1*0Sstevel@tonic-gate /* 2*0Sstevel@tonic-gate * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 3*0Sstevel@tonic-gate * Use is subject to license terms. 4*0Sstevel@tonic-gate */ 5*0Sstevel@tonic-gate 6*0Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 7*0Sstevel@tonic-gate 8*0Sstevel@tonic-gate /* 9*0Sstevel@tonic-gate * Copyright (c) 1982, 1986 Regents of the University of California. 10*0Sstevel@tonic-gate * All rights reserved. The Berkeley software License Agreement 11*0Sstevel@tonic-gate * specifies the terms and conditions for redistribution. 12*0Sstevel@tonic-gate */ 13*0Sstevel@tonic-gate 14*0Sstevel@tonic-gate #include <sys/param.h> 15*0Sstevel@tonic-gate #include <sys/user.h> 16*0Sstevel@tonic-gate #include <sys/vnode.h> 17*0Sstevel@tonic-gate #include <sys/proc.h> 18*0Sstevel@tonic-gate #include <sys/time.h> 19*0Sstevel@tonic-gate #include <sys/systm.h> 20*0Sstevel@tonic-gate #include <sys/kmem.h> 21*0Sstevel@tonic-gate #include <sys/cmn_err.h> 22*0Sstevel@tonic-gate #include <sys/cpuvar.h> 23*0Sstevel@tonic-gate #include <sys/timer.h> 24*0Sstevel@tonic-gate #include <sys/debug.h> 25*0Sstevel@tonic-gate #include <sys/sysmacros.h> 26*0Sstevel@tonic-gate #include <sys/cyclic.h> 27*0Sstevel@tonic-gate 28*0Sstevel@tonic-gate static void realitexpire(void *); 29*0Sstevel@tonic-gate static void realprofexpire(void *); 30*0Sstevel@tonic-gate static void timeval_advance(struct timeval *, struct timeval *); 31*0Sstevel@tonic-gate 32*0Sstevel@tonic-gate kmutex_t tod_lock; /* protects time-of-day stuff */ 33*0Sstevel@tonic-gate 34*0Sstevel@tonic-gate /* 35*0Sstevel@tonic-gate * Constant to define the minimum interval value of the ITIMER_REALPROF timer. 36*0Sstevel@tonic-gate * Value is in microseconds; defaults to 500 usecs. Setting this value 37*0Sstevel@tonic-gate * significantly lower may allow for denial-of-service attacks. 38*0Sstevel@tonic-gate */ 39*0Sstevel@tonic-gate int itimer_realprof_minimum = 500; 40*0Sstevel@tonic-gate 41*0Sstevel@tonic-gate /* 42*0Sstevel@tonic-gate * macro to compare a timeval to a timestruc 43*0Sstevel@tonic-gate */ 44*0Sstevel@tonic-gate 45*0Sstevel@tonic-gate #define TVTSCMP(tvp, tsp, cmp) \ 46*0Sstevel@tonic-gate /* CSTYLED */ \ 47*0Sstevel@tonic-gate ((tvp)->tv_sec cmp (tsp)->tv_sec || \ 48*0Sstevel@tonic-gate ((tvp)->tv_sec == (tsp)->tv_sec && \ 49*0Sstevel@tonic-gate /* CSTYLED */ \ 50*0Sstevel@tonic-gate (tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec)) 51*0Sstevel@tonic-gate 52*0Sstevel@tonic-gate /* 53*0Sstevel@tonic-gate * Time of day and interval timer support. 54*0Sstevel@tonic-gate * 55*0Sstevel@tonic-gate * These routines provide the kernel entry points to get and set 56*0Sstevel@tonic-gate * the time-of-day and per-process interval timers. Subroutines 57*0Sstevel@tonic-gate * here provide support for adding and subtracting timeval structures 58*0Sstevel@tonic-gate * and decrementing interval timers, optionally reloading the interval 59*0Sstevel@tonic-gate * timers when they expire. 60*0Sstevel@tonic-gate */ 61*0Sstevel@tonic-gate 62*0Sstevel@tonic-gate /* 63*0Sstevel@tonic-gate * SunOS function to generate monotonically increasing time values. 64*0Sstevel@tonic-gate */ 65*0Sstevel@tonic-gate void 66*0Sstevel@tonic-gate uniqtime(struct timeval *tv) 67*0Sstevel@tonic-gate { 68*0Sstevel@tonic-gate static struct timeval last; 69*0Sstevel@tonic-gate timestruc_t ts; 70*0Sstevel@tonic-gate time_t sec; 71*0Sstevel@tonic-gate int usec, nsec; 72*0Sstevel@tonic-gate 73*0Sstevel@tonic-gate /* 74*0Sstevel@tonic-gate * protect modification of last 75*0Sstevel@tonic-gate */ 76*0Sstevel@tonic-gate mutex_enter(&tod_lock); 77*0Sstevel@tonic-gate gethrestime(&ts); 78*0Sstevel@tonic-gate 79*0Sstevel@tonic-gate /* 80*0Sstevel@tonic-gate * Fast algorithm to convert nsec to usec -- see hrt2ts() 81*0Sstevel@tonic-gate * in common/os/timers.c for a full description. 82*0Sstevel@tonic-gate */ 83*0Sstevel@tonic-gate nsec = ts.tv_nsec; 84*0Sstevel@tonic-gate usec = nsec + (nsec >> 2); 85*0Sstevel@tonic-gate usec = nsec + (usec >> 1); 86*0Sstevel@tonic-gate usec = nsec + (usec >> 2); 87*0Sstevel@tonic-gate usec = nsec + (usec >> 4); 88*0Sstevel@tonic-gate usec = nsec - (usec >> 3); 89*0Sstevel@tonic-gate usec = nsec + (usec >> 2); 90*0Sstevel@tonic-gate usec = nsec + (usec >> 3); 91*0Sstevel@tonic-gate usec = nsec + (usec >> 4); 92*0Sstevel@tonic-gate usec = nsec + (usec >> 1); 93*0Sstevel@tonic-gate usec = nsec + (usec >> 6); 94*0Sstevel@tonic-gate usec = usec >> 10; 95*0Sstevel@tonic-gate sec = ts.tv_sec; 96*0Sstevel@tonic-gate 97*0Sstevel@tonic-gate /* 98*0Sstevel@tonic-gate * Try to keep timestamps unique, but don't be obsessive about 99*0Sstevel@tonic-gate * it in the face of large differences. 100*0Sstevel@tonic-gate */ 101*0Sstevel@tonic-gate if ((sec <= last.tv_sec) && /* same or lower seconds, and */ 102*0Sstevel@tonic-gate ((sec != last.tv_sec) || /* either different second or */ 103*0Sstevel@tonic-gate (usec <= last.tv_usec)) && /* lower microsecond, and */ 104*0Sstevel@tonic-gate ((last.tv_sec - sec) <= 5)) { /* not way back in time */ 105*0Sstevel@tonic-gate sec = last.tv_sec; 106*0Sstevel@tonic-gate usec = last.tv_usec + 1; 107*0Sstevel@tonic-gate if (usec >= MICROSEC) { 108*0Sstevel@tonic-gate usec -= MICROSEC; 109*0Sstevel@tonic-gate sec++; 110*0Sstevel@tonic-gate } 111*0Sstevel@tonic-gate } 112*0Sstevel@tonic-gate last.tv_sec = sec; 113*0Sstevel@tonic-gate last.tv_usec = usec; 114*0Sstevel@tonic-gate mutex_exit(&tod_lock); 115*0Sstevel@tonic-gate 116*0Sstevel@tonic-gate tv->tv_sec = sec; 117*0Sstevel@tonic-gate tv->tv_usec = usec; 118*0Sstevel@tonic-gate } 119*0Sstevel@tonic-gate 120*0Sstevel@tonic-gate /* 121*0Sstevel@tonic-gate * Timestamps are exported from the kernel in several places. 122*0Sstevel@tonic-gate * Such timestamps are commonly used for either uniqueness or for 123*0Sstevel@tonic-gate * sequencing - truncation to 32-bits is fine for uniqueness, 124*0Sstevel@tonic-gate * but sequencing is going to take more work as we get closer to 2038! 125*0Sstevel@tonic-gate */ 126*0Sstevel@tonic-gate void 127*0Sstevel@tonic-gate uniqtime32(struct timeval32 *tv32p) 128*0Sstevel@tonic-gate { 129*0Sstevel@tonic-gate struct timeval tv; 130*0Sstevel@tonic-gate 131*0Sstevel@tonic-gate uniqtime(&tv); 132*0Sstevel@tonic-gate TIMEVAL_TO_TIMEVAL32(tv32p, &tv); 133*0Sstevel@tonic-gate } 134*0Sstevel@tonic-gate 135*0Sstevel@tonic-gate int 136*0Sstevel@tonic-gate gettimeofday(struct timeval *tp) 137*0Sstevel@tonic-gate { 138*0Sstevel@tonic-gate struct timeval atv; 139*0Sstevel@tonic-gate 140*0Sstevel@tonic-gate if (tp) { 141*0Sstevel@tonic-gate uniqtime(&atv); 142*0Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) { 143*0Sstevel@tonic-gate if (copyout(&atv, tp, sizeof (atv))) 144*0Sstevel@tonic-gate return (set_errno(EFAULT)); 145*0Sstevel@tonic-gate } else { 146*0Sstevel@tonic-gate struct timeval32 tv32; 147*0Sstevel@tonic-gate 148*0Sstevel@tonic-gate if (TIMEVAL_OVERFLOW(&atv)) 149*0Sstevel@tonic-gate return (set_errno(EOVERFLOW)); 150*0Sstevel@tonic-gate TIMEVAL_TO_TIMEVAL32(&tv32, &atv); 151*0Sstevel@tonic-gate 152*0Sstevel@tonic-gate if (copyout(&tv32, tp, sizeof (tv32))) 153*0Sstevel@tonic-gate return (set_errno(EFAULT)); 154*0Sstevel@tonic-gate } 155*0Sstevel@tonic-gate } 156*0Sstevel@tonic-gate return (0); 157*0Sstevel@tonic-gate } 158*0Sstevel@tonic-gate 159*0Sstevel@tonic-gate int 160*0Sstevel@tonic-gate getitimer(uint_t which, struct itimerval *itv) 161*0Sstevel@tonic-gate { 162*0Sstevel@tonic-gate int error; 163*0Sstevel@tonic-gate 164*0Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) 165*0Sstevel@tonic-gate error = xgetitimer(which, itv, 0); 166*0Sstevel@tonic-gate else { 167*0Sstevel@tonic-gate struct itimerval kitv; 168*0Sstevel@tonic-gate 169*0Sstevel@tonic-gate if ((error = xgetitimer(which, &kitv, 1)) == 0) { 170*0Sstevel@tonic-gate if (ITIMERVAL_OVERFLOW(&kitv)) { 171*0Sstevel@tonic-gate error = EOVERFLOW; 172*0Sstevel@tonic-gate } else { 173*0Sstevel@tonic-gate struct itimerval32 itv32; 174*0Sstevel@tonic-gate 175*0Sstevel@tonic-gate ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv); 176*0Sstevel@tonic-gate if (copyout(&itv32, itv, sizeof (itv32)) != 0) 177*0Sstevel@tonic-gate error = EFAULT; 178*0Sstevel@tonic-gate } 179*0Sstevel@tonic-gate } 180*0Sstevel@tonic-gate } 181*0Sstevel@tonic-gate 182*0Sstevel@tonic-gate return (error ? (set_errno(error)) : 0); 183*0Sstevel@tonic-gate } 184*0Sstevel@tonic-gate 185*0Sstevel@tonic-gate int 186*0Sstevel@tonic-gate xgetitimer(uint_t which, struct itimerval *itv, int iskaddr) 187*0Sstevel@tonic-gate { 188*0Sstevel@tonic-gate struct proc *p = curproc; 189*0Sstevel@tonic-gate struct timeval now; 190*0Sstevel@tonic-gate struct itimerval aitv; 191*0Sstevel@tonic-gate hrtime_t ts, first, interval, remain; 192*0Sstevel@tonic-gate 193*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 194*0Sstevel@tonic-gate 195*0Sstevel@tonic-gate switch (which) { 196*0Sstevel@tonic-gate case ITIMER_VIRTUAL: 197*0Sstevel@tonic-gate case ITIMER_PROF: 198*0Sstevel@tonic-gate aitv = ttolwp(curthread)->lwp_timer[which]; 199*0Sstevel@tonic-gate break; 200*0Sstevel@tonic-gate 201*0Sstevel@tonic-gate case ITIMER_REAL: 202*0Sstevel@tonic-gate uniqtime(&now); 203*0Sstevel@tonic-gate aitv = p->p_realitimer; 204*0Sstevel@tonic-gate 205*0Sstevel@tonic-gate if (timerisset(&aitv.it_value)) { 206*0Sstevel@tonic-gate /*CSTYLED*/ 207*0Sstevel@tonic-gate if (timercmp(&aitv.it_value, &now, <)) { 208*0Sstevel@tonic-gate timerclear(&aitv.it_value); 209*0Sstevel@tonic-gate } else { 210*0Sstevel@tonic-gate timevalsub(&aitv.it_value, &now); 211*0Sstevel@tonic-gate } 212*0Sstevel@tonic-gate } 213*0Sstevel@tonic-gate break; 214*0Sstevel@tonic-gate 215*0Sstevel@tonic-gate case ITIMER_REALPROF: 216*0Sstevel@tonic-gate if (curproc->p_rprof_cyclic == CYCLIC_NONE) { 217*0Sstevel@tonic-gate bzero(&aitv, sizeof (aitv)); 218*0Sstevel@tonic-gate break; 219*0Sstevel@tonic-gate } 220*0Sstevel@tonic-gate 221*0Sstevel@tonic-gate aitv = curproc->p_rprof_timer; 222*0Sstevel@tonic-gate 223*0Sstevel@tonic-gate first = tv2hrt(&aitv.it_value); 224*0Sstevel@tonic-gate interval = tv2hrt(&aitv.it_interval); 225*0Sstevel@tonic-gate 226*0Sstevel@tonic-gate if ((ts = gethrtime()) < first) { 227*0Sstevel@tonic-gate /* 228*0Sstevel@tonic-gate * We haven't gone off for the first time; the time 229*0Sstevel@tonic-gate * remaining is simply the first time we will go 230*0Sstevel@tonic-gate * off minus the current time. 231*0Sstevel@tonic-gate */ 232*0Sstevel@tonic-gate remain = first - ts; 233*0Sstevel@tonic-gate } else { 234*0Sstevel@tonic-gate if (interval == 0) { 235*0Sstevel@tonic-gate /* 236*0Sstevel@tonic-gate * This was set as a one-shot, and we've 237*0Sstevel@tonic-gate * already gone off; there is no time 238*0Sstevel@tonic-gate * remaining. 239*0Sstevel@tonic-gate */ 240*0Sstevel@tonic-gate remain = 0; 241*0Sstevel@tonic-gate } else { 242*0Sstevel@tonic-gate /* 243*0Sstevel@tonic-gate * We have a non-zero interval; we need to 244*0Sstevel@tonic-gate * determine how far we are into the current 245*0Sstevel@tonic-gate * interval, and subtract that from the 246*0Sstevel@tonic-gate * interval to determine the time remaining. 247*0Sstevel@tonic-gate */ 248*0Sstevel@tonic-gate remain = interval - ((ts - first) % interval); 249*0Sstevel@tonic-gate } 250*0Sstevel@tonic-gate } 251*0Sstevel@tonic-gate 252*0Sstevel@tonic-gate hrt2tv(remain, &aitv.it_value); 253*0Sstevel@tonic-gate break; 254*0Sstevel@tonic-gate 255*0Sstevel@tonic-gate default: 256*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 257*0Sstevel@tonic-gate return (EINVAL); 258*0Sstevel@tonic-gate } 259*0Sstevel@tonic-gate 260*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 261*0Sstevel@tonic-gate 262*0Sstevel@tonic-gate if (iskaddr) { 263*0Sstevel@tonic-gate bcopy(&aitv, itv, sizeof (*itv)); 264*0Sstevel@tonic-gate } else { 265*0Sstevel@tonic-gate ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 266*0Sstevel@tonic-gate if (copyout(&aitv, itv, sizeof (*itv))) 267*0Sstevel@tonic-gate return (EFAULT); 268*0Sstevel@tonic-gate } 269*0Sstevel@tonic-gate 270*0Sstevel@tonic-gate return (0); 271*0Sstevel@tonic-gate } 272*0Sstevel@tonic-gate 273*0Sstevel@tonic-gate 274*0Sstevel@tonic-gate int 275*0Sstevel@tonic-gate setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv) 276*0Sstevel@tonic-gate { 277*0Sstevel@tonic-gate int error; 278*0Sstevel@tonic-gate 279*0Sstevel@tonic-gate if (oitv != NULL) 280*0Sstevel@tonic-gate if ((error = getitimer(which, oitv)) != 0) 281*0Sstevel@tonic-gate return (error); 282*0Sstevel@tonic-gate 283*0Sstevel@tonic-gate if (itv == NULL) 284*0Sstevel@tonic-gate return (0); 285*0Sstevel@tonic-gate 286*0Sstevel@tonic-gate if (get_udatamodel() == DATAMODEL_NATIVE) 287*0Sstevel@tonic-gate error = xsetitimer(which, itv, 0); 288*0Sstevel@tonic-gate else { 289*0Sstevel@tonic-gate struct itimerval32 itv32; 290*0Sstevel@tonic-gate struct itimerval kitv; 291*0Sstevel@tonic-gate 292*0Sstevel@tonic-gate if (copyin(itv, &itv32, sizeof (itv32))) 293*0Sstevel@tonic-gate error = EFAULT; 294*0Sstevel@tonic-gate ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32); 295*0Sstevel@tonic-gate error = xsetitimer(which, &kitv, 1); 296*0Sstevel@tonic-gate } 297*0Sstevel@tonic-gate 298*0Sstevel@tonic-gate return (error ? (set_errno(error)) : 0); 299*0Sstevel@tonic-gate } 300*0Sstevel@tonic-gate 301*0Sstevel@tonic-gate int 302*0Sstevel@tonic-gate xsetitimer(uint_t which, struct itimerval *itv, int iskaddr) 303*0Sstevel@tonic-gate { 304*0Sstevel@tonic-gate struct itimerval aitv; 305*0Sstevel@tonic-gate struct timeval now; 306*0Sstevel@tonic-gate struct proc *p = curproc; 307*0Sstevel@tonic-gate kthread_t *t; 308*0Sstevel@tonic-gate timeout_id_t tmp_id; 309*0Sstevel@tonic-gate cyc_handler_t hdlr; 310*0Sstevel@tonic-gate cyc_time_t when; 311*0Sstevel@tonic-gate cyclic_id_t cyclic; 312*0Sstevel@tonic-gate hrtime_t ts; 313*0Sstevel@tonic-gate int min; 314*0Sstevel@tonic-gate 315*0Sstevel@tonic-gate if (itv == NULL) 316*0Sstevel@tonic-gate return (0); 317*0Sstevel@tonic-gate 318*0Sstevel@tonic-gate if (iskaddr) { 319*0Sstevel@tonic-gate bcopy(itv, &aitv, sizeof (aitv)); 320*0Sstevel@tonic-gate } else { 321*0Sstevel@tonic-gate ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 322*0Sstevel@tonic-gate if (copyin(itv, &aitv, sizeof (aitv))) 323*0Sstevel@tonic-gate return (EFAULT); 324*0Sstevel@tonic-gate } 325*0Sstevel@tonic-gate 326*0Sstevel@tonic-gate if (which == ITIMER_REALPROF) { 327*0Sstevel@tonic-gate min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)), 328*0Sstevel@tonic-gate itimer_realprof_minimum); 329*0Sstevel@tonic-gate } else { 330*0Sstevel@tonic-gate min = usec_per_tick; 331*0Sstevel@tonic-gate } 332*0Sstevel@tonic-gate 333*0Sstevel@tonic-gate if (itimerfix(&aitv.it_value, min) || 334*0Sstevel@tonic-gate (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value))) 335*0Sstevel@tonic-gate return (EINVAL); 336*0Sstevel@tonic-gate 337*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 338*0Sstevel@tonic-gate switch (which) { 339*0Sstevel@tonic-gate case ITIMER_REAL: 340*0Sstevel@tonic-gate /* 341*0Sstevel@tonic-gate * The SITBUSY flag prevents conflicts with multiple 342*0Sstevel@tonic-gate * threads attempting to perform setitimer(ITIMER_REAL) 343*0Sstevel@tonic-gate * at the same time, even when we drop p->p_lock below. 344*0Sstevel@tonic-gate * Any blocked thread returns successfully because the 345*0Sstevel@tonic-gate * effect is the same as if it got here first, finished, 346*0Sstevel@tonic-gate * and the other thread then came through and destroyed 347*0Sstevel@tonic-gate * what it did. We are just protecting the system from 348*0Sstevel@tonic-gate * malfunctioning due to the race condition. 349*0Sstevel@tonic-gate */ 350*0Sstevel@tonic-gate if (p->p_flag & SITBUSY) { 351*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 352*0Sstevel@tonic-gate return (0); 353*0Sstevel@tonic-gate } 354*0Sstevel@tonic-gate p->p_flag |= SITBUSY; 355*0Sstevel@tonic-gate while ((tmp_id = p->p_itimerid) != 0) { 356*0Sstevel@tonic-gate /* 357*0Sstevel@tonic-gate * Avoid deadlock in callout_delete (called from 358*0Sstevel@tonic-gate * untimeout) which may go to sleep (while holding 359*0Sstevel@tonic-gate * p_lock). Drop p_lock and re-acquire it after 360*0Sstevel@tonic-gate * untimeout returns. Need to clear p_itimerid 361*0Sstevel@tonic-gate * while holding p_lock. 362*0Sstevel@tonic-gate */ 363*0Sstevel@tonic-gate p->p_itimerid = 0; 364*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 365*0Sstevel@tonic-gate (void) untimeout(tmp_id); 366*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 367*0Sstevel@tonic-gate } 368*0Sstevel@tonic-gate if (timerisset(&aitv.it_value)) { 369*0Sstevel@tonic-gate uniqtime(&now); 370*0Sstevel@tonic-gate timevaladd(&aitv.it_value, &now); 371*0Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, 372*0Sstevel@tonic-gate p, hzto(&aitv.it_value)); 373*0Sstevel@tonic-gate } 374*0Sstevel@tonic-gate p->p_realitimer = aitv; 375*0Sstevel@tonic-gate p->p_flag &= ~SITBUSY; 376*0Sstevel@tonic-gate break; 377*0Sstevel@tonic-gate 378*0Sstevel@tonic-gate case ITIMER_REALPROF: 379*0Sstevel@tonic-gate cyclic = p->p_rprof_cyclic; 380*0Sstevel@tonic-gate p->p_rprof_cyclic = CYCLIC_NONE; 381*0Sstevel@tonic-gate 382*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 383*0Sstevel@tonic-gate 384*0Sstevel@tonic-gate /* 385*0Sstevel@tonic-gate * We're now going to acquire cpu_lock, remove the old cyclic 386*0Sstevel@tonic-gate * if necessary, and add our new cyclic. 387*0Sstevel@tonic-gate */ 388*0Sstevel@tonic-gate mutex_enter(&cpu_lock); 389*0Sstevel@tonic-gate 390*0Sstevel@tonic-gate if (cyclic != CYCLIC_NONE) 391*0Sstevel@tonic-gate cyclic_remove(cyclic); 392*0Sstevel@tonic-gate 393*0Sstevel@tonic-gate if (!timerisset(&aitv.it_value)) { 394*0Sstevel@tonic-gate /* 395*0Sstevel@tonic-gate * If we were passed a value of 0, we're done. 396*0Sstevel@tonic-gate */ 397*0Sstevel@tonic-gate mutex_exit(&cpu_lock); 398*0Sstevel@tonic-gate return (0); 399*0Sstevel@tonic-gate } 400*0Sstevel@tonic-gate 401*0Sstevel@tonic-gate hdlr.cyh_func = realprofexpire; 402*0Sstevel@tonic-gate hdlr.cyh_arg = p; 403*0Sstevel@tonic-gate hdlr.cyh_level = CY_LOW_LEVEL; 404*0Sstevel@tonic-gate 405*0Sstevel@tonic-gate when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value)); 406*0Sstevel@tonic-gate when.cyt_interval = tv2hrt(&aitv.it_interval); 407*0Sstevel@tonic-gate 408*0Sstevel@tonic-gate if (when.cyt_interval == 0) { 409*0Sstevel@tonic-gate /* 410*0Sstevel@tonic-gate * Using the same logic as for CLOCK_HIGHRES timers, we 411*0Sstevel@tonic-gate * set the interval to be INT64_MAX - when.cyt_when to 412*0Sstevel@tonic-gate * effect a one-shot; see the comment in clock_highres.c 413*0Sstevel@tonic-gate * for more details on why this works. 414*0Sstevel@tonic-gate */ 415*0Sstevel@tonic-gate when.cyt_interval = INT64_MAX - when.cyt_when; 416*0Sstevel@tonic-gate } 417*0Sstevel@tonic-gate 418*0Sstevel@tonic-gate cyclic = cyclic_add(&hdlr, &when); 419*0Sstevel@tonic-gate 420*0Sstevel@tonic-gate mutex_exit(&cpu_lock); 421*0Sstevel@tonic-gate 422*0Sstevel@tonic-gate /* 423*0Sstevel@tonic-gate * We have now successfully added the cyclic. Reacquire 424*0Sstevel@tonic-gate * p_lock, and see if anyone has snuck in. 425*0Sstevel@tonic-gate */ 426*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 427*0Sstevel@tonic-gate 428*0Sstevel@tonic-gate if (p->p_rprof_cyclic != CYCLIC_NONE) { 429*0Sstevel@tonic-gate /* 430*0Sstevel@tonic-gate * We're racing with another thread establishing an 431*0Sstevel@tonic-gate * ITIMER_REALPROF interval timer. We'll let the other 432*0Sstevel@tonic-gate * thread win (this is a race at the application level, 433*0Sstevel@tonic-gate * so letting the other thread win is acceptable). 434*0Sstevel@tonic-gate */ 435*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 436*0Sstevel@tonic-gate mutex_enter(&cpu_lock); 437*0Sstevel@tonic-gate cyclic_remove(cyclic); 438*0Sstevel@tonic-gate mutex_exit(&cpu_lock); 439*0Sstevel@tonic-gate 440*0Sstevel@tonic-gate return (0); 441*0Sstevel@tonic-gate } 442*0Sstevel@tonic-gate 443*0Sstevel@tonic-gate /* 444*0Sstevel@tonic-gate * Success. Set our tracking variables in the proc structure, 445*0Sstevel@tonic-gate * cancel any outstanding ITIMER_PROF, and allocate the 446*0Sstevel@tonic-gate * per-thread SIGPROF buffers, if possible. 447*0Sstevel@tonic-gate */ 448*0Sstevel@tonic-gate hrt2tv(ts, &aitv.it_value); 449*0Sstevel@tonic-gate p->p_rprof_timer = aitv; 450*0Sstevel@tonic-gate p->p_rprof_cyclic = cyclic; 451*0Sstevel@tonic-gate 452*0Sstevel@tonic-gate t = p->p_tlist; 453*0Sstevel@tonic-gate do { 454*0Sstevel@tonic-gate struct itimerval *itvp; 455*0Sstevel@tonic-gate 456*0Sstevel@tonic-gate itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF]; 457*0Sstevel@tonic-gate timerclear(&itvp->it_interval); 458*0Sstevel@tonic-gate timerclear(&itvp->it_value); 459*0Sstevel@tonic-gate 460*0Sstevel@tonic-gate if (t->t_rprof != NULL) 461*0Sstevel@tonic-gate continue; 462*0Sstevel@tonic-gate 463*0Sstevel@tonic-gate t->t_rprof = 464*0Sstevel@tonic-gate kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP); 465*0Sstevel@tonic-gate aston(t); 466*0Sstevel@tonic-gate } while ((t = t->t_forw) != p->p_tlist); 467*0Sstevel@tonic-gate 468*0Sstevel@tonic-gate break; 469*0Sstevel@tonic-gate 470*0Sstevel@tonic-gate case ITIMER_VIRTUAL: 471*0Sstevel@tonic-gate ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv; 472*0Sstevel@tonic-gate break; 473*0Sstevel@tonic-gate 474*0Sstevel@tonic-gate case ITIMER_PROF: 475*0Sstevel@tonic-gate if (p->p_rprof_cyclic != CYCLIC_NONE) { 476*0Sstevel@tonic-gate /* 477*0Sstevel@tonic-gate * Silently ignore ITIMER_PROF if ITIMER_REALPROF 478*0Sstevel@tonic-gate * is in effect. 479*0Sstevel@tonic-gate */ 480*0Sstevel@tonic-gate break; 481*0Sstevel@tonic-gate } 482*0Sstevel@tonic-gate 483*0Sstevel@tonic-gate ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv; 484*0Sstevel@tonic-gate break; 485*0Sstevel@tonic-gate 486*0Sstevel@tonic-gate default: 487*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 488*0Sstevel@tonic-gate return (EINVAL); 489*0Sstevel@tonic-gate } 490*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 491*0Sstevel@tonic-gate return (0); 492*0Sstevel@tonic-gate } 493*0Sstevel@tonic-gate 494*0Sstevel@tonic-gate /* 495*0Sstevel@tonic-gate * Real interval timer expired: 496*0Sstevel@tonic-gate * send process whose timer expired an alarm signal. 497*0Sstevel@tonic-gate * If time is not set up to reload, then just return. 498*0Sstevel@tonic-gate * Else compute next time timer should go off which is > current time. 499*0Sstevel@tonic-gate * This is where delay in processing this timeout causes multiple 500*0Sstevel@tonic-gate * SIGALRM calls to be compressed into one. 501*0Sstevel@tonic-gate */ 502*0Sstevel@tonic-gate static void 503*0Sstevel@tonic-gate realitexpire(void *arg) 504*0Sstevel@tonic-gate { 505*0Sstevel@tonic-gate struct proc *p = arg; 506*0Sstevel@tonic-gate struct timeval *valp = &p->p_realitimer.it_value; 507*0Sstevel@tonic-gate struct timeval *intervalp = &p->p_realitimer.it_interval; 508*0Sstevel@tonic-gate #if !defined(_LP64) 509*0Sstevel@tonic-gate clock_t ticks; 510*0Sstevel@tonic-gate #endif 511*0Sstevel@tonic-gate 512*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 513*0Sstevel@tonic-gate #if !defined(_LP64) 514*0Sstevel@tonic-gate if ((ticks = hzto(valp)) > 1) { 515*0Sstevel@tonic-gate /* 516*0Sstevel@tonic-gate * If we are executing before we were meant to, it must be 517*0Sstevel@tonic-gate * because of an overflow in a prior hzto() calculation. 518*0Sstevel@tonic-gate * In this case, we want to go to sleep for the recalculated 519*0Sstevel@tonic-gate * number of ticks. For the special meaning of the value "1" 520*0Sstevel@tonic-gate * see comment in timespectohz(). 521*0Sstevel@tonic-gate */ 522*0Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, p, ticks); 523*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 524*0Sstevel@tonic-gate return; 525*0Sstevel@tonic-gate } 526*0Sstevel@tonic-gate #endif 527*0Sstevel@tonic-gate sigtoproc(p, NULL, SIGALRM); 528*0Sstevel@tonic-gate if (!timerisset(intervalp)) { 529*0Sstevel@tonic-gate timerclear(valp); 530*0Sstevel@tonic-gate p->p_itimerid = 0; 531*0Sstevel@tonic-gate } else { 532*0Sstevel@tonic-gate /* advance timer value past current time */ 533*0Sstevel@tonic-gate timeval_advance(valp, intervalp); 534*0Sstevel@tonic-gate p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp)); 535*0Sstevel@tonic-gate } 536*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 537*0Sstevel@tonic-gate } 538*0Sstevel@tonic-gate 539*0Sstevel@tonic-gate /* 540*0Sstevel@tonic-gate * Real time profiling interval timer expired: 541*0Sstevel@tonic-gate * Increment microstate counters for each lwp in the process 542*0Sstevel@tonic-gate * and ensure that running lwps are kicked into the kernel. 543*0Sstevel@tonic-gate * If time is not set up to reload, then just return. 544*0Sstevel@tonic-gate * Else compute next time timer should go off which is > current time, 545*0Sstevel@tonic-gate * as above. 546*0Sstevel@tonic-gate */ 547*0Sstevel@tonic-gate static void 548*0Sstevel@tonic-gate realprofexpire(void *arg) 549*0Sstevel@tonic-gate { 550*0Sstevel@tonic-gate struct proc *p = arg; 551*0Sstevel@tonic-gate kthread_t *t; 552*0Sstevel@tonic-gate 553*0Sstevel@tonic-gate mutex_enter(&p->p_lock); 554*0Sstevel@tonic-gate if ((t = p->p_tlist) == NULL) { 555*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 556*0Sstevel@tonic-gate return; 557*0Sstevel@tonic-gate } 558*0Sstevel@tonic-gate do { 559*0Sstevel@tonic-gate int mstate; 560*0Sstevel@tonic-gate 561*0Sstevel@tonic-gate /* 562*0Sstevel@tonic-gate * Attempt to allocate the SIGPROF buffer, but don't sleep. 563*0Sstevel@tonic-gate */ 564*0Sstevel@tonic-gate if (t->t_rprof == NULL) 565*0Sstevel@tonic-gate t->t_rprof = kmem_zalloc(sizeof (struct rprof), 566*0Sstevel@tonic-gate KM_NOSLEEP); 567*0Sstevel@tonic-gate if (t->t_rprof == NULL) 568*0Sstevel@tonic-gate continue; 569*0Sstevel@tonic-gate 570*0Sstevel@tonic-gate thread_lock(t); 571*0Sstevel@tonic-gate switch (t->t_state) { 572*0Sstevel@tonic-gate case TS_SLEEP: 573*0Sstevel@tonic-gate /* 574*0Sstevel@tonic-gate * Don't touch the lwp is it is swapped out. 575*0Sstevel@tonic-gate */ 576*0Sstevel@tonic-gate if (!(t->t_schedflag & TS_LOAD)) { 577*0Sstevel@tonic-gate mstate = LMS_SLEEP; 578*0Sstevel@tonic-gate break; 579*0Sstevel@tonic-gate } 580*0Sstevel@tonic-gate switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) { 581*0Sstevel@tonic-gate case LMS_TFAULT: 582*0Sstevel@tonic-gate case LMS_DFAULT: 583*0Sstevel@tonic-gate case LMS_KFAULT: 584*0Sstevel@tonic-gate case LMS_USER_LOCK: 585*0Sstevel@tonic-gate break; 586*0Sstevel@tonic-gate default: 587*0Sstevel@tonic-gate mstate = LMS_SLEEP; 588*0Sstevel@tonic-gate break; 589*0Sstevel@tonic-gate } 590*0Sstevel@tonic-gate break; 591*0Sstevel@tonic-gate case TS_RUN: 592*0Sstevel@tonic-gate mstate = LMS_WAIT_CPU; 593*0Sstevel@tonic-gate break; 594*0Sstevel@tonic-gate case TS_ONPROC: 595*0Sstevel@tonic-gate switch (mstate = t->t_mstate) { 596*0Sstevel@tonic-gate case LMS_USER: 597*0Sstevel@tonic-gate case LMS_SYSTEM: 598*0Sstevel@tonic-gate case LMS_TRAP: 599*0Sstevel@tonic-gate break; 600*0Sstevel@tonic-gate default: 601*0Sstevel@tonic-gate mstate = LMS_SYSTEM; 602*0Sstevel@tonic-gate break; 603*0Sstevel@tonic-gate } 604*0Sstevel@tonic-gate break; 605*0Sstevel@tonic-gate default: 606*0Sstevel@tonic-gate mstate = t->t_mstate; 607*0Sstevel@tonic-gate break; 608*0Sstevel@tonic-gate } 609*0Sstevel@tonic-gate t->t_rprof->rp_anystate = 1; 610*0Sstevel@tonic-gate t->t_rprof->rp_state[mstate]++; 611*0Sstevel@tonic-gate aston(t); 612*0Sstevel@tonic-gate /* 613*0Sstevel@tonic-gate * force the thread into the kernel 614*0Sstevel@tonic-gate * if it is not already there. 615*0Sstevel@tonic-gate */ 616*0Sstevel@tonic-gate if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 617*0Sstevel@tonic-gate poke_cpu(t->t_cpu->cpu_id); 618*0Sstevel@tonic-gate thread_unlock(t); 619*0Sstevel@tonic-gate } while ((t = t->t_forw) != p->p_tlist); 620*0Sstevel@tonic-gate 621*0Sstevel@tonic-gate mutex_exit(&p->p_lock); 622*0Sstevel@tonic-gate } 623*0Sstevel@tonic-gate 624*0Sstevel@tonic-gate /* 625*0Sstevel@tonic-gate * Advances timer value past the current time of day. See the detailed 626*0Sstevel@tonic-gate * comment for this logic in realitsexpire(), above. 627*0Sstevel@tonic-gate */ 628*0Sstevel@tonic-gate static void 629*0Sstevel@tonic-gate timeval_advance(struct timeval *valp, struct timeval *intervalp) 630*0Sstevel@tonic-gate { 631*0Sstevel@tonic-gate int cnt2nth; 632*0Sstevel@tonic-gate struct timeval interval2nth; 633*0Sstevel@tonic-gate 634*0Sstevel@tonic-gate for (;;) { 635*0Sstevel@tonic-gate interval2nth = *intervalp; 636*0Sstevel@tonic-gate for (cnt2nth = 0; ; cnt2nth++) { 637*0Sstevel@tonic-gate timevaladd(valp, &interval2nth); 638*0Sstevel@tonic-gate /*CSTYLED*/ 639*0Sstevel@tonic-gate if (TVTSCMP(valp, &hrestime, >)) 640*0Sstevel@tonic-gate break; 641*0Sstevel@tonic-gate timevaladd(&interval2nth, &interval2nth); 642*0Sstevel@tonic-gate } 643*0Sstevel@tonic-gate if (cnt2nth == 0) 644*0Sstevel@tonic-gate break; 645*0Sstevel@tonic-gate timevalsub(valp, &interval2nth); 646*0Sstevel@tonic-gate } 647*0Sstevel@tonic-gate } 648*0Sstevel@tonic-gate 649*0Sstevel@tonic-gate /* 650*0Sstevel@tonic-gate * Check that a proposed value to load into the .it_value or .it_interval 651*0Sstevel@tonic-gate * part of an interval timer is acceptable, and set it to at least a 652*0Sstevel@tonic-gate * specified minimal value. 653*0Sstevel@tonic-gate */ 654*0Sstevel@tonic-gate int 655*0Sstevel@tonic-gate itimerfix(struct timeval *tv, int minimum) 656*0Sstevel@tonic-gate { 657*0Sstevel@tonic-gate if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 658*0Sstevel@tonic-gate tv->tv_usec < 0 || tv->tv_usec >= MICROSEC) 659*0Sstevel@tonic-gate return (EINVAL); 660*0Sstevel@tonic-gate if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum) 661*0Sstevel@tonic-gate tv->tv_usec = minimum; 662*0Sstevel@tonic-gate return (0); 663*0Sstevel@tonic-gate } 664*0Sstevel@tonic-gate 665*0Sstevel@tonic-gate /* 666*0Sstevel@tonic-gate * Same as itimerfix, except a) it takes a timespec instead of a timeval and 667*0Sstevel@tonic-gate * b) it doesn't truncate based on timeout granularity; consumers of this 668*0Sstevel@tonic-gate * interface (e.g. timer_settime()) depend on the passed timespec not being 669*0Sstevel@tonic-gate * modified implicitly. 670*0Sstevel@tonic-gate */ 671*0Sstevel@tonic-gate int 672*0Sstevel@tonic-gate itimerspecfix(timespec_t *tv) 673*0Sstevel@tonic-gate { 674*0Sstevel@tonic-gate if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC) 675*0Sstevel@tonic-gate return (EINVAL); 676*0Sstevel@tonic-gate return (0); 677*0Sstevel@tonic-gate } 678*0Sstevel@tonic-gate 679*0Sstevel@tonic-gate /* 680*0Sstevel@tonic-gate * Decrement an interval timer by a specified number 681*0Sstevel@tonic-gate * of microseconds, which must be less than a second, 682*0Sstevel@tonic-gate * i.e. < 1000000. If the timer expires, then reload 683*0Sstevel@tonic-gate * it. In this case, carry over (usec - old value) to 684*0Sstevel@tonic-gate * reducint the value reloaded into the timer so that 685*0Sstevel@tonic-gate * the timer does not drift. This routine assumes 686*0Sstevel@tonic-gate * that it is called in a context where the timers 687*0Sstevel@tonic-gate * on which it is operating cannot change in value. 688*0Sstevel@tonic-gate */ 689*0Sstevel@tonic-gate int 690*0Sstevel@tonic-gate itimerdecr(struct itimerval *itp, int usec) 691*0Sstevel@tonic-gate { 692*0Sstevel@tonic-gate if (itp->it_value.tv_usec < usec) { 693*0Sstevel@tonic-gate if (itp->it_value.tv_sec == 0) { 694*0Sstevel@tonic-gate /* expired, and already in next interval */ 695*0Sstevel@tonic-gate usec -= itp->it_value.tv_usec; 696*0Sstevel@tonic-gate goto expire; 697*0Sstevel@tonic-gate } 698*0Sstevel@tonic-gate itp->it_value.tv_usec += MICROSEC; 699*0Sstevel@tonic-gate itp->it_value.tv_sec--; 700*0Sstevel@tonic-gate } 701*0Sstevel@tonic-gate itp->it_value.tv_usec -= usec; 702*0Sstevel@tonic-gate usec = 0; 703*0Sstevel@tonic-gate if (timerisset(&itp->it_value)) 704*0Sstevel@tonic-gate return (1); 705*0Sstevel@tonic-gate /* expired, exactly at end of interval */ 706*0Sstevel@tonic-gate expire: 707*0Sstevel@tonic-gate if (timerisset(&itp->it_interval)) { 708*0Sstevel@tonic-gate itp->it_value = itp->it_interval; 709*0Sstevel@tonic-gate itp->it_value.tv_usec -= usec; 710*0Sstevel@tonic-gate if (itp->it_value.tv_usec < 0) { 711*0Sstevel@tonic-gate itp->it_value.tv_usec += MICROSEC; 712*0Sstevel@tonic-gate itp->it_value.tv_sec--; 713*0Sstevel@tonic-gate } 714*0Sstevel@tonic-gate } else 715*0Sstevel@tonic-gate itp->it_value.tv_usec = 0; /* sec is already 0 */ 716*0Sstevel@tonic-gate return (0); 717*0Sstevel@tonic-gate } 718*0Sstevel@tonic-gate 719*0Sstevel@tonic-gate /* 720*0Sstevel@tonic-gate * Add and subtract routines for timevals. 721*0Sstevel@tonic-gate * N.B.: subtract routine doesn't deal with 722*0Sstevel@tonic-gate * results which are before the beginning, 723*0Sstevel@tonic-gate * it just gets very confused in this case. 724*0Sstevel@tonic-gate * Caveat emptor. 725*0Sstevel@tonic-gate */ 726*0Sstevel@tonic-gate void 727*0Sstevel@tonic-gate timevaladd(struct timeval *t1, struct timeval *t2) 728*0Sstevel@tonic-gate { 729*0Sstevel@tonic-gate t1->tv_sec += t2->tv_sec; 730*0Sstevel@tonic-gate t1->tv_usec += t2->tv_usec; 731*0Sstevel@tonic-gate timevalfix(t1); 732*0Sstevel@tonic-gate } 733*0Sstevel@tonic-gate 734*0Sstevel@tonic-gate void 735*0Sstevel@tonic-gate timevalsub(struct timeval *t1, struct timeval *t2) 736*0Sstevel@tonic-gate { 737*0Sstevel@tonic-gate t1->tv_sec -= t2->tv_sec; 738*0Sstevel@tonic-gate t1->tv_usec -= t2->tv_usec; 739*0Sstevel@tonic-gate timevalfix(t1); 740*0Sstevel@tonic-gate } 741*0Sstevel@tonic-gate 742*0Sstevel@tonic-gate void 743*0Sstevel@tonic-gate timevalfix(struct timeval *t1) 744*0Sstevel@tonic-gate { 745*0Sstevel@tonic-gate if (t1->tv_usec < 0) { 746*0Sstevel@tonic-gate t1->tv_sec--; 747*0Sstevel@tonic-gate t1->tv_usec += MICROSEC; 748*0Sstevel@tonic-gate } 749*0Sstevel@tonic-gate if (t1->tv_usec >= MICROSEC) { 750*0Sstevel@tonic-gate t1->tv_sec++; 751*0Sstevel@tonic-gate t1->tv_usec -= MICROSEC; 752*0Sstevel@tonic-gate } 753*0Sstevel@tonic-gate } 754*0Sstevel@tonic-gate 755*0Sstevel@tonic-gate /* 756*0Sstevel@tonic-gate * Same as the routines above. These routines take a timespec instead 757*0Sstevel@tonic-gate * of a timeval. 758*0Sstevel@tonic-gate */ 759*0Sstevel@tonic-gate void 760*0Sstevel@tonic-gate timespecadd(timespec_t *t1, timespec_t *t2) 761*0Sstevel@tonic-gate { 762*0Sstevel@tonic-gate t1->tv_sec += t2->tv_sec; 763*0Sstevel@tonic-gate t1->tv_nsec += t2->tv_nsec; 764*0Sstevel@tonic-gate timespecfix(t1); 765*0Sstevel@tonic-gate } 766*0Sstevel@tonic-gate 767*0Sstevel@tonic-gate void 768*0Sstevel@tonic-gate timespecsub(timespec_t *t1, timespec_t *t2) 769*0Sstevel@tonic-gate { 770*0Sstevel@tonic-gate t1->tv_sec -= t2->tv_sec; 771*0Sstevel@tonic-gate t1->tv_nsec -= t2->tv_nsec; 772*0Sstevel@tonic-gate timespecfix(t1); 773*0Sstevel@tonic-gate } 774*0Sstevel@tonic-gate 775*0Sstevel@tonic-gate void 776*0Sstevel@tonic-gate timespecfix(timespec_t *t1) 777*0Sstevel@tonic-gate { 778*0Sstevel@tonic-gate if (t1->tv_nsec < 0) { 779*0Sstevel@tonic-gate t1->tv_sec--; 780*0Sstevel@tonic-gate t1->tv_nsec += NANOSEC; 781*0Sstevel@tonic-gate } else { 782*0Sstevel@tonic-gate if (t1->tv_nsec >= NANOSEC) { 783*0Sstevel@tonic-gate t1->tv_sec++; 784*0Sstevel@tonic-gate t1->tv_nsec -= NANOSEC; 785*0Sstevel@tonic-gate } 786*0Sstevel@tonic-gate } 787*0Sstevel@tonic-gate } 788*0Sstevel@tonic-gate 789*0Sstevel@tonic-gate /* 790*0Sstevel@tonic-gate * Compute number of hz until specified time. 791*0Sstevel@tonic-gate * Used to compute third argument to timeout() from an absolute time. 792*0Sstevel@tonic-gate */ 793*0Sstevel@tonic-gate clock_t 794*0Sstevel@tonic-gate hzto(struct timeval *tv) 795*0Sstevel@tonic-gate { 796*0Sstevel@tonic-gate timespec_t ts, now; 797*0Sstevel@tonic-gate 798*0Sstevel@tonic-gate ts.tv_sec = tv->tv_sec; 799*0Sstevel@tonic-gate ts.tv_nsec = tv->tv_usec * 1000; 800*0Sstevel@tonic-gate gethrestime_lasttick(&now); 801*0Sstevel@tonic-gate 802*0Sstevel@tonic-gate return (timespectohz(&ts, now)); 803*0Sstevel@tonic-gate } 804*0Sstevel@tonic-gate 805*0Sstevel@tonic-gate /* 806*0Sstevel@tonic-gate * Compute number of hz until specified time for a given timespec value. 807*0Sstevel@tonic-gate * Used to compute third argument to timeout() from an absolute time. 808*0Sstevel@tonic-gate */ 809*0Sstevel@tonic-gate clock_t 810*0Sstevel@tonic-gate timespectohz(timespec_t *tv, timespec_t now) 811*0Sstevel@tonic-gate { 812*0Sstevel@tonic-gate clock_t ticks; 813*0Sstevel@tonic-gate time_t sec; 814*0Sstevel@tonic-gate int nsec; 815*0Sstevel@tonic-gate 816*0Sstevel@tonic-gate /* 817*0Sstevel@tonic-gate * Compute number of ticks we will see between now and 818*0Sstevel@tonic-gate * the target time; returns "1" if the destination time 819*0Sstevel@tonic-gate * is before the next tick, so we always get some delay, 820*0Sstevel@tonic-gate * and returns LONG_MAX ticks if we would overflow. 821*0Sstevel@tonic-gate */ 822*0Sstevel@tonic-gate sec = tv->tv_sec - now.tv_sec; 823*0Sstevel@tonic-gate nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1; 824*0Sstevel@tonic-gate 825*0Sstevel@tonic-gate if (nsec < 0) { 826*0Sstevel@tonic-gate sec--; 827*0Sstevel@tonic-gate nsec += NANOSEC; 828*0Sstevel@tonic-gate } else if (nsec >= NANOSEC) { 829*0Sstevel@tonic-gate sec++; 830*0Sstevel@tonic-gate nsec -= NANOSEC; 831*0Sstevel@tonic-gate } 832*0Sstevel@tonic-gate 833*0Sstevel@tonic-gate ticks = NSEC_TO_TICK(nsec); 834*0Sstevel@tonic-gate 835*0Sstevel@tonic-gate /* 836*0Sstevel@tonic-gate * Compute ticks, accounting for negative and overflow as above. 837*0Sstevel@tonic-gate * Overflow protection kicks in at about 70 weeks for hz=50 838*0Sstevel@tonic-gate * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 839*0Sstevel@tonic-gate * kernel :-) 840*0Sstevel@tonic-gate */ 841*0Sstevel@tonic-gate if (sec < 0 || (sec == 0 && ticks < 1)) 842*0Sstevel@tonic-gate ticks = 1; /* protect vs nonpositive */ 843*0Sstevel@tonic-gate else if (sec > (LONG_MAX - ticks) / hz) 844*0Sstevel@tonic-gate ticks = LONG_MAX; /* protect vs overflow */ 845*0Sstevel@tonic-gate else 846*0Sstevel@tonic-gate ticks += sec * hz; /* common case */ 847*0Sstevel@tonic-gate 848*0Sstevel@tonic-gate return (ticks); 849*0Sstevel@tonic-gate } 850*0Sstevel@tonic-gate 851*0Sstevel@tonic-gate /* 852*0Sstevel@tonic-gate * Same as timespectohz() except that we adjust the clock ticks down a bit. 853*0Sstevel@tonic-gate * If we will be waiting for a long time, we may encounter skewing problems 854*0Sstevel@tonic-gate * due to adjtime() system calls. Since we can skew up to 1/16 lbolt rate 855*0Sstevel@tonic-gate * if adjtime is going crazy, we reduce the time delta since timeout() takes 856*0Sstevel@tonic-gate * clock ticks rather than wallclock elapsed time. This may cause the caller 857*0Sstevel@tonic-gate * (who calls timeout()) to return with a timeout prematurely and callers 858*0Sstevel@tonic-gate * must accommodate this. See lwp_timeout(), queue_lwptimer() and 859*0Sstevel@tonic-gate * cv_waituntil_sig(), currently the only callers of this function. 860*0Sstevel@tonic-gate */ 861*0Sstevel@tonic-gate clock_t 862*0Sstevel@tonic-gate timespectohz_adj(timespec_t *tv, timespec_t now) 863*0Sstevel@tonic-gate { 864*0Sstevel@tonic-gate timespec_t wait_time = *tv; 865*0Sstevel@tonic-gate 866*0Sstevel@tonic-gate timespecsub(&wait_time, &now); 867*0Sstevel@tonic-gate wait_time.tv_sec -= wait_time.tv_sec >> 4; 868*0Sstevel@tonic-gate wait_time.tv_nsec -= wait_time.tv_nsec >> 4; 869*0Sstevel@tonic-gate timespecadd(&wait_time, &now); 870*0Sstevel@tonic-gate return (timespectohz(&wait_time, now)); 871*0Sstevel@tonic-gate } 872*0Sstevel@tonic-gate 873*0Sstevel@tonic-gate /* 874*0Sstevel@tonic-gate * hrt2ts(): convert from hrtime_t to timestruc_t. 875*0Sstevel@tonic-gate * 876*0Sstevel@tonic-gate * All this routine really does is: 877*0Sstevel@tonic-gate * 878*0Sstevel@tonic-gate * tsp->sec = hrt / NANOSEC; 879*0Sstevel@tonic-gate * tsp->nsec = hrt % NANOSEC; 880*0Sstevel@tonic-gate * 881*0Sstevel@tonic-gate * The black magic below avoids doing a 64-bit by 32-bit integer divide, 882*0Sstevel@tonic-gate * which is quite expensive. There's actually much more going on here than 883*0Sstevel@tonic-gate * it might first appear -- don't try this at home. 884*0Sstevel@tonic-gate * 885*0Sstevel@tonic-gate * For the adventuresome, here's an explanation of how it works. 886*0Sstevel@tonic-gate * 887*0Sstevel@tonic-gate * Multiplication by a fixed constant is easy -- you just do the appropriate 888*0Sstevel@tonic-gate * shifts and adds. For example, to multiply by 10, we observe that 889*0Sstevel@tonic-gate * 890*0Sstevel@tonic-gate * x * 10 = x * (8 + 2) 891*0Sstevel@tonic-gate * = (x * 8) + (x * 2) 892*0Sstevel@tonic-gate * = (x << 3) + (x << 1). 893*0Sstevel@tonic-gate * 894*0Sstevel@tonic-gate * In general, you can read the algorithm right off the bits: the number 10 895*0Sstevel@tonic-gate * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3). 896*0Sstevel@tonic-gate * 897*0Sstevel@tonic-gate * Sometimes you can do better. For example, 15 is 1111 binary, so the normal 898*0Sstevel@tonic-gate * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3). 899*0Sstevel@tonic-gate * But, it's cheaper if you capitalize on the fact that you have a run of ones: 900*0Sstevel@tonic-gate * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0). [You would never 901*0Sstevel@tonic-gate * actually perform the operation << 0, since it's a no-op; I'm just writing 902*0Sstevel@tonic-gate * it that way for clarity.] 903*0Sstevel@tonic-gate * 904*0Sstevel@tonic-gate * The other way you can win is if you get lucky with the prime factorization 905*0Sstevel@tonic-gate * of your constant. The number 1,000,000,000, which we have to multiply 906*0Sstevel@tonic-gate * by below, is a good example. One billion is 111011100110101100101000000000 907*0Sstevel@tonic-gate * in binary. If you apply the bit-grouping trick, it doesn't buy you very 908*0Sstevel@tonic-gate * much, because it's only a win for groups of three or more equal bits: 909*0Sstevel@tonic-gate * 910*0Sstevel@tonic-gate * 111011100110101100101000000000 = 1000000000000000000000000000000 911*0Sstevel@tonic-gate * - 000100011001010011011000000000 912*0Sstevel@tonic-gate * 913*0Sstevel@tonic-gate * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS, 914*0Sstevel@tonic-gate * we have reduced this to 10 shift/add pairs (20 operations) on the RHS. 915*0Sstevel@tonic-gate * This is better, but not great. 916*0Sstevel@tonic-gate * 917*0Sstevel@tonic-gate * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125, 918*0Sstevel@tonic-gate * and multiply by each factor. Multiplication by 125 is particularly easy, 919*0Sstevel@tonic-gate * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four 920*0Sstevel@tonic-gate * operations. So, to multiply by 1,000,000,000, we perform three multipli- 921*0Sstevel@tonic-gate * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations. 922*0Sstevel@tonic-gate * This is the algorithm we actually use in both hrt2ts() and ts2hrt(). 923*0Sstevel@tonic-gate * 924*0Sstevel@tonic-gate * Division is harder; there is no equivalent of the simple shift-add algorithm 925*0Sstevel@tonic-gate * we used for multiplication. However, we can convert the division problem 926*0Sstevel@tonic-gate * into a multiplication problem by pre-computing the binary representation 927*0Sstevel@tonic-gate * of the reciprocal of the divisor. For the case of interest, we have 928*0Sstevel@tonic-gate * 929*0Sstevel@tonic-gate * 1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30, 930*0Sstevel@tonic-gate * 931*0Sstevel@tonic-gate * to 32 bits of precision. (The notation B-30 means "* 2^-30", just like 932*0Sstevel@tonic-gate * E-18 means "* 10^-18".) 933*0Sstevel@tonic-gate * 934*0Sstevel@tonic-gate * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit 935*0Sstevel@tonic-gate * integer 10001001011100000101111101000001, then normalize (shift) the 936*0Sstevel@tonic-gate * result. This constant has several large bits runs, so the multiply 937*0Sstevel@tonic-gate * is relatively cheap: 938*0Sstevel@tonic-gate * 939*0Sstevel@tonic-gate * 10001001011100000101111101000001 = 10001001100000000110000001000001 940*0Sstevel@tonic-gate * - 00000000000100000000000100000000 941*0Sstevel@tonic-gate * 942*0Sstevel@tonic-gate * Again, you can just read the algorithm right off the bits: 943*0Sstevel@tonic-gate * 944*0Sstevel@tonic-gate * sec = hrt; 945*0Sstevel@tonic-gate * sec += (hrt << 6); 946*0Sstevel@tonic-gate * sec -= (hrt << 8); 947*0Sstevel@tonic-gate * sec += (hrt << 13); 948*0Sstevel@tonic-gate * sec += (hrt << 14); 949*0Sstevel@tonic-gate * sec -= (hrt << 20); 950*0Sstevel@tonic-gate * sec += (hrt << 23); 951*0Sstevel@tonic-gate * sec += (hrt << 24); 952*0Sstevel@tonic-gate * sec += (hrt << 27); 953*0Sstevel@tonic-gate * sec += (hrt << 31); 954*0Sstevel@tonic-gate * sec >>= (32 + 30); 955*0Sstevel@tonic-gate * 956*0Sstevel@tonic-gate * Voila! The only problem is, since hrt is 64 bits, we need to use 96-bit 957*0Sstevel@tonic-gate * arithmetic to perform this calculation. That's a waste, because ultimately 958*0Sstevel@tonic-gate * we only need the highest 32 bits of the result. 959*0Sstevel@tonic-gate * 960*0Sstevel@tonic-gate * The first thing we do is to realize that we don't need to use all of hrt 961*0Sstevel@tonic-gate * in the calculation. The lowest 30 bits can contribute at most 1 to the 962*0Sstevel@tonic-gate * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later. 963*0Sstevel@tonic-gate * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t. 964*0Sstevel@tonic-gate * Thus, the only bits of hrt that matter for division are bits 30..61. 965*0Sstevel@tonic-gate * These 32 bits are just the lower-order word of (hrt >> 30). This brings 966*0Sstevel@tonic-gate * us down from 96-bit math to 64-bit math, and our algorithm becomes: 967*0Sstevel@tonic-gate * 968*0Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 969*0Sstevel@tonic-gate * sec = tmp; 970*0Sstevel@tonic-gate * sec += (tmp << 6); 971*0Sstevel@tonic-gate * sec -= (tmp << 8); 972*0Sstevel@tonic-gate * sec += (tmp << 13); 973*0Sstevel@tonic-gate * sec += (tmp << 14); 974*0Sstevel@tonic-gate * sec -= (tmp << 20); 975*0Sstevel@tonic-gate * sec += (tmp << 23); 976*0Sstevel@tonic-gate * sec += (tmp << 24); 977*0Sstevel@tonic-gate * sec += (tmp << 27); 978*0Sstevel@tonic-gate * sec += (tmp << 31); 979*0Sstevel@tonic-gate * sec >>= 32; 980*0Sstevel@tonic-gate * 981*0Sstevel@tonic-gate * Next, we're going to reduce this 64-bit computation to a 32-bit 982*0Sstevel@tonic-gate * computation. We begin by rewriting the above algorithm to use relative 983*0Sstevel@tonic-gate * shifts instead of absolute shifts. That is, instead of computing 984*0Sstevel@tonic-gate * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally: 985*0Sstevel@tonic-gate * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc: 986*0Sstevel@tonic-gate * 987*0Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 988*0Sstevel@tonic-gate * sec = tmp; 989*0Sstevel@tonic-gate * tmp <<= 6; sec += tmp; 990*0Sstevel@tonic-gate * tmp <<= 2; sec -= tmp; 991*0Sstevel@tonic-gate * tmp <<= 5; sec += tmp; 992*0Sstevel@tonic-gate * tmp <<= 1; sec += tmp; 993*0Sstevel@tonic-gate * tmp <<= 6; sec -= tmp; 994*0Sstevel@tonic-gate * tmp <<= 3; sec += tmp; 995*0Sstevel@tonic-gate * tmp <<= 1; sec += tmp; 996*0Sstevel@tonic-gate * tmp <<= 3; sec += tmp; 997*0Sstevel@tonic-gate * tmp <<= 4; sec += tmp; 998*0Sstevel@tonic-gate * sec >>= 32; 999*0Sstevel@tonic-gate * 1000*0Sstevel@tonic-gate * Now for the final step. Instead of throwing away the low 32 bits at 1001*0Sstevel@tonic-gate * the end, we can throw them away as we go, only keeping the high 32 bits 1002*0Sstevel@tonic-gate * of the product at each step. So, for example, where we now have 1003*0Sstevel@tonic-gate * 1004*0Sstevel@tonic-gate * tmp <<= 6; sec = sec + tmp; 1005*0Sstevel@tonic-gate * we will instead have 1006*0Sstevel@tonic-gate * tmp <<= 6; sec = (sec + tmp) >> 6; 1007*0Sstevel@tonic-gate * which is equivalent to 1008*0Sstevel@tonic-gate * sec = (sec >> 6) + tmp; 1009*0Sstevel@tonic-gate * 1010*0Sstevel@tonic-gate * The final shift ("sec >>= 32") goes away. 1011*0Sstevel@tonic-gate * 1012*0Sstevel@tonic-gate * All we're really doing here is long multiplication, just like we learned in 1013*0Sstevel@tonic-gate * grade school, except that at each step, we only look at the leftmost 32 1014*0Sstevel@tonic-gate * columns. The cumulative error is, at most, the sum of all the bits we 1015*0Sstevel@tonic-gate * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32. 1016*0Sstevel@tonic-gate * Thus, the final result ("sec") is correct to +/- 1. 1017*0Sstevel@tonic-gate * 1018*0Sstevel@tonic-gate * It turns out to be important to keep "sec" positive at each step, because 1019*0Sstevel@tonic-gate * we don't want to have to explicitly extend the sign bit. Therefore, 1020*0Sstevel@tonic-gate * starting with the last line of code above, each line that would have read 1021*0Sstevel@tonic-gate * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and 1022*0Sstevel@tonic-gate * the operators (+ or -) in all previous lines must be toggled accordingly. 1023*0Sstevel@tonic-gate * Thus, we end up with: 1024*0Sstevel@tonic-gate * 1025*0Sstevel@tonic-gate * tmp = (uint32_t) (hrt >> 30); 1026*0Sstevel@tonic-gate * sec = tmp + (sec >> 6); 1027*0Sstevel@tonic-gate * sec = tmp - (tmp >> 2); 1028*0Sstevel@tonic-gate * sec = tmp - (sec >> 5); 1029*0Sstevel@tonic-gate * sec = tmp + (sec >> 1); 1030*0Sstevel@tonic-gate * sec = tmp - (sec >> 6); 1031*0Sstevel@tonic-gate * sec = tmp - (sec >> 3); 1032*0Sstevel@tonic-gate * sec = tmp + (sec >> 1); 1033*0Sstevel@tonic-gate * sec = tmp + (sec >> 3); 1034*0Sstevel@tonic-gate * sec = tmp + (sec >> 4); 1035*0Sstevel@tonic-gate * 1036*0Sstevel@tonic-gate * This yields a value for sec that is accurate to +1/-1, so we have two 1037*0Sstevel@tonic-gate * cases to deal with. The mysterious-looking "+ 7" in the code below biases 1038*0Sstevel@tonic-gate * the rounding toward zero, so that sec is always less than or equal to 1039*0Sstevel@tonic-gate * the correct value. With this modified code, sec is accurate to +0/-2, with 1040*0Sstevel@tonic-gate * the -2 case being very rare in practice. With this change, we only have to 1041*0Sstevel@tonic-gate * deal with one case (sec too small) in the cleanup code. 1042*0Sstevel@tonic-gate * 1043*0Sstevel@tonic-gate * The other modification we make is to delete the second line above 1044*0Sstevel@tonic-gate * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is 1045*0Sstevel@tonic-gate * set, and the cleanup code can handle that rare case. This reduces the 1046*0Sstevel@tonic-gate * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases. 1047*0Sstevel@tonic-gate * 1048*0Sstevel@tonic-gate * Finally, we compute nsec = hrt - (sec * 1,000,000,000). nsec will always 1049*0Sstevel@tonic-gate * be positive (since sec is never too large), and will at most be equal to 1050*0Sstevel@tonic-gate * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt. 1051*0Sstevel@tonic-gate * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can 1052*0Sstevel@tonic-gate * safely assume that nsec fits in 32 bits. Consequently, when we compute 1053*0Sstevel@tonic-gate * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit 1054*0Sstevel@tonic-gate * arithmetic and let the high-order bits fall off the end. 1055*0Sstevel@tonic-gate * 1056*0Sstevel@tonic-gate * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop: 1057*0Sstevel@tonic-gate * 1058*0Sstevel@tonic-gate * while (nsec >= NANOSEC) { 1059*0Sstevel@tonic-gate * nsec -= NANOSEC; 1060*0Sstevel@tonic-gate * sec++; 1061*0Sstevel@tonic-gate * } 1062*0Sstevel@tonic-gate * 1063*0Sstevel@tonic-gate * is guaranteed to complete in at most 4 iterations. In practice, the loop 1064*0Sstevel@tonic-gate * completes in 0 or 1 iteration over 95% of the time. 1065*0Sstevel@tonic-gate * 1066*0Sstevel@tonic-gate * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about 1067*0Sstevel@tonic-gate * 35 usec for software division -- about 20 times faster. 1068*0Sstevel@tonic-gate */ 1069*0Sstevel@tonic-gate void 1070*0Sstevel@tonic-gate hrt2ts(hrtime_t hrt, timestruc_t *tsp) 1071*0Sstevel@tonic-gate { 1072*0Sstevel@tonic-gate uint32_t sec, nsec, tmp; 1073*0Sstevel@tonic-gate 1074*0Sstevel@tonic-gate tmp = (uint32_t)(hrt >> 30); 1075*0Sstevel@tonic-gate sec = tmp - (tmp >> 2); 1076*0Sstevel@tonic-gate sec = tmp - (sec >> 5); 1077*0Sstevel@tonic-gate sec = tmp + (sec >> 1); 1078*0Sstevel@tonic-gate sec = tmp - (sec >> 6) + 7; 1079*0Sstevel@tonic-gate sec = tmp - (sec >> 3); 1080*0Sstevel@tonic-gate sec = tmp + (sec >> 1); 1081*0Sstevel@tonic-gate sec = tmp + (sec >> 3); 1082*0Sstevel@tonic-gate sec = tmp + (sec >> 4); 1083*0Sstevel@tonic-gate tmp = (sec << 7) - sec - sec - sec; 1084*0Sstevel@tonic-gate tmp = (tmp << 7) - tmp - tmp - tmp; 1085*0Sstevel@tonic-gate tmp = (tmp << 7) - tmp - tmp - tmp; 1086*0Sstevel@tonic-gate nsec = (uint32_t)hrt - (tmp << 9); 1087*0Sstevel@tonic-gate while (nsec >= NANOSEC) { 1088*0Sstevel@tonic-gate nsec -= NANOSEC; 1089*0Sstevel@tonic-gate sec++; 1090*0Sstevel@tonic-gate } 1091*0Sstevel@tonic-gate tsp->tv_sec = (time_t)sec; 1092*0Sstevel@tonic-gate tsp->tv_nsec = nsec; 1093*0Sstevel@tonic-gate } 1094*0Sstevel@tonic-gate 1095*0Sstevel@tonic-gate /* 1096*0Sstevel@tonic-gate * Convert from timestruc_t to hrtime_t. 1097*0Sstevel@tonic-gate * 1098*0Sstevel@tonic-gate * The code below is equivalent to: 1099*0Sstevel@tonic-gate * 1100*0Sstevel@tonic-gate * hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec; 1101*0Sstevel@tonic-gate * 1102*0Sstevel@tonic-gate * but requires no integer multiply. 1103*0Sstevel@tonic-gate */ 1104*0Sstevel@tonic-gate hrtime_t 1105*0Sstevel@tonic-gate ts2hrt(const timestruc_t *tsp) 1106*0Sstevel@tonic-gate { 1107*0Sstevel@tonic-gate hrtime_t hrt; 1108*0Sstevel@tonic-gate 1109*0Sstevel@tonic-gate hrt = tsp->tv_sec; 1110*0Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 1111*0Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 1112*0Sstevel@tonic-gate hrt = (hrt << 7) - hrt - hrt - hrt; 1113*0Sstevel@tonic-gate hrt = (hrt << 9) + tsp->tv_nsec; 1114*0Sstevel@tonic-gate return (hrt); 1115*0Sstevel@tonic-gate } 1116*0Sstevel@tonic-gate 1117*0Sstevel@tonic-gate /* 1118*0Sstevel@tonic-gate * For the various 32-bit "compatibility" paths in the system. 1119*0Sstevel@tonic-gate */ 1120*0Sstevel@tonic-gate void 1121*0Sstevel@tonic-gate hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p) 1122*0Sstevel@tonic-gate { 1123*0Sstevel@tonic-gate timestruc_t ts; 1124*0Sstevel@tonic-gate 1125*0Sstevel@tonic-gate hrt2ts(hrt, &ts); 1126*0Sstevel@tonic-gate TIMESPEC_TO_TIMESPEC32(ts32p, &ts); 1127*0Sstevel@tonic-gate } 1128*0Sstevel@tonic-gate 1129*0Sstevel@tonic-gate /* 1130*0Sstevel@tonic-gate * If this ever becomes performance critical (ha!), we can borrow the 1131*0Sstevel@tonic-gate * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the 1132*0Sstevel@tonic-gate * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by 1133*0Sstevel@tonic-gate * 1,000. For now, we'll opt for readability (besides, the compiler does 1134*0Sstevel@tonic-gate * a passable job of optimizing constant multiplication into shifts and adds). 1135*0Sstevel@tonic-gate */ 1136*0Sstevel@tonic-gate hrtime_t 1137*0Sstevel@tonic-gate tv2hrt(struct timeval *tvp) 1138*0Sstevel@tonic-gate { 1139*0Sstevel@tonic-gate return ((hrtime_t)tvp->tv_sec * NANOSEC + 1140*0Sstevel@tonic-gate (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC)); 1141*0Sstevel@tonic-gate } 1142*0Sstevel@tonic-gate 1143*0Sstevel@tonic-gate void 1144*0Sstevel@tonic-gate hrt2tv(hrtime_t ts, struct timeval *tvp) 1145*0Sstevel@tonic-gate { 1146*0Sstevel@tonic-gate tvp->tv_sec = ts / NANOSEC; 1147*0Sstevel@tonic-gate tvp->tv_usec = (ts % NANOSEC) / (NANOSEC / MICROSEC); 1148*0Sstevel@tonic-gate } 1149*0Sstevel@tonic-gate 1150*0Sstevel@tonic-gate int 1151*0Sstevel@tonic-gate nanosleep(timespec_t *rqtp, timespec_t *rmtp) 1152*0Sstevel@tonic-gate { 1153*0Sstevel@tonic-gate timespec_t rqtime; 1154*0Sstevel@tonic-gate timespec_t rmtime; 1155*0Sstevel@tonic-gate timespec_t now; 1156*0Sstevel@tonic-gate int timecheck; 1157*0Sstevel@tonic-gate int ret = 1; 1158*0Sstevel@tonic-gate model_t datamodel = get_udatamodel(); 1159*0Sstevel@tonic-gate 1160*0Sstevel@tonic-gate if (datamodel == DATAMODEL_NATIVE) { 1161*0Sstevel@tonic-gate if (copyin(rqtp, &rqtime, sizeof (rqtime))) 1162*0Sstevel@tonic-gate return (set_errno(EFAULT)); 1163*0Sstevel@tonic-gate } else { 1164*0Sstevel@tonic-gate timespec32_t rqtime32; 1165*0Sstevel@tonic-gate 1166*0Sstevel@tonic-gate if (copyin(rqtp, &rqtime32, sizeof (rqtime32))) 1167*0Sstevel@tonic-gate return (set_errno(EFAULT)); 1168*0Sstevel@tonic-gate TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32); 1169*0Sstevel@tonic-gate } 1170*0Sstevel@tonic-gate 1171*0Sstevel@tonic-gate if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 || 1172*0Sstevel@tonic-gate rqtime.tv_nsec >= NANOSEC) 1173*0Sstevel@tonic-gate return (set_errno(EINVAL)); 1174*0Sstevel@tonic-gate 1175*0Sstevel@tonic-gate if (timerspecisset(&rqtime)) { 1176*0Sstevel@tonic-gate timecheck = timechanged; 1177*0Sstevel@tonic-gate gethrestime(&now); 1178*0Sstevel@tonic-gate timespecadd(&rqtime, &now); 1179*0Sstevel@tonic-gate mutex_enter(&curthread->t_delay_lock); 1180*0Sstevel@tonic-gate while ((ret = cv_waituntil_sig(&curthread->t_delay_cv, 1181*0Sstevel@tonic-gate &curthread->t_delay_lock, &rqtime, timecheck)) > 0) 1182*0Sstevel@tonic-gate continue; 1183*0Sstevel@tonic-gate mutex_exit(&curthread->t_delay_lock); 1184*0Sstevel@tonic-gate } 1185*0Sstevel@tonic-gate 1186*0Sstevel@tonic-gate if (rmtp) { 1187*0Sstevel@tonic-gate /* 1188*0Sstevel@tonic-gate * If cv_waituntil_sig() returned due to a signal, and 1189*0Sstevel@tonic-gate * there is time remaining, then set the time remaining. 1190*0Sstevel@tonic-gate * Else set time remaining to zero 1191*0Sstevel@tonic-gate */ 1192*0Sstevel@tonic-gate rmtime.tv_sec = rmtime.tv_nsec = 0; 1193*0Sstevel@tonic-gate if (ret == 0) { 1194*0Sstevel@tonic-gate gethrestime(&now); 1195*0Sstevel@tonic-gate if ((now.tv_sec < rqtime.tv_sec) || 1196*0Sstevel@tonic-gate ((now.tv_sec == rqtime.tv_sec) && 1197*0Sstevel@tonic-gate (now.tv_nsec < rqtime.tv_nsec))) { 1198*0Sstevel@tonic-gate rmtime = rqtime; 1199*0Sstevel@tonic-gate timespecsub(&rmtime, &now); 1200*0Sstevel@tonic-gate } 1201*0Sstevel@tonic-gate } 1202*0Sstevel@tonic-gate 1203*0Sstevel@tonic-gate if (datamodel == DATAMODEL_NATIVE) { 1204*0Sstevel@tonic-gate if (copyout(&rmtime, rmtp, sizeof (rmtime))) 1205*0Sstevel@tonic-gate return (set_errno(EFAULT)); 1206*0Sstevel@tonic-gate } else { 1207*0Sstevel@tonic-gate timespec32_t rmtime32; 1208*0Sstevel@tonic-gate 1209*0Sstevel@tonic-gate TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime); 1210*0Sstevel@tonic-gate if (copyout(&rmtime32, rmtp, sizeof (rmtime32))) 1211*0Sstevel@tonic-gate return (set_errno(EFAULT)); 1212*0Sstevel@tonic-gate } 1213*0Sstevel@tonic-gate } 1214*0Sstevel@tonic-gate 1215*0Sstevel@tonic-gate if (ret == 0) 1216*0Sstevel@tonic-gate return (set_errno(EINTR)); 1217*0Sstevel@tonic-gate return (0); 1218*0Sstevel@tonic-gate } 1219*0Sstevel@tonic-gate 1220*0Sstevel@tonic-gate /* 1221*0Sstevel@tonic-gate * Routines to convert standard UNIX time (seconds since Jan 1, 1970) 1222*0Sstevel@tonic-gate * into year/month/day/hour/minute/second format, and back again. 1223*0Sstevel@tonic-gate * Note: these routines require tod_lock held to protect cached state. 1224*0Sstevel@tonic-gate */ 1225*0Sstevel@tonic-gate static int days_thru_month[64] = { 1226*0Sstevel@tonic-gate 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0, 1227*0Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1228*0Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1229*0Sstevel@tonic-gate 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1230*0Sstevel@tonic-gate }; 1231*0Sstevel@tonic-gate 1232*0Sstevel@tonic-gate todinfo_t saved_tod; 1233*0Sstevel@tonic-gate int saved_utc = -60; 1234*0Sstevel@tonic-gate 1235*0Sstevel@tonic-gate todinfo_t 1236*0Sstevel@tonic-gate utc_to_tod(time_t utc) 1237*0Sstevel@tonic-gate { 1238*0Sstevel@tonic-gate long dse, day, month, year; 1239*0Sstevel@tonic-gate todinfo_t tod; 1240*0Sstevel@tonic-gate 1241*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 1242*0Sstevel@tonic-gate 1243*0Sstevel@tonic-gate if (utc < 0) /* should never happen */ 1244*0Sstevel@tonic-gate utc = 0; 1245*0Sstevel@tonic-gate 1246*0Sstevel@tonic-gate saved_tod.tod_sec += utc - saved_utc; 1247*0Sstevel@tonic-gate saved_utc = utc; 1248*0Sstevel@tonic-gate if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60) 1249*0Sstevel@tonic-gate return (saved_tod); /* only the seconds changed */ 1250*0Sstevel@tonic-gate 1251*0Sstevel@tonic-gate dse = utc / 86400; /* days since epoch */ 1252*0Sstevel@tonic-gate 1253*0Sstevel@tonic-gate tod.tod_sec = utc % 60; 1254*0Sstevel@tonic-gate tod.tod_min = (utc % 3600) / 60; 1255*0Sstevel@tonic-gate tod.tod_hour = (utc % 86400) / 3600; 1256*0Sstevel@tonic-gate tod.tod_dow = (dse + 4) % 7 + 1; /* epoch was a Thursday */ 1257*0Sstevel@tonic-gate 1258*0Sstevel@tonic-gate year = dse / 365 + 72; /* first guess -- always a bit too large */ 1259*0Sstevel@tonic-gate do { 1260*0Sstevel@tonic-gate year--; 1261*0Sstevel@tonic-gate day = dse - 365 * (year - 70) - ((year - 69) >> 2); 1262*0Sstevel@tonic-gate } while (day < 0); 1263*0Sstevel@tonic-gate 1264*0Sstevel@tonic-gate month = ((year & 3) << 4) + 1; 1265*0Sstevel@tonic-gate while (day >= days_thru_month[month + 1]) 1266*0Sstevel@tonic-gate month++; 1267*0Sstevel@tonic-gate 1268*0Sstevel@tonic-gate tod.tod_day = day - days_thru_month[month] + 1; 1269*0Sstevel@tonic-gate tod.tod_month = month & 15; 1270*0Sstevel@tonic-gate tod.tod_year = year; 1271*0Sstevel@tonic-gate 1272*0Sstevel@tonic-gate saved_tod = tod; 1273*0Sstevel@tonic-gate return (tod); 1274*0Sstevel@tonic-gate } 1275*0Sstevel@tonic-gate 1276*0Sstevel@tonic-gate time_t 1277*0Sstevel@tonic-gate tod_to_utc(todinfo_t tod) 1278*0Sstevel@tonic-gate { 1279*0Sstevel@tonic-gate time_t utc; 1280*0Sstevel@tonic-gate int year = tod.tod_year; 1281*0Sstevel@tonic-gate int month = tod.tod_month + ((year & 3) << 4); 1282*0Sstevel@tonic-gate #ifdef DEBUG 1283*0Sstevel@tonic-gate /* only warn once, not each time called */ 1284*0Sstevel@tonic-gate static int year_warn = 1; 1285*0Sstevel@tonic-gate static int month_warn = 1; 1286*0Sstevel@tonic-gate static int day_warn = 1; 1287*0Sstevel@tonic-gate static int hour_warn = 1; 1288*0Sstevel@tonic-gate static int min_warn = 1; 1289*0Sstevel@tonic-gate static int sec_warn = 1; 1290*0Sstevel@tonic-gate int days_diff = days_thru_month[month + 1] - days_thru_month[month]; 1291*0Sstevel@tonic-gate #endif 1292*0Sstevel@tonic-gate 1293*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 1294*0Sstevel@tonic-gate 1295*0Sstevel@tonic-gate #ifdef DEBUG 1296*0Sstevel@tonic-gate if (year_warn && (year < 70 || year > 8029)) { 1297*0Sstevel@tonic-gate cmn_err(CE_WARN, 1298*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1299*0Sstevel@tonic-gate "wrong years value %d -- time needs to be reset\n", 1300*0Sstevel@tonic-gate year); 1301*0Sstevel@tonic-gate year_warn = 0; 1302*0Sstevel@tonic-gate } 1303*0Sstevel@tonic-gate 1304*0Sstevel@tonic-gate if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) { 1305*0Sstevel@tonic-gate cmn_err(CE_WARN, 1306*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1307*0Sstevel@tonic-gate "wrong months value %d -- time needs to be reset\n", 1308*0Sstevel@tonic-gate tod.tod_month); 1309*0Sstevel@tonic-gate month_warn = 0; 1310*0Sstevel@tonic-gate } 1311*0Sstevel@tonic-gate 1312*0Sstevel@tonic-gate if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) { 1313*0Sstevel@tonic-gate cmn_err(CE_WARN, 1314*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1315*0Sstevel@tonic-gate "wrong days value %d -- time needs to be reset\n", 1316*0Sstevel@tonic-gate tod.tod_day); 1317*0Sstevel@tonic-gate day_warn = 0; 1318*0Sstevel@tonic-gate } 1319*0Sstevel@tonic-gate 1320*0Sstevel@tonic-gate if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) { 1321*0Sstevel@tonic-gate cmn_err(CE_WARN, 1322*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1323*0Sstevel@tonic-gate "wrong hours value %d -- time needs to be reset\n", 1324*0Sstevel@tonic-gate tod.tod_hour); 1325*0Sstevel@tonic-gate hour_warn = 0; 1326*0Sstevel@tonic-gate } 1327*0Sstevel@tonic-gate 1328*0Sstevel@tonic-gate if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) { 1329*0Sstevel@tonic-gate cmn_err(CE_WARN, 1330*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1331*0Sstevel@tonic-gate "wrong minutes value %d -- time needs to be reset\n", 1332*0Sstevel@tonic-gate tod.tod_min); 1333*0Sstevel@tonic-gate min_warn = 0; 1334*0Sstevel@tonic-gate } 1335*0Sstevel@tonic-gate 1336*0Sstevel@tonic-gate if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) { 1337*0Sstevel@tonic-gate cmn_err(CE_WARN, 1338*0Sstevel@tonic-gate "The hardware real-time clock appears to have the " 1339*0Sstevel@tonic-gate "wrong seconds value %d -- time needs to be reset\n", 1340*0Sstevel@tonic-gate tod.tod_sec); 1341*0Sstevel@tonic-gate sec_warn = 0; 1342*0Sstevel@tonic-gate } 1343*0Sstevel@tonic-gate #endif 1344*0Sstevel@tonic-gate 1345*0Sstevel@tonic-gate utc = (year - 70); /* next 3 lines: utc = 365y + y/4 */ 1346*0Sstevel@tonic-gate utc += (utc << 3) + (utc << 6); 1347*0Sstevel@tonic-gate utc += (utc << 2) + ((year - 69) >> 2); 1348*0Sstevel@tonic-gate utc += days_thru_month[month] + tod.tod_day - 1; 1349*0Sstevel@tonic-gate utc = (utc << 3) + (utc << 4) + tod.tod_hour; /* 24 * day + hour */ 1350*0Sstevel@tonic-gate utc = (utc << 6) - (utc << 2) + tod.tod_min; /* 60 * hour + min */ 1351*0Sstevel@tonic-gate utc = (utc << 6) - (utc << 2) + tod.tod_sec; /* 60 * min + sec */ 1352*0Sstevel@tonic-gate 1353*0Sstevel@tonic-gate return (utc); 1354*0Sstevel@tonic-gate } 1355