tonic-gate } 5380Sstevel@tonic-gate 5390Sstevel@tonic-gate /* 5400Sstevel@tonic-gate * Real time profiling interval timer expired: 5410Sstevel@tonic-gate * Increment microstate counters for each lwp in the process 5420Sstevel@tonic-gate * and ensure that running lwps are kicked into the kernel. 5430Sstevel@tonic-gate * If time is not set up to reload, then just return. 5440Sstevel@tonic-gate * Else compute next time timer should go off which is > current time, 5450Sstevel@tonic-gate * as above. 5460Sstevel@tonic-gate */ 5470Sstevel@tonic-gate static void 5480Sstevel@tonic-gate realprofexpire(void *arg) 5490Sstevel@tonic-gate { 5500Sstevel@tonic-gate struct proc *p = arg; 5510Sstevel@tonic-gate kthread_t *t; 5520Sstevel@tonic-gate 5530Sstevel@tonic-gate mutex_enter(&p->p_lock); 5540Sstevel@tonic-gate if ((t = p->p_tlist) == NULL) { 5550Sstevel@tonic-gate mutex_exit(&p->p_lock); 5560Sstevel@tonic-gate return; 5570Sstevel@tonic-gate } 5580Sstevel@tonic-gate do { 5590Sstevel@tonic-gate int mstate; 5600Sstevel@tonic-gate 5610Sstevel@tonic-gate /* 5620Sstevel@tonic-gate * Attempt to allocate the SIGPROF buffer, but don't sleep. 5630Sstevel@tonic-gate */ 5640Sstevel@tonic-gate if (t->t_rprof == NULL) 5650Sstevel@tonic-gate t->t_rprof = kmem_zalloc(sizeof (struct rprof), 5660Sstevel@tonic-gate KM_NOSLEEP); 5670Sstevel@tonic-gate if (t->t_rprof == NULL) 5680Sstevel@tonic-gate continue; 5690Sstevel@tonic-gate 5700Sstevel@tonic-gate thread_lock(t); 5710Sstevel@tonic-gate switch (t->t_state) { 5720Sstevel@tonic-gate case TS_SLEEP: 5730Sstevel@tonic-gate /* 5740Sstevel@tonic-gate * Don't touch the lwp is it is swapped out. 5750Sstevel@tonic-gate */ 5760Sstevel@tonic-gate if (!(t->t_schedflag & TS_LOAD)) { 5770Sstevel@tonic-gate mstate = LMS_SLEEP; 5780Sstevel@tonic-gate break; 5790Sstevel@tonic-gate } 5800Sstevel@tonic-gate switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) { 5810Sstevel@tonic-gate case LMS_TFAULT: 5820Sstevel@tonic-gate case LMS_DFAULT: 5830Sstevel@tonic-gate case LMS_KFAULT: 5840Sstevel@tonic-gate case LMS_USER_LOCK: 5850Sstevel@tonic-gate break; 5860Sstevel@tonic-gate default: 5870Sstevel@tonic-gate mstate = LMS_SLEEP; 5880Sstevel@tonic-gate break; 5890Sstevel@tonic-gate } 5900Sstevel@tonic-gate break; 5910Sstevel@tonic-gate case TS_RUN: 592*3792Sakolb case TS_WAIT: 5930Sstevel@tonic-gate mstate = LMS_WAIT_CPU; 5940Sstevel@tonic-gate break; 5950Sstevel@tonic-gate case TS_ONPROC: 5960Sstevel@tonic-gate switch (mstate = t->t_mstate) { 5970Sstevel@tonic-gate case LMS_USER: 5980Sstevel@tonic-gate case LMS_SYSTEM: 5990Sstevel@tonic-gate case LMS_TRAP: 6000Sstevel@tonic-gate break; 6010Sstevel@tonic-gate default: 6020Sstevel@tonic-gate mstate = LMS_SYSTEM; 6030Sstevel@tonic-gate break; 6040Sstevel@tonic-gate } 6050Sstevel@tonic-gate break; 6060Sstevel@tonic-gate default: 6070Sstevel@tonic-gate mstate = t->t_mstate; 6080Sstevel@tonic-gate break; 6090Sstevel@tonic-gate } 6100Sstevel@tonic-gate t->t_rprof->rp_anystate = 1; 6110Sstevel@tonic-gate t->t_rprof->rp_state[mstate]++; 6120Sstevel@tonic-gate aston(t); 6130Sstevel@tonic-gate /* 6140Sstevel@tonic-gate * force the thread into the kernel 6150Sstevel@tonic-gate * if it is not already there. 6160Sstevel@tonic-gate */ 6170Sstevel@tonic-gate if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 6180Sstevel@tonic-gate poke_cpu(t->t_cpu->cpu_id); 6190Sstevel@tonic-gate thread_unlock(t); 6200Sstevel@tonic-gate } while ((t = t->t_forw) != p->p_tlist); 6210Sstevel@tonic-gate 6220Sstevel@tonic-gate mutex_exit(&p->p_lock); 6230Sstevel@tonic-gate } 6240Sstevel@tonic-gate 6250Sstevel@tonic-gate /* 6260Sstevel@tonic-gate * Advances timer value past the current time of day. See the detailed 6270Sstevel@tonic-gate * comment for this logic in realitsexpire(), above. 6280Sstevel@tonic-gate */ 6290Sstevel@tonic-gate static void 6300Sstevel@tonic-gate timeval_advance(struct timeval *valp, struct timeval *intervalp) 6310Sstevel@tonic-gate { 6320Sstevel@tonic-gate int cnt2nth; 6330Sstevel@tonic-gate struct timeval interval2nth; 6340Sstevel@tonic-gate 6350Sstevel@tonic-gate for (;;) { 6360Sstevel@tonic-gate interval2nth = *intervalp; 6370Sstevel@tonic-gate for (cnt2nth = 0; ; cnt2nth++) { 6380Sstevel@tonic-gate timevaladd(valp, &interval2nth); 6390Sstevel@tonic-gate /*CSTYLED*/ 6400Sstevel@tonic-gate if (TVTSCMP(valp, &hrestime, >)) 6410Sstevel@tonic-gate break; 6420Sstevel@tonic-gate timevaladd(&interval2nth, &interval2nth); 6430Sstevel@tonic-gate } 6440Sstevel@tonic-gate if (cnt2nth == 0) 6450Sstevel@tonic-gate break; 6460Sstevel@tonic-gate timevalsub(valp, &interval2nth); 6470Sstevel@tonic-gate } 6480Sstevel@tonic-gate } 6490Sstevel@tonic-gate 6500Sstevel@tonic-gate /* 6510Sstevel@tonic-gate * Check that a proposed value to load into the .it_value or .it_interval 6520Sstevel@tonic-gate * part of an interval timer is acceptable, and set it to at least a 6530Sstevel@tonic-gate * specified minimal value. 6540Sstevel@tonic-gate */ 6550Sstevel@tonic-gate int 6560Sstevel@tonic-gate itimerfix(struct timeval *tv, int minimum) 6570Sstevel@tonic-gate { 6580Sstevel@tonic-gate if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 6590Sstevel@tonic-gate tv->tv_usec < 0 || tv->tv_usec >= MICROSEC) 6600Sstevel@tonic-gate return (EINVAL); 6610Sstevel@tonic-gate if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum) 6620Sstevel@tonic-gate tv->tv_usec = minimum; 6630Sstevel@tonic-gate return (0); 6640Sstevel@tonic-gate } 6650Sstevel@tonic-gate 6660Sstevel@tonic-gate /* 6670Sstevel@tonic-gate * Same as itimerfix, except a) it takes a timespec instead of a timeval and 6680Sstevel@tonic-gate * b) it doesn't truncate based on timeout granularity; consumers of this 6690Sstevel@tonic-gate * interface (e.g. timer_settime()) depend on the passed timespec not being 6700Sstevel@tonic-gate * modified implicitly. 6710Sstevel@tonic-gate */ 6720Sstevel@tonic-gate int 6730Sstevel@tonic-gate itimerspecfix(timespec_t *tv) 6740Sstevel@tonic-gate { 6750Sstevel@tonic-gate if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC) 6760Sstevel@tonic-gate return (EINVAL); 6770Sstevel@tonic-gate return (0); 6780Sstevel@tonic-gate } 6790Sstevel@tonic-gate 6800Sstevel@tonic-gate /* 6810Sstevel@tonic-gate * Decrement an interval timer by a specified number 6820Sstevel@tonic-gate * of microseconds, which must be less than a second, 6830Sstevel@tonic-gate * i.e. < 1000000. If the timer expires, then reload 6840Sstevel@tonic-gate * it. In this case, carry over (usec - old value) to 6850Sstevel@tonic-gate * reducint the value reloaded into the timer so that 6860Sstevel@tonic-gate * the timer does not drift. This routine assumes 6870Sstevel@tonic-gate * that it is called in a context where the timers 6880Sstevel@tonic-gate * on which it is operating cannot change in value. 6890Sstevel@tonic-gate */ 6900Sstevel@tonic-gate int 6910Sstevel@tonic-gate itimerdecr(struct itimerval *itp, int usec) 6920Sstevel@tonic-gate { 6930Sstevel@tonic-gate if (itp->it_value.tv_usec < usec) { 6940Sstevel@tonic-gate if (itp->it_value.tv_sec == 0) { 6950Sstevel@tonic-gate /* expired, and already in next interval */ 6960Sstevel@tonic-gate usec -= itp->it_value.tv_usec; 6970Sstevel@tonic-gate goto expire; 6980Sstevel@tonic-gate } 6990Sstevel@tonic-gate itp->it_value.tv_usec += MICROSEC; 7000Sstevel@tonic-gate itp->it_value.tv_sec--; 7010Sstevel@tonic-gate } 7020Sstevel@tonic-gate itp->it_value.tv_usec -= usec; 7030Sstevel@tonic-gate usec = 0; 7040Sstevel@tonic-gate if (timerisset(&itp->it_value)) 7050Sstevel@tonic-gate return (1); 7060Sstevel@tonic-gate /* expired, exactly at end of interval */ 7070Sstevel@tonic-gate expire: 7080Sstevel@tonic-gate if (timerisset(&itp->it_interval)) { 7090Sstevel@tonic-gate itp->it_value = itp->it_interval; 7100Sstevel@tonic-gate itp->it_value.tv_usec -= usec; 7110Sstevel@tonic-gate if (itp->it_value.tv_usec < 0) { 7120Sstevel@tonic-gate itp->it_value.tv_usec += MICROSEC; 7130Sstevel@tonic-gate itp->it_value.tv_sec--; 7140Sstevel@tonic-gate } 7150Sstevel@tonic-gate } else 7160Sstevel@tonic-gate itp->it_value.tv_usec = 0; /* sec is already 0 */ 7170Sstevel@tonic-gate return (0); 7180Sstevel@tonic-gate } 7190Sstevel@tonic-gate 7200Sstevel@tonic-gate /* 7210Sstevel@tonic-gate * Add and subtract routines for timevals. 7220Sstevel@tonic-gate * N.B.: subtract routine doesn't deal with 7230Sstevel@tonic-gate * results which are before the beginning, 7240Sstevel@tonic-gate * it just gets very confused in this case. 7250Sstevel@tonic-gate * Caveat emptor. 7260Sstevel@tonic-gate */ 7270Sstevel@tonic-gate void 7280Sstevel@tonic-gate timevaladd(struct timeval *t1, struct timeval *t2) 7290Sstevel@tonic-gate { 7300Sstevel@tonic-gate t1->tv_sec += t2->tv_sec; 7310Sstevel@tonic-gate t1->tv_usec += t2->tv_usec; 7320Sstevel@tonic-gate timevalfix(t1); 7330Sstevel@tonic-gate } 7340Sstevel@tonic-gate 7350Sstevel@tonic-gate void 7360Sstevel@tonic-gate timevalsub(struct timeval *t1, struct timeval *t2) 7370Sstevel@tonic-gate { 7380Sstevel@tonic-gate t1->tv_sec -= t2->tv_sec; 7390Sstevel@tonic-gate t1->tv_usec -= t2->tv_usec; 7400Sstevel@tonic-gate timevalfix(t1); 7410Sstevel@tonic-gate } 7420Sstevel@tonic-gate 7430Sstevel@tonic-gate void 7440Sstevel@tonic-gate timevalfix(struct timeval *t1) 7450Sstevel@tonic-gate { 7460Sstevel@tonic-gate if (t1->tv_usec < 0) { 7470Sstevel@tonic-gate t1->tv_sec--; 7480Sstevel@tonic-gate t1->tv_usec += MICROSEC; 7490Sstevel@tonic-gate } 7500Sstevel@tonic-gate if (t1->tv_usec >= MICROSEC) { 7510Sstevel@tonic-gate t1->tv_sec++; 7520Sstevel@tonic-gate t1->tv_usec -= MICROSEC; 7530Sstevel@tonic-gate } 7540Sstevel@tonic-gate } 7550Sstevel@tonic-gate 7560Sstevel@tonic-gate /* 7570Sstevel@tonic-gate * Same as the routines above. These routines take a timespec instead 7580Sstevel@tonic-gate * of a timeval. 7590Sstevel@tonic-gate */ 7600Sstevel@tonic-gate void 7610Sstevel@tonic-gate timespecadd(timespec_t *t1, timespec_t *t2) 7620Sstevel@tonic-gate { 7630Sstevel@tonic-gate t1->tv_sec += t2->tv_sec; 7640Sstevel@tonic-gate t1->tv_nsec += t2->tv_nsec; 7650Sstevel@tonic-gate timespecfix(t1); 7660Sstevel@tonic-gate } 7670Sstevel@tonic-gate 7680Sstevel@tonic-gate void 7690Sstevel@tonic-gate timespecsub(timespec_t *t1, timespec_t *t2) 7700Sstevel@tonic-gate { 7710Sstevel@tonic-gate t1->tv_sec -= t2->tv_sec; 7720Sstevel@tonic-gate t1->tv_nsec -= t2->tv_nsec; 7730Sstevel@tonic-gate timespecfix(t1); 7740Sstevel@tonic-gate } 7750Sstevel@tonic-gate 7760Sstevel@tonic-gate void 7770Sstevel@tonic-gate timespecfix(timespec_t *t1) 7780Sstevel@tonic-gate { 7790Sstevel@tonic-gate if (t1->tv_nsec < 0) { 7800Sstevel@tonic-gate t1->tv_sec--; 7810Sstevel@tonic-gate t1->tv_nsec += NANOSEC; 7820Sstevel@tonic-gate } else { 7830Sstevel@tonic-gate if (t1->tv_nsec >= NANOSEC) { 7840Sstevel@tonic-gate t1->tv_sec++; 7850Sstevel@tonic-gate t1->tv_nsec -= NANOSEC; 7860Sstevel@tonic-gate } 7870Sstevel@tonic-gate } 7880Sstevel@tonic-gate } 7890Sstevel@tonic-gate 7900Sstevel@tonic-gate /* 7910Sstevel@tonic-gate * Compute number of hz until specified time. 7920Sstevel@tonic-gate * Used to compute third argument to timeout() from an absolute time. 7930Sstevel@tonic-gate */ 7940Sstevel@tonic-gate clock_t 7950Sstevel@tonic-gate hzto(struct timeval *tv) 7960Sstevel@tonic-gate { 7970Sstevel@tonic-gate timespec_t ts, now; 7980Sstevel@tonic-gate 7990Sstevel@tonic-gate ts.tv_sec = tv->tv_sec; 8000Sstevel@tonic-gate ts.tv_nsec = tv->tv_usec * 1000; 8010Sstevel@tonic-gate gethrestime_lasttick(&now); 8020Sstevel@tonic-gate 8030Sstevel@tonic-gate return (timespectohz(&ts, now)); 8040Sstevel@tonic-gate } 8050Sstevel@tonic-gate 8060Sstevel@tonic-gate /* 8070Sstevel@tonic-gate * Compute number of hz until specified time for a given timespec value. 8080Sstevel@tonic-gate * Used to compute third argument to timeout() from an absolute time. 8090Sstevel@tonic-gate */ 8100Sstevel@tonic-gate clock_t 8110Sstevel@tonic-gate timespectohz(timespec_t *tv, timespec_t now) 8120Sstevel@tonic-gate { 8130Sstevel@tonic-gate clock_t ticks; 8140Sstevel@tonic-gate time_t sec; 8150Sstevel@tonic-gate int nsec; 8160Sstevel@tonic-gate 8170Sstevel@tonic-gate /* 8180Sstevel@tonic-gate * Compute number of ticks we will see between now and 8190Sstevel@tonic-gate * the target time; returns "1" if the destination time 8200Sstevel@tonic-gate * is before the next tick, so we always get some delay, 8210Sstevel@tonic-gate * and returns LONG_MAX ticks if we would overflow. 8220Sstevel@tonic-gate */ 8230Sstevel@tonic-gate sec = tv->tv_sec - now.tv_sec; 8240Sstevel@tonic-gate nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1; 8250Sstevel@tonic-gate 8260Sstevel@tonic-gate if (nsec < 0) { 8270Sstevel@tonic-gate sec--; 8280Sstevel@tonic-gate nsec += NANOSEC; 8290Sstevel@tonic-gate } else if (nsec >= NANOSEC) { 8300Sstevel@tonic-gate sec++; 8310Sstevel@tonic-gate nsec -= NANOSEC; 8320Sstevel@tonic-gate } 8330Sstevel@tonic-gate 8340Sstevel@tonic-gate ticks = NSEC_TO_TICK(nsec); 8350Sstevel@tonic-gate 8360Sstevel@tonic-gate /* 8370Sstevel@tonic-gate * Compute ticks, accounting for negative and overflow as above. 8380Sstevel@tonic-gate * Overflow protection kicks in at about 70 weeks for hz=50 8390Sstevel@tonic-gate * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 8400Sstevel@tonic-gate * kernel :-) 8410Sstevel@tonic-gate */ 8420Sstevel@tonic-gate if (sec < 0 || (sec == 0 && ticks < 1)) 8430Sstevel@tonic-gate ticks = 1; /* protect vs nonpositive */ 8440Sstevel@tonic-gate else if (sec > (LONG_MAX - ticks) / hz) 8450Sstevel@tonic-gate ticks = LONG_MAX; /* protect vs overflow */ 8460Sstevel@tonic-gate else 8470Sstevel@tonic-gate ticks += sec * hz; /* common case */ 8480Sstevel@tonic-gate 8490Sstevel@tonic-gate return (ticks); 8500Sstevel@tonic-gate } 8510Sstevel@tonic-gate 8520Sstevel@tonic-gate /* 8530Sstevel@tonic-gate * hrt2ts(): convert from hrtime_t to timestruc_t. 8540Sstevel@tonic-gate * 8550Sstevel@tonic-gate * All this routine really does is: 8560Sstevel@tonic-gate * 8570Sstevel@tonic-gate * tsp->sec = hrt / NANOSEC; 8580Sstevel@tonic-gate * tsp->nsec = hrt % NANOSEC; 8590Sstevel@tonic-gate * 8600Sstevel@tonic-gate * The black magic below avoids doing a 64-bit by 32-bit integer divide, 8610Sstevel@tonic-gate * which is quite expensive. There's actually much more going on here than 8620Sstevel@tonic-gate * it might first appear -- don't try this at home. 8630Sstevel@tonic-gate * 8640Sstevel@tonic-gate * For the adventuresome, here's an explanation of how it works. 8650Sstevel@tonic-gate * 8660Sstevel@tonic-gate * Multiplication by a fixed constant is easy -- you just do the appropriate 8670Sstevel@tonic-gate * shifts and adds. For example, to multiply by 10, we observe that 8680Sstevel@tonic-gate * 8690Sstevel@tonic-gate * x * 10 = x * (8 + 2) 8700Sstevel@tonic-gate * = (x * 8) + (x * 2) 8710Sstevel@tonic-gate * = (x << 3) + (x << 1). 8720Sstevel@tonic-gate * 8730Sstevel@tonic-gate * In general, you can read the algorithm right off the bits: the number 10 8740Sstevel@tonic-gate * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3). 8750Sstevel@tonic-gate * 8760Sstevel@tonic-gate * Sometimes you can do better. For example, 15 is 1111 binary, so the normal 8770Sstevel@tonic-gate * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3). 8780Sstevel@tonic-gate * But, it's cheaper if you capitalize on the fact that you have a run of ones: 8790Sstevel@tonic-gate * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0). [You would never 8800Sstevel@tonic-gate * actually perform the operation << 0, since it's a no-op; I'm just writing 8810Sstevel@tonic-gate * it that way for clarity.] 8820Sstevel@tonic-gate * 8830Sstevel@tonic-gate * The other way you can win is if you get lucky with the prime factorization 8840Sstevel@tonic-gate * of your constant. The number 1,000,000,000, which we have to multiply 8850Sstevel@tonic-gate * by below, is a good example. One billion is 111011100110101100101000000000 8860Sstevel@tonic-gate * in binary. If you apply the bit-grouping trick, it doesn't buy you very 8870Sstevel@tonic-gate * much, because it's only a win for groups of three or more equal bits: 8880Sstevel@tonic-gate * 8890Sstevel@tonic-gate * 111011100110101100101000000000 = 1000000000000000000000000000000 8900Sstevel@tonic-gate * - 000100011001010011011000000000 8910Sstevel@tonic-gate * 8920Sstevel@tonic-gate * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS, 8930Sstevel@tonic-gate * we have reduced this to 10 shift/add pairs (20 operations) on the RHS. 8940Sstevel@tonic-gate * This is better, but not great. 8950Sstevel@tonic-gate * 8960Sstevel@tonic-gate * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125, 8970Sstevel@tonic-gate * and multiply by each factor. Multiplication by 125 is particularly easy, 8980Sstevel@tonic-gate * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four 8990Sstevel@tonic-gate * operations. So, to multiply by 1,000,000,000, we perform three multipli- 9000Sstevel@tonic-gate * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations. 9010Sstevel@tonic-gate * This is the algorithm we actually use in both hrt2ts() and ts2hrt(). 9020Sstevel@tonic-gate * 9030Sstevel@tonic-gate * Division is harder; there is no equivalent of the simple shift-add algorithm 9040Sstevel@tonic-gate * we used for multiplication. However, we can convert the division problem 9050Sstevel@tonic-gate * into a multiplication problem by pre-computing the binary representation 9060Sstevel@tonic-gate * of the reciprocal of the divisor. For the case of interest, we have 9070Sstevel@tonic-gate * 9080Sstevel@tonic-gate * 1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30, 9090Sstevel@tonic-gate * 9100Sstevel@tonic-gate * to 32 bits of precision. (The notation B-30 means "* 2^-30", just like 9110Sstevel@tonic-gate * E-18 means "* 10^-18".) 9120Sstevel@tonic-gate * 9130Sstevel@tonic-gate * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit 9140Sstevel@tonic-gate * integer 10001001011100000101111101000001, then normalize (shift) the 9150Sstevel@tonic-gate * result. This constant has several large bits runs, so the multiply 9160Sstevel@tonic-gate * is relatively cheap: 9170Sstevel@tonic-gate * 9180Sstevel@tonic-gate * 10001001011100000101111101000001 = 10001001100000000110000001000001 9190Sstevel@tonic-gate * - 00000000000100000000000100000000 9200Sstevel@tonic-gate * 9210Sstevel@tonic-gate * Again, you can just read the algorithm right off the bits: 9220Sstevel@tonic-gate * 9230Sstevel@tonic-gate * sec = hrt; 9240Sstevel@tonic-gate * sec += (hrt << 6); 9250Sstevel@tonic-gate * sec -= (hrt << 8); 9260Sstevel@tonic-gate * sec += (hrt << 13); 9270Sstevel@tonic-gate * sec += (hrt << 14); 9280Sstevel@tonic-gate * sec -= (hrt << 20); 9290Sstevel@tonic-gate * sec += (hrt << 23); 9300Sstevel@tonic-gate * sec += (hrt << 24); 9310Sstevel@tonic-gate * sec += (hrt << 27); 9320Sstevel@tonic-gate * sec += (hrt << 31); 9330Sstevel@tonic-gate * sec >>= (32 + 30); 9340Sstevel@tonic-gate * 9350Sstevel@tonic-gate * Voila! The only problem is, since hrt is 64 bits, we need to use 96-bit 9360Sstevel@tonic-gate * arithmetic to perform this calculation. That's a waste, because ultimately 9370Sstevel@tonic-gate * we only need the highest 32 bits of the result. 9380Sstevel@tonic-gate * 9390Sstevel@tonic-gate * The first thing we do is to realize that we don't need to use all of hrt 9400Sstevel@tonic-gate * in the calculation. The lowest 30 bits can contribute at most 1 to the 9410Sstevel@tonic-gate * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later. 9420Sstevel@tonic-gate * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t. 9430Sstevel@tonic-gate * Thus, the only bits of hrt that matter for division are bits 30..61. 9440Sstevel@tonic-gate * These 32 bits are just the lower-order word of (hrt >> 30). This brings 9450Sstevel@tonic-gate * us down from 96-bit math to 64-bit math, and our algorithm becomes: 9460Sstevel@tonic-gate * 9470Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 9480Sstevel@tonic-gate * sec = tmp; 9490Sstevel@tonic-gate * sec += (tmp << 6); 9500Sstevel@tonic-gate * sec -= (tmp << 8); 9510Sstevel@tonic-gate * sec += (tmp << 13); 9520Sstevel@tonic-gate * sec += (tmp << 14); 9530Sstevel@tonic-gate * sec -= (tmp << 20); 9540Sstevel@tonic-gate * sec += (tmp << 23); 9550Sstevel@tonic-gate * sec += (tmp << 24); 9560Sstevel@tonic-gate * sec += (tmp << 27); 9570Sstevel@tonic-gate * sec += (tmp << 31); 9580Sstevel@tonic-gate * sec >>= 32; 9590Sstevel@tonic-gate * 9600Sstevel@tonic-gate * Next, we're going to reduce this 64-bit computation to a 32-bit 9610Sstevel@tonic-gate * computation. We begin by rewriting the above algorithm to use relative 9620Sstevel@tonic-gate * shifts instead of absolute shifts. That is, instead of computing 9630Sstevel@tonic-gate * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally: 9640Sstevel@tonic-gate * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc: 9650Sstevel@tonic-gate * 9660Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 9670Sstevel@tonic-gate * sec = tmp; 9680Sstevel@tonic-gate * tmp <<= 6; sec += tmp; 9690Sstevel@tonic-gate * tmp <<= 2; sec -= tmp; 9700Sstevel@tonic-gate * tmp <<= 5; sec += tmp; 9710Sstevel@tonic-gate * tmp <<= 1; sec += tmp; 9720Sstevel@tonic-gate * tmp <<= 6; sec -= tmp; 9730Sstevel@tonic-gate * tmp <<= 3; sec += tmp; 9740Sstevel@tonic-gate * tmp <<= 1; sec += tmp; 9750Sstevel@tonic-gate * tmp <<= 3; sec += tmp; 9760Sstevel@tonic-gate * tmp <<= 4; sec += tmp; 9770Sstevel@tonic-gate * sec >>= 32; 9780Sstevel@tonic-gate * 9790Sstevel@tonic-gate * Now for the final step. Instead of throwing away the low 32 bits at 9800Sstevel@tonic-gate * the end, we can throw them away as we go, only keeping the high 32 bits 9810Sstevel@tonic-gate * of the product at each step. So, for example, where we now have 9820Sstevel@tonic-gate * 9830Sstevel@tonic-gate * tmp <<= 6; sec = sec + tmp; 9840Sstevel@tonic-gate * we will instead have 9850Sstevel@tonic-gate * tmp <<= 6; sec = (sec + tmp) >> 6; 9860Sstevel@tonic-gate * which is equivalent to 9870Sstevel@tonic-gate * sec = (sec >> 6) + tmp; 9880Sstevel@tonic-gate * 9890Sstevel@tonic-gate * The final shift ("sec >>= 32") goes away. 9900Sstevel@tonic-gate * 9910Sstevel@tonic-gate * All we're really doing here is long multiplication, just like we learned in 9920Sstevel@tonic-gate * grade school, except that at each step, we only look at the leftmost 32 9930Sstevel@tonic-gate * columns. The cumulative error is, at most, the sum of all the bits we 9940Sstevel@tonic-gate * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32. 9950Sstevel@tonic-gate * Thus, the final result ("sec") is correct to +/- 1. 9960Sstevel@tonic-gate * 9970Sstevel@tonic-gate * It turns out to be important to keep "sec" positive at each step, because 9980Sstevel@tonic-gate * we don't want to have to explicitly extend the sign bit. Therefore, 9990Sstevel@tonic-gate * starting with the last line of code above, each line that would have read 10000Sstevel@tonic-gate * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and 10010Sstevel@tonic-gate * the operators (+ or -) in all previous lines must be toggled accordingly. 10020Sstevel@tonic-gate * Thus, we end up with: 10030Sstevel@tonic-gate * 10040Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 10050Sstevel@tonic-gate * sec = tmp + (sec >> 6); 10060Sstevel@tonic-gate * sec = tmp - (tmp >> 2); 10070Sstevel@tonic-gate * sec = tmp - (sec >> 5); 10080Sstevel@tonic-gate * sec = tmp + (sec >> 1); 10090Sstevel@tonic-gate * sec = tmp - (sec >> 6); 10100Sstevel@tonic-gate * sec = tmp - (sec >> 3); 10110Sstevel@tonic-gate * sec = tmp + (sec >> 1); 10120Sstevel@tonic-gate * sec = tmp + (sec >> 3); 10130Sstevel@tonic-gate * sec = tmp + (sec >> 4); 10140Sstevel@tonic-gate * 10150Sstevel@tonic-gate * This yields a value for sec that is accurate to +1/-1, so we have two 10160Sstevel@tonic-gate * cases to deal with. The mysterious-looking "+ 7" in the code below biases 10170Sstevel@tonic-gate * the rounding toward zero, so that sec is always less than or equal to 10180Sstevel@tonic-gate * the correct value. With this modified code, sec is accurate to +0/-2, with 10190Sstevel@tonic-gate * the -2 case being very rare in practice. With this change, we only have to 10200Sstevel@tonic-gate * deal with one case (sec too small) in the cleanup code. 10210Sstevel@tonic-gate * 10220Sstevel@tonic-gate * The other modification we make is to delete the second line above 10230Sstevel@tonic-gate * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is 10240Sstevel@tonic-gate * set, and the cleanup code can handle that rare case. This reduces the 10250Sstevel@tonic-gate * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases. 10260Sstevel@tonic-gate * 10270Sstevel@tonic-gate * Finally, we compute nsec = hrt - (sec * 1,000,000,000). nsec will always 10280Sstevel@tonic-gate * be positive (since sec is never too large), and will at most be equal to 10290Sstevel@tonic-gate * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt. 10300Sstevel@tonic-gate * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can 10310Sstevel@tonic-gate * safely assume that nsec fits in 32 bits. Consequently, when we compute 10320Sstevel@tonic-gate * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit 10330Sstevel@tonic-gate * arithmetic and let the high-order bits fall off the end. 10340Sstevel@tonic-gate * 10350Sstevel@tonic-gate * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop: 10360Sstevel@tonic-gate * 10370Sstevel@tonic-gate * while (nsec >= NANOSEC) { 10380Sstevel@tonic-gate * nsec -= NANOSEC; 10390Sstevel@tonic-gate * sec++; 10400Sstevel@tonic-gate * } 10410Sstevel@tonic-gate * 10420Sstevel@tonic-gate * is guaranteed to complete in at most 4 iterations. In practice, the loop 10430Sstevel@tonic-gate * completes in 0 or 1 iteration over 95% of the time. 10440Sstevel@tonic-gate * 10450Sstevel@tonic-gate * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about 10460Sstevel@tonic-gate * 35 usec for software division -- about 20 times faster. 10470Sstevel@tonic-gate */ 10480Sstevel@tonic-gate void 10490Sstevel@tonic-gate hrt2ts(hrtime_t hrt, timestruc_t *tsp) 10500Sstevel@tonic-gate { 10510Sstevel@tonic-gate uint32_t sec, nsec, tmp; 10520Sstevel@tonic-gate 10530Sstevel@tonic-gate tmp = (uint32_t)(hrt >> 30); 10540Sstevel@tonic-gate sec = tmp - (tmp >> 2); 10550Sstevel@tonic-gate sec = tmp - (sec >> 5); 10560Sstevel@tonic-gate sec = tmp + (sec >> 1); 10570Sstevel@tonic-gate sec = tmp - (sec >> 6) + 7; 10580Sstevel@tonic-gate sec = tmp - (sec >> 3); 10590Sstevel@tonic-gate sec = tmp + (sec >> 1); 10600Sstevel@tonic-gate sec = tmp + (sec >> 3); 10610Sstevel@tonic-gate sec = tmp + (sec >> 4); 10620Sstevel@tonic-gate tmp = (sec << 7) - sec - sec - sec; 10630Sstevel@tonic-gate tmp = (tmp << 7) - tmp - tmp - tmp; 10640Sstevel@tonic-gate tmp = (tmp << 7) - tmp - tmp - tmp; 10650Sstevel@tonic-gate nsec = (uint32_t)hrt - (tmp << 9); 10660Sstevel@tonic-gate while (nsec >= NANOSEC) { 10670Sstevel@tonic-gate nsec -= NANOSEC; 10680Sstevel@tonic-gate sec++; 10690Sstevel@tonic-gate } 10700Sstevel@tonic-gate tsp->tv_sec = (time_t)sec; 10710Sstevel@tonic-gate tsp->tv_nsec = nsec; 10720Sstevel@tonic-gate } 10730Sstevel@tonic-gate 10740Sstevel@tonic-gate /* 10750Sstevel@tonic-gate * Convert from timestruc_t to hrtime_t. 10760Sstevel@tonic-gate * 10770Sstevel@tonic-gate * The code below is equivalent to: 10780Sstevel@tonic-gate * 10790Sstevel@tonic-gate * hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec; 10800Sstevel@tonic-gate * 10810Sstevel@tonic-gate * but requires no integer multiply. 10820Sstevel@tonic-gate */ 10830Sstevel@tonic-gate hrtime_t 10840Sstevel@tonic-gate ts2hrt(const timestruc_t *tsp) 10850Sstevel@tonic-gate { 10860Sstevel@tonic-gate hrtime_t hrt; 10870Sstevel@tonic-gate 10880Sstevel@tonic-gate hrt = tsp->tv_sec; 10890Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 10900Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 10910Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 10920Sstevel@tonic-gate hrt = (hrt << 9) + tsp->tv_nsec; 10930Sstevel@tonic-gate return (hrt); 10940Sstevel@tonic-gate } 10950Sstevel@tonic-gate 10960Sstevel@tonic-gate /* 10970Sstevel@tonic-gate * For the various 32-bit "compatibility" paths in the system. 10980Sstevel@tonic-gate */ 10990Sstevel@tonic-gate void 11000Sstevel@tonic-gate hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p) 11010Sstevel@tonic-gate { 11020Sstevel@tonic-gate timestruc_t ts; 11030Sstevel@tonic-gate 11040Sstevel@tonic-gate hrt2ts(hrt, &ts); 11050Sstevel@tonic-gate TIMESPEC_TO_TIMESPEC32(ts32p, &ts); 11060Sstevel@tonic-gate } 11070Sstevel@tonic-gate 11080Sstevel@tonic-gate /* 11090Sstevel@tonic-gate * If this ever becomes performance critical (ha!), we can borrow the 11100Sstevel@tonic-gate * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the 11110Sstevel@tonic-gate * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by 11120Sstevel@tonic-gate * 1,000. For now, we'll opt for readability (besides, the compiler does 11130Sstevel@tonic-gate * a passable job of optimizing constant multiplication into shifts and adds). 11140Sstevel@tonic-gate */ 11150Sstevel@tonic-gate hrtime_t 11160Sstevel@tonic-gate tv2hrt(struct timeval *tvp) 11170Sstevel@tonic-gate { 11180Sstevel@tonic-gate return ((hrtime_t)tvp->tv_sec * NANOSEC + 11190Sstevel@tonic-gate (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC)); 11200Sstevel@tonic-gate } 11210Sstevel@tonic-gate 11220Sstevel@tonic-gate void 11231432Sandyb hrt2tv(hrtime_t hrt, struct timeval *tvp) 11240Sstevel@tonic-gate { 11251432Sandyb uint32_t sec, nsec, tmp; 11261432Sandyb uint32_t q, r, t; 11271432Sandyb 11281432Sandyb tmp = (uint32_t)(hrt >> 30); 11291432Sandyb sec = tmp - (tmp >> 2); 11301432Sandyb sec = tmp - (sec >> 5); 11311432Sandyb sec = tmp + (sec >> 1); 11321432Sandyb sec = tmp - (sec >> 6) + 7; 11331432Sandyb sec = tmp - (sec >> 3); 11341432Sandyb sec = tmp + (sec >> 1); 11351432Sandyb sec = tmp + (sec >> 3); 11361432Sandyb sec = tmp + (sec >> 4); 11371432Sandyb tmp = (sec << 7) - sec - sec - sec; 11381432Sandyb tmp = (tmp << 7) - tmp - tmp - tmp; 11391432Sandyb tmp = (tmp << 7) - tmp - tmp - tmp; 11401432Sandyb nsec = (uint32_t)hrt - (tmp << 9); 11411432Sandyb while (nsec >= NANOSEC) { 11421432Sandyb nsec -= NANOSEC; 11431432Sandyb sec++; 11441432Sandyb } 11451432Sandyb tvp->tv_sec = (time_t)sec; 11461432Sandyb /* 11471432Sandyb * this routine is very similar to hr2ts, but requires microseconds 11481432Sandyb * instead of nanoseconds, so an interger divide by 1000 routine 11491432Sandyb * completes the conversion 11501432Sandyb */ 11511432Sandyb t = (nsec >> 7) + (nsec >> 8) + (nsec >> 12); 11521432Sandyb q = (nsec >> 1) + t + (nsec >> 15) + (t >> 11) + (t >> 14); 11531432Sandyb q = q >> 9; 11541432Sandyb r = nsec - q*1000; 11551432Sandyb tvp->tv_usec = q + ((r + 24) >> 10); 11561432Sandyb 11570Sstevel@tonic-gate } 11580Sstevel@tonic-gate 11590Sstevel@tonic-gate int 11600Sstevel@tonic-gate nanosleep(timespec_t *rqtp, timespec_t *rmtp) 11610Sstevel@tonic-gate { 11620Sstevel@tonic-gate timespec_t rqtime; 11630Sstevel@tonic-gate timespec_t rmtime; 11640Sstevel@tonic-gate timespec_t now; 11650Sstevel@tonic-gate int ret = 1; 11660Sstevel@tonic-gate model_t datamodel = get_udatamodel(); 11670Sstevel@tonic-gate 11680Sstevel@tonic-gate if (datamodel == DATAMODEL_NATIVE) { 11690Sstevel@tonic-gate if (copyin(rqtp, &rqtime, sizeof (rqtime))) 11700Sstevel@tonic-gate return (set_errno(EFAULT)); 11710Sstevel@tonic-gate } else { 11720Sstevel@tonic-gate timespec32_t rqtime32; 11730Sstevel@tonic-gate 11740Sstevel@tonic-gate if (copyin(rqtp, &rqtime32, sizeof (rqtime32))) 11750Sstevel@tonic-gate return (set_errno(EFAULT)); 11760Sstevel@tonic-gate TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32); 11770Sstevel@tonic-gate } 11780Sstevel@tonic-gate 11790Sstevel@tonic-gate if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 || 11800Sstevel@tonic-gate rqtime.tv_nsec >= NANOSEC) 11810Sstevel@tonic-gate return (set_errno(EINVAL)); 11820Sstevel@tonic-gate 11830Sstevel@tonic-gate if (timerspecisset(&rqtime)) { 11840Sstevel@tonic-gate gethrestime(&now); 11850Sstevel@tonic-gate timespecadd(&rqtime, &now); 11860Sstevel@tonic-gate mutex_enter(&curthread->t_delay_lock); 11870Sstevel@tonic-gate while ((ret = cv_waituntil_sig(&curthread->t_delay_cv, 11883642Sqiao &curthread->t_delay_lock, &rqtime)) > 0) 11890Sstevel@tonic-gate continue; 11900Sstevel@tonic-gate mutex_exit(&curthread->t_delay_lock); 11910Sstevel@tonic-gate } 11920Sstevel@tonic-gate 11930Sstevel@tonic-gate if (rmtp) { 11940Sstevel@tonic-gate /* 11950Sstevel@tonic-gate * If cv_waituntil_sig() returned due to a signal, and 11960Sstevel@tonic-gate * there is time remaining, then set the time remaining. 11970Sstevel@tonic-gate * Else set time remaining to zero 11980Sstevel@tonic-gate */ 11990Sstevel@tonic-gate rmtime.tv_sec = rmtime.tv_nsec = 0; 12000Sstevel@tonic-gate if (ret == 0) { 12013346Svb160487 timespec_t delta = rqtime; 12023346Svb160487 12030Sstevel@tonic-gate gethrestime(&now); 12043346Svb160487 timespecsub(&delta, &now); 12053346Svb160487 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 12063346Svb160487 delta.tv_nsec > 0)) 12073346Svb160487 rmtime = delta; 12080Sstevel@tonic-gate } 12090Sstevel@tonic-gate 12100Sstevel@tonic-gate if (datamodel == DATAMODEL_NATIVE) { 12110Sstevel@tonic-gate if (copyout(&rmtime, rmtp, sizeof (rmtime))) 12120Sstevel@tonic-gate return (set_errno(EFAULT)); 12130Sstevel@tonic-gate } else { 12140Sstevel@tonic-gate timespec32_t rmtime32; 12150Sstevel@tonic-gate 12160Sstevel@tonic-gate TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime); 12170Sstevel@tonic-gate if (copyout(&rmtime32, rmtp, sizeof (rmtime32))) 12180Sstevel@tonic-gate return (set_errno(EFAULT)); 12190Sstevel@tonic-gate } 12200Sstevel@tonic-gate } 12210Sstevel@tonic-gate 12220Sstevel@tonic-gate if (ret == 0) 12230Sstevel@tonic-gate return (set_errno(EINTR)); 12240Sstevel@tonic-gate return (0); 12250Sstevel@tonic-gate } 12260Sstevel@tonic-gate 12270Sstevel@tonic-gate /* 12280Sstevel@tonic-gate * Routines to convert standard UNIX time (seconds since Jan 1, 1970) 12290Sstevel@tonic-gate * into year/month/day/hour/minute/second format, and back again. 12300Sstevel@tonic-gate * Note: these routines require tod_lock held to protect cached state. 12310Sstevel@tonic-gate */ 12320Sstevel@tonic-gate static int days_thru_month[64] = { 12330Sstevel@tonic-gate 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0, 12340Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 12350Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 12360Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 12370Sstevel@tonic-gate }; 12380Sstevel@tonic-gate 12390Sstevel@tonic-gate todinfo_t saved_tod; 12400Sstevel@tonic-gate int saved_utc = -60; 12410Sstevel@tonic-gate 12420Sstevel@tonic-gate todinfo_t 12430Sstevel@tonic-gate utc_to_tod(time_t utc) 12440Sstevel@tonic-gate { 12450Sstevel@tonic-gate long dse, day, month, year; 12460Sstevel@tonic-gate todinfo_t tod; 12470Sstevel@tonic-gate 12480Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 12490Sstevel@tonic-gate 12500Sstevel@tonic-gate if (utc < 0) /* should never happen */ 12510Sstevel@tonic-gate utc = 0; 12520Sstevel@tonic-gate 12530Sstevel@tonic-gate saved_tod.tod_sec += utc - saved_utc; 12540Sstevel@tonic-gate saved_utc = utc; 12550Sstevel@tonic-gate if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60) 12560Sstevel@tonic-gate return (saved_tod); /* only the seconds changed */ 12570Sstevel@tonic-gate 12580Sstevel@tonic-gate dse = utc / 86400; /* days since epoch */ 12590Sstevel@tonic-gate 12600Sstevel@tonic-gate tod.tod_sec = utc % 60; 12610Sstevel@tonic-gate tod.tod_min = (utc % 3600) / 60; 12620Sstevel@tonic-gate tod.tod_hour = (utc % 86400) / 3600; 12630Sstevel@tonic-gate tod.tod_dow = (dse + 4) % 7 + 1; /* epoch was a Thursday */ 12640Sstevel@tonic-gate 12650Sstevel@tonic-gate year = dse / 365 + 72; /* first guess -- always a bit too large */ 12660Sstevel@tonic-gate do { 12670Sstevel@tonic-gate year--; 12680Sstevel@tonic-gate day = dse - 365 * (year - 70) - ((year - 69) >> 2); 12690Sstevel@tonic-gate } while (day < 0); 12700Sstevel@tonic-gate 12710Sstevel@tonic-gate month = ((year & 3) << 4) + 1; 12720Sstevel@tonic-gate while (day >= days_thru_month[month + 1]) 12730Sstevel@tonic-gate month++; 12740Sstevel@tonic-gate 12750Sstevel@tonic-gate tod.tod_day = day - days_thru_month[month] + 1; 12760Sstevel@tonic-gate tod.tod_month = month & 15; 12770Sstevel@tonic-gate tod.tod_year = year; 12780Sstevel@tonic-gate 12790Sstevel@tonic-gate saved_tod = tod; 12800Sstevel@tonic-gate return (tod); 12810Sstevel@tonic-gate } 12820Sstevel@tonic-gate 12830Sstevel@tonic-gate time_t 12840Sstevel@tonic-gate tod_to_utc(todinfo_t tod) 12850Sstevel@tonic-gate { 12860Sstevel@tonic-gate time_t utc; 12870Sstevel@tonic-gate int year = tod.tod_year; 12880Sstevel@tonic-gate int month = tod.tod_month + ((year & 3) << 4); 12890Sstevel@tonic-gate #ifdef DEBUG 12900Sstevel@tonic-gate /* only warn once, not each time called */ 12910Sstevel@tonic-gate static int year_warn = 1; 12920Sstevel@tonic-gate static int month_warn = 1; 12930Sstevel@tonic-gate static int day_warn = 1; 12940Sstevel@tonic-gate static int hour_warn = 1; 12950Sstevel@tonic-gate static int min_warn = 1; 12960Sstevel@tonic-gate static int sec_warn = 1; 12970Sstevel@tonic-gate int days_diff = days_thru_month[month + 1] - days_thru_month[month]; 12980Sstevel@tonic-gate #endif 12990Sstevel@tonic-gate 13000Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 13010Sstevel@tonic-gate 13020Sstevel@tonic-gate #ifdef DEBUG 13030Sstevel@tonic-gate if (year_warn && (year < 70 || year > 8029)) { 13040Sstevel@tonic-gate cmn_err(CE_WARN, 13050Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13060Sstevel@tonic-gate "wrong years value %d -- time needs to be reset\n", 13070Sstevel@tonic-gate year); 13080Sstevel@tonic-gate year_warn = 0; 13090Sstevel@tonic-gate } 13100Sstevel@tonic-gate 13110Sstevel@tonic-gate if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) { 13120Sstevel@tonic-gate cmn_err(CE_WARN, 13130Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13140Sstevel@tonic-gate "wrong months value %d -- time needs to be reset\n", 13150Sstevel@tonic-gate tod.tod_month); 13160Sstevel@tonic-gate month_warn = 0; 13170Sstevel@tonic-gate } 13180Sstevel@tonic-gate 13190Sstevel@tonic-gate if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) { 13200Sstevel@tonic-gate cmn_err(CE_WARN, 13210Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13220Sstevel@tonic-gate "wrong days value %d -- time needs to be reset\n", 13230Sstevel@tonic-gate tod.tod_day); 13240Sstevel@tonic-gate day_warn = 0; 13250Sstevel@tonic-gate } 13260Sstevel@tonic-gate 13270Sstevel@tonic-gate if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) { 13280Sstevel@tonic-gate cmn_err(CE_WARN, 13290Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13300Sstevel@tonic-gate "wrong hours value %d -- time needs to be reset\n", 13310Sstevel@tonic-gate tod.tod_hour); 13320Sstevel@tonic-gate hour_warn = 0; 13330Sstevel@tonic-gate } 13340Sstevel@tonic-gate 13350Sstevel@tonic-gate if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) { 13360Sstevel@tonic-gate cmn_err(CE_WARN, 13370Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13380Sstevel@tonic-gate "wrong minutes value %d -- time needs to be reset\n", 13390Sstevel@tonic-gate tod.tod_min); 13400Sstevel@tonic-gate min_warn = 0; 13410Sstevel@tonic-gate } 13420Sstevel@tonic-gate 13430Sstevel@tonic-gate if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) { 13440Sstevel@tonic-gate cmn_err(CE_WARN, 13450Sstevel@tonic-gate "The hardware real-time clock appears to have the " 13460Sstevel@tonic-gate "wrong seconds value %d -- time needs to be reset\n", 13470Sstevel@tonic-gate tod.tod_sec); 13480Sstevel@tonic-gate sec_warn = 0; 13490Sstevel@tonic-gate } 13500Sstevel@tonic-gate #endif 13510Sstevel@tonic-gate 13520Sstevel@tonic-gate utc = (year - 70); /* next 3 lines: utc = 365y + y/4 */ 13530Sstevel@tonic-gate utc += (utc << 3) + (utc << 6); 13540Sstevel@tonic-gate utc += (utc << 2) + ((year - 69) >> 2); 13550Sstevel@tonic-gate utc += days_thru_month[month] + tod.tod_day - 1; 13560Sstevel@tonic-gate utc = (utc << 3) + (utc << 4) + tod.tod_hour; /* 24 * day + hour */ 13570Sstevel@tonic-gate utc = (utc << 6) - (utc << 2) + tod.tod_min; /* 60 * hour + min */ 13580Sstevel@tonic-gate utc = (utc << 6) - (utc << 2) + tod.tod_sec; /* 60 * min + sec */ 13590Sstevel@tonic-gate 13600Sstevel@tonic-gate return (utc); 13610Sstevel@tonic-gate } 1362