xref: /onnv-gate/usr/src/uts/common/os/mutex.c (revision 6138)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
52205Sdv142724  * Common Development and Distribution License (the "License").
62205Sdv142724  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
210Sstevel@tonic-gate /*
225834Spt157919  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
230Sstevel@tonic-gate  * Use is subject to license terms.
240Sstevel@tonic-gate  */
250Sstevel@tonic-gate 
260Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
270Sstevel@tonic-gate 
280Sstevel@tonic-gate /*
290Sstevel@tonic-gate  * Big Theory Statement for mutual exclusion locking primitives.
300Sstevel@tonic-gate  *
310Sstevel@tonic-gate  * A mutex serializes multiple threads so that only one thread
320Sstevel@tonic-gate  * (the "owner" of the mutex) is active at a time.  See mutex(9F)
330Sstevel@tonic-gate  * for a full description of the interfaces and programming model.
340Sstevel@tonic-gate  * The rest of this comment describes the implementation.
350Sstevel@tonic-gate  *
360Sstevel@tonic-gate  * Mutexes come in two flavors: adaptive and spin.  mutex_init(9F)
370Sstevel@tonic-gate  * determines the type based solely on the iblock cookie (PIL) argument.
380Sstevel@tonic-gate  * PIL > LOCK_LEVEL implies a spin lock; everything else is adaptive.
390Sstevel@tonic-gate  *
400Sstevel@tonic-gate  * Spin mutexes block interrupts and spin until the lock becomes available.
410Sstevel@tonic-gate  * A thread may not sleep, or call any function that might sleep, while
420Sstevel@tonic-gate  * holding a spin mutex.  With few exceptions, spin mutexes should only
430Sstevel@tonic-gate  * be used to synchronize with interrupt handlers.
440Sstevel@tonic-gate  *
450Sstevel@tonic-gate  * Adaptive mutexes (the default type) spin if the owner is running on
460Sstevel@tonic-gate  * another CPU and block otherwise.  This policy is based on the assumption
470Sstevel@tonic-gate  * that mutex hold times are typically short enough that the time spent
480Sstevel@tonic-gate  * spinning is less than the time it takes to block.  If you need mutual
490Sstevel@tonic-gate  * exclusion semantics with long hold times, consider an rwlock(9F) as
500Sstevel@tonic-gate  * RW_WRITER.  Better still, reconsider the algorithm: if it requires
510Sstevel@tonic-gate  * mutual exclusion for long periods of time, it's probably not scalable.
520Sstevel@tonic-gate  *
530Sstevel@tonic-gate  * Adaptive mutexes are overwhelmingly more common than spin mutexes,
540Sstevel@tonic-gate  * so mutex_enter() assumes that the lock is adaptive.  We get away
550Sstevel@tonic-gate  * with this by structuring mutexes so that an attempt to acquire a
560Sstevel@tonic-gate  * spin mutex as adaptive always fails.  When mutex_enter() fails
570Sstevel@tonic-gate  * it punts to mutex_vector_enter(), which does all the hard stuff.
580Sstevel@tonic-gate  *
590Sstevel@tonic-gate  * mutex_vector_enter() first checks the type.  If it's spin mutex,
600Sstevel@tonic-gate  * we just call lock_set_spl() and return.  If it's an adaptive mutex,
610Sstevel@tonic-gate  * we check to see what the owner is doing.  If the owner is running,
620Sstevel@tonic-gate  * we spin until the lock becomes available; if not, we mark the lock
630Sstevel@tonic-gate  * as having waiters and block.
640Sstevel@tonic-gate  *
650Sstevel@tonic-gate  * Blocking on a mutex is surprisingly delicate dance because, for speed,
660Sstevel@tonic-gate  * mutex_exit() doesn't use an atomic instruction.  Thus we have to work
670Sstevel@tonic-gate  * a little harder in the (rarely-executed) blocking path to make sure
680Sstevel@tonic-gate  * we don't block on a mutex that's just been released -- otherwise we
690Sstevel@tonic-gate  * might never be woken up.
700Sstevel@tonic-gate  *
710Sstevel@tonic-gate  * The logic for synchronizing mutex_vector_enter() with mutex_exit()
720Sstevel@tonic-gate  * in the face of preemption and relaxed memory ordering is as follows:
730Sstevel@tonic-gate  *
740Sstevel@tonic-gate  * (1) Preemption in the middle of mutex_exit() must cause mutex_exit()
750Sstevel@tonic-gate  *     to restart.  Each platform must enforce this by checking the
760Sstevel@tonic-gate  *     interrupted PC in the interrupt handler (or on return from trap --
770Sstevel@tonic-gate  *     whichever is more convenient for the platform).  If the PC
780Sstevel@tonic-gate  *     lies within the critical region of mutex_exit(), the interrupt
790Sstevel@tonic-gate  *     handler must reset the PC back to the beginning of mutex_exit().
800Sstevel@tonic-gate  *     The critical region consists of all instructions up to, but not
810Sstevel@tonic-gate  *     including, the store that clears the lock (which, of course,
820Sstevel@tonic-gate  *     must never be executed twice.)
830Sstevel@tonic-gate  *
840Sstevel@tonic-gate  *     This ensures that the owner will always check for waiters after
850Sstevel@tonic-gate  *     resuming from a previous preemption.
860Sstevel@tonic-gate  *
870Sstevel@tonic-gate  * (2) A thread resuming in mutex_exit() does (at least) the following:
880Sstevel@tonic-gate  *
890Sstevel@tonic-gate  *	when resuming:	set CPU_THREAD = owner
900Sstevel@tonic-gate  *			membar #StoreLoad
910Sstevel@tonic-gate  *
920Sstevel@tonic-gate  *	in mutex_exit:	check waiters bit; do wakeup if set
930Sstevel@tonic-gate  *			membar #LoadStore|#StoreStore
940Sstevel@tonic-gate  *			clear owner
950Sstevel@tonic-gate  *			(at this point, other threads may or may not grab
960Sstevel@tonic-gate  *			the lock, and we may or may not reacquire it)
970Sstevel@tonic-gate  *
980Sstevel@tonic-gate  *	when blocking:	membar #StoreStore (due to disp_lock_enter())
990Sstevel@tonic-gate  *			set CPU_THREAD = (possibly) someone else
1000Sstevel@tonic-gate  *
1010Sstevel@tonic-gate  * (3) A thread blocking in mutex_vector_enter() does the following:
1020Sstevel@tonic-gate  *
1030Sstevel@tonic-gate  *			set waiters bit
1040Sstevel@tonic-gate  *			membar #StoreLoad (via membar_enter())
1055834Spt157919  *			check CPU_THREAD for owner's t_cpu
1065834Spt157919  *				continue if owner running
1070Sstevel@tonic-gate  *			membar #LoadLoad (via membar_consumer())
1080Sstevel@tonic-gate  *			check owner and waiters bit; abort if either changed
1090Sstevel@tonic-gate  *			block
1100Sstevel@tonic-gate  *
1110Sstevel@tonic-gate  * Thus the global memory orderings for (2) and (3) are as follows:
1120Sstevel@tonic-gate  *
1130Sstevel@tonic-gate  * (2M) mutex_exit() memory order:
1140Sstevel@tonic-gate  *
1150Sstevel@tonic-gate  *			STORE	CPU_THREAD = owner
1160Sstevel@tonic-gate  *			LOAD	waiters bit
1170Sstevel@tonic-gate  *			STORE	owner = NULL
1180Sstevel@tonic-gate  *			STORE	CPU_THREAD = (possibly) someone else
1190Sstevel@tonic-gate  *
1200Sstevel@tonic-gate  * (3M) mutex_vector_enter() memory order:
1210Sstevel@tonic-gate  *
1220Sstevel@tonic-gate  *			STORE	waiters bit = 1
1230Sstevel@tonic-gate  *			LOAD	CPU_THREAD for each CPU
1240Sstevel@tonic-gate  *			LOAD	owner and waiters bit
1250Sstevel@tonic-gate  *
1260Sstevel@tonic-gate  * It has been verified by exhaustive simulation that all possible global
1270Sstevel@tonic-gate  * memory orderings of (2M) interleaved with (3M) result in correct
1280Sstevel@tonic-gate  * behavior.  Moreover, these ordering constraints are minimal: changing
1290Sstevel@tonic-gate  * the ordering of anything in (2M) or (3M) breaks the algorithm, creating
1300Sstevel@tonic-gate  * windows for missed wakeups.  Note: the possibility that other threads
1310Sstevel@tonic-gate  * may grab the lock after the owner drops it can be factored out of the
1320Sstevel@tonic-gate  * memory ordering analysis because mutex_vector_enter() won't block
1330Sstevel@tonic-gate  * if the lock isn't still owned by the same thread.
1340Sstevel@tonic-gate  *
1350Sstevel@tonic-gate  * The only requirements of code outside the mutex implementation are
1360Sstevel@tonic-gate  * (1) mutex_exit() preemption fixup in interrupt handlers or trap return,
1375834Spt157919  * (2) a membar #StoreLoad after setting CPU_THREAD in resume(),
1385834Spt157919  * (3) mutex_owner_running() preemption fixup in interrupt handlers
1395834Spt157919  * or trap returns.
1400Sstevel@tonic-gate  * Note: idle threads cannot grab adaptive locks (since they cannot block),
1410Sstevel@tonic-gate  * so the membar may be safely omitted when resuming an idle thread.
1420Sstevel@tonic-gate  *
1430Sstevel@tonic-gate  * When a mutex has waiters, mutex_vector_exit() has several options:
1440Sstevel@tonic-gate  *
1450Sstevel@tonic-gate  * (1) Choose a waiter and make that thread the owner before waking it;
1460Sstevel@tonic-gate  *     this is known as "direct handoff" of ownership.
1470Sstevel@tonic-gate  *
1480Sstevel@tonic-gate  * (2) Drop the lock and wake one waiter.
1490Sstevel@tonic-gate  *
1500Sstevel@tonic-gate  * (3) Drop the lock, clear the waiters bit, and wake all waiters.
1510Sstevel@tonic-gate  *
1520Sstevel@tonic-gate  * In many ways (1) is the cleanest solution, but if a lock is moderately
1530Sstevel@tonic-gate  * contended it defeats the adaptive spin logic.  If we make some other
1540Sstevel@tonic-gate  * thread the owner, but he's not ONPROC yet, then all other threads on
1550Sstevel@tonic-gate  * other cpus that try to get the lock will conclude that the owner is
1560Sstevel@tonic-gate  * blocked, so they'll block too.  And so on -- it escalates quickly,
1570Sstevel@tonic-gate  * with every thread taking the blocking path rather than the spin path.
1580Sstevel@tonic-gate  * Thus, direct handoff is *not* a good idea for adaptive mutexes.
1590Sstevel@tonic-gate  *
1600Sstevel@tonic-gate  * Option (2) is the next most natural-seeming option, but it has several
1610Sstevel@tonic-gate  * annoying properties.  If there's more than one waiter, we must preserve
1620Sstevel@tonic-gate  * the waiters bit on an unheld lock.  On cas-capable platforms, where
1630Sstevel@tonic-gate  * the waiters bit is part of the lock word, this means that both 0x0
1640Sstevel@tonic-gate  * and 0x1 represent unheld locks, so we have to cas against *both*.
1650Sstevel@tonic-gate  * Priority inheritance also gets more complicated, because a lock can
1660Sstevel@tonic-gate  * have waiters but no owner to whom priority can be willed.  So while
1670Sstevel@tonic-gate  * it is possible to make option (2) work, it's surprisingly vile.
1680Sstevel@tonic-gate  *
1690Sstevel@tonic-gate  * Option (3), the least-intuitive at first glance, is what we actually do.
1700Sstevel@tonic-gate  * It has the advantage that because you always wake all waiters, you
1710Sstevel@tonic-gate  * never have to preserve the waiters bit.  Waking all waiters seems like
1720Sstevel@tonic-gate  * begging for a thundering herd problem, but consider: under option (2),
1730Sstevel@tonic-gate  * every thread that grabs and drops the lock will wake one waiter -- so
1740Sstevel@tonic-gate  * if the lock is fairly active, all waiters will be awakened very quickly
1750Sstevel@tonic-gate  * anyway.  Moreover, this is how adaptive locks are *supposed* to work.
1760Sstevel@tonic-gate  * The blocking case is rare; the more common case (by 3-4 orders of
1770Sstevel@tonic-gate  * magnitude) is that one or more threads spin waiting to get the lock.
1780Sstevel@tonic-gate  * Only direct handoff can prevent the thundering herd problem, but as
1790Sstevel@tonic-gate  * mentioned earlier, that would tend to defeat the adaptive spin logic.
1800Sstevel@tonic-gate  * In practice, option (3) works well because the blocking case is rare.
1810Sstevel@tonic-gate  */
1820Sstevel@tonic-gate 
1830Sstevel@tonic-gate /*
1840Sstevel@tonic-gate  * delayed lock retry with exponential delay for spin locks
1850Sstevel@tonic-gate  *
1860Sstevel@tonic-gate  * It is noted above that for both the spin locks and the adaptive locks,
1870Sstevel@tonic-gate  * spinning is the dominate mode of operation.  So long as there is only
1880Sstevel@tonic-gate  * one thread waiting on a lock, the naive spin loop works very well in
1890Sstevel@tonic-gate  * cache based architectures.  The lock data structure is pulled into the
1900Sstevel@tonic-gate  * cache of the processor with the waiting/spinning thread and no further
1910Sstevel@tonic-gate  * memory traffic is generated until the lock is released.  Unfortunately,
1920Sstevel@tonic-gate  * once two or more threads are waiting on a lock, the naive spin has
1930Sstevel@tonic-gate  * the property of generating maximum memory traffic from each spinning
1940Sstevel@tonic-gate  * thread as the spinning threads contend for the lock data structure.
1950Sstevel@tonic-gate  *
1960Sstevel@tonic-gate  * By executing a delay loop before retrying a lock, a waiting thread
1970Sstevel@tonic-gate  * can reduce its memory traffic by a large factor, depending on the
1980Sstevel@tonic-gate  * size of the delay loop.  A large delay loop greatly reduced the memory
1990Sstevel@tonic-gate  * traffic, but has the drawback of having a period of time when
2000Sstevel@tonic-gate  * no thread is attempting to gain the lock even though several threads
2010Sstevel@tonic-gate  * might be waiting.  A small delay loop has the drawback of not
2020Sstevel@tonic-gate  * much reduction in memory traffic, but reduces the potential idle time.
2030Sstevel@tonic-gate  * The theory of the exponential delay code is to start with a short
2040Sstevel@tonic-gate  * delay loop and double the waiting time on each iteration, up to
2055834Spt157919  * a preselected maximum.
2060Sstevel@tonic-gate  */
2070Sstevel@tonic-gate 
2080Sstevel@tonic-gate #include <sys/param.h>
2090Sstevel@tonic-gate #include <sys/time.h>
2100Sstevel@tonic-gate #include <sys/cpuvar.h>
2110Sstevel@tonic-gate #include <sys/thread.h>
2120Sstevel@tonic-gate #include <sys/debug.h>
2130Sstevel@tonic-gate #include <sys/cmn_err.h>
2140Sstevel@tonic-gate #include <sys/sobject.h>
2150Sstevel@tonic-gate #include <sys/turnstile.h>
2160Sstevel@tonic-gate #include <sys/systm.h>
2170Sstevel@tonic-gate #include <sys/mutex_impl.h>
2180Sstevel@tonic-gate #include <sys/spl.h>
2190Sstevel@tonic-gate #include <sys/lockstat.h>
2200Sstevel@tonic-gate #include <sys/atomic.h>
2210Sstevel@tonic-gate #include <sys/cpu.h>
2220Sstevel@tonic-gate #include <sys/stack.h>
2235084Sjohnlev #include <sys/archsystm.h>
2245834Spt157919 #include <sys/machsystm.h>
2255834Spt157919 #include <sys/x_call.h>
2260Sstevel@tonic-gate 
2270Sstevel@tonic-gate /*
2280Sstevel@tonic-gate  * The sobj_ops vector exports a set of functions needed when a thread
2290Sstevel@tonic-gate  * is asleep on a synchronization object of this type.
2300Sstevel@tonic-gate  */
2310Sstevel@tonic-gate static sobj_ops_t mutex_sobj_ops = {
2320Sstevel@tonic-gate 	SOBJ_MUTEX, mutex_owner, turnstile_stay_asleep, turnstile_change_pri
2330Sstevel@tonic-gate };
2340Sstevel@tonic-gate 
2350Sstevel@tonic-gate /*
2360Sstevel@tonic-gate  * If the system panics on a mutex, save the address of the offending
2370Sstevel@tonic-gate  * mutex in panic_mutex_addr, and save the contents in panic_mutex.
2380Sstevel@tonic-gate  */
2390Sstevel@tonic-gate static mutex_impl_t panic_mutex;
2400Sstevel@tonic-gate static mutex_impl_t *panic_mutex_addr;
2410Sstevel@tonic-gate 
2420Sstevel@tonic-gate static void
2430Sstevel@tonic-gate mutex_panic(char *msg, mutex_impl_t *lp)
2440Sstevel@tonic-gate {
2450Sstevel@tonic-gate 	if (panicstr)
2460Sstevel@tonic-gate 		return;
2470Sstevel@tonic-gate 
2480Sstevel@tonic-gate 	if (casptr(&panic_mutex_addr, NULL, lp) == NULL)
2490Sstevel@tonic-gate 		panic_mutex = *lp;
2500Sstevel@tonic-gate 
2510Sstevel@tonic-gate 	panic("%s, lp=%p owner=%p thread=%p",
2520Sstevel@tonic-gate 	    msg, lp, MUTEX_OWNER(&panic_mutex), curthread);
2530Sstevel@tonic-gate }
2540Sstevel@tonic-gate 
2555834Spt157919 /* "tunables" for per-platform backoff constants. */
2565834Spt157919 uint_t mutex_backoff_cap = 0;
2575834Spt157919 ushort_t mutex_backoff_base = MUTEX_BACKOFF_BASE;
2585834Spt157919 ushort_t mutex_cap_factor = MUTEX_CAP_FACTOR;
2595834Spt157919 uchar_t mutex_backoff_shift = MUTEX_BACKOFF_SHIFT;
2605834Spt157919 
2615834Spt157919 void
2625834Spt157919 mutex_sync(void)
2635834Spt157919 {
2645834Spt157919 	MUTEX_SYNC();
2655834Spt157919 }
2665834Spt157919 
2675834Spt157919 /* calculate the backoff interval */
268*6138Ssvemuri uint_t
2695834Spt157919 default_lock_backoff(uint_t backoff)
2705834Spt157919 {
2715834Spt157919 	uint_t cap;		/* backoff cap calculated */
2725834Spt157919 
2735834Spt157919 	if (backoff == 0) {
2745834Spt157919 		backoff = mutex_backoff_base;
2755834Spt157919 		/* first call just sets the base */
2765834Spt157919 		return (backoff);
2775834Spt157919 	}
2785834Spt157919 
2795834Spt157919 	/* set cap */
2805834Spt157919 	if (mutex_backoff_cap == 0) {
2815834Spt157919 		/*
2825834Spt157919 		 * For a contended lock, in the worst case a load + cas may
2835834Spt157919 		 * be queued  at the controller for each contending CPU.
2845834Spt157919 		 * Therefore, to avoid queueing, the accesses for all CPUS must
2855834Spt157919 		 * be spread out in time over an interval of (ncpu *
2865834Spt157919 		 * cap-factor).  Maximum backoff is set to this value, and
2875834Spt157919 		 * actual backoff is a random number from 0 to the current max.
2885834Spt157919 		 */
2895834Spt157919 		cap = ncpus_online * mutex_cap_factor;
2905834Spt157919 	} else {
2915834Spt157919 		cap = mutex_backoff_cap;
2925834Spt157919 	}
2935834Spt157919 
2945834Spt157919 	/* calculate new backoff value */
2955834Spt157919 	backoff <<= mutex_backoff_shift;	/* increase backoff */
2965834Spt157919 	if (backoff > cap) {
2975834Spt157919 		if (cap < mutex_backoff_base)
2985834Spt157919 			backoff = mutex_backoff_base;
2995834Spt157919 		else
3005834Spt157919 			backoff = cap;
3015834Spt157919 	}
3025834Spt157919 
3035834Spt157919 	return (backoff);
3045834Spt157919 }
3055834Spt157919 
3065834Spt157919 /*
3075834Spt157919  * default delay function for mutexes.
3085834Spt157919  */
309*6138Ssvemuri void
3105834Spt157919 default_lock_delay(uint_t backoff)
3115834Spt157919 {
3125834Spt157919 	ulong_t rnd;		/* random factor */
3135834Spt157919 	uint_t cur_backoff;	/* calculated backoff */
3145834Spt157919 	uint_t backctr;
3155834Spt157919 
3165834Spt157919 	/*
3175834Spt157919 	 * Modify backoff by a random amount to avoid lockstep, and to
3185834Spt157919 	 * make it probable that some thread gets a small backoff, and
3195834Spt157919 	 * re-checks quickly
3205834Spt157919 	 */
3215834Spt157919 	rnd = (((long)curthread >> PTR24_LSB) ^ (long)MUTEX_GETTICK());
3225834Spt157919 	cur_backoff = (uint_t)(rnd % (backoff - mutex_backoff_base + 1)) +
3235834Spt157919 	    mutex_backoff_base;
3245834Spt157919 
3255834Spt157919 	/*
3265834Spt157919 	 * Delay before trying
3275834Spt157919 	 * to touch the mutex data structure.
3285834Spt157919 	 */
3295834Spt157919 	for (backctr = cur_backoff; backctr; backctr--) {
3305834Spt157919 		MUTEX_DELAY();
3315834Spt157919 	};
3325834Spt157919 }
3335834Spt157919 
3345834Spt157919 uint_t (*mutex_lock_backoff)(uint_t) = default_lock_backoff;
3355834Spt157919 void (*mutex_lock_delay)(uint_t) = default_lock_delay;
3365834Spt157919 void (*mutex_delay)(void) = mutex_delay_default;
3375834Spt157919 
3380Sstevel@tonic-gate /*
3390Sstevel@tonic-gate  * mutex_vector_enter() is called from the assembly mutex_enter() routine
3400Sstevel@tonic-gate  * if the lock is held or is not of type MUTEX_ADAPTIVE.
3410Sstevel@tonic-gate  */
3420Sstevel@tonic-gate void
3430Sstevel@tonic-gate mutex_vector_enter(mutex_impl_t *lp)
3440Sstevel@tonic-gate {
3450Sstevel@tonic-gate 	kthread_id_t	owner;
3465834Spt157919 	kthread_id_t	lastowner = MUTEX_NO_OWNER; /* track owner changes */
3470Sstevel@tonic-gate 	hrtime_t	sleep_time = 0;	/* how long we slept */
3486103Sck142721 	hrtime_t	spin_time = 0;	/* how long we spun */
3495834Spt157919 	cpu_t 		*cpup;
3500Sstevel@tonic-gate 	turnstile_t	*ts;
3510Sstevel@tonic-gate 	volatile mutex_impl_t *vlp = (volatile mutex_impl_t *)lp;
3525834Spt157919 	uint_t		backoff = 0;	/* current backoff */
3535834Spt157919 	int		changecnt = 0;	/* count of owner changes */
3540Sstevel@tonic-gate 
3550Sstevel@tonic-gate 	ASSERT_STACK_ALIGNED();
3560Sstevel@tonic-gate 
3570Sstevel@tonic-gate 	if (MUTEX_TYPE_SPIN(lp)) {
3580Sstevel@tonic-gate 		lock_set_spl(&lp->m_spin.m_spinlock, lp->m_spin.m_minspl,
3590Sstevel@tonic-gate 		    &lp->m_spin.m_oldspl);
3600Sstevel@tonic-gate 		return;
3610Sstevel@tonic-gate 	}
3620Sstevel@tonic-gate 
3630Sstevel@tonic-gate 	if (!MUTEX_TYPE_ADAPTIVE(lp)) {
3640Sstevel@tonic-gate 		mutex_panic("mutex_enter: bad mutex", lp);
3650Sstevel@tonic-gate 		return;
3660Sstevel@tonic-gate 	}
3670Sstevel@tonic-gate 
3680Sstevel@tonic-gate 	/*
3690Sstevel@tonic-gate 	 * Adaptive mutexes must not be acquired from above LOCK_LEVEL.
3700Sstevel@tonic-gate 	 * We can migrate after loading CPU but before checking CPU_ON_INTR,
3710Sstevel@tonic-gate 	 * so we must verify by disabling preemption and loading CPU again.
3720Sstevel@tonic-gate 	 */
3730Sstevel@tonic-gate 	cpup = CPU;
3740Sstevel@tonic-gate 	if (CPU_ON_INTR(cpup) && !panicstr) {
3750Sstevel@tonic-gate 		kpreempt_disable();
3760Sstevel@tonic-gate 		if (CPU_ON_INTR(CPU))
3770Sstevel@tonic-gate 			mutex_panic("mutex_enter: adaptive at high PIL", lp);
3780Sstevel@tonic-gate 		kpreempt_enable();
3790Sstevel@tonic-gate 	}
3800Sstevel@tonic-gate 
3810Sstevel@tonic-gate 	CPU_STATS_ADDQ(cpup, sys, mutex_adenters, 1);
3820Sstevel@tonic-gate 
3836103Sck142721 	spin_time = LOCKSTAT_START_TIME(LS_MUTEX_ENTER_SPIN);
3846103Sck142721 
3855834Spt157919 	backoff = mutex_lock_backoff(0);	/* set base backoff */
3860Sstevel@tonic-gate 	for (;;) {
3875834Spt157919 		mutex_lock_delay(backoff); /* backoff delay */
3880Sstevel@tonic-gate 
3890Sstevel@tonic-gate 		if (panicstr)
3900Sstevel@tonic-gate 			return;
3910Sstevel@tonic-gate 
3920Sstevel@tonic-gate 		if ((owner = MUTEX_OWNER(vlp)) == NULL) {
3935834Spt157919 			if (mutex_adaptive_tryenter(lp)) {
3940Sstevel@tonic-gate 				break;
3955834Spt157919 			}
3965834Spt157919 			/* increase backoff only on failed attempt. */
3975834Spt157919 			backoff = mutex_lock_backoff(backoff);
3985834Spt157919 			changecnt++;
3990Sstevel@tonic-gate 			continue;
4005834Spt157919 		} else if (lastowner != owner) {
4015834Spt157919 			lastowner = owner;
4025834Spt157919 			backoff = mutex_lock_backoff(backoff);
4035834Spt157919 			changecnt++;
4045834Spt157919 		}
4055834Spt157919 
4065834Spt157919 		if (changecnt >= ncpus_online) {
4075834Spt157919 			backoff = mutex_lock_backoff(0);
4085834Spt157919 			changecnt = 0;
4090Sstevel@tonic-gate 		}
4100Sstevel@tonic-gate 
4110Sstevel@tonic-gate 		if (owner == curthread)
4120Sstevel@tonic-gate 			mutex_panic("recursive mutex_enter", lp);
4130Sstevel@tonic-gate 
4140Sstevel@tonic-gate 		/*
4150Sstevel@tonic-gate 		 * If lock is held but owner is not yet set, spin.
4160Sstevel@tonic-gate 		 * (Only relevant for platforms that don't have cas.)
4170Sstevel@tonic-gate 		 */
4180Sstevel@tonic-gate 		if (owner == MUTEX_NO_OWNER)
4190Sstevel@tonic-gate 			continue;
4200Sstevel@tonic-gate 
4215834Spt157919 		if (mutex_owner_running(lp) != NULL)  {
4225834Spt157919 			continue;
4235834Spt157919 		}
4240Sstevel@tonic-gate 
4250Sstevel@tonic-gate 		/*
4260Sstevel@tonic-gate 		 * The owner appears not to be running, so block.
4270Sstevel@tonic-gate 		 * See the Big Theory Statement for memory ordering issues.
4280Sstevel@tonic-gate 		 */
4290Sstevel@tonic-gate 		ts = turnstile_lookup(lp);
4300Sstevel@tonic-gate 		MUTEX_SET_WAITERS(lp);
4310Sstevel@tonic-gate 		membar_enter();
4320Sstevel@tonic-gate 
4330Sstevel@tonic-gate 		/*
4340Sstevel@tonic-gate 		 * Recheck whether owner is running after waiters bit hits
4350Sstevel@tonic-gate 		 * global visibility (above).  If owner is running, spin.
4360Sstevel@tonic-gate 		 */
4375834Spt157919 		if (mutex_owner_running(lp) != NULL) {
4385834Spt157919 			turnstile_exit(lp);
4395834Spt157919 			continue;
4405834Spt157919 		}
4410Sstevel@tonic-gate 		membar_consumer();
4420Sstevel@tonic-gate 
4430Sstevel@tonic-gate 		/*
4440Sstevel@tonic-gate 		 * If owner and waiters bit are unchanged, block.
4450Sstevel@tonic-gate 		 */
4460Sstevel@tonic-gate 		if (MUTEX_OWNER(vlp) == owner && MUTEX_HAS_WAITERS(vlp)) {
4470Sstevel@tonic-gate 			sleep_time -= gethrtime();
4480Sstevel@tonic-gate 			(void) turnstile_block(ts, TS_WRITER_Q, lp,
4490Sstevel@tonic-gate 			    &mutex_sobj_ops, NULL, NULL);
4500Sstevel@tonic-gate 			sleep_time += gethrtime();
4515834Spt157919 			/* reset backoff after turnstile */
4525834Spt157919 			backoff = mutex_lock_backoff(0);
4530Sstevel@tonic-gate 		} else {
4540Sstevel@tonic-gate 			turnstile_exit(lp);
4550Sstevel@tonic-gate 		}
4560Sstevel@tonic-gate 	}
4570Sstevel@tonic-gate 
4580Sstevel@tonic-gate 	ASSERT(MUTEX_OWNER(lp) == curthread);
4590Sstevel@tonic-gate 
4602205Sdv142724 	if (sleep_time != 0) {
4612205Sdv142724 		/*
4622205Sdv142724 		 * Note, sleep time is the sum of all the sleeping we
4632205Sdv142724 		 * did.
4642205Sdv142724 		 */
4650Sstevel@tonic-gate 		LOCKSTAT_RECORD(LS_MUTEX_ENTER_BLOCK, lp, sleep_time);
4660Sstevel@tonic-gate 	}
4670Sstevel@tonic-gate 
4686103Sck142721 	/* record spin time, don't count sleep time */
4696103Sck142721 	if (spin_time != 0) {
4706103Sck142721 		LOCKSTAT_RECORD_TIME(LS_MUTEX_ENTER_SPIN, lp,
4716103Sck142721 		    spin_time + sleep_time);
4725834Spt157919 	}
4732205Sdv142724 
4740Sstevel@tonic-gate 	LOCKSTAT_RECORD0(LS_MUTEX_ENTER_ACQUIRE, lp);
4750Sstevel@tonic-gate }
4760Sstevel@tonic-gate 
4770Sstevel@tonic-gate /*
4780Sstevel@tonic-gate  * mutex_vector_tryenter() is called from the assembly mutex_tryenter()
4790Sstevel@tonic-gate  * routine if the lock is held or is not of type MUTEX_ADAPTIVE.
4800Sstevel@tonic-gate  */
4810Sstevel@tonic-gate int
4820Sstevel@tonic-gate mutex_vector_tryenter(mutex_impl_t *lp)
4830Sstevel@tonic-gate {
4840Sstevel@tonic-gate 	int s;
4850Sstevel@tonic-gate 
4860Sstevel@tonic-gate 	if (MUTEX_TYPE_ADAPTIVE(lp))
4870Sstevel@tonic-gate 		return (0);		/* we already tried in assembly */
4880Sstevel@tonic-gate 
4890Sstevel@tonic-gate 	if (!MUTEX_TYPE_SPIN(lp)) {
4900Sstevel@tonic-gate 		mutex_panic("mutex_tryenter: bad mutex", lp);
4910Sstevel@tonic-gate 		return (0);
4920Sstevel@tonic-gate 	}
4930Sstevel@tonic-gate 
4940Sstevel@tonic-gate 	s = splr(lp->m_spin.m_minspl);
4950Sstevel@tonic-gate 	if (lock_try(&lp->m_spin.m_spinlock)) {
4960Sstevel@tonic-gate 		lp->m_spin.m_oldspl = (ushort_t)s;
4970Sstevel@tonic-gate 		return (1);
4980Sstevel@tonic-gate 	}
4990Sstevel@tonic-gate 	splx(s);
5000Sstevel@tonic-gate 	return (0);
5010Sstevel@tonic-gate }
5020Sstevel@tonic-gate 
5030Sstevel@tonic-gate /*
5040Sstevel@tonic-gate  * mutex_vector_exit() is called from mutex_exit() if the lock is not
5050Sstevel@tonic-gate  * adaptive, has waiters, or is not owned by the current thread (panic).
5060Sstevel@tonic-gate  */
5070Sstevel@tonic-gate void
5080Sstevel@tonic-gate mutex_vector_exit(mutex_impl_t *lp)
5090Sstevel@tonic-gate {
5100Sstevel@tonic-gate 	turnstile_t *ts;
5110Sstevel@tonic-gate 
5120Sstevel@tonic-gate 	if (MUTEX_TYPE_SPIN(lp)) {
5130Sstevel@tonic-gate 		lock_clear_splx(&lp->m_spin.m_spinlock, lp->m_spin.m_oldspl);
5140Sstevel@tonic-gate 		return;
5150Sstevel@tonic-gate 	}
5160Sstevel@tonic-gate 
5170Sstevel@tonic-gate 	if (MUTEX_OWNER(lp) != curthread) {
5180Sstevel@tonic-gate 		mutex_panic("mutex_exit: not owner", lp);
5190Sstevel@tonic-gate 		return;
5200Sstevel@tonic-gate 	}
5210Sstevel@tonic-gate 
5220Sstevel@tonic-gate 	ts = turnstile_lookup(lp);
5230Sstevel@tonic-gate 	MUTEX_CLEAR_LOCK_AND_WAITERS(lp);
5240Sstevel@tonic-gate 	if (ts == NULL)
5250Sstevel@tonic-gate 		turnstile_exit(lp);
5260Sstevel@tonic-gate 	else
5270Sstevel@tonic-gate 		turnstile_wakeup(ts, TS_WRITER_Q, ts->ts_waiters, NULL);
5280Sstevel@tonic-gate 	LOCKSTAT_RECORD0(LS_MUTEX_EXIT_RELEASE, lp);
5290Sstevel@tonic-gate }
5300Sstevel@tonic-gate 
5310Sstevel@tonic-gate int
5320Sstevel@tonic-gate mutex_owned(kmutex_t *mp)
5330Sstevel@tonic-gate {
5340Sstevel@tonic-gate 	mutex_impl_t *lp = (mutex_impl_t *)mp;
5350Sstevel@tonic-gate 
5360Sstevel@tonic-gate 	if (panicstr)
5370Sstevel@tonic-gate 		return (1);
5380Sstevel@tonic-gate 
5390Sstevel@tonic-gate 	if (MUTEX_TYPE_ADAPTIVE(lp))
5400Sstevel@tonic-gate 		return (MUTEX_OWNER(lp) == curthread);
5410Sstevel@tonic-gate 	return (LOCK_HELD(&lp->m_spin.m_spinlock));
5420Sstevel@tonic-gate }
5430Sstevel@tonic-gate 
5440Sstevel@tonic-gate kthread_t *
5450Sstevel@tonic-gate mutex_owner(kmutex_t *mp)
5460Sstevel@tonic-gate {
5470Sstevel@tonic-gate 	mutex_impl_t *lp = (mutex_impl_t *)mp;
5480Sstevel@tonic-gate 	kthread_id_t t;
5490Sstevel@tonic-gate 
5500Sstevel@tonic-gate 	if (MUTEX_TYPE_ADAPTIVE(lp) && (t = MUTEX_OWNER(lp)) != MUTEX_NO_OWNER)
5510Sstevel@tonic-gate 		return (t);
5520Sstevel@tonic-gate 	return (NULL);
5530Sstevel@tonic-gate }
5540Sstevel@tonic-gate 
5550Sstevel@tonic-gate /*
5560Sstevel@tonic-gate  * The iblock cookie 'ibc' is the spl level associated with the lock;
5570Sstevel@tonic-gate  * this alone determines whether the lock will be ADAPTIVE or SPIN.
5580Sstevel@tonic-gate  *
5590Sstevel@tonic-gate  * Adaptive mutexes created in zeroed memory do not need to call
5600Sstevel@tonic-gate  * mutex_init() as their allocation in this fashion guarantees
5610Sstevel@tonic-gate  * their initialization.
5620Sstevel@tonic-gate  *   eg adaptive mutexes created as static within the BSS or allocated
5630Sstevel@tonic-gate  *      by kmem_zalloc().
5640Sstevel@tonic-gate  */
5650Sstevel@tonic-gate /* ARGSUSED */
5660Sstevel@tonic-gate void
5670Sstevel@tonic-gate mutex_init(kmutex_t *mp, char *name, kmutex_type_t type, void *ibc)
5680Sstevel@tonic-gate {
5690Sstevel@tonic-gate 	mutex_impl_t *lp = (mutex_impl_t *)mp;
5700Sstevel@tonic-gate 
5710Sstevel@tonic-gate 	ASSERT(ibc < (void *)KERNELBASE);	/* see 1215173 */
5720Sstevel@tonic-gate 
5730Sstevel@tonic-gate 	if ((intptr_t)ibc > ipltospl(LOCK_LEVEL) && ibc < (void *)KERNELBASE) {
5740Sstevel@tonic-gate 		ASSERT(type != MUTEX_ADAPTIVE && type != MUTEX_DEFAULT);
5750Sstevel@tonic-gate 		MUTEX_SET_TYPE(lp, MUTEX_SPIN);
5760Sstevel@tonic-gate 		LOCK_INIT_CLEAR(&lp->m_spin.m_spinlock);
5770Sstevel@tonic-gate 		LOCK_INIT_HELD(&lp->m_spin.m_dummylock);
5780Sstevel@tonic-gate 		lp->m_spin.m_minspl = (int)(intptr_t)ibc;
5790Sstevel@tonic-gate 	} else {
5800Sstevel@tonic-gate 		ASSERT(type != MUTEX_SPIN);
5810Sstevel@tonic-gate 		MUTEX_SET_TYPE(lp, MUTEX_ADAPTIVE);
5820Sstevel@tonic-gate 		MUTEX_CLEAR_LOCK_AND_WAITERS(lp);
5830Sstevel@tonic-gate 	}
5840Sstevel@tonic-gate }
5850Sstevel@tonic-gate 
5860Sstevel@tonic-gate void
5870Sstevel@tonic-gate mutex_destroy(kmutex_t *mp)
5880Sstevel@tonic-gate {
5890Sstevel@tonic-gate 	mutex_impl_t *lp = (mutex_impl_t *)mp;
5900Sstevel@tonic-gate 
5910Sstevel@tonic-gate 	if (lp->m_owner == 0 && !MUTEX_HAS_WAITERS(lp)) {
5920Sstevel@tonic-gate 		MUTEX_DESTROY(lp);
5930Sstevel@tonic-gate 	} else if (MUTEX_TYPE_SPIN(lp)) {
5940Sstevel@tonic-gate 		LOCKSTAT_RECORD0(LS_MUTEX_DESTROY_RELEASE, lp);
5950Sstevel@tonic-gate 		MUTEX_DESTROY(lp);
5960Sstevel@tonic-gate 	} else if (MUTEX_TYPE_ADAPTIVE(lp)) {
5970Sstevel@tonic-gate 		LOCKSTAT_RECORD0(LS_MUTEX_DESTROY_RELEASE, lp);
5980Sstevel@tonic-gate 		if (MUTEX_OWNER(lp) != curthread)
5990Sstevel@tonic-gate 			mutex_panic("mutex_destroy: not owner", lp);
6000Sstevel@tonic-gate 		if (MUTEX_HAS_WAITERS(lp)) {
6010Sstevel@tonic-gate 			turnstile_t *ts = turnstile_lookup(lp);
6020Sstevel@tonic-gate 			turnstile_exit(lp);
6030Sstevel@tonic-gate 			if (ts != NULL)
6040Sstevel@tonic-gate 				mutex_panic("mutex_destroy: has waiters", lp);
6050Sstevel@tonic-gate 		}
6060Sstevel@tonic-gate 		MUTEX_DESTROY(lp);
6070Sstevel@tonic-gate 	} else {
6080Sstevel@tonic-gate 		mutex_panic("mutex_destroy: bad mutex", lp);
6090Sstevel@tonic-gate 	}
6100Sstevel@tonic-gate }
6110Sstevel@tonic-gate 
6120Sstevel@tonic-gate /*
6130Sstevel@tonic-gate  * Simple C support for the cases where spin locks miss on the first try.
6140Sstevel@tonic-gate  */
6150Sstevel@tonic-gate void
6160Sstevel@tonic-gate lock_set_spin(lock_t *lp)
6170Sstevel@tonic-gate {
6185834Spt157919 	int loop_count = 0;
6195834Spt157919 	uint_t backoff = 0;	/* current backoff */
6206103Sck142721 	hrtime_t spin_time = 0;	/* how long we spun */
6210Sstevel@tonic-gate 
6220Sstevel@tonic-gate 	if (panicstr)
6230Sstevel@tonic-gate 		return;
6240Sstevel@tonic-gate 
6250Sstevel@tonic-gate 	if (ncpus == 1)
6260Sstevel@tonic-gate 		panic("lock_set: %p lock held and only one CPU", lp);
6270Sstevel@tonic-gate 
6286103Sck142721 	spin_time = LOCKSTAT_START_TIME(LS_LOCK_SET_SPIN);
6296103Sck142721 
6300Sstevel@tonic-gate 	while (LOCK_HELD(lp) || !lock_spin_try(lp)) {
6310Sstevel@tonic-gate 		if (panicstr)
6320Sstevel@tonic-gate 			return;
6335834Spt157919 		loop_count++;
6345834Spt157919 
6355834Spt157919 		if (ncpus_online == loop_count) {
6365834Spt157919 			backoff = mutex_lock_backoff(0);
6375834Spt157919 			loop_count = 0;
6383914Spm145316 		} else {
6395834Spt157919 			backoff = mutex_lock_backoff(backoff);
6400Sstevel@tonic-gate 		}
6415834Spt157919 		mutex_lock_delay(backoff);
6420Sstevel@tonic-gate 	}
6430Sstevel@tonic-gate 
6446103Sck142721 	LOCKSTAT_RECORD_TIME(LS_LOCK_SET_SPIN, lp, spin_time);
6450Sstevel@tonic-gate 
6460Sstevel@tonic-gate 	LOCKSTAT_RECORD0(LS_LOCK_SET_ACQUIRE, lp);
6470Sstevel@tonic-gate }
6480Sstevel@tonic-gate 
6490Sstevel@tonic-gate void
6500Sstevel@tonic-gate lock_set_spl_spin(lock_t *lp, int new_pil, ushort_t *old_pil_addr, int old_pil)
6510Sstevel@tonic-gate {
6525834Spt157919 	int loop_count = 0;
6535834Spt157919 	uint_t backoff = 0;	/* current backoff */
6546103Sck142721 	hrtime_t spin_time = 0;	/* how long we spun */
6550Sstevel@tonic-gate 
6560Sstevel@tonic-gate 	if (panicstr)
6570Sstevel@tonic-gate 		return;
6580Sstevel@tonic-gate 
6590Sstevel@tonic-gate 	if (ncpus == 1)
6600Sstevel@tonic-gate 		panic("lock_set_spl: %p lock held and only one CPU", lp);
6610Sstevel@tonic-gate 
6620Sstevel@tonic-gate 	ASSERT(new_pil > LOCK_LEVEL);
6630Sstevel@tonic-gate 
6646103Sck142721 	spin_time = LOCKSTAT_START_TIME(LS_LOCK_SET_SPL_SPIN);
6656103Sck142721 
6660Sstevel@tonic-gate 	do {
6670Sstevel@tonic-gate 		splx(old_pil);
6680Sstevel@tonic-gate 		while (LOCK_HELD(lp)) {
6695834Spt157919 			loop_count++;
6705834Spt157919 
6710Sstevel@tonic-gate 			if (panicstr) {
6720Sstevel@tonic-gate 				*old_pil_addr = (ushort_t)splr(new_pil);
6730Sstevel@tonic-gate 				return;
6740Sstevel@tonic-gate 			}
6755834Spt157919 			if (ncpus_online == loop_count) {
6765834Spt157919 				backoff = mutex_lock_backoff(0);
6775834Spt157919 				loop_count = 0;
6783914Spm145316 			} else {
6795834Spt157919 				backoff = mutex_lock_backoff(backoff);
6800Sstevel@tonic-gate 			}
6815834Spt157919 			mutex_lock_delay(backoff);
6820Sstevel@tonic-gate 		}
6830Sstevel@tonic-gate 		old_pil = splr(new_pil);
6840Sstevel@tonic-gate 	} while (!lock_spin_try(lp));
6850Sstevel@tonic-gate 
6860Sstevel@tonic-gate 	*old_pil_addr = (ushort_t)old_pil;
6870Sstevel@tonic-gate 
6886103Sck142721 	LOCKSTAT_RECORD_TIME(LS_LOCK_SET_SPL_SPIN, lp, spin_time);
6890Sstevel@tonic-gate 
6906103Sck142721 	LOCKSTAT_RECORD0(LS_LOCK_SET_SPL_ACQUIRE, lp);
6910Sstevel@tonic-gate }
692