xref: /onnv-gate/usr/src/uts/common/os/cyclic.c (revision 5864:bcc9282accd7)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
5*5864Sesaxe  * Common Development and Distribution License (the "License").
6*5864Sesaxe  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
210Sstevel@tonic-gate /*
22*5864Sesaxe  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
230Sstevel@tonic-gate  * Use is subject to license terms.
240Sstevel@tonic-gate  */
250Sstevel@tonic-gate 
260Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
270Sstevel@tonic-gate 
280Sstevel@tonic-gate /*
290Sstevel@tonic-gate  *  The Cyclic Subsystem
300Sstevel@tonic-gate  *  --------------------
310Sstevel@tonic-gate  *
320Sstevel@tonic-gate  *  Prehistory
330Sstevel@tonic-gate  *
340Sstevel@tonic-gate  *  Historically, most computer architectures have specified interval-based
350Sstevel@tonic-gate  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
360Sstevel@tonic-gate  *  these parts deal in relative (i.e. not absolute) time values, they are
370Sstevel@tonic-gate  *  typically used by the operating system to implement the abstraction of
380Sstevel@tonic-gate  *  absolute time.  As a result, these parts cannot typically be reprogrammed
390Sstevel@tonic-gate  *  without introducing error in the system's notion of time.
400Sstevel@tonic-gate  *
410Sstevel@tonic-gate  *  Starting in about 1994, chip architectures began specifying high resolution
420Sstevel@tonic-gate  *  timestamp registers.  As of this writing (1999), all major chip families
430Sstevel@tonic-gate  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
440Sstevel@tonic-gate  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
450Sstevel@tonic-gate  *  to interrupt based on timestamp values.  These timestamp-compare registers
460Sstevel@tonic-gate  *  present a time-based interrupt source which can be reprogrammed arbitrarily
470Sstevel@tonic-gate  *  often without introducing error.  Given the low cost of implementing such a
480Sstevel@tonic-gate  *  timestamp-compare register (and the tangible benefit of eliminating
490Sstevel@tonic-gate  *  discrete timer parts), it is reasonable to expect that future chip
500Sstevel@tonic-gate  *  architectures will adopt this feature.
510Sstevel@tonic-gate  *
520Sstevel@tonic-gate  *  The cyclic subsystem has been designed to take advantage of chip
530Sstevel@tonic-gate  *  architectures with the capacity to interrupt based on absolute, high
540Sstevel@tonic-gate  *  resolution values of time.
550Sstevel@tonic-gate  *
560Sstevel@tonic-gate  *  Subsystem Overview
570Sstevel@tonic-gate  *
580Sstevel@tonic-gate  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
590Sstevel@tonic-gate  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
600Sstevel@tonic-gate  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
610Sstevel@tonic-gate  *  can be specified to fire at high, lock or low interrupt level, and may be
620Sstevel@tonic-gate  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
630Sstevel@tonic-gate  *  partition binding may be changed dynamically; the cyclic will be "juggled"
640Sstevel@tonic-gate  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
650Sstevel@tonic-gate  *  be specified to be "omnipresent", denoting firing on all online CPUs.
660Sstevel@tonic-gate  *
670Sstevel@tonic-gate  *  Cyclic Subsystem Interface Overview
680Sstevel@tonic-gate  *  -----------------------------------
690Sstevel@tonic-gate  *
700Sstevel@tonic-gate  *  The cyclic subsystem has interfaces with the kernel at-large, with other
710Sstevel@tonic-gate  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
720Sstevel@tonic-gate  *  resume subsystem) and with the platform (the cyclic backend).  Each
730Sstevel@tonic-gate  *  of these interfaces is given a brief synopsis here, and is described
740Sstevel@tonic-gate  *  in full above the interface's implementation.
750Sstevel@tonic-gate  *
760Sstevel@tonic-gate  *  The following diagram displays the cyclic subsystem's interfaces to
770Sstevel@tonic-gate  *  other kernel components.  The arrows denote a "calls" relationship, with
780Sstevel@tonic-gate  *  the large arrow indicating the cyclic subsystem's consumer interface.
790Sstevel@tonic-gate  *  Each arrow is labeled with the section in which the corresponding
800Sstevel@tonic-gate  *  interface is described.
810Sstevel@tonic-gate  *
820Sstevel@tonic-gate  *           Kernel at-large consumers
830Sstevel@tonic-gate  *           -----------++------------
840Sstevel@tonic-gate  *                      ||
850Sstevel@tonic-gate  *                      ||
860Sstevel@tonic-gate  *                     _||_
870Sstevel@tonic-gate  *                     \  /
880Sstevel@tonic-gate  *                      \/
890Sstevel@tonic-gate  *            +---------------------+
900Sstevel@tonic-gate  *            |                     |
910Sstevel@tonic-gate  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
920Sstevel@tonic-gate  *            |                     |
930Sstevel@tonic-gate  *            +---------------------+
940Sstevel@tonic-gate  *                   ^       |
950Sstevel@tonic-gate  *                   |       |
960Sstevel@tonic-gate  *                   |       |
970Sstevel@tonic-gate  *                   |       v
980Sstevel@tonic-gate  *            +---------------------+
990Sstevel@tonic-gate  *            |                     |
1000Sstevel@tonic-gate  *            |   Cyclic backend    |
1010Sstevel@tonic-gate  *            | (platform specific) |
1020Sstevel@tonic-gate  *            |                     |
1030Sstevel@tonic-gate  *            +---------------------+
1040Sstevel@tonic-gate  *
1050Sstevel@tonic-gate  *
1060Sstevel@tonic-gate  *  Kernel At-Large Interfaces
1070Sstevel@tonic-gate  *
1080Sstevel@tonic-gate  *      cyclic_add()         <-- Creates a cyclic
1090Sstevel@tonic-gate  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
1100Sstevel@tonic-gate  *      cyclic_remove()      <-- Removes a cyclic
1110Sstevel@tonic-gate  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
1120Sstevel@tonic-gate  *
1130Sstevel@tonic-gate  *  Inter-subsystem Interfaces
1140Sstevel@tonic-gate  *
1150Sstevel@tonic-gate  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
1160Sstevel@tonic-gate  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
1170Sstevel@tonic-gate  *      cyclic_online()      <-- Reenables operation on an offlined CPU
1180Sstevel@tonic-gate  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
1190Sstevel@tonic-gate  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
1200Sstevel@tonic-gate  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
1210Sstevel@tonic-gate  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
1220Sstevel@tonic-gate  *
1230Sstevel@tonic-gate  *  Backend Interfaces
1240Sstevel@tonic-gate  *
1250Sstevel@tonic-gate  *      cyclic_init()        <-- Initializes the cyclic subsystem
1260Sstevel@tonic-gate  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
1270Sstevel@tonic-gate  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
1280Sstevel@tonic-gate  *
1290Sstevel@tonic-gate  *  The backend-supplied interfaces (through the cyc_backend structure) are
1300Sstevel@tonic-gate  *  documented in detail in <sys/cyclic_impl.h>
1310Sstevel@tonic-gate  *
1320Sstevel@tonic-gate  *
1330Sstevel@tonic-gate  *  Cyclic Subsystem Implementation Overview
1340Sstevel@tonic-gate  *  ----------------------------------------
1350Sstevel@tonic-gate  *
1360Sstevel@tonic-gate  *  The cyclic subsystem is designed to minimize interference between cyclics
1370Sstevel@tonic-gate  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
1380Sstevel@tonic-gate  *  hang off of a per-CPU structure, cyc_cpu.
1390Sstevel@tonic-gate  *
1400Sstevel@tonic-gate  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
1410Sstevel@tonic-gate  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
1420Sstevel@tonic-gate  *  and there does not exist a free slot in the cyp_cyclics array, the size of
1430Sstevel@tonic-gate  *  the array will be doubled.  The array will never shrink.  Cyclics are
1440Sstevel@tonic-gate  *  referred to by their index in the cyp_cyclics array, which is of type
1450Sstevel@tonic-gate  *  cyc_index_t.
1460Sstevel@tonic-gate  *
1470Sstevel@tonic-gate  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
1480Sstevel@tonic-gate  *  heap is keyed by cyclic expiration time, with parents expiring earlier
1490Sstevel@tonic-gate  *  than their children.
1500Sstevel@tonic-gate  *
1510Sstevel@tonic-gate  *  Heap Management
1520Sstevel@tonic-gate  *
1530Sstevel@tonic-gate  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
1540Sstevel@tonic-gate  *  compares the root cyclic's expiration time to the current time.  If the
1550Sstevel@tonic-gate  *  expiration time is in the past, cyclic_expire() is called on the root
1560Sstevel@tonic-gate  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
1570Sstevel@tonic-gate  *  is derived by adding its interval to its old expiration time, and a
1580Sstevel@tonic-gate  *  downheap operation is performed.  After the downheap, cyclic_fire()
1590Sstevel@tonic-gate  *  examines the (potentially changed) root cyclic, repeating the
1600Sstevel@tonic-gate  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
1610Sstevel@tonic-gate  *  cyclic has an expiration time in the future.  This expiration time
1620Sstevel@tonic-gate  *  (guaranteed to be the earliest in the heap) is then communicated to the
1630Sstevel@tonic-gate  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
1640Sstevel@tonic-gate  *  shortly after the root cyclic's expiration time.
1650Sstevel@tonic-gate  *
1660Sstevel@tonic-gate  *  To allow efficient, deterministic downheap operations, we implement the
1670Sstevel@tonic-gate  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
1680Sstevel@tonic-gate  *  element containing an index into the CPU's cyp_cyclics array.
1690Sstevel@tonic-gate  *
1700Sstevel@tonic-gate  *  The heap is laid out in the array according to the following:
1710Sstevel@tonic-gate  *
1720Sstevel@tonic-gate  *   1.  The root of the heap is always in the 0th element of the heap array
1730Sstevel@tonic-gate  *   2.  The left and right children of the nth element are element
1740Sstevel@tonic-gate  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
1750Sstevel@tonic-gate  *
1760Sstevel@tonic-gate  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
1770Sstevel@tonic-gate  *  that these constraints correctly lay out a heap (or indeed, any binary
1780Sstevel@tonic-gate  *  tree) is trivial and left to the reader.
1790Sstevel@tonic-gate  *
1800Sstevel@tonic-gate  *  To see the heap by example, assume our cyclics array has the following
1810Sstevel@tonic-gate  *  members (at time t):
1820Sstevel@tonic-gate  *
1830Sstevel@tonic-gate  *            cy_handler            cy_level      cy_expire
1840Sstevel@tonic-gate  *            ---------------------------------------------
1850Sstevel@tonic-gate  *     [ 0]   clock()                   LOCK     t+10000000
1860Sstevel@tonic-gate  *     [ 1]   deadman()                 HIGH   t+1000000000
1870Sstevel@tonic-gate  *     [ 2]   clock_highres_fire()       LOW          t+100
1880Sstevel@tonic-gate  *     [ 3]   clock_highres_fire()       LOW         t+1000
1890Sstevel@tonic-gate  *     [ 4]   clock_highres_fire()       LOW          t+500
1900Sstevel@tonic-gate  *     [ 5]   (free)                      --             --
1910Sstevel@tonic-gate  *     [ 6]   (free)                      --             --
1920Sstevel@tonic-gate  *     [ 7]   (free)                      --             --
1930Sstevel@tonic-gate  *
1940Sstevel@tonic-gate  *  The heap array could be:
1950Sstevel@tonic-gate  *
1960Sstevel@tonic-gate  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
1970Sstevel@tonic-gate  *              +-----+-----+-----+-----+-----+-----+-----+-----+
1980Sstevel@tonic-gate  *              |     |     |     |     |     |     |     |     |
1990Sstevel@tonic-gate  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
2000Sstevel@tonic-gate  *              |     |     |     |     |     |     |     |     |
2010Sstevel@tonic-gate  *              +-----+-----+-----+-----+-----+-----+-----+-----+
2020Sstevel@tonic-gate  *
2030Sstevel@tonic-gate  *  Graphically, this array corresponds to the following (excuse the ASCII art):
2040Sstevel@tonic-gate  *
2050Sstevel@tonic-gate  *                                       2
2060Sstevel@tonic-gate  *                                       |
2070Sstevel@tonic-gate  *                    +------------------+------------------+
2080Sstevel@tonic-gate  *                    3                                     4
2090Sstevel@tonic-gate  *                    |
2100Sstevel@tonic-gate  *          +---------+--------+
2110Sstevel@tonic-gate  *          0                  1
2120Sstevel@tonic-gate  *
2130Sstevel@tonic-gate  *  Note that the heap is laid out by layer:  all nodes at a given depth are
2140Sstevel@tonic-gate  *  stored in consecutive elements of the array.  Moreover, layers of
2150Sstevel@tonic-gate  *  consecutive depths are in adjacent element ranges.  This property
2160Sstevel@tonic-gate  *  guarantees high locality of reference during downheap operations.
2170Sstevel@tonic-gate  *  Specifically, we are guaranteed that we can downheap to a depth of
2180Sstevel@tonic-gate  *
2190Sstevel@tonic-gate  *      lg (cache_line_size / sizeof (cyc_index_t))
2200Sstevel@tonic-gate  *
2210Sstevel@tonic-gate  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
2220Sstevel@tonic-gate  *  size), this corresponds to a depth of four nodes.  Thus, if there are
2230Sstevel@tonic-gate  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
2240Sstevel@tonic-gate  *  most once in the e-cache.
2250Sstevel@tonic-gate  *
2260Sstevel@tonic-gate  *  Downheaps are required to compare siblings as they proceed down the
2270Sstevel@tonic-gate  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
2280Sstevel@tonic-gate  *  access to a left child could potentially miss in the cache.  However,
2290Sstevel@tonic-gate  *  if we assume
2300Sstevel@tonic-gate  *
2310Sstevel@tonic-gate  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
2320Sstevel@tonic-gate  *
2330Sstevel@tonic-gate  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
2340Sstevel@tonic-gate  *  miss on the left child will guarantee a hit on the right child; downheaps
2350Sstevel@tonic-gate  *  will incur at most one cache miss per layer beyond the one-cache-miss
2360Sstevel@tonic-gate  *  depth.  The total number of cache misses for heap management during a
2370Sstevel@tonic-gate  *  downheap operation is thus bounded by
2380Sstevel@tonic-gate  *
2390Sstevel@tonic-gate  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
2400Sstevel@tonic-gate  *
2410Sstevel@tonic-gate  *  Traditional pointer-based heaps are implemented without regard to
2420Sstevel@tonic-gate  *  locality.  Downheaps can thus incur two cache misses per layer (one for
2430Sstevel@tonic-gate  *  each child), but at most one cache miss at the root.  This yields a bound
2440Sstevel@tonic-gate  *  of
2450Sstevel@tonic-gate  *
2460Sstevel@tonic-gate  *      2 * lg (n) - 1
2470Sstevel@tonic-gate  *
2480Sstevel@tonic-gate  *  on the total cache misses.
2490Sstevel@tonic-gate  *
2500Sstevel@tonic-gate  *  This difference may seem theoretically trivial (the difference is, after
2510Sstevel@tonic-gate  *  all, constant), but can become substantial in practice -- especially for
2520Sstevel@tonic-gate  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
2530Sstevel@tonic-gate  *
2540Sstevel@tonic-gate  *  Heaps must always be full, balanced trees.  Heap management must therefore
2550Sstevel@tonic-gate  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
2560Sstevel@tonic-gate  *  recomputing this point takes O(lg (n)).  Given the layout of the
2570Sstevel@tonic-gate  *  array-based implementation, however, the next point-of-insertion is
2580Sstevel@tonic-gate  *  always:
2590Sstevel@tonic-gate  *
2600Sstevel@tonic-gate  *      heap[number_of_elements]
2610Sstevel@tonic-gate  *
2620Sstevel@tonic-gate  *  We exploit this property by implementing the free-list in the usused
2630Sstevel@tonic-gate  *  heap elements.  Heap insertion, therefore, consists only of filling in
2640Sstevel@tonic-gate  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
2650Sstevel@tonic-gate  *  the number of elements, and performing an upheap.  Heap deletion consists
2660Sstevel@tonic-gate  *  of decrementing the number of elements, swapping the to-be-deleted element
2670Sstevel@tonic-gate  *  with the element at cyp_heap[number_of_elements], and downheaping.
2680Sstevel@tonic-gate  *
2690Sstevel@tonic-gate  *  Filling in more details in our earlier example:
2700Sstevel@tonic-gate  *
2710Sstevel@tonic-gate  *                                               +--- free list head
2720Sstevel@tonic-gate  *                                               |
2730Sstevel@tonic-gate  *                                               V
2740Sstevel@tonic-gate  *
2750Sstevel@tonic-gate  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
2760Sstevel@tonic-gate  *              +-----+-----+-----+-----+-----+-----+-----+-----+
2770Sstevel@tonic-gate  *              |     |     |     |     |     |     |     |     |
2780Sstevel@tonic-gate  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
2790Sstevel@tonic-gate  *              |     |     |     |     |     |     |     |     |
2800Sstevel@tonic-gate  *              +-----+-----+-----+-----+-----+-----+-----+-----+
2810Sstevel@tonic-gate  *
2820Sstevel@tonic-gate  *  To insert into this heap, we would just need to fill in the cyclic at
2830Sstevel@tonic-gate  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
2840Sstevel@tonic-gate  *  an upheap.
2850Sstevel@tonic-gate  *
2860Sstevel@tonic-gate  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
2870Sstevel@tonic-gate  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
2880Sstevel@tonic-gate  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
2890Sstevel@tonic-gate  *  and perform a downheap from cyp_heap[1].  The linear scan is required
2900Sstevel@tonic-gate  *  because the cyclic does not keep a backpointer into the heap.  This makes
2910Sstevel@tonic-gate  *  heap manipulation (e.g. downheaps) faster at the expense of removal
2920Sstevel@tonic-gate  *  operations.
2930Sstevel@tonic-gate  *
2940Sstevel@tonic-gate  *  Expiry processing
2950Sstevel@tonic-gate  *
2960Sstevel@tonic-gate  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
2970Sstevel@tonic-gate  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
2980Sstevel@tonic-gate  *  guaranteed that for an arbitrary time t in the future, their cyclic
2990Sstevel@tonic-gate  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
3000Sstevel@tonic-gate  *  there must be a one-to-one mapping between a cyclic's expiration at
3010Sstevel@tonic-gate  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
3020Sstevel@tonic-gate  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
3030Sstevel@tonic-gate  *
3040Sstevel@tonic-gate  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
3050Sstevel@tonic-gate  *  to call the handler.
3060Sstevel@tonic-gate  *
3070Sstevel@tonic-gate  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
3080Sstevel@tonic-gate  *  potential disconnect:  if the CPU is at an interrupt level less than
3090Sstevel@tonic-gate  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
3100Sstevel@tonic-gate  *  time longer than twice the cyclic's interval, the cyclic will be expired
3110Sstevel@tonic-gate  *  twice before it can be handled.
3120Sstevel@tonic-gate  *
3130Sstevel@tonic-gate  *  To maintain the one-to-one mapping, we track the difference between the
3140Sstevel@tonic-gate  *  number of times a cyclic has been expired and the number of times it's
3150Sstevel@tonic-gate  *  been handled in a "pending count" (the cy_pend field of the cyclic
3160Sstevel@tonic-gate  *  structure).  cyclic_expire() thus increments the cy_pend count for the
3170Sstevel@tonic-gate  *  expired cyclic and posts a soft interrupt at the desired level.  In the
3180Sstevel@tonic-gate  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
3190Sstevel@tonic-gate  *  call the cyclic handler and decrement cy_pend until we have decremented
3200Sstevel@tonic-gate  *  cy_pend to zero.
3210Sstevel@tonic-gate  *
3220Sstevel@tonic-gate  *  The Producer/Consumer Buffer
3230Sstevel@tonic-gate  *
3240Sstevel@tonic-gate  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
3250Sstevel@tonic-gate  *  level, cyclic_softint() must be able to quickly determine which cyclics
3260Sstevel@tonic-gate  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
3270Sstevel@tonic-gate  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
3280Sstevel@tonic-gate  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
3290Sstevel@tonic-gate  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
3300Sstevel@tonic-gate  *  structure).
3310Sstevel@tonic-gate  *
3320Sstevel@tonic-gate  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
3330Sstevel@tonic-gate  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
3340Sstevel@tonic-gate  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
3350Sstevel@tonic-gate  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
3360Sstevel@tonic-gate  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
3370Sstevel@tonic-gate  *  cypc_prodndx == cypc_consndx.
3380Sstevel@tonic-gate  *
3390Sstevel@tonic-gate  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
3400Sstevel@tonic-gate  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
3410Sstevel@tonic-gate  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
3420Sstevel@tonic-gate  *  cyclic_softint() only consumes a cyclic after it has decremented the
3430Sstevel@tonic-gate  *  cy_pend count to zero.
3440Sstevel@tonic-gate  *
3450Sstevel@tonic-gate  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
3460Sstevel@tonic-gate  *  buffer might look like:
3470Sstevel@tonic-gate  *
3480Sstevel@tonic-gate  *     cypc_consndx ---+                 +--- cypc_prodndx
3490Sstevel@tonic-gate  *                     |                 |
3500Sstevel@tonic-gate  *                     V                 V
3510Sstevel@tonic-gate  *
3520Sstevel@tonic-gate  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
3530Sstevel@tonic-gate  *      +-----+-----+-----+-----+-----+-----+-----+-----+
3540Sstevel@tonic-gate  *      |     |     |     |     |     |     |     |     |
3550Sstevel@tonic-gate  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
3560Sstevel@tonic-gate  *      |     |     |  .  |  .  |  .  |     |     |     |
3570Sstevel@tonic-gate  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
3580Sstevel@tonic-gate  *                     |     |     |
3590Sstevel@tonic-gate  *                     |     |     |              cy_pend  cy_handler
3600Sstevel@tonic-gate  *                     |     |     |          -------------------------
3610Sstevel@tonic-gate  *                     |     |     |          [ 0]      1  clock()
3620Sstevel@tonic-gate  *                     |     |     |          [ 1]      0  deadman()
3630Sstevel@tonic-gate  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
3640Sstevel@tonic-gate  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
3650Sstevel@tonic-gate  *                                 +--------> [ 4]      1  clock_highres_fire()
3660Sstevel@tonic-gate  *                                            [ 5]      -  (free)
3670Sstevel@tonic-gate  *                                            [ 6]      -  (free)
3680Sstevel@tonic-gate  *                                            [ 7]      -  (free)
3690Sstevel@tonic-gate  *
3700Sstevel@tonic-gate  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
3710Sstevel@tonic-gate  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
3720Sstevel@tonic-gate  *  producer/consumer buffer.
3730Sstevel@tonic-gate  *
3740Sstevel@tonic-gate  *  Locking
3750Sstevel@tonic-gate  *
3760Sstevel@tonic-gate  *  Traditionally, access to per-CPU data structures shared between
3770Sstevel@tonic-gate  *  interrupt levels is serialized by manipulating programmable interrupt
3780Sstevel@tonic-gate  *  level:  readers and writers are required to raise their interrupt level
3790Sstevel@tonic-gate  *  to that of the highest level writer.
3800Sstevel@tonic-gate  *
3810Sstevel@tonic-gate  *  For the producer/consumer buffers (shared between cyclic_fire()/
3820Sstevel@tonic-gate  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
3830Sstevel@tonic-gate  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
3840Sstevel@tonic-gate  *  programmable interrupt level is undesirable:  aside from the additional
3850Sstevel@tonic-gate  *  latency incurred by manipulating interrupt level in the hot cy_pend
3860Sstevel@tonic-gate  *  processing path, this would create the potential for soft level cy_pend
3870Sstevel@tonic-gate  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
3880Sstevel@tonic-gate  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
3890Sstevel@tonic-gate  *  cyclics.
3900Sstevel@tonic-gate  *
3910Sstevel@tonic-gate  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
3920Sstevel@tonic-gate  *  and cyclic_softint() code paths to be lock-free.
3930Sstevel@tonic-gate  *
3940Sstevel@tonic-gate  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
3950Sstevel@tonic-gate  *  because these routines execute at a higher interrupt level than
3960Sstevel@tonic-gate  *  cyclic_softint(), their actions on the producer/consumer buffer appear
3970Sstevel@tonic-gate  *  atomic.  In particular, the increment of cy_pend appears to occur
3980Sstevel@tonic-gate  *  atomically with the increment of cypc_prodndx.
3990Sstevel@tonic-gate  *
4000Sstevel@tonic-gate  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
4010Sstevel@tonic-gate  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
4020Sstevel@tonic-gate  *  it calls the cyclic's handler and attempts to atomically decrement the
4030Sstevel@tonic-gate  *  cy_pend count with a compare&swap operation.
4040Sstevel@tonic-gate  *
4050Sstevel@tonic-gate  *  If the compare&swap operation succeeds, cyclic_softint() behaves
4060Sstevel@tonic-gate  *  conditionally based on the value it atomically wrote to cy_pend:
4070Sstevel@tonic-gate  *
4080Sstevel@tonic-gate  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
4090Sstevel@tonic-gate  *       cyclic_softint() increments the cypc_consndx and checks for more
4100Sstevel@tonic-gate  *       enqueued work.
4110Sstevel@tonic-gate  *
4120Sstevel@tonic-gate  *     - If the count was decremented to a non-zero value, there is more work
4130Sstevel@tonic-gate  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
4140Sstevel@tonic-gate  *       and repeats the atomic decrement process.
4150Sstevel@tonic-gate  *
4160Sstevel@tonic-gate  *  If the compare&swap operation fails, cyclic_softint() knows that
4170Sstevel@tonic-gate  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
4180Sstevel@tonic-gate  *  and removals complicate this, however -- see the sections on their
4190Sstevel@tonic-gate  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
4200Sstevel@tonic-gate  *  the atomic decrement.
4210Sstevel@tonic-gate  *
4220Sstevel@tonic-gate  *  Recall that we bound the size of the producer/consumer buffer by
4230Sstevel@tonic-gate  *  having cyclic_expire() only enqueue the specified cyclic if its
4240Sstevel@tonic-gate  *  cy_pend count is zero; this assures that each cyclic is enqueued at
4250Sstevel@tonic-gate  *  most once.  This leads to a critical constraint on cyclic_softint(),
4260Sstevel@tonic-gate  *  however:  after the compare&swap operation which successfully decrements
4270Sstevel@tonic-gate  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
4280Sstevel@tonic-gate  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
4290Sstevel@tonic-gate  *  cyclic handler before decrementing cy_pend.
4300Sstevel@tonic-gate  *
4310Sstevel@tonic-gate  *  Resizing
4320Sstevel@tonic-gate  *
4330Sstevel@tonic-gate  *  All of the discussion thus far has assumed a static number of cyclics.
4340Sstevel@tonic-gate  *  Obviously, static limitations are not practical; we need the capacity
4350Sstevel@tonic-gate  *  to resize our data structures dynamically.
4360Sstevel@tonic-gate  *
4370Sstevel@tonic-gate  *  We resize our data structures lazily, and only on a per-CPU basis.
4380Sstevel@tonic-gate  *  The size of the data structures always doubles and never shrinks.  We
4390Sstevel@tonic-gate  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
4400Sstevel@tonic-gate  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
4410Sstevel@tonic-gate  *  on the CPU being resized, but should not affect cyclic operation on other
4420Sstevel@tonic-gate  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
4430Sstevel@tonic-gate  *
4440Sstevel@tonic-gate  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
4450Sstevel@tonic-gate  *  the heap array and the producer/consumer buffers.  Resizing the first two
4460Sstevel@tonic-gate  *  is relatively straightforward:
4470Sstevel@tonic-gate  *
4480Sstevel@tonic-gate  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
4490Sstevel@tonic-gate  *        from cyclic_add()).
4500Sstevel@tonic-gate  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
4510Sstevel@tonic-gate  *        undergoing the resize.
4520Sstevel@tonic-gate  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
4530Sstevel@tonic-gate  *    4.  The contents of the old arrays are copied into the new arrays.
4540Sstevel@tonic-gate  *    5.  The old cyclics array is bzero()'d
4550Sstevel@tonic-gate  *    6.  The pointers are updated.
4560Sstevel@tonic-gate  *
4570Sstevel@tonic-gate  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
4580Sstevel@tonic-gate  *  interrupted cyclic_softint() in the middle of consumption. To resize the
4590Sstevel@tonic-gate  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
4600Sstevel@tonic-gate  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
4610Sstevel@tonic-gate  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
4620Sstevel@tonic-gate  *  During normal operation, the hard buffer and soft buffer point to the
4630Sstevel@tonic-gate  *  same underlying producer/consumer buffer.
4640Sstevel@tonic-gate  *
4650Sstevel@tonic-gate  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
4660Sstevel@tonic-gate  *  to point to the new, larger producer/consumer buffer; all future
4670Sstevel@tonic-gate  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
4680Sstevel@tonic-gate  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
4690Sstevel@tonic-gate  *
4700Sstevel@tonic-gate  *  As under normal operation, cyclic_softint() will consume cyclics from
4710Sstevel@tonic-gate  *  its soft buffer.  After the soft buffer is drained, however,
4720Sstevel@tonic-gate  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
4730Sstevel@tonic-gate  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
4740Sstevel@tonic-gate  *  and repeat the producer/consumer buffer draining procedure.
4750Sstevel@tonic-gate  *
4760Sstevel@tonic-gate  *  After the new buffer is drained, cyclic_softint() will determine if both
4770Sstevel@tonic-gate  *  soft levels have seen their new producer/consumer buffer.  If both have,
4780Sstevel@tonic-gate  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
4790Sstevel@tonic-gate  *  soft interrupt will be generated for the remaining level.
4800Sstevel@tonic-gate  *
4810Sstevel@tonic-gate  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
4820Sstevel@tonic-gate  *  used instead of a condition variable because of the race between the
4830Sstevel@tonic-gate  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
4840Sstevel@tonic-gate  *  allows cyclic_expand() to know when the resize operation is complete;
4850Sstevel@tonic-gate  *  all of the old buffers (the heap, the cyclics array and the producer/
4860Sstevel@tonic-gate  *  consumer buffers) can be freed.
4870Sstevel@tonic-gate  *
4880Sstevel@tonic-gate  *  A final caveat on resizing:  we described step (5) in the
4890Sstevel@tonic-gate  *  cyclic_expand_xcall() procedure without providing any motivation.  This
4900Sstevel@tonic-gate  *  step addresses the problem of a cyclic_softint() attempting to decrement
4910Sstevel@tonic-gate  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
4920Sstevel@tonic-gate  *  cyclic_softint() has already called the handler by the time cy_pend is
4930Sstevel@tonic-gate  *  decremented, we want to assure that it doesn't decrement a cy_pend
4940Sstevel@tonic-gate  *  count in the old cyclics array.  By zeroing the old cyclics array in
4950Sstevel@tonic-gate  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
4960Sstevel@tonic-gate  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
4970Sstevel@tonic-gate  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
4980Sstevel@tonic-gate  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
4990Sstevel@tonic-gate  *  count from the new cyclics array, and re-attempt the compare&swap.
5000Sstevel@tonic-gate  *
5010Sstevel@tonic-gate  *  Removals
5020Sstevel@tonic-gate  *
5030Sstevel@tonic-gate  *  Cyclic removals should be rare.  To simplify the implementation (and to
5040Sstevel@tonic-gate  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
5050Sstevel@tonic-gate  *  path), we force removals and adds to serialize on cpu_lock.
5060Sstevel@tonic-gate  *
5070Sstevel@tonic-gate  *  Cyclic removal is complicated by a guarantee made to the consumer of
5080Sstevel@tonic-gate  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
5090Sstevel@tonic-gate  *  has returned and will never again be called.
5100Sstevel@tonic-gate  *
5110Sstevel@tonic-gate  *  Here is the procedure for cyclic removal:
5120Sstevel@tonic-gate  *
5130Sstevel@tonic-gate  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
5140Sstevel@tonic-gate  *        the removal.
5150Sstevel@tonic-gate  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
5160Sstevel@tonic-gate  *    3.  The current expiration time for the removed cyclic is recorded.
5170Sstevel@tonic-gate  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
5180Sstevel@tonic-gate  *        is copied into cyp_rpend and subsequently zeroed.
5190Sstevel@tonic-gate  *    5.  The cyclic is removed from the heap
5200Sstevel@tonic-gate  *    6.  If the root of the heap has changed, the backend is reprogrammed.
5210Sstevel@tonic-gate  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
5220Sstevel@tonic-gate  *        cyp_modify_wait semaphore.
5230Sstevel@tonic-gate  *
5240Sstevel@tonic-gate  *  The motivation for step (3) is explained in "Juggling", below.
5250Sstevel@tonic-gate  *
5260Sstevel@tonic-gate  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
5270Sstevel@tonic-gate  *  handler returns.  Thus, if we find a cy_pend count of zero in step
5280Sstevel@tonic-gate  *  (4), we know that cyclic_remove() doesn't need to block.
5290Sstevel@tonic-gate  *
5300Sstevel@tonic-gate  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
5310Sstevel@tonic-gate  *  until cyclic_softint() has finished calling the cyclic handler.  To let
5320Sstevel@tonic-gate  *  cyclic_softint() know that this cyclic has been removed, we zero the
5330Sstevel@tonic-gate  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
5340Sstevel@tonic-gate  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
5350Sstevel@tonic-gate  *  caught during a resize (see "Resizing", above) or that the cyclic has been
5360Sstevel@tonic-gate  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
5370Sstevel@tonic-gate  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
5380Sstevel@tonic-gate  *
5390Sstevel@tonic-gate  *  Juggling
5400Sstevel@tonic-gate  *
5410Sstevel@tonic-gate  *  At first glance, cyclic juggling seems to be a difficult problem.  The
5420Sstevel@tonic-gate  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
5430Sstevel@tonic-gate  *  different CPUs, while also assuring that a cyclic fires exactly once
5440Sstevel@tonic-gate  *  per interval.  We solve this problem by leveraging a property of the
5450Sstevel@tonic-gate  *  platform:  gethrtime() is required to increase in lock-step across
5460Sstevel@tonic-gate  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
5470Sstevel@tonic-gate  *  CPU, recording its expiration time in the remove cross call (step (3)
5480Sstevel@tonic-gate  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
5490Sstevel@tonic-gate  *  setting its expiration time to the time recorded in the removal.  This
5500Sstevel@tonic-gate  *  leverages the existing cyclic expiry processing, which will compensate
5510Sstevel@tonic-gate  *  for any time lost while juggling.
5520Sstevel@tonic-gate  *
5530Sstevel@tonic-gate  */
5540Sstevel@tonic-gate #include <sys/cyclic_impl.h>
5550Sstevel@tonic-gate #include <sys/sysmacros.h>
5560Sstevel@tonic-gate #include <sys/systm.h>
5570Sstevel@tonic-gate #include <sys/atomic.h>
5580Sstevel@tonic-gate #include <sys/kmem.h>
5590Sstevel@tonic-gate #include <sys/cmn_err.h>
5600Sstevel@tonic-gate #include <sys/ddi.h>
561*5864Sesaxe #include <sys/sdt.h>
5620Sstevel@tonic-gate 
5630Sstevel@tonic-gate #ifdef CYCLIC_TRACE
5640Sstevel@tonic-gate 
5650Sstevel@tonic-gate /*
5660Sstevel@tonic-gate  * cyc_trace_enabled is for the benefit of kernel debuggers.
5670Sstevel@tonic-gate  */
5680Sstevel@tonic-gate int cyc_trace_enabled = 1;
5690Sstevel@tonic-gate static cyc_tracebuf_t cyc_ptrace;
5700Sstevel@tonic-gate static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
5710Sstevel@tonic-gate 
5720Sstevel@tonic-gate /*
5730Sstevel@tonic-gate  * Seen this anywhere?
5740Sstevel@tonic-gate  */
5750Sstevel@tonic-gate static uint_t
5760Sstevel@tonic-gate cyclic_coverage_hash(char *p)
5770Sstevel@tonic-gate {
5780Sstevel@tonic-gate 	unsigned int g;
5790Sstevel@tonic-gate 	uint_t hval;
5800Sstevel@tonic-gate 
5810Sstevel@tonic-gate 	hval = 0;
5820Sstevel@tonic-gate 	while (*p) {
5830Sstevel@tonic-gate 		hval = (hval << 4) + *p++;
5840Sstevel@tonic-gate 		if ((g = (hval & 0xf0000000)) != 0)
5850Sstevel@tonic-gate 			hval ^= g >> 24;
5860Sstevel@tonic-gate 		hval &= ~g;
5870Sstevel@tonic-gate 	}
5880Sstevel@tonic-gate 	return (hval);
5890Sstevel@tonic-gate }
5900Sstevel@tonic-gate 
5910Sstevel@tonic-gate static void
5920Sstevel@tonic-gate cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
5930Sstevel@tonic-gate {
5940Sstevel@tonic-gate 	uint_t ndx, orig;
5950Sstevel@tonic-gate 
5960Sstevel@tonic-gate 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
5970Sstevel@tonic-gate 		if (cyc_coverage[ndx].cyv_why == why)
5980Sstevel@tonic-gate 			break;
5990Sstevel@tonic-gate 
6000Sstevel@tonic-gate 		if (cyc_coverage[ndx].cyv_why != NULL ||
6010Sstevel@tonic-gate 		    casptr(&cyc_coverage[ndx].cyv_why, NULL, why) != NULL) {
6020Sstevel@tonic-gate 
6030Sstevel@tonic-gate 			if (++ndx == CY_NCOVERAGE)
6040Sstevel@tonic-gate 				ndx = 0;
6050Sstevel@tonic-gate 
6060Sstevel@tonic-gate 			if (ndx == orig)
6070Sstevel@tonic-gate 				panic("too many cyclic coverage points");
6080Sstevel@tonic-gate 			continue;
6090Sstevel@tonic-gate 		}
6100Sstevel@tonic-gate 
6110Sstevel@tonic-gate 		/*
6120Sstevel@tonic-gate 		 * If we're here, we have successfully swung our guy into
6130Sstevel@tonic-gate 		 * the position at "ndx".
6140Sstevel@tonic-gate 		 */
6150Sstevel@tonic-gate 		break;
6160Sstevel@tonic-gate 	}
6170Sstevel@tonic-gate 
6180Sstevel@tonic-gate 	if (level == CY_PASSIVE_LEVEL)
6190Sstevel@tonic-gate 		cyc_coverage[ndx].cyv_passive_count++;
6200Sstevel@tonic-gate 	else
6210Sstevel@tonic-gate 		cyc_coverage[ndx].cyv_count[level]++;
6220Sstevel@tonic-gate 
6230Sstevel@tonic-gate 	cyc_coverage[ndx].cyv_arg0 = arg0;
6240Sstevel@tonic-gate 	cyc_coverage[ndx].cyv_arg1 = arg1;
6250Sstevel@tonic-gate }
6260Sstevel@tonic-gate 
6270Sstevel@tonic-gate #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
6280Sstevel@tonic-gate 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
6290Sstevel@tonic-gate 
6300Sstevel@tonic-gate #define	CYC_PTRACE(why, arg0, arg1) \
6310Sstevel@tonic-gate 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
6320Sstevel@tonic-gate 
6330Sstevel@tonic-gate #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
6340Sstevel@tonic-gate 	if (panicstr == NULL) { \
6350Sstevel@tonic-gate 		int _ndx = (buf)->cyt_ndx; \
6360Sstevel@tonic-gate 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
6370Sstevel@tonic-gate 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
6380Sstevel@tonic-gate 		_rec->cyt_tstamp = gethrtime_unscaled(); \
6390Sstevel@tonic-gate 		_rec->cyt_why = (why); \
6400Sstevel@tonic-gate 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
6410Sstevel@tonic-gate 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
6420Sstevel@tonic-gate 		cyclic_coverage(why, level,	\
6430Sstevel@tonic-gate 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
6440Sstevel@tonic-gate 	} \
6450Sstevel@tonic-gate }
6460Sstevel@tonic-gate 
6470Sstevel@tonic-gate #else
6480Sstevel@tonic-gate 
6490Sstevel@tonic-gate static int cyc_trace_enabled = 0;
6500Sstevel@tonic-gate 
6510Sstevel@tonic-gate #define	CYC_TRACE(cpu, level, why, arg0, arg1)
6520Sstevel@tonic-gate #define	CYC_PTRACE(why, arg0, arg1)
6530Sstevel@tonic-gate 
6540Sstevel@tonic-gate #endif
6550Sstevel@tonic-gate 
6560Sstevel@tonic-gate #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
6570Sstevel@tonic-gate #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
6580Sstevel@tonic-gate 
6590Sstevel@tonic-gate #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
6600Sstevel@tonic-gate #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
6610Sstevel@tonic-gate 
6620Sstevel@tonic-gate static kmem_cache_t *cyclic_id_cache;
6630Sstevel@tonic-gate static cyc_id_t *cyclic_id_head;
6640Sstevel@tonic-gate static hrtime_t cyclic_resolution;
6650Sstevel@tonic-gate static cyc_backend_t cyclic_backend;
6660Sstevel@tonic-gate 
6670Sstevel@tonic-gate /*
6680Sstevel@tonic-gate  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
6690Sstevel@tonic-gate  * allows the caller to reprogram the backend only when the root has been
6700Sstevel@tonic-gate  * modified.
6710Sstevel@tonic-gate  */
6720Sstevel@tonic-gate static int
6730Sstevel@tonic-gate cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
6740Sstevel@tonic-gate {
6750Sstevel@tonic-gate 	cyclic_t *cyclics;
6760Sstevel@tonic-gate 	cyc_index_t *heap;
6770Sstevel@tonic-gate 	cyc_index_t heap_parent, heap_current = ndx;
6780Sstevel@tonic-gate 	cyc_index_t parent, current;
6790Sstevel@tonic-gate 
6800Sstevel@tonic-gate 	if (heap_current == 0)
6810Sstevel@tonic-gate 		return (1);
6820Sstevel@tonic-gate 
6830Sstevel@tonic-gate 	heap = cpu->cyp_heap;
6840Sstevel@tonic-gate 	cyclics = cpu->cyp_cyclics;
6850Sstevel@tonic-gate 	heap_parent = CYC_HEAP_PARENT(heap_current);
6860Sstevel@tonic-gate 
6870Sstevel@tonic-gate 	for (;;) {
6880Sstevel@tonic-gate 		current = heap[heap_current];
6890Sstevel@tonic-gate 		parent = heap[heap_parent];
6900Sstevel@tonic-gate 
6910Sstevel@tonic-gate 		/*
6920Sstevel@tonic-gate 		 * We have an expiration time later than our parent; we're
6930Sstevel@tonic-gate 		 * done.
6940Sstevel@tonic-gate 		 */
6950Sstevel@tonic-gate 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
6960Sstevel@tonic-gate 			return (0);
6970Sstevel@tonic-gate 
6980Sstevel@tonic-gate 		/*
6990Sstevel@tonic-gate 		 * We need to swap with our parent, and continue up the heap.
7000Sstevel@tonic-gate 		 */
7010Sstevel@tonic-gate 		heap[heap_parent] = current;
7020Sstevel@tonic-gate 		heap[heap_current] = parent;
7030Sstevel@tonic-gate 
7040Sstevel@tonic-gate 		/*
7050Sstevel@tonic-gate 		 * If we just reached the root, we're done.
7060Sstevel@tonic-gate 		 */
7070Sstevel@tonic-gate 		if (heap_parent == 0)
7080Sstevel@tonic-gate 			return (1);
7090Sstevel@tonic-gate 
7100Sstevel@tonic-gate 		heap_current = heap_parent;
7110Sstevel@tonic-gate 		heap_parent = CYC_HEAP_PARENT(heap_current);
7120Sstevel@tonic-gate 	}
7130Sstevel@tonic-gate }
7140Sstevel@tonic-gate 
7150Sstevel@tonic-gate static void
7160Sstevel@tonic-gate cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
7170Sstevel@tonic-gate {
7180Sstevel@tonic-gate 	cyclic_t *cyclics = cpu->cyp_cyclics;
7190Sstevel@tonic-gate 	cyc_index_t *heap = cpu->cyp_heap;
7200Sstevel@tonic-gate 
7210Sstevel@tonic-gate 	cyc_index_t heap_left, heap_right, heap_me = ndx;
7220Sstevel@tonic-gate 	cyc_index_t left, right, me;
7230Sstevel@tonic-gate 	cyc_index_t nelems = cpu->cyp_nelems;
7240Sstevel@tonic-gate 
7250Sstevel@tonic-gate 	for (;;) {
7260Sstevel@tonic-gate 		/*
7270Sstevel@tonic-gate 		 * If we don't have a left child (i.e., we're a leaf), we're
7280Sstevel@tonic-gate 		 * done.
7290Sstevel@tonic-gate 		 */
7300Sstevel@tonic-gate 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
7310Sstevel@tonic-gate 			return;
7320Sstevel@tonic-gate 
7330Sstevel@tonic-gate 		left = heap[heap_left];
7340Sstevel@tonic-gate 		me = heap[heap_me];
7350Sstevel@tonic-gate 
7360Sstevel@tonic-gate 		heap_right = CYC_HEAP_RIGHT(heap_me);
7370Sstevel@tonic-gate 
7380Sstevel@tonic-gate 		/*
7390Sstevel@tonic-gate 		 * Even if we don't have a right child, we still need to compare
7400Sstevel@tonic-gate 		 * our expiration time against that of our left child.
7410Sstevel@tonic-gate 		 */
7420Sstevel@tonic-gate 		if (heap_right >= nelems)
7430Sstevel@tonic-gate 			goto comp_left;
7440Sstevel@tonic-gate 
7450Sstevel@tonic-gate 		right = heap[heap_right];
7460Sstevel@tonic-gate 
7470Sstevel@tonic-gate 		/*
7480Sstevel@tonic-gate 		 * We have both a left and a right child.  We need to compare
7490Sstevel@tonic-gate 		 * the expiration times of the children to determine which
7500Sstevel@tonic-gate 		 * expires earlier.
7510Sstevel@tonic-gate 		 */
7520Sstevel@tonic-gate 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
7530Sstevel@tonic-gate 			/*
7540Sstevel@tonic-gate 			 * Our right child is the earlier of our children.
7550Sstevel@tonic-gate 			 * We'll now compare our expiration time to its; if
7560Sstevel@tonic-gate 			 * ours is the earlier, we're done.
7570Sstevel@tonic-gate 			 */
7580Sstevel@tonic-gate 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
7590Sstevel@tonic-gate 				return;
7600Sstevel@tonic-gate 
7610Sstevel@tonic-gate 			/*
7620Sstevel@tonic-gate 			 * Our right child expires earlier than we do; swap
7630Sstevel@tonic-gate 			 * with our right child, and descend right.
7640Sstevel@tonic-gate 			 */
7650Sstevel@tonic-gate 			heap[heap_right] = me;
7660Sstevel@tonic-gate 			heap[heap_me] = right;
7670Sstevel@tonic-gate 			heap_me = heap_right;
7680Sstevel@tonic-gate 			continue;
7690Sstevel@tonic-gate 		}
7700Sstevel@tonic-gate 
7710Sstevel@tonic-gate comp_left:
7720Sstevel@tonic-gate 		/*
7730Sstevel@tonic-gate 		 * Our left child is the earlier of our children (or we have
7740Sstevel@tonic-gate 		 * no right child).  We'll now compare our expiration time
7750Sstevel@tonic-gate 		 * to its; if ours is the earlier, we're done.
7760Sstevel@tonic-gate 		 */
7770Sstevel@tonic-gate 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
7780Sstevel@tonic-gate 			return;
7790Sstevel@tonic-gate 
7800Sstevel@tonic-gate 		/*
7810Sstevel@tonic-gate 		 * Our left child expires earlier than we do; swap with our
7820Sstevel@tonic-gate 		 * left child, and descend left.
7830Sstevel@tonic-gate 		 */
7840Sstevel@tonic-gate 		heap[heap_left] = me;
7850Sstevel@tonic-gate 		heap[heap_me] = left;
7860Sstevel@tonic-gate 		heap_me = heap_left;
7870Sstevel@tonic-gate 	}
7880Sstevel@tonic-gate }
7890Sstevel@tonic-gate 
7900Sstevel@tonic-gate static void
7910Sstevel@tonic-gate cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
7920Sstevel@tonic-gate {
7930Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
7940Sstevel@tonic-gate 	cyc_level_t level = cyclic->cy_level;
7950Sstevel@tonic-gate 
7960Sstevel@tonic-gate 	/*
7970Sstevel@tonic-gate 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
7980Sstevel@tonic-gate 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
7990Sstevel@tonic-gate 	 */
8000Sstevel@tonic-gate 	if (level == CY_HIGH_LEVEL) {
8010Sstevel@tonic-gate 		cyc_func_t handler = cyclic->cy_handler;
8020Sstevel@tonic-gate 		void *arg = cyclic->cy_arg;
8030Sstevel@tonic-gate 
8040Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
805*5864Sesaxe 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
806*5864Sesaxe 
8070Sstevel@tonic-gate 		(*handler)(arg);
808*5864Sesaxe 
809*5864Sesaxe 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
8100Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
8110Sstevel@tonic-gate 
8120Sstevel@tonic-gate 		return;
8130Sstevel@tonic-gate 	}
8140Sstevel@tonic-gate 
8150Sstevel@tonic-gate 	/*
8160Sstevel@tonic-gate 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
8170Sstevel@tonic-gate 	 * be atomic (the high interrupt level assures that it will appear
8180Sstevel@tonic-gate 	 * atomic to any softint currently running).
8190Sstevel@tonic-gate 	 */
8200Sstevel@tonic-gate 	if (cyclic->cy_pend++ == 0) {
8210Sstevel@tonic-gate 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
8220Sstevel@tonic-gate 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
8230Sstevel@tonic-gate 
8240Sstevel@tonic-gate 		/*
8250Sstevel@tonic-gate 		 * We need to enqueue this cyclic in the soft buffer.
8260Sstevel@tonic-gate 		 */
8270Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
8280Sstevel@tonic-gate 		    pc->cypc_prodndx);
8290Sstevel@tonic-gate 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
8300Sstevel@tonic-gate 
8310Sstevel@tonic-gate 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
8320Sstevel@tonic-gate 	} else {
8330Sstevel@tonic-gate 		/*
8340Sstevel@tonic-gate 		 * If the pend count is zero after we incremented it, then
8350Sstevel@tonic-gate 		 * we've wrapped (i.e. we had a cy_pend count of over four
8360Sstevel@tonic-gate 		 * billion.  In this case, we clamp the pend count at
8370Sstevel@tonic-gate 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
8380Sstevel@tonic-gate 		 */
8390Sstevel@tonic-gate 		if (cyclic->cy_pend == 0) {
8400Sstevel@tonic-gate 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
8410Sstevel@tonic-gate 			cyclic->cy_pend = UINT32_MAX;
8420Sstevel@tonic-gate 		}
8430Sstevel@tonic-gate 
8440Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
8450Sstevel@tonic-gate 	}
8460Sstevel@tonic-gate 
8470Sstevel@tonic-gate 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
8480Sstevel@tonic-gate }
8490Sstevel@tonic-gate 
8500Sstevel@tonic-gate /*
8510Sstevel@tonic-gate  *  cyclic_fire(cpu_t *)
8520Sstevel@tonic-gate  *
8530Sstevel@tonic-gate  *  Overview
8540Sstevel@tonic-gate  *
8550Sstevel@tonic-gate  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
8560Sstevel@tonic-gate  *    Called by the cyclic backend.
8570Sstevel@tonic-gate  *
8580Sstevel@tonic-gate  *  Arguments and notes
8590Sstevel@tonic-gate  *
8600Sstevel@tonic-gate  *    The only argument is the CPU on which the interrupt is executing;
8610Sstevel@tonic-gate  *    backends must call into cyclic_fire() on the specified CPU.
8620Sstevel@tonic-gate  *
8630Sstevel@tonic-gate  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
8640Sstevel@tonic-gate  *    backends will call into cyclic_fire() at or shortly after the time
8650Sstevel@tonic-gate  *    requested via cyb_reprogram().  However, calling cyclic_fire()
8660Sstevel@tonic-gate  *    arbitrarily late will only manifest latency bubbles; the correctness
8670Sstevel@tonic-gate  *    of the cyclic subsystem does not rely on the timeliness of the backend.
8680Sstevel@tonic-gate  *
8690Sstevel@tonic-gate  *    cyclic_fire() is wait-free; it will not block or spin.
8700Sstevel@tonic-gate  *
8710Sstevel@tonic-gate  *  Return values
8720Sstevel@tonic-gate  *
8730Sstevel@tonic-gate  *    None.
8740Sstevel@tonic-gate  *
8750Sstevel@tonic-gate  *  Caller's context
8760Sstevel@tonic-gate  *
8770Sstevel@tonic-gate  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
8780Sstevel@tonic-gate  */
8790Sstevel@tonic-gate void
8800Sstevel@tonic-gate cyclic_fire(cpu_t *c)
8810Sstevel@tonic-gate {
8820Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
8830Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
8840Sstevel@tonic-gate 	cyc_index_t *heap = cpu->cyp_heap;
8850Sstevel@tonic-gate 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
8860Sstevel@tonic-gate 	void *arg = be->cyb_arg;
8870Sstevel@tonic-gate 	hrtime_t now = gethrtime();
8880Sstevel@tonic-gate 	hrtime_t exp;
8890Sstevel@tonic-gate 
8900Sstevel@tonic-gate 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
8910Sstevel@tonic-gate 
8920Sstevel@tonic-gate 	if (cpu->cyp_nelems == 0) {
8930Sstevel@tonic-gate 		/*
8940Sstevel@tonic-gate 		 * This is a spurious fire.  Count it as such, and blow
8950Sstevel@tonic-gate 		 * out of here.
8960Sstevel@tonic-gate 		 */
8970Sstevel@tonic-gate 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
8980Sstevel@tonic-gate 		return;
8990Sstevel@tonic-gate 	}
9000Sstevel@tonic-gate 
9010Sstevel@tonic-gate 	for (;;) {
9020Sstevel@tonic-gate 		cyc_index_t ndx = heap[0];
9030Sstevel@tonic-gate 
9040Sstevel@tonic-gate 		cyclic = &cyclics[ndx];
9050Sstevel@tonic-gate 
9060Sstevel@tonic-gate 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
9070Sstevel@tonic-gate 
9080Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
9090Sstevel@tonic-gate 		    cyclic->cy_expire);
9100Sstevel@tonic-gate 
9110Sstevel@tonic-gate 		if ((exp = cyclic->cy_expire) > now)
9120Sstevel@tonic-gate 			break;
9130Sstevel@tonic-gate 
9140Sstevel@tonic-gate 		cyclic_expire(cpu, ndx, cyclic);
9150Sstevel@tonic-gate 
9160Sstevel@tonic-gate 		/*
9170Sstevel@tonic-gate 		 * If this cyclic will be set to next expire in the distant
9180Sstevel@tonic-gate 		 * past, we have one of two situations:
9190Sstevel@tonic-gate 		 *
9200Sstevel@tonic-gate 		 *   a)	This is the first firing of a cyclic which had
9210Sstevel@tonic-gate 		 *	cy_expire set to 0.
9220Sstevel@tonic-gate 		 *
9230Sstevel@tonic-gate 		 *   b)	We are tragically late for a cyclic -- most likely
9240Sstevel@tonic-gate 		 *	due to being in the debugger.
9250Sstevel@tonic-gate 		 *
9260Sstevel@tonic-gate 		 * In either case, we set the new expiration time to be the
9270Sstevel@tonic-gate 		 * the next interval boundary.  This assures that the
9280Sstevel@tonic-gate 		 * expiration time modulo the interval is invariant.
9290Sstevel@tonic-gate 		 *
9300Sstevel@tonic-gate 		 * We arbitrarily define "distant" to be one second (one second
9310Sstevel@tonic-gate 		 * is chosen because it's shorter than any foray to the
9320Sstevel@tonic-gate 		 * debugger while still being longer than any legitimate
9330Sstevel@tonic-gate 		 * stretch at CY_HIGH_LEVEL).
9340Sstevel@tonic-gate 		 */
9350Sstevel@tonic-gate 		exp += cyclic->cy_interval;
9360Sstevel@tonic-gate 
9370Sstevel@tonic-gate 		if (now - exp > NANOSEC) {
9380Sstevel@tonic-gate 			hrtime_t interval = cyclic->cy_interval;
9390Sstevel@tonic-gate 
9400Sstevel@tonic-gate 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
9410Sstevel@tonic-gate 			    "fire-first" : "fire-swing", now, exp);
9420Sstevel@tonic-gate 
9430Sstevel@tonic-gate 			exp += ((now - exp) / interval + 1) * interval;
9440Sstevel@tonic-gate 		}
9450Sstevel@tonic-gate 
9460Sstevel@tonic-gate 		cyclic->cy_expire = exp;
9470Sstevel@tonic-gate 		cyclic_downheap(cpu, 0);
9480Sstevel@tonic-gate 	}
9490Sstevel@tonic-gate 
9500Sstevel@tonic-gate 	/*
9510Sstevel@tonic-gate 	 * Now we have a cyclic in the root slot which isn't in the past;
9520Sstevel@tonic-gate 	 * reprogram the interrupt source.
9530Sstevel@tonic-gate 	 */
9540Sstevel@tonic-gate 	be->cyb_reprogram(arg, exp);
9550Sstevel@tonic-gate }
9560Sstevel@tonic-gate 
9570Sstevel@tonic-gate static void
9580Sstevel@tonic-gate cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
9590Sstevel@tonic-gate {
9600Sstevel@tonic-gate 	cyc_func_t handler = cyclic->cy_handler;
9610Sstevel@tonic-gate 	void *arg = cyclic->cy_arg;
9620Sstevel@tonic-gate 	uint32_t i, rpend = cpu->cyp_rpend - 1;
9630Sstevel@tonic-gate 
9640Sstevel@tonic-gate 	ASSERT(cyclic->cy_flags & CYF_FREE);
9650Sstevel@tonic-gate 	ASSERT(cyclic->cy_pend == 0);
9660Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_REMOVING);
9670Sstevel@tonic-gate 	ASSERT(cpu->cyp_rpend > 0);
9680Sstevel@tonic-gate 
9690Sstevel@tonic-gate 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
9700Sstevel@tonic-gate 
9710Sstevel@tonic-gate 	/*
9720Sstevel@tonic-gate 	 * Note that we only call the handler cyp_rpend - 1 times; this is
9730Sstevel@tonic-gate 	 * to account for the handler call in cyclic_softint().
9740Sstevel@tonic-gate 	 */
9750Sstevel@tonic-gate 	for (i = 0; i < rpend; i++) {
9760Sstevel@tonic-gate 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
977*5864Sesaxe 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
978*5864Sesaxe 
9790Sstevel@tonic-gate 		(*handler)(arg);
980*5864Sesaxe 
981*5864Sesaxe 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
9820Sstevel@tonic-gate 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
9830Sstevel@tonic-gate 	}
9840Sstevel@tonic-gate 
9850Sstevel@tonic-gate 	/*
9860Sstevel@tonic-gate 	 * We can now let the remove operation complete.
9870Sstevel@tonic-gate 	 */
9880Sstevel@tonic-gate 	sema_v(&cpu->cyp_modify_wait);
9890Sstevel@tonic-gate }
9900Sstevel@tonic-gate 
9910Sstevel@tonic-gate /*
9920Sstevel@tonic-gate  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
9930Sstevel@tonic-gate  *
9940Sstevel@tonic-gate  *  Overview
9950Sstevel@tonic-gate  *
9960Sstevel@tonic-gate  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
9970Sstevel@tonic-gate  *    soft interrupt handler.  Called by the cyclic backend.
9980Sstevel@tonic-gate  *
9990Sstevel@tonic-gate  *  Arguments and notes
10000Sstevel@tonic-gate  *
10010Sstevel@tonic-gate  *    The first argument to cyclic_softint() is the CPU on which the interrupt
10020Sstevel@tonic-gate  *    is executing; backends must call into cyclic_softint() on the specified
10030Sstevel@tonic-gate  *    CPU.  The second argument is the level of the soft interrupt; it must
10040Sstevel@tonic-gate  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
10050Sstevel@tonic-gate  *
10060Sstevel@tonic-gate  *    cyclic_softint() will call the handlers for cyclics pending at the
10070Sstevel@tonic-gate  *    specified level.  cyclic_softint() will not return until all pending
10080Sstevel@tonic-gate  *    cyclics at the specified level have been dealt with; intervening
10090Sstevel@tonic-gate  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
10100Sstevel@tonic-gate  *    may therefore prolong cyclic_softint().
10110Sstevel@tonic-gate  *
10120Sstevel@tonic-gate  *    cyclic_softint() never disables interrupts, and, if neither a
10130Sstevel@tonic-gate  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
10140Sstevel@tonic-gate  *    lock-free.  This assures that in the common case, cyclic_softint()
10150Sstevel@tonic-gate  *    completes without blocking, and never starves cyclic_fire().  If either
10160Sstevel@tonic-gate  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
10170Sstevel@tonic-gate  *    a dispatcher lock.
10180Sstevel@tonic-gate  *
10190Sstevel@tonic-gate  *    While cyclic_softint() is designed for bounded latency, it is obviously
10200Sstevel@tonic-gate  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
10210Sstevel@tonic-gate  *    arbitrarily, callers of cyclic_softint() should not rely upon
10220Sstevel@tonic-gate  *    deterministic completion.
10230Sstevel@tonic-gate  *
10240Sstevel@tonic-gate  *    cyclic_softint() may be called spuriously without ill effect.
10250Sstevel@tonic-gate  *
10260Sstevel@tonic-gate  *  Return value
10270Sstevel@tonic-gate  *
10280Sstevel@tonic-gate  *    None.
10290Sstevel@tonic-gate  *
10300Sstevel@tonic-gate  *  Caller's context
10310Sstevel@tonic-gate  *
10320Sstevel@tonic-gate  *    The caller must be executing in soft interrupt context at either
10330Sstevel@tonic-gate  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
10340Sstevel@tonic-gate  *    must match the level at which it is executing.  On optimal backends,
10350Sstevel@tonic-gate  *    the caller will hold no locks.  In any case, the caller may not hold
10360Sstevel@tonic-gate  *    cpu_lock or any lock acquired by any cyclic handler or held across
10370Sstevel@tonic-gate  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
10380Sstevel@tonic-gate  */
10390Sstevel@tonic-gate void
10400Sstevel@tonic-gate cyclic_softint(cpu_t *c, cyc_level_t level)
10410Sstevel@tonic-gate {
10420Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
10430Sstevel@tonic-gate 	cyc_softbuf_t *softbuf;
10440Sstevel@tonic-gate 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
10450Sstevel@tonic-gate 	cyc_pcbuffer_t *pc;
10460Sstevel@tonic-gate 	cyclic_t *cyclics = cpu->cyp_cyclics;
10470Sstevel@tonic-gate 	int sizemask;
10480Sstevel@tonic-gate 
10490Sstevel@tonic-gate 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
10500Sstevel@tonic-gate 
10510Sstevel@tonic-gate 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
10520Sstevel@tonic-gate 
10530Sstevel@tonic-gate 	softbuf = &cpu->cyp_softbuf[level];
10540Sstevel@tonic-gate top:
10550Sstevel@tonic-gate 	soft = softbuf->cys_soft;
10560Sstevel@tonic-gate 	ASSERT(soft == 0 || soft == 1);
10570Sstevel@tonic-gate 
10580Sstevel@tonic-gate 	pc = &softbuf->cys_buf[soft];
10590Sstevel@tonic-gate 	buf = pc->cypc_buf;
10600Sstevel@tonic-gate 	consndx = pc->cypc_consndx;
10610Sstevel@tonic-gate 	sizemask = pc->cypc_sizemask;
10620Sstevel@tonic-gate 
10630Sstevel@tonic-gate 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
10640Sstevel@tonic-gate 
10650Sstevel@tonic-gate 	while (consndx != pc->cypc_prodndx) {
10660Sstevel@tonic-gate 		int pend, npend, opend;
10670Sstevel@tonic-gate 		int consmasked = consndx & sizemask;
10680Sstevel@tonic-gate 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
10690Sstevel@tonic-gate 		cyc_func_t handler = cyclic->cy_handler;
10700Sstevel@tonic-gate 		void *arg = cyclic->cy_arg;
10710Sstevel@tonic-gate 
10720Sstevel@tonic-gate 		ASSERT(buf[consmasked] < cpu->cyp_size);
10730Sstevel@tonic-gate 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
10740Sstevel@tonic-gate 
10750Sstevel@tonic-gate 		/*
10760Sstevel@tonic-gate 		 * We have found this cyclic in the pcbuffer.  We know that
10770Sstevel@tonic-gate 		 * one of the following is true:
10780Sstevel@tonic-gate 		 *
10790Sstevel@tonic-gate 		 *  (a)	The pend is non-zero.  We need to execute the handler
10800Sstevel@tonic-gate 		 *	at least once.
10810Sstevel@tonic-gate 		 *
10820Sstevel@tonic-gate 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
10830Sstevel@tonic-gate 		 *	resize.  We will call the handler once, see that we
10840Sstevel@tonic-gate 		 *	are in this case, and read the new cyclics buffer
10850Sstevel@tonic-gate 		 *	(and hence the old non-zero pend).
10860Sstevel@tonic-gate 		 *
10870Sstevel@tonic-gate 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
10880Sstevel@tonic-gate 		 *	removal.  We will call the handler once, see that we
10890Sstevel@tonic-gate 		 *	are in this case, and call into cyclic_remove_pend()
10900Sstevel@tonic-gate 		 *	to call the cyclic rpend times.  We will take into
10910Sstevel@tonic-gate 		 *	account that we have already called the handler once.
10920Sstevel@tonic-gate 		 *
10930Sstevel@tonic-gate 		 * Point is:  it's safe to call the handler without first
10940Sstevel@tonic-gate 		 * checking the pend.
10950Sstevel@tonic-gate 		 */
10960Sstevel@tonic-gate 		do {
10970Sstevel@tonic-gate 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1098*5864Sesaxe 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1099*5864Sesaxe 
11000Sstevel@tonic-gate 			(*handler)(arg);
1101*5864Sesaxe 
1102*5864Sesaxe 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
11030Sstevel@tonic-gate 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
11040Sstevel@tonic-gate reread:
11050Sstevel@tonic-gate 			pend = cyclic->cy_pend;
11060Sstevel@tonic-gate 			npend = pend - 1;
11070Sstevel@tonic-gate 
11080Sstevel@tonic-gate 			if (pend == 0) {
11090Sstevel@tonic-gate 				if (cpu->cyp_state == CYS_REMOVING) {
11100Sstevel@tonic-gate 					/*
11110Sstevel@tonic-gate 					 * This cyclic has been removed while
11120Sstevel@tonic-gate 					 * it had a non-zero pend count (we
11130Sstevel@tonic-gate 					 * know it was non-zero because we
11140Sstevel@tonic-gate 					 * found this cyclic in the pcbuffer).
11150Sstevel@tonic-gate 					 * There must be a non-zero rpend for
11160Sstevel@tonic-gate 					 * this CPU, and there must be a remove
11170Sstevel@tonic-gate 					 * operation blocking; we'll call into
11180Sstevel@tonic-gate 					 * cyclic_remove_pend() to clean this
11190Sstevel@tonic-gate 					 * up, and break out of the pend loop.
11200Sstevel@tonic-gate 					 */
11210Sstevel@tonic-gate 					cyclic_remove_pend(cpu, level, cyclic);
11220Sstevel@tonic-gate 					break;
11230Sstevel@tonic-gate 				}
11240Sstevel@tonic-gate 
11250Sstevel@tonic-gate 				/*
11260Sstevel@tonic-gate 				 * We must have had a resize interrupt us.
11270Sstevel@tonic-gate 				 */
11280Sstevel@tonic-gate 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
11290Sstevel@tonic-gate 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
11300Sstevel@tonic-gate 				ASSERT(cyclics != cpu->cyp_cyclics);
11310Sstevel@tonic-gate 				ASSERT(resized == 0);
11320Sstevel@tonic-gate 				ASSERT(intr_resized == 0);
11330Sstevel@tonic-gate 				intr_resized = 1;
11340Sstevel@tonic-gate 				cyclics = cpu->cyp_cyclics;
11350Sstevel@tonic-gate 				cyclic = &cyclics[buf[consmasked]];
11360Sstevel@tonic-gate 				ASSERT(cyclic->cy_handler == handler);
11370Sstevel@tonic-gate 				ASSERT(cyclic->cy_arg == arg);
11380Sstevel@tonic-gate 				goto reread;
11390Sstevel@tonic-gate 			}
11400Sstevel@tonic-gate 
11410Sstevel@tonic-gate 			if ((opend =
11420Sstevel@tonic-gate 			    cas32(&cyclic->cy_pend, pend, npend)) != pend) {
11430Sstevel@tonic-gate 				/*
11440Sstevel@tonic-gate 				 * Our cas32 can fail for one of several
11450Sstevel@tonic-gate 				 * reasons:
11460Sstevel@tonic-gate 				 *
11470Sstevel@tonic-gate 				 *  (a)	An intervening high level bumped up the
11480Sstevel@tonic-gate 				 *	pend count on this cyclic.  In this
11490Sstevel@tonic-gate 				 *	case, we will see a higher pend.
11500Sstevel@tonic-gate 				 *
11510Sstevel@tonic-gate 				 *  (b)	The cyclics array has been yanked out
11520Sstevel@tonic-gate 				 *	from underneath us by a resize
11530Sstevel@tonic-gate 				 *	operation.  In this case, pend is 0 and
11540Sstevel@tonic-gate 				 *	cyp_state is CYS_EXPANDING.
11550Sstevel@tonic-gate 				 *
11560Sstevel@tonic-gate 				 *  (c)	The cyclic has been removed by an
11570Sstevel@tonic-gate 				 *	intervening remove-xcall.  In this case,
11580Sstevel@tonic-gate 				 *	pend will be 0, the cyp_state will be
11590Sstevel@tonic-gate 				 *	CYS_REMOVING, and the cyclic will be
11600Sstevel@tonic-gate 				 *	marked CYF_FREE.
11610Sstevel@tonic-gate 				 *
11620Sstevel@tonic-gate 				 * The assertion below checks that we are
11630Sstevel@tonic-gate 				 * in one of the above situations.  The
11640Sstevel@tonic-gate 				 * action under all three is to return to
11650Sstevel@tonic-gate 				 * the top of the loop.
11660Sstevel@tonic-gate 				 */
11670Sstevel@tonic-gate 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
11680Sstevel@tonic-gate 				ASSERT(opend > pend || (opend == 0 &&
11690Sstevel@tonic-gate 				    ((cyclics != cpu->cyp_cyclics &&
11700Sstevel@tonic-gate 				    cpu->cyp_state == CYS_EXPANDING) ||
11710Sstevel@tonic-gate 				    (cpu->cyp_state == CYS_REMOVING &&
11720Sstevel@tonic-gate 				    (cyclic->cy_flags & CYF_FREE)))));
11730Sstevel@tonic-gate 				goto reread;
11740Sstevel@tonic-gate 			}
11750Sstevel@tonic-gate 
11760Sstevel@tonic-gate 			/*
11770Sstevel@tonic-gate 			 * Okay, so we've managed to successfully decrement
11780Sstevel@tonic-gate 			 * pend.  If we just decremented the pend to 0, we're
11790Sstevel@tonic-gate 			 * done.
11800Sstevel@tonic-gate 			 */
11810Sstevel@tonic-gate 		} while (npend > 0);
11820Sstevel@tonic-gate 
11830Sstevel@tonic-gate 		pc->cypc_consndx = ++consndx;
11840Sstevel@tonic-gate 	}
11850Sstevel@tonic-gate 
11860Sstevel@tonic-gate 	/*
11870Sstevel@tonic-gate 	 * If the high level handler is no longer writing to the same
11880Sstevel@tonic-gate 	 * buffer, then we've had a resize.  We need to switch our soft
11890Sstevel@tonic-gate 	 * index, and goto top.
11900Sstevel@tonic-gate 	 */
11910Sstevel@tonic-gate 	if (soft != softbuf->cys_hard) {
11920Sstevel@tonic-gate 		/*
11930Sstevel@tonic-gate 		 * We can assert that the other buffer has grown by exactly
11940Sstevel@tonic-gate 		 * one factor of two.
11950Sstevel@tonic-gate 		 */
11960Sstevel@tonic-gate 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
11970Sstevel@tonic-gate 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
11980Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
11990Sstevel@tonic-gate 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
12000Sstevel@tonic-gate 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
12010Sstevel@tonic-gate 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
12020Sstevel@tonic-gate 
12030Sstevel@tonic-gate 		/*
12040Sstevel@tonic-gate 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
12050Sstevel@tonic-gate 		 * then we took a resize between our last iteration of the
12060Sstevel@tonic-gate 		 * pend loop and the check against softbuf->cys_hard.
12070Sstevel@tonic-gate 		 */
12080Sstevel@tonic-gate 		if (cpu->cyp_cyclics != cyclics) {
12090Sstevel@tonic-gate 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
12100Sstevel@tonic-gate 			cyclics = cpu->cyp_cyclics;
12110Sstevel@tonic-gate 		}
12120Sstevel@tonic-gate 
12130Sstevel@tonic-gate 		softbuf->cys_soft = softbuf->cys_hard;
12140Sstevel@tonic-gate 
12150Sstevel@tonic-gate 		ASSERT(resized == 0);
12160Sstevel@tonic-gate 		resized = 1;
12170Sstevel@tonic-gate 		goto top;
12180Sstevel@tonic-gate 	}
12190Sstevel@tonic-gate 
12200Sstevel@tonic-gate 	/*
12210Sstevel@tonic-gate 	 * If we were interrupted by a resize operation, then we must have
12220Sstevel@tonic-gate 	 * seen the hard index change.
12230Sstevel@tonic-gate 	 */
12240Sstevel@tonic-gate 	ASSERT(!(intr_resized == 1 && resized == 0));
12250Sstevel@tonic-gate 
12260Sstevel@tonic-gate 	if (resized) {
12270Sstevel@tonic-gate 		uint32_t lev, nlev;
12280Sstevel@tonic-gate 
12290Sstevel@tonic-gate 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
12300Sstevel@tonic-gate 
12310Sstevel@tonic-gate 		do {
12320Sstevel@tonic-gate 			lev = cpu->cyp_modify_levels;
12330Sstevel@tonic-gate 			nlev = lev + 1;
12340Sstevel@tonic-gate 		} while (cas32(&cpu->cyp_modify_levels, lev, nlev) != lev);
12350Sstevel@tonic-gate 
12360Sstevel@tonic-gate 		/*
12370Sstevel@tonic-gate 		 * If we are the last soft level to see the modification,
12380Sstevel@tonic-gate 		 * post on cyp_modify_wait.  Otherwise, (if we're not
12390Sstevel@tonic-gate 		 * already at low level), post down to the next soft level.
12400Sstevel@tonic-gate 		 */
12410Sstevel@tonic-gate 		if (nlev == CY_SOFT_LEVELS) {
12420Sstevel@tonic-gate 			CYC_TRACE0(cpu, level, "resize-kick");
12430Sstevel@tonic-gate 			sema_v(&cpu->cyp_modify_wait);
12440Sstevel@tonic-gate 		} else {
12450Sstevel@tonic-gate 			ASSERT(nlev < CY_SOFT_LEVELS);
12460Sstevel@tonic-gate 			if (level != CY_LOW_LEVEL) {
12470Sstevel@tonic-gate 				cyc_backend_t *be = cpu->cyp_backend;
12480Sstevel@tonic-gate 
12490Sstevel@tonic-gate 				CYC_TRACE0(cpu, level, "resize-post");
12500Sstevel@tonic-gate 				be->cyb_softint(be->cyb_arg, level - 1);
12510Sstevel@tonic-gate 			}
12520Sstevel@tonic-gate 		}
12530Sstevel@tonic-gate 	}
12540Sstevel@tonic-gate }
12550Sstevel@tonic-gate 
12560Sstevel@tonic-gate static void
12570Sstevel@tonic-gate cyclic_expand_xcall(cyc_xcallarg_t *arg)
12580Sstevel@tonic-gate {
12590Sstevel@tonic-gate 	cyc_cpu_t *cpu = arg->cyx_cpu;
12600Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
12610Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
12620Sstevel@tonic-gate 	cyc_cookie_t cookie;
12630Sstevel@tonic-gate 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
12640Sstevel@tonic-gate 	cyc_index_t *new_heap = arg->cyx_heap;
12650Sstevel@tonic-gate 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
12660Sstevel@tonic-gate 
12670Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
12680Sstevel@tonic-gate 
12690Sstevel@tonic-gate 	/*
12700Sstevel@tonic-gate 	 * This is a little dicey.  First, we'll raise our interrupt level
12710Sstevel@tonic-gate 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
12720Sstevel@tonic-gate 	 * etc.; we just need to bcopy them across.  As for the softint
12730Sstevel@tonic-gate 	 * buffers, we'll switch the active buffers.  The actual softints will
12740Sstevel@tonic-gate 	 * take care of consuming any pending cyclics in the old buffer.
12750Sstevel@tonic-gate 	 */
12760Sstevel@tonic-gate 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
12770Sstevel@tonic-gate 
12780Sstevel@tonic-gate 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
12790Sstevel@tonic-gate 
12800Sstevel@tonic-gate 	/*
12810Sstevel@tonic-gate 	 * Assert that the new size is a power of 2.
12820Sstevel@tonic-gate 	 */
12830Sstevel@tonic-gate 	ASSERT((new_size & new_size - 1) == 0);
12840Sstevel@tonic-gate 	ASSERT(new_size == (size << 1));
12850Sstevel@tonic-gate 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
12860Sstevel@tonic-gate 
12870Sstevel@tonic-gate 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
12880Sstevel@tonic-gate 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
12890Sstevel@tonic-gate 
12900Sstevel@tonic-gate 	/*
12910Sstevel@tonic-gate 	 * Now run through the old cyclics array, setting pend to 0.  To
12920Sstevel@tonic-gate 	 * softints (which are executing at a lower priority level), the
12930Sstevel@tonic-gate 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
12940Sstevel@tonic-gate 	 * pointer changing.
12950Sstevel@tonic-gate 	 */
12960Sstevel@tonic-gate 	for (i = 0; i < size; i++)
12970Sstevel@tonic-gate 		cyclics[i].cy_pend = 0;
12980Sstevel@tonic-gate 
12990Sstevel@tonic-gate 	/*
13000Sstevel@tonic-gate 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
13010Sstevel@tonic-gate 	 */
13020Sstevel@tonic-gate 	for (i = size; i < new_size; i++) {
13030Sstevel@tonic-gate 		new_heap[i] = i;
13040Sstevel@tonic-gate 		new_cyclics[i].cy_flags = CYF_FREE;
13050Sstevel@tonic-gate 	}
13060Sstevel@tonic-gate 
13070Sstevel@tonic-gate 	/*
13080Sstevel@tonic-gate 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
13090Sstevel@tonic-gate 	 * cyclic_expand() has kept a copy.
13100Sstevel@tonic-gate 	 */
13110Sstevel@tonic-gate 	cpu->cyp_heap = new_heap;
13120Sstevel@tonic-gate 	cpu->cyp_cyclics = new_cyclics;
13130Sstevel@tonic-gate 	cpu->cyp_size = new_size;
13140Sstevel@tonic-gate 
13150Sstevel@tonic-gate 	/*
13160Sstevel@tonic-gate 	 * We've switched over the heap and the cyclics array.  Now we need
13170Sstevel@tonic-gate 	 * to switch over our active softint buffer pointers.
13180Sstevel@tonic-gate 	 */
13190Sstevel@tonic-gate 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
13200Sstevel@tonic-gate 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
13210Sstevel@tonic-gate 		uchar_t hard = softbuf->cys_hard;
13220Sstevel@tonic-gate 
13230Sstevel@tonic-gate 		/*
13240Sstevel@tonic-gate 		 * Assert that we're not in the middle of a resize operation.
13250Sstevel@tonic-gate 		 */
13260Sstevel@tonic-gate 		ASSERT(hard == softbuf->cys_soft);
13270Sstevel@tonic-gate 		ASSERT(hard == 0 || hard == 1);
13280Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
13290Sstevel@tonic-gate 
13300Sstevel@tonic-gate 		softbuf->cys_hard = hard ^ 1;
13310Sstevel@tonic-gate 
13320Sstevel@tonic-gate 		/*
13330Sstevel@tonic-gate 		 * The caller (cyclic_expand()) is responsible for setting
13340Sstevel@tonic-gate 		 * up the new producer-consumer buffer; assert that it's
13350Sstevel@tonic-gate 		 * been done correctly.
13360Sstevel@tonic-gate 		 */
13370Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
13380Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
13390Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
13400Sstevel@tonic-gate 	}
13410Sstevel@tonic-gate 
13420Sstevel@tonic-gate 	/*
13430Sstevel@tonic-gate 	 * That's all there is to it; now we just need to postdown to
13440Sstevel@tonic-gate 	 * get the softint chain going.
13450Sstevel@tonic-gate 	 */
13460Sstevel@tonic-gate 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
13470Sstevel@tonic-gate 	be->cyb_restore_level(bar, cookie);
13480Sstevel@tonic-gate }
13490Sstevel@tonic-gate 
13500Sstevel@tonic-gate /*
13510Sstevel@tonic-gate  * cyclic_expand() will cross call onto the CPU to perform the actual
13520Sstevel@tonic-gate  * expand operation.
13530Sstevel@tonic-gate  */
13540Sstevel@tonic-gate static void
13550Sstevel@tonic-gate cyclic_expand(cyc_cpu_t *cpu)
13560Sstevel@tonic-gate {
13570Sstevel@tonic-gate 	cyc_index_t new_size, old_size;
13580Sstevel@tonic-gate 	cyc_index_t *new_heap, *old_heap;
13590Sstevel@tonic-gate 	cyclic_t *new_cyclics, *old_cyclics;
13600Sstevel@tonic-gate 	cyc_xcallarg_t arg;
13610Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
13620Sstevel@tonic-gate 	char old_hard;
13630Sstevel@tonic-gate 	int i;
13640Sstevel@tonic-gate 
13650Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
13660Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
13670Sstevel@tonic-gate 
13680Sstevel@tonic-gate 	cpu->cyp_state = CYS_EXPANDING;
13690Sstevel@tonic-gate 
13700Sstevel@tonic-gate 	old_heap = cpu->cyp_heap;
13710Sstevel@tonic-gate 	old_cyclics = cpu->cyp_cyclics;
13720Sstevel@tonic-gate 
13730Sstevel@tonic-gate 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
13740Sstevel@tonic-gate 		new_size = CY_DEFAULT_PERCPU;
13750Sstevel@tonic-gate 		ASSERT(old_heap == NULL && old_cyclics == NULL);
13760Sstevel@tonic-gate 	}
13770Sstevel@tonic-gate 
13780Sstevel@tonic-gate 	/*
13790Sstevel@tonic-gate 	 * Check that the new_size is a power of 2.
13800Sstevel@tonic-gate 	 */
13810Sstevel@tonic-gate 	ASSERT((new_size - 1 & new_size) == 0);
13820Sstevel@tonic-gate 
13830Sstevel@tonic-gate 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
13840Sstevel@tonic-gate 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
13850Sstevel@tonic-gate 
13860Sstevel@tonic-gate 	/*
13870Sstevel@tonic-gate 	 * We know that no other expansions are in progress (they serialize
13880Sstevel@tonic-gate 	 * on cpu_lock), so we can safely read the softbuf metadata.
13890Sstevel@tonic-gate 	 */
13900Sstevel@tonic-gate 	old_hard = cpu->cyp_softbuf[0].cys_hard;
13910Sstevel@tonic-gate 
13920Sstevel@tonic-gate 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
13930Sstevel@tonic-gate 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
13940Sstevel@tonic-gate 		char hard = softbuf->cys_hard;
13950Sstevel@tonic-gate 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
13960Sstevel@tonic-gate 
13970Sstevel@tonic-gate 		ASSERT(hard == old_hard);
13980Sstevel@tonic-gate 		ASSERT(hard == softbuf->cys_soft);
13990Sstevel@tonic-gate 		ASSERT(pc->cypc_buf == NULL);
14000Sstevel@tonic-gate 
14010Sstevel@tonic-gate 		pc->cypc_buf =
14020Sstevel@tonic-gate 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
14030Sstevel@tonic-gate 		pc->cypc_prodndx = pc->cypc_consndx = 0;
14040Sstevel@tonic-gate 		pc->cypc_sizemask = new_size - 1;
14050Sstevel@tonic-gate 	}
14060Sstevel@tonic-gate 
14070Sstevel@tonic-gate 	arg.cyx_cpu = cpu;
14080Sstevel@tonic-gate 	arg.cyx_heap = new_heap;
14090Sstevel@tonic-gate 	arg.cyx_cyclics = new_cyclics;
14100Sstevel@tonic-gate 	arg.cyx_size = new_size;
14110Sstevel@tonic-gate 
14120Sstevel@tonic-gate 	cpu->cyp_modify_levels = 0;
14130Sstevel@tonic-gate 
14140Sstevel@tonic-gate 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
14150Sstevel@tonic-gate 	    (cyc_func_t)cyclic_expand_xcall, &arg);
14160Sstevel@tonic-gate 
14170Sstevel@tonic-gate 	/*
14180Sstevel@tonic-gate 	 * Now block, waiting for the resize operation to complete.
14190Sstevel@tonic-gate 	 */
14200Sstevel@tonic-gate 	sema_p(&cpu->cyp_modify_wait);
14210Sstevel@tonic-gate 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
14220Sstevel@tonic-gate 
14230Sstevel@tonic-gate 	/*
14240Sstevel@tonic-gate 	 * The operation is complete; we can now free the old buffers.
14250Sstevel@tonic-gate 	 */
14260Sstevel@tonic-gate 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
14270Sstevel@tonic-gate 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
14280Sstevel@tonic-gate 		char hard = softbuf->cys_hard;
14290Sstevel@tonic-gate 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
14300Sstevel@tonic-gate 
14310Sstevel@tonic-gate 		ASSERT(hard == (old_hard ^ 1));
14320Sstevel@tonic-gate 		ASSERT(hard == softbuf->cys_soft);
14330Sstevel@tonic-gate 
14340Sstevel@tonic-gate 		if (pc->cypc_buf == NULL)
14350Sstevel@tonic-gate 			continue;
14360Sstevel@tonic-gate 
14370Sstevel@tonic-gate 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
14380Sstevel@tonic-gate 
14390Sstevel@tonic-gate 		kmem_free(pc->cypc_buf,
14400Sstevel@tonic-gate 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
14410Sstevel@tonic-gate 		pc->cypc_buf = NULL;
14420Sstevel@tonic-gate 	}
14430Sstevel@tonic-gate 
14440Sstevel@tonic-gate 	if (old_cyclics != NULL) {
14450Sstevel@tonic-gate 		ASSERT(old_heap != NULL);
14460Sstevel@tonic-gate 		ASSERT(old_size != 0);
14470Sstevel@tonic-gate 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
14480Sstevel@tonic-gate 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
14490Sstevel@tonic-gate 	}
14500Sstevel@tonic-gate 
14510Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
14520Sstevel@tonic-gate 	cpu->cyp_state = CYS_ONLINE;
14530Sstevel@tonic-gate }
14540Sstevel@tonic-gate 
14550Sstevel@tonic-gate /*
14560Sstevel@tonic-gate  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
14570Sstevel@tonic-gate  * specified by the partition, bound CPU, and flags.  Additionally,
14580Sstevel@tonic-gate  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
14590Sstevel@tonic-gate  * the avoid CPU is the only CPU which satisfies the constraints.
14600Sstevel@tonic-gate  *
14610Sstevel@tonic-gate  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
14620Sstevel@tonic-gate  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
14630Sstevel@tonic-gate  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
14640Sstevel@tonic-gate  * be in the specified partition.
14650Sstevel@tonic-gate  */
14660Sstevel@tonic-gate static cyc_cpu_t *
14670Sstevel@tonic-gate cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
14680Sstevel@tonic-gate {
14690Sstevel@tonic-gate 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
14700Sstevel@tonic-gate 	cpu_t *online = NULL;
14710Sstevel@tonic-gate 	uintptr_t offset;
14720Sstevel@tonic-gate 
14730Sstevel@tonic-gate 	CYC_PTRACE("pick-cpu", part, bound);
14740Sstevel@tonic-gate 
14750Sstevel@tonic-gate 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
14760Sstevel@tonic-gate 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
14770Sstevel@tonic-gate 
14780Sstevel@tonic-gate 	/*
14790Sstevel@tonic-gate 	 * If we're bound to our CPU, there isn't much choice involved.  We
14800Sstevel@tonic-gate 	 * need to check that the CPU passed as bound is in the cpupart, and
14810Sstevel@tonic-gate 	 * that the CPU that we're binding to has been configured.
14820Sstevel@tonic-gate 	 */
14830Sstevel@tonic-gate 	if (flags & CYF_CPU_BOUND) {
14840Sstevel@tonic-gate 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
14850Sstevel@tonic-gate 
14860Sstevel@tonic-gate 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
14870Sstevel@tonic-gate 			panic("cyclic_pick_cpu:  "
14880Sstevel@tonic-gate 			    "CPU binding contradicts partition binding");
14890Sstevel@tonic-gate 
14900Sstevel@tonic-gate 		if (bound == avoid)
14910Sstevel@tonic-gate 			return (NULL);
14920Sstevel@tonic-gate 
14930Sstevel@tonic-gate 		if (bound->cpu_cyclic == NULL)
14940Sstevel@tonic-gate 			panic("cyclic_pick_cpu:  "
14950Sstevel@tonic-gate 			    "attempt to bind to non-configured CPU");
14960Sstevel@tonic-gate 
14970Sstevel@tonic-gate 		return (bound->cpu_cyclic);
14980Sstevel@tonic-gate 	}
14990Sstevel@tonic-gate 
15000Sstevel@tonic-gate 	if (flags & CYF_PART_BOUND) {
15010Sstevel@tonic-gate 		CYC_PTRACE("pick-part-bound", bound, avoid);
15020Sstevel@tonic-gate 		offset = offsetof(cpu_t, cpu_next_part);
15030Sstevel@tonic-gate 	} else {
15040Sstevel@tonic-gate 		offset = offsetof(cpu_t, cpu_next_onln);
15050Sstevel@tonic-gate 	}
15060Sstevel@tonic-gate 
15070Sstevel@tonic-gate 	c = start;
15080Sstevel@tonic-gate 	do {
15090Sstevel@tonic-gate 		if (c->cpu_cyclic == NULL)
15100Sstevel@tonic-gate 			continue;
15110Sstevel@tonic-gate 
15120Sstevel@tonic-gate 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
15130Sstevel@tonic-gate 			continue;
15140Sstevel@tonic-gate 
15150Sstevel@tonic-gate 		if (c == avoid)
15160Sstevel@tonic-gate 			continue;
15170Sstevel@tonic-gate 
15180Sstevel@tonic-gate 		if (c->cpu_flags & CPU_ENABLE)
15190Sstevel@tonic-gate 			goto found;
15200Sstevel@tonic-gate 
15210Sstevel@tonic-gate 		if (online == NULL)
15220Sstevel@tonic-gate 			online = c;
15230Sstevel@tonic-gate 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
15240Sstevel@tonic-gate 
15250Sstevel@tonic-gate 	/*
15260Sstevel@tonic-gate 	 * If we're here, we're in one of two situations:
15270Sstevel@tonic-gate 	 *
15280Sstevel@tonic-gate 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
15290Sstevel@tonic-gate 	 *	our partition which is CPU_ENABLE'd.  If we saw another
15300Sstevel@tonic-gate 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
15310Sstevel@tonic-gate 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
15320Sstevel@tonic-gate 	 *	CPU in the partition; we're forced to return NULL.
15330Sstevel@tonic-gate 	 *
15340Sstevel@tonic-gate 	 *  (b)	We have a partition-unbound cyclic, in which case there
15350Sstevel@tonic-gate 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
15360Sstevel@tonic-gate 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
15370Sstevel@tonic-gate 	 *	are called appropriately, this generally shouldn't happen
15380Sstevel@tonic-gate 	 *	(the offline should fail before getting to this code).
15390Sstevel@tonic-gate 	 *	At any rate: we can't avoid the avoid CPU, so we return
15400Sstevel@tonic-gate 	 *	NULL.
15410Sstevel@tonic-gate 	 */
15420Sstevel@tonic-gate 	if (!(flags & CYF_PART_BOUND)) {
15430Sstevel@tonic-gate 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
15440Sstevel@tonic-gate 		return (NULL);
15450Sstevel@tonic-gate 	}
15460Sstevel@tonic-gate 
15470Sstevel@tonic-gate 	CYC_PTRACE("pick-no-intr", part, avoid);
15480Sstevel@tonic-gate 
15490Sstevel@tonic-gate 	if ((c = online) != NULL)
15500Sstevel@tonic-gate 		goto found;
15510Sstevel@tonic-gate 
15520Sstevel@tonic-gate 	CYC_PTRACE("pick-fail", part, avoid);
15530Sstevel@tonic-gate 	ASSERT(avoid->cpu_part == start->cpu_part);
15540Sstevel@tonic-gate 	return (NULL);
15550Sstevel@tonic-gate 
15560Sstevel@tonic-gate found:
15570Sstevel@tonic-gate 	CYC_PTRACE("pick-cpu-found", c, avoid);
15580Sstevel@tonic-gate 	ASSERT(c != avoid);
15590Sstevel@tonic-gate 	ASSERT(c->cpu_cyclic != NULL);
15600Sstevel@tonic-gate 
15610Sstevel@tonic-gate 	return (c->cpu_cyclic);
15620Sstevel@tonic-gate }
15630Sstevel@tonic-gate 
15640Sstevel@tonic-gate static void
15650Sstevel@tonic-gate cyclic_add_xcall(cyc_xcallarg_t *arg)
15660Sstevel@tonic-gate {
15670Sstevel@tonic-gate 	cyc_cpu_t *cpu = arg->cyx_cpu;
15680Sstevel@tonic-gate 	cyc_handler_t *hdlr = arg->cyx_hdlr;
15690Sstevel@tonic-gate 	cyc_time_t *when = arg->cyx_when;
15700Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
15710Sstevel@tonic-gate 	cyc_index_t ndx, nelems;
15720Sstevel@tonic-gate 	cyc_cookie_t cookie;
15730Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
15740Sstevel@tonic-gate 	cyclic_t *cyclic;
15750Sstevel@tonic-gate 
15760Sstevel@tonic-gate 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
15770Sstevel@tonic-gate 
15780Sstevel@tonic-gate 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
15790Sstevel@tonic-gate 
15800Sstevel@tonic-gate 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
15810Sstevel@tonic-gate 	    "add-xcall", when->cyt_when, when->cyt_interval);
15820Sstevel@tonic-gate 
15830Sstevel@tonic-gate 	nelems = cpu->cyp_nelems++;
15840Sstevel@tonic-gate 
15850Sstevel@tonic-gate 	if (nelems == 0) {
15860Sstevel@tonic-gate 		/*
15870Sstevel@tonic-gate 		 * If this is the first element, we need to enable the
15880Sstevel@tonic-gate 		 * backend on this CPU.
15890Sstevel@tonic-gate 		 */
15900Sstevel@tonic-gate 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
15910Sstevel@tonic-gate 		be->cyb_enable(bar);
15920Sstevel@tonic-gate 	}
15930Sstevel@tonic-gate 
15940Sstevel@tonic-gate 	ndx = cpu->cyp_heap[nelems];
15950Sstevel@tonic-gate 	cyclic = &cpu->cyp_cyclics[ndx];
15960Sstevel@tonic-gate 
15970Sstevel@tonic-gate 	ASSERT(cyclic->cy_flags == CYF_FREE);
15980Sstevel@tonic-gate 	cyclic->cy_interval = when->cyt_interval;
15990Sstevel@tonic-gate 
16000Sstevel@tonic-gate 	if (when->cyt_when == 0) {
16010Sstevel@tonic-gate 		/*
16020Sstevel@tonic-gate 		 * If a start time hasn't been explicitly specified, we'll
16030Sstevel@tonic-gate 		 * start on the next interval boundary.
16040Sstevel@tonic-gate 		 */
16050Sstevel@tonic-gate 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
16060Sstevel@tonic-gate 		    cyclic->cy_interval;
16070Sstevel@tonic-gate 	} else {
16080Sstevel@tonic-gate 		cyclic->cy_expire = when->cyt_when;
16090Sstevel@tonic-gate 	}
16100Sstevel@tonic-gate 
16110Sstevel@tonic-gate 	cyclic->cy_handler = hdlr->cyh_func;
16120Sstevel@tonic-gate 	cyclic->cy_arg = hdlr->cyh_arg;
16130Sstevel@tonic-gate 	cyclic->cy_level = hdlr->cyh_level;
16140Sstevel@tonic-gate 	cyclic->cy_flags = arg->cyx_flags;
16150Sstevel@tonic-gate 
16160Sstevel@tonic-gate 	if (cyclic_upheap(cpu, nelems)) {
16170Sstevel@tonic-gate 		hrtime_t exp = cyclic->cy_expire;
16180Sstevel@tonic-gate 
16190Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
16200Sstevel@tonic-gate 
16210Sstevel@tonic-gate 		/*
16220Sstevel@tonic-gate 		 * If our upheap propagated to the root, we need to
16230Sstevel@tonic-gate 		 * reprogram the interrupt source.
16240Sstevel@tonic-gate 		 */
16250Sstevel@tonic-gate 		be->cyb_reprogram(bar, exp);
16260Sstevel@tonic-gate 	}
16270Sstevel@tonic-gate 	be->cyb_restore_level(bar, cookie);
16280Sstevel@tonic-gate 
16290Sstevel@tonic-gate 	arg->cyx_ndx = ndx;
16300Sstevel@tonic-gate }
16310Sstevel@tonic-gate 
16320Sstevel@tonic-gate static cyc_index_t
16330Sstevel@tonic-gate cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
16340Sstevel@tonic-gate     cyc_time_t *when, uint16_t flags)
16350Sstevel@tonic-gate {
16360Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
16370Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
16380Sstevel@tonic-gate 	cyc_xcallarg_t arg;
16390Sstevel@tonic-gate 
16400Sstevel@tonic-gate 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
16410Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
16420Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
16430Sstevel@tonic-gate 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
16440Sstevel@tonic-gate 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
16450Sstevel@tonic-gate 
16460Sstevel@tonic-gate 	if (cpu->cyp_nelems == cpu->cyp_size) {
16470Sstevel@tonic-gate 		/*
16480Sstevel@tonic-gate 		 * This is expensive; it will cross call onto the other
16490Sstevel@tonic-gate 		 * CPU to perform the expansion.
16500Sstevel@tonic-gate 		 */
16510Sstevel@tonic-gate 		cyclic_expand(cpu);
16520Sstevel@tonic-gate 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
16530Sstevel@tonic-gate 	}
16540Sstevel@tonic-gate 
16550Sstevel@tonic-gate 	/*
16560Sstevel@tonic-gate 	 * By now, we know that we're going to be able to successfully
16570Sstevel@tonic-gate 	 * perform the add.  Now cross call over to the CPU of interest to
16580Sstevel@tonic-gate 	 * actually add our cyclic.
16590Sstevel@tonic-gate 	 */
16600Sstevel@tonic-gate 	arg.cyx_cpu = cpu;
16610Sstevel@tonic-gate 	arg.cyx_hdlr = hdlr;
16620Sstevel@tonic-gate 	arg.cyx_when = when;
16630Sstevel@tonic-gate 	arg.cyx_flags = flags;
16640Sstevel@tonic-gate 
16650Sstevel@tonic-gate 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
16660Sstevel@tonic-gate 
16670Sstevel@tonic-gate 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
16680Sstevel@tonic-gate 
16690Sstevel@tonic-gate 	return (arg.cyx_ndx);
16700Sstevel@tonic-gate }
16710Sstevel@tonic-gate 
16720Sstevel@tonic-gate static void
16730Sstevel@tonic-gate cyclic_remove_xcall(cyc_xcallarg_t *arg)
16740Sstevel@tonic-gate {
16750Sstevel@tonic-gate 	cyc_cpu_t *cpu = arg->cyx_cpu;
16760Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
16770Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
16780Sstevel@tonic-gate 	cyc_cookie_t cookie;
16790Sstevel@tonic-gate 	cyc_index_t ndx = arg->cyx_ndx, nelems = cpu->cyp_nelems, i;
16800Sstevel@tonic-gate 	cyc_index_t *heap = cpu->cyp_heap, last;
16810Sstevel@tonic-gate 	cyclic_t *cyclic;
16820Sstevel@tonic-gate #ifdef DEBUG
16830Sstevel@tonic-gate 	cyc_index_t root;
16840Sstevel@tonic-gate #endif
16850Sstevel@tonic-gate 
16860Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_REMOVING);
16870Sstevel@tonic-gate 	ASSERT(nelems > 0);
16880Sstevel@tonic-gate 
16890Sstevel@tonic-gate 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
16900Sstevel@tonic-gate 
16910Sstevel@tonic-gate 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
16920Sstevel@tonic-gate 
16930Sstevel@tonic-gate 	cyclic = &cpu->cyp_cyclics[ndx];
16940Sstevel@tonic-gate 
16950Sstevel@tonic-gate 	/*
16960Sstevel@tonic-gate 	 * Grab the current expiration time.  If this cyclic is being
16970Sstevel@tonic-gate 	 * removed as part of a juggling operation, the expiration time
16980Sstevel@tonic-gate 	 * will be used when the cyclic is added to the new CPU.
16990Sstevel@tonic-gate 	 */
17000Sstevel@tonic-gate 	if (arg->cyx_when != NULL) {
17010Sstevel@tonic-gate 		arg->cyx_when->cyt_when = cyclic->cy_expire;
17020Sstevel@tonic-gate 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
17030Sstevel@tonic-gate 	}
17040Sstevel@tonic-gate 
17050Sstevel@tonic-gate 	if (cyclic->cy_pend != 0) {
17060Sstevel@tonic-gate 		/*
17070Sstevel@tonic-gate 		 * The pend is non-zero; this cyclic is currently being
17080Sstevel@tonic-gate 		 * executed (or will be executed shortly).  If the caller
17090Sstevel@tonic-gate 		 * refuses to wait, we must return (doing nothing).  Otherwise,
17100Sstevel@tonic-gate 		 * we will stash the pend value * in this CPU's rpend, and
17110Sstevel@tonic-gate 		 * then zero it out.  The softint in the pend loop will see
17120Sstevel@tonic-gate 		 * that we have zeroed out pend, and will call the cyclic
17130Sstevel@tonic-gate 		 * handler rpend times.  The caller will wait until the
17140Sstevel@tonic-gate 		 * softint has completed calling the cyclic handler.
17150Sstevel@tonic-gate 		 */
17160Sstevel@tonic-gate 		if (arg->cyx_wait == CY_NOWAIT) {
17170Sstevel@tonic-gate 			arg->cyx_wait = CY_WAIT;
17180Sstevel@tonic-gate 			goto out;
17190Sstevel@tonic-gate 		}
17200Sstevel@tonic-gate 
17210Sstevel@tonic-gate 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
17220Sstevel@tonic-gate 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
17230Sstevel@tonic-gate 		cpu->cyp_rpend = cyclic->cy_pend;
17240Sstevel@tonic-gate 		cyclic->cy_pend = 0;
17250Sstevel@tonic-gate 	}
17260Sstevel@tonic-gate 
17270Sstevel@tonic-gate 	/*
17280Sstevel@tonic-gate 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
17290Sstevel@tonic-gate 	 * between zeroing pend and setting the flags because we're at
17300Sstevel@tonic-gate 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
17310Sstevel@tonic-gate 	 * of cy_flags appear atomic to softints).
17320Sstevel@tonic-gate 	 */
17330Sstevel@tonic-gate 	cyclic->cy_flags = CYF_FREE;
17340Sstevel@tonic-gate 
17350Sstevel@tonic-gate 	for (i = 0; i < nelems; i++) {
17360Sstevel@tonic-gate 		if (heap[i] == ndx)
17370Sstevel@tonic-gate 			break;
17380Sstevel@tonic-gate 	}
17390Sstevel@tonic-gate 
17400Sstevel@tonic-gate 	if (i == nelems)
17410Sstevel@tonic-gate 		panic("attempt to remove non-existent cyclic");
17420Sstevel@tonic-gate 
17430Sstevel@tonic-gate 	cpu->cyp_nelems = --nelems;
17440Sstevel@tonic-gate 
17450Sstevel@tonic-gate 	if (nelems == 0) {
17460Sstevel@tonic-gate 		/*
17470Sstevel@tonic-gate 		 * If we just removed the last element, then we need to
17480Sstevel@tonic-gate 		 * disable the backend on this CPU.
17490Sstevel@tonic-gate 		 */
17500Sstevel@tonic-gate 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
17510Sstevel@tonic-gate 		be->cyb_disable(bar);
17520Sstevel@tonic-gate 	}
17530Sstevel@tonic-gate 
17540Sstevel@tonic-gate 	if (i == nelems) {
17550Sstevel@tonic-gate 		/*
17560Sstevel@tonic-gate 		 * If we just removed the last element of the heap, then
17570Sstevel@tonic-gate 		 * we don't have to downheap.
17580Sstevel@tonic-gate 		 */
17590Sstevel@tonic-gate 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
17600Sstevel@tonic-gate 		goto out;
17610Sstevel@tonic-gate 	}
17620Sstevel@tonic-gate 
17630Sstevel@tonic-gate #ifdef DEBUG
17640Sstevel@tonic-gate 	root = heap[0];
17650Sstevel@tonic-gate #endif
17660Sstevel@tonic-gate 
17670Sstevel@tonic-gate 	/*
17680Sstevel@tonic-gate 	 * Swap the last element of the heap with the one we want to
17690Sstevel@tonic-gate 	 * remove, and downheap (this has the implicit effect of putting
17700Sstevel@tonic-gate 	 * the newly freed element on the free list).
17710Sstevel@tonic-gate 	 */
17720Sstevel@tonic-gate 	heap[i] = (last = heap[nelems]);
17730Sstevel@tonic-gate 	heap[nelems] = ndx;
17740Sstevel@tonic-gate 
17750Sstevel@tonic-gate 	if (i == 0) {
17760Sstevel@tonic-gate 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
17770Sstevel@tonic-gate 		cyclic_downheap(cpu, 0);
17780Sstevel@tonic-gate 	} else {
17790Sstevel@tonic-gate 		if (cyclic_upheap(cpu, i) == 0) {
17800Sstevel@tonic-gate 			/*
17810Sstevel@tonic-gate 			 * The upheap didn't propagate to the root; if it
17820Sstevel@tonic-gate 			 * didn't propagate at all, we need to downheap.
17830Sstevel@tonic-gate 			 */
17840Sstevel@tonic-gate 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
17850Sstevel@tonic-gate 			if (heap[i] == last) {
17860Sstevel@tonic-gate 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
17870Sstevel@tonic-gate 				cyclic_downheap(cpu, i);
17880Sstevel@tonic-gate 			}
17890Sstevel@tonic-gate 			ASSERT(heap[0] == root);
17900Sstevel@tonic-gate 			goto out;
17910Sstevel@tonic-gate 		}
17920Sstevel@tonic-gate 	}
17930Sstevel@tonic-gate 
17940Sstevel@tonic-gate 	/*
17950Sstevel@tonic-gate 	 * We're here because we changed the root; we need to reprogram
17960Sstevel@tonic-gate 	 * the clock source.
17970Sstevel@tonic-gate 	 */
17980Sstevel@tonic-gate 	cyclic = &cpu->cyp_cyclics[heap[0]];
17990Sstevel@tonic-gate 
18000Sstevel@tonic-gate 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
18010Sstevel@tonic-gate 
18020Sstevel@tonic-gate 	ASSERT(nelems != 0);
18030Sstevel@tonic-gate 	be->cyb_reprogram(bar, cyclic->cy_expire);
18040Sstevel@tonic-gate out:
18050Sstevel@tonic-gate 	be->cyb_restore_level(bar, cookie);
18060Sstevel@tonic-gate }
18070Sstevel@tonic-gate 
18080Sstevel@tonic-gate static int
18090Sstevel@tonic-gate cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
18100Sstevel@tonic-gate {
18110Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
18120Sstevel@tonic-gate 	cyc_xcallarg_t arg;
18130Sstevel@tonic-gate 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
18140Sstevel@tonic-gate 	cyc_level_t level = cyclic->cy_level;
18150Sstevel@tonic-gate 
18160Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
18170Sstevel@tonic-gate 	ASSERT(cpu->cyp_rpend == 0);
18180Sstevel@tonic-gate 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
18190Sstevel@tonic-gate 
18200Sstevel@tonic-gate 	arg.cyx_ndx = ndx;
18210Sstevel@tonic-gate 	arg.cyx_cpu = cpu;
18220Sstevel@tonic-gate 	arg.cyx_when = when;
18230Sstevel@tonic-gate 	arg.cyx_wait = wait;
18240Sstevel@tonic-gate 
18250Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
18260Sstevel@tonic-gate 	cpu->cyp_state = CYS_REMOVING;
18270Sstevel@tonic-gate 
18280Sstevel@tonic-gate 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
18290Sstevel@tonic-gate 	    (cyc_func_t)cyclic_remove_xcall, &arg);
18300Sstevel@tonic-gate 
18310Sstevel@tonic-gate 	/*
18320Sstevel@tonic-gate 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
18330Sstevel@tonic-gate 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
18340Sstevel@tonic-gate 	 * for all pending cyclic handlers to run.
18350Sstevel@tonic-gate 	 */
18360Sstevel@tonic-gate 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
18370Sstevel@tonic-gate 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
18380Sstevel@tonic-gate 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
18390Sstevel@tonic-gate 
18400Sstevel@tonic-gate 	if (wait != arg.cyx_wait) {
18410Sstevel@tonic-gate 		/*
18420Sstevel@tonic-gate 		 * We are being told that we must wait if we want to
18430Sstevel@tonic-gate 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
18440Sstevel@tonic-gate 		 * state and return failure.
18450Sstevel@tonic-gate 		 */
18460Sstevel@tonic-gate 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
18470Sstevel@tonic-gate 		ASSERT(cpu->cyp_state == CYS_REMOVING);
18480Sstevel@tonic-gate 		cpu->cyp_state = CYS_ONLINE;
18490Sstevel@tonic-gate 
18500Sstevel@tonic-gate 		return (0);
18510Sstevel@tonic-gate 	}
18520Sstevel@tonic-gate 
18530Sstevel@tonic-gate 	if (cpu->cyp_rpend != 0)
18540Sstevel@tonic-gate 		sema_p(&cpu->cyp_modify_wait);
18550Sstevel@tonic-gate 
18560Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_REMOVING);
18570Sstevel@tonic-gate 
18580Sstevel@tonic-gate 	cpu->cyp_rpend = 0;
18590Sstevel@tonic-gate 	cpu->cyp_state = CYS_ONLINE;
18600Sstevel@tonic-gate 
18610Sstevel@tonic-gate 	return (1);
18620Sstevel@tonic-gate }
18630Sstevel@tonic-gate 
18640Sstevel@tonic-gate /*
18650Sstevel@tonic-gate  * cyclic_juggle_one_to() should only be called when the source cyclic
18660Sstevel@tonic-gate  * can be juggled and the destination CPU is known to be able to accept
18670Sstevel@tonic-gate  * it.
18680Sstevel@tonic-gate  */
18690Sstevel@tonic-gate static void
18700Sstevel@tonic-gate cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
18710Sstevel@tonic-gate {
18720Sstevel@tonic-gate 	cyc_cpu_t *src = idp->cyi_cpu;
18730Sstevel@tonic-gate 	cyc_index_t ndx = idp->cyi_ndx;
18740Sstevel@tonic-gate 	cyc_time_t when;
18750Sstevel@tonic-gate 	cyc_handler_t hdlr;
18760Sstevel@tonic-gate 	cyclic_t *cyclic;
18770Sstevel@tonic-gate 	uint16_t flags;
18780Sstevel@tonic-gate 	hrtime_t delay;
18790Sstevel@tonic-gate 
18800Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
18810Sstevel@tonic-gate 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
18820Sstevel@tonic-gate 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
18830Sstevel@tonic-gate 	CYC_PTRACE("juggle-one-to", idp, dest);
18840Sstevel@tonic-gate 
18850Sstevel@tonic-gate 	cyclic = &src->cyp_cyclics[ndx];
18860Sstevel@tonic-gate 
18870Sstevel@tonic-gate 	flags = cyclic->cy_flags;
18880Sstevel@tonic-gate 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
18890Sstevel@tonic-gate 
18900Sstevel@tonic-gate 	hdlr.cyh_func = cyclic->cy_handler;
18910Sstevel@tonic-gate 	hdlr.cyh_level = cyclic->cy_level;
18920Sstevel@tonic-gate 	hdlr.cyh_arg = cyclic->cy_arg;
18930Sstevel@tonic-gate 
18940Sstevel@tonic-gate 	/*
18950Sstevel@tonic-gate 	 * Before we begin the juggling process, see if the destination
18960Sstevel@tonic-gate 	 * CPU requires an expansion.  If it does, we'll perform the
18970Sstevel@tonic-gate 	 * expansion before removing the cyclic.  This is to prevent us
18980Sstevel@tonic-gate 	 * from blocking while a system-critical cyclic (notably, the clock
18990Sstevel@tonic-gate 	 * cyclic) isn't on a CPU.
19000Sstevel@tonic-gate 	 */
19010Sstevel@tonic-gate 	if (dest->cyp_nelems == dest->cyp_size) {
19020Sstevel@tonic-gate 		CYC_PTRACE("remove-expand", idp, dest);
19030Sstevel@tonic-gate 		cyclic_expand(dest);
19040Sstevel@tonic-gate 		ASSERT(dest->cyp_nelems < dest->cyp_size);
19050Sstevel@tonic-gate 	}
19060Sstevel@tonic-gate 
19070Sstevel@tonic-gate 	/*
19080Sstevel@tonic-gate 	 * Remove the cyclic from the source.  As mentioned above, we cannot
19090Sstevel@tonic-gate 	 * block during this operation; if we cannot remove the cyclic
19100Sstevel@tonic-gate 	 * without waiting, we spin for a time shorter than the interval, and
19110Sstevel@tonic-gate 	 * reattempt the (non-blocking) removal.  If we continue to fail,
19120Sstevel@tonic-gate 	 * we will exponentially back off (up to half of the interval).
19130Sstevel@tonic-gate 	 * Note that the removal will ultimately succeed -- even if the
19140Sstevel@tonic-gate 	 * cyclic handler is blocked on a resource held by a thread which we
19150Sstevel@tonic-gate 	 * have preempted, priority inheritance assures that the preempted
19160Sstevel@tonic-gate 	 * thread will preempt us and continue to progress.
19170Sstevel@tonic-gate 	 */
19180Sstevel@tonic-gate 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
19190Sstevel@tonic-gate 		/*
19200Sstevel@tonic-gate 		 * Before we begin this operation, disable kernel preemption.
19210Sstevel@tonic-gate 		 */
19220Sstevel@tonic-gate 		kpreempt_disable();
19230Sstevel@tonic-gate 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
19240Sstevel@tonic-gate 			break;
19250Sstevel@tonic-gate 
19260Sstevel@tonic-gate 		/*
19270Sstevel@tonic-gate 		 * The operation failed; enable kernel preemption while
19280Sstevel@tonic-gate 		 * spinning.
19290Sstevel@tonic-gate 		 */
19300Sstevel@tonic-gate 		kpreempt_enable();
19310Sstevel@tonic-gate 
19320Sstevel@tonic-gate 		CYC_PTRACE("remove-retry", idp, src);
19330Sstevel@tonic-gate 
19340Sstevel@tonic-gate 		if (delay > (cyclic->cy_interval >> 1))
19350Sstevel@tonic-gate 			delay = cyclic->cy_interval >> 1;
19360Sstevel@tonic-gate 
19370Sstevel@tonic-gate 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
19380Sstevel@tonic-gate 	}
19390Sstevel@tonic-gate 
19400Sstevel@tonic-gate 	/*
19410Sstevel@tonic-gate 	 * Now add the cyclic to the destination.  This won't block; we
19420Sstevel@tonic-gate 	 * performed any necessary (blocking) expansion of the destination
19430Sstevel@tonic-gate 	 * CPU before removing the cyclic from the source CPU.
19440Sstevel@tonic-gate 	 */
19450Sstevel@tonic-gate 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
19460Sstevel@tonic-gate 	idp->cyi_cpu = dest;
19470Sstevel@tonic-gate 	kpreempt_enable();
19480Sstevel@tonic-gate }
19490Sstevel@tonic-gate 
19500Sstevel@tonic-gate static int
19510Sstevel@tonic-gate cyclic_juggle_one(cyc_id_t *idp)
19520Sstevel@tonic-gate {
19530Sstevel@tonic-gate 	cyc_index_t ndx = idp->cyi_ndx;
19540Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
19550Sstevel@tonic-gate 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
19560Sstevel@tonic-gate 	cpu_t *c = cpu->cyp_cpu;
19570Sstevel@tonic-gate 	cpupart_t *part = c->cpu_part;
19580Sstevel@tonic-gate 
19590Sstevel@tonic-gate 	CYC_PTRACE("juggle-one", idp, cpu);
19600Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
19610Sstevel@tonic-gate 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
19620Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
19630Sstevel@tonic-gate 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
19640Sstevel@tonic-gate 
19650Sstevel@tonic-gate 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
19660Sstevel@tonic-gate 		/*
19670Sstevel@tonic-gate 		 * Bad news:  this cyclic can't be juggled.
19680Sstevel@tonic-gate 		 */
19690Sstevel@tonic-gate 		CYC_PTRACE("juggle-fail", idp, cpu)
19700Sstevel@tonic-gate 		return (0);
19710Sstevel@tonic-gate 	}
19720Sstevel@tonic-gate 
19730Sstevel@tonic-gate 	cyclic_juggle_one_to(idp, dest);
19740Sstevel@tonic-gate 
19750Sstevel@tonic-gate 	return (1);
19760Sstevel@tonic-gate }
19770Sstevel@tonic-gate 
19780Sstevel@tonic-gate static void
19790Sstevel@tonic-gate cyclic_unbind_cpu(cyclic_id_t id)
19800Sstevel@tonic-gate {
19810Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
19820Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu;
19830Sstevel@tonic-gate 	cpu_t *c = cpu->cyp_cpu;
19840Sstevel@tonic-gate 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
19850Sstevel@tonic-gate 
19860Sstevel@tonic-gate 	CYC_PTRACE("unbind-cpu", id, cpu);
19870Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
19880Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
19890Sstevel@tonic-gate 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
19900Sstevel@tonic-gate 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
19910Sstevel@tonic-gate 
19920Sstevel@tonic-gate 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
19930Sstevel@tonic-gate 
19940Sstevel@tonic-gate 	/*
19950Sstevel@tonic-gate 	 * If we were bound to CPU which has interrupts disabled, we need
19960Sstevel@tonic-gate 	 * to juggle away.  This can only fail if we are bound to a
19970Sstevel@tonic-gate 	 * processor set, and if every CPU in the processor set has
19980Sstevel@tonic-gate 	 * interrupts disabled.
19990Sstevel@tonic-gate 	 */
20000Sstevel@tonic-gate 	if (!(c->cpu_flags & CPU_ENABLE)) {
20010Sstevel@tonic-gate 		int res = cyclic_juggle_one(idp);
20020Sstevel@tonic-gate 
20030Sstevel@tonic-gate 		ASSERT((res && idp->cyi_cpu != cpu) ||
20040Sstevel@tonic-gate 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
20050Sstevel@tonic-gate 	}
20060Sstevel@tonic-gate }
20070Sstevel@tonic-gate 
20080Sstevel@tonic-gate static void
20090Sstevel@tonic-gate cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
20100Sstevel@tonic-gate {
20110Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
20120Sstevel@tonic-gate 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
20130Sstevel@tonic-gate 	cpu_t *c = cpu->cyp_cpu;
20140Sstevel@tonic-gate 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
20150Sstevel@tonic-gate 	cpupart_t *part = c->cpu_part;
20160Sstevel@tonic-gate 
20170Sstevel@tonic-gate 	CYC_PTRACE("bind-cpu", id, dest);
20180Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
20190Sstevel@tonic-gate 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
20200Sstevel@tonic-gate 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
20210Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
20220Sstevel@tonic-gate 	ASSERT(dest != NULL);
20230Sstevel@tonic-gate 	ASSERT(dest->cyp_state == CYS_ONLINE);
20240Sstevel@tonic-gate 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
20250Sstevel@tonic-gate 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
20260Sstevel@tonic-gate 
20270Sstevel@tonic-gate 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
20280Sstevel@tonic-gate 
20290Sstevel@tonic-gate 	if (dest != cpu) {
20300Sstevel@tonic-gate 		cyclic_juggle_one_to(idp, dest);
20310Sstevel@tonic-gate 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
20320Sstevel@tonic-gate 	}
20330Sstevel@tonic-gate 
20340Sstevel@tonic-gate 	cyclic->cy_flags |= CYF_CPU_BOUND;
20350Sstevel@tonic-gate }
20360Sstevel@tonic-gate 
20370Sstevel@tonic-gate static void
20380Sstevel@tonic-gate cyclic_unbind_cpupart(cyclic_id_t id)
20390Sstevel@tonic-gate {
20400Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
20410Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu;
20420Sstevel@tonic-gate 	cpu_t *c = cpu->cyp_cpu;
20430Sstevel@tonic-gate 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
20440Sstevel@tonic-gate 
20450Sstevel@tonic-gate 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
20460Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
20470Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
20480Sstevel@tonic-gate 	ASSERT(!(cyc->cy_flags & CYF_FREE));
20490Sstevel@tonic-gate 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
20500Sstevel@tonic-gate 
20510Sstevel@tonic-gate 	cyc->cy_flags &= ~CYF_PART_BOUND;
20520Sstevel@tonic-gate 
20530Sstevel@tonic-gate 	/*
20540Sstevel@tonic-gate 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
20550Sstevel@tonic-gate 	 * isn't bound to the CPU), we need to juggle away.
20560Sstevel@tonic-gate 	 */
20570Sstevel@tonic-gate 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
20580Sstevel@tonic-gate 		int res = cyclic_juggle_one(idp);
20590Sstevel@tonic-gate 
20600Sstevel@tonic-gate 		ASSERT(res && idp->cyi_cpu != cpu);
20610Sstevel@tonic-gate 	}
20620Sstevel@tonic-gate }
20630Sstevel@tonic-gate 
20640Sstevel@tonic-gate static void
20650Sstevel@tonic-gate cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
20660Sstevel@tonic-gate {
20670Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
20680Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
20690Sstevel@tonic-gate 	cpu_t *c = cpu->cyp_cpu;
20700Sstevel@tonic-gate 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
20710Sstevel@tonic-gate 
20720Sstevel@tonic-gate 	CYC_PTRACE("bind-part", idp, part);
20730Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
20740Sstevel@tonic-gate 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
20750Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
20760Sstevel@tonic-gate 	ASSERT(!(cyc->cy_flags & CYF_FREE));
20770Sstevel@tonic-gate 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
20780Sstevel@tonic-gate 	ASSERT(part->cp_ncpus > 0);
20790Sstevel@tonic-gate 
20800Sstevel@tonic-gate 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
20810Sstevel@tonic-gate 
20820Sstevel@tonic-gate 	if (dest != cpu) {
20830Sstevel@tonic-gate 		cyclic_juggle_one_to(idp, dest);
20840Sstevel@tonic-gate 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
20850Sstevel@tonic-gate 	}
20860Sstevel@tonic-gate 
20870Sstevel@tonic-gate 	cyc->cy_flags |= CYF_PART_BOUND;
20880Sstevel@tonic-gate }
20890Sstevel@tonic-gate 
20900Sstevel@tonic-gate static void
20910Sstevel@tonic-gate cyclic_configure(cpu_t *c)
20920Sstevel@tonic-gate {
20930Sstevel@tonic-gate 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
20940Sstevel@tonic-gate 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
20950Sstevel@tonic-gate 	int i;
20960Sstevel@tonic-gate 
20970Sstevel@tonic-gate 	CYC_PTRACE1("configure", cpu);
20980Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
20990Sstevel@tonic-gate 
21000Sstevel@tonic-gate 	if (cyclic_id_cache == NULL)
21010Sstevel@tonic-gate 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
21020Sstevel@tonic-gate 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
21030Sstevel@tonic-gate 
21040Sstevel@tonic-gate 	cpu->cyp_cpu = c;
21050Sstevel@tonic-gate 
21060Sstevel@tonic-gate 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
21070Sstevel@tonic-gate 
21080Sstevel@tonic-gate 	cpu->cyp_size = 1;
21090Sstevel@tonic-gate 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
21100Sstevel@tonic-gate 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
21110Sstevel@tonic-gate 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
21120Sstevel@tonic-gate 
21130Sstevel@tonic-gate 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
21140Sstevel@tonic-gate 		/*
21150Sstevel@tonic-gate 		 * We don't need to set the sizemask; it's already zero
21160Sstevel@tonic-gate 		 * (which is the appropriate sizemask for a size of 1).
21170Sstevel@tonic-gate 		 */
21180Sstevel@tonic-gate 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
21190Sstevel@tonic-gate 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
21200Sstevel@tonic-gate 	}
21210Sstevel@tonic-gate 
21220Sstevel@tonic-gate 	cpu->cyp_state = CYS_OFFLINE;
21230Sstevel@tonic-gate 
21240Sstevel@tonic-gate 	/*
21250Sstevel@tonic-gate 	 * Setup the backend for this CPU.
21260Sstevel@tonic-gate 	 */
21270Sstevel@tonic-gate 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
21280Sstevel@tonic-gate 	nbe->cyb_arg = nbe->cyb_configure(c);
21290Sstevel@tonic-gate 	cpu->cyp_backend = nbe;
21300Sstevel@tonic-gate 
21310Sstevel@tonic-gate 	/*
21320Sstevel@tonic-gate 	 * On platforms where stray interrupts may be taken during startup,
21330Sstevel@tonic-gate 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
21340Sstevel@tonic-gate 	 * cyclic subsystem for this CPU is prepared to field interrupts.
21350Sstevel@tonic-gate 	 */
21360Sstevel@tonic-gate 	membar_producer();
21370Sstevel@tonic-gate 
21380Sstevel@tonic-gate 	c->cpu_cyclic = cpu;
21390Sstevel@tonic-gate }
21400Sstevel@tonic-gate 
21410Sstevel@tonic-gate static void
21420Sstevel@tonic-gate cyclic_unconfigure(cpu_t *c)
21430Sstevel@tonic-gate {
21440Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
21450Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
21460Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
21470Sstevel@tonic-gate 	int i;
21480Sstevel@tonic-gate 
21490Sstevel@tonic-gate 	CYC_PTRACE1("unconfigure", cpu);
21500Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
21510Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
21520Sstevel@tonic-gate 	ASSERT(cpu->cyp_nelems == 0);
21530Sstevel@tonic-gate 
21540Sstevel@tonic-gate 	/*
21550Sstevel@tonic-gate 	 * Let the backend know that the CPU is being yanked, and free up
21560Sstevel@tonic-gate 	 * the backend structure.
21570Sstevel@tonic-gate 	 */
21580Sstevel@tonic-gate 	be->cyb_unconfigure(bar);
21590Sstevel@tonic-gate 	kmem_free(be, sizeof (cyc_backend_t));
21600Sstevel@tonic-gate 	cpu->cyp_backend = NULL;
21610Sstevel@tonic-gate 
21620Sstevel@tonic-gate 	/*
21630Sstevel@tonic-gate 	 * Free up the producer/consumer buffers at each of the soft levels.
21640Sstevel@tonic-gate 	 */
21650Sstevel@tonic-gate 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
21660Sstevel@tonic-gate 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
21670Sstevel@tonic-gate 		uchar_t hard = softbuf->cys_hard;
21680Sstevel@tonic-gate 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
21690Sstevel@tonic-gate 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
21700Sstevel@tonic-gate 
21710Sstevel@tonic-gate 		/*
21720Sstevel@tonic-gate 		 * Assert that we're not in the middle of a resize operation.
21730Sstevel@tonic-gate 		 */
21740Sstevel@tonic-gate 		ASSERT(hard == softbuf->cys_soft);
21750Sstevel@tonic-gate 		ASSERT(hard == 0 || hard == 1);
21760Sstevel@tonic-gate 		ASSERT(pc->cypc_buf != NULL);
21770Sstevel@tonic-gate 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
21780Sstevel@tonic-gate 
21790Sstevel@tonic-gate 		kmem_free(pc->cypc_buf, bufsize);
21800Sstevel@tonic-gate 		pc->cypc_buf = NULL;
21810Sstevel@tonic-gate 	}
21820Sstevel@tonic-gate 
21830Sstevel@tonic-gate 	/*
21840Sstevel@tonic-gate 	 * Finally, clean up our remaining dynamic structures and NULL out
21850Sstevel@tonic-gate 	 * the cpu_cyclic pointer.
21860Sstevel@tonic-gate 	 */
21870Sstevel@tonic-gate 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
21880Sstevel@tonic-gate 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
21890Sstevel@tonic-gate 	kmem_free(cpu, sizeof (cyc_cpu_t));
21900Sstevel@tonic-gate 
21910Sstevel@tonic-gate 	c->cpu_cyclic = NULL;
21920Sstevel@tonic-gate }
21930Sstevel@tonic-gate 
21940Sstevel@tonic-gate static int
21950Sstevel@tonic-gate cyclic_cpu_setup(cpu_setup_t what, int id)
21960Sstevel@tonic-gate {
21970Sstevel@tonic-gate 	/*
21980Sstevel@tonic-gate 	 * We are guaranteed that there is still/already an entry in the
21990Sstevel@tonic-gate 	 * cpu array for this CPU.
22000Sstevel@tonic-gate 	 */
22010Sstevel@tonic-gate 	cpu_t *c = cpu[id];
22020Sstevel@tonic-gate 	cyc_cpu_t *cyp = c->cpu_cyclic;
22030Sstevel@tonic-gate 
22040Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
22050Sstevel@tonic-gate 
22060Sstevel@tonic-gate 	switch (what) {
22070Sstevel@tonic-gate 	case CPU_CONFIG:
22080Sstevel@tonic-gate 		ASSERT(cyp == NULL);
22090Sstevel@tonic-gate 		cyclic_configure(c);
22100Sstevel@tonic-gate 		break;
22110Sstevel@tonic-gate 
22120Sstevel@tonic-gate 	case CPU_UNCONFIG:
22130Sstevel@tonic-gate 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
22140Sstevel@tonic-gate 		cyclic_unconfigure(c);
22150Sstevel@tonic-gate 		break;
22160Sstevel@tonic-gate 
22170Sstevel@tonic-gate 	default:
22180Sstevel@tonic-gate 		break;
22190Sstevel@tonic-gate 	}
22200Sstevel@tonic-gate 
22210Sstevel@tonic-gate 	return (0);
22220Sstevel@tonic-gate }
22230Sstevel@tonic-gate 
22240Sstevel@tonic-gate static void
22250Sstevel@tonic-gate cyclic_suspend_xcall(cyc_xcallarg_t *arg)
22260Sstevel@tonic-gate {
22270Sstevel@tonic-gate 	cyc_cpu_t *cpu = arg->cyx_cpu;
22280Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
22290Sstevel@tonic-gate 	cyc_cookie_t cookie;
22300Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
22310Sstevel@tonic-gate 
22320Sstevel@tonic-gate 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
22330Sstevel@tonic-gate 
22340Sstevel@tonic-gate 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
22350Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
22360Sstevel@tonic-gate 
22370Sstevel@tonic-gate 	/*
22380Sstevel@tonic-gate 	 * We won't disable this CPU unless it has a non-zero number of
22390Sstevel@tonic-gate 	 * elements (cpu_lock assures that no one else may be attempting
22400Sstevel@tonic-gate 	 * to disable this CPU).
22410Sstevel@tonic-gate 	 */
22420Sstevel@tonic-gate 	if (cpu->cyp_nelems > 0) {
22430Sstevel@tonic-gate 		ASSERT(cpu->cyp_state == CYS_ONLINE);
22440Sstevel@tonic-gate 		be->cyb_disable(bar);
22450Sstevel@tonic-gate 	}
22460Sstevel@tonic-gate 
22470Sstevel@tonic-gate 	if (cpu->cyp_state == CYS_ONLINE)
22480Sstevel@tonic-gate 		cpu->cyp_state = CYS_SUSPENDED;
22490Sstevel@tonic-gate 
22500Sstevel@tonic-gate 	be->cyb_suspend(bar);
22510Sstevel@tonic-gate 	be->cyb_restore_level(bar, cookie);
22520Sstevel@tonic-gate }
22530Sstevel@tonic-gate 
22540Sstevel@tonic-gate static void
22550Sstevel@tonic-gate cyclic_resume_xcall(cyc_xcallarg_t *arg)
22560Sstevel@tonic-gate {
22570Sstevel@tonic-gate 	cyc_cpu_t *cpu = arg->cyx_cpu;
22580Sstevel@tonic-gate 	cyc_backend_t *be = cpu->cyp_backend;
22590Sstevel@tonic-gate 	cyc_cookie_t cookie;
22600Sstevel@tonic-gate 	cyb_arg_t bar = be->cyb_arg;
22610Sstevel@tonic-gate 	cyc_state_t state = cpu->cyp_state;
22620Sstevel@tonic-gate 
22630Sstevel@tonic-gate 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
22640Sstevel@tonic-gate 
22650Sstevel@tonic-gate 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
22660Sstevel@tonic-gate 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
22670Sstevel@tonic-gate 
22680Sstevel@tonic-gate 	be->cyb_resume(bar);
22690Sstevel@tonic-gate 
22700Sstevel@tonic-gate 	/*
22710Sstevel@tonic-gate 	 * We won't enable this CPU unless it has a non-zero number of
22720Sstevel@tonic-gate 	 * elements.
22730Sstevel@tonic-gate 	 */
22740Sstevel@tonic-gate 	if (cpu->cyp_nelems > 0) {
22750Sstevel@tonic-gate 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
22760Sstevel@tonic-gate 		hrtime_t exp = cyclic->cy_expire;
22770Sstevel@tonic-gate 
22780Sstevel@tonic-gate 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
22790Sstevel@tonic-gate 		ASSERT(state == CYS_SUSPENDED);
22800Sstevel@tonic-gate 		be->cyb_enable(bar);
22810Sstevel@tonic-gate 		be->cyb_reprogram(bar, exp);
22820Sstevel@tonic-gate 	}
22830Sstevel@tonic-gate 
22840Sstevel@tonic-gate 	if (state == CYS_SUSPENDED)
22850Sstevel@tonic-gate 		cpu->cyp_state = CYS_ONLINE;
22860Sstevel@tonic-gate 
22870Sstevel@tonic-gate 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
22880Sstevel@tonic-gate 	be->cyb_restore_level(bar, cookie);
22890Sstevel@tonic-gate }
22900Sstevel@tonic-gate 
22910Sstevel@tonic-gate static void
22920Sstevel@tonic-gate cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
22930Sstevel@tonic-gate {
22940Sstevel@tonic-gate 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
22950Sstevel@tonic-gate 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
22960Sstevel@tonic-gate 	cyc_handler_t hdlr;
22970Sstevel@tonic-gate 	cyc_time_t when;
22980Sstevel@tonic-gate 
22990Sstevel@tonic-gate 	CYC_PTRACE("omni-start", cpu, idp);
23000Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
23010Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
23020Sstevel@tonic-gate 	ASSERT(idp->cyi_cpu == NULL);
23030Sstevel@tonic-gate 
23040Sstevel@tonic-gate 	hdlr.cyh_func = NULL;
23050Sstevel@tonic-gate 	hdlr.cyh_arg = NULL;
23060Sstevel@tonic-gate 	hdlr.cyh_level = CY_LEVELS;
23070Sstevel@tonic-gate 
23080Sstevel@tonic-gate 	when.cyt_when = 0;
23090Sstevel@tonic-gate 	when.cyt_interval = 0;
23100Sstevel@tonic-gate 
23110Sstevel@tonic-gate 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
23120Sstevel@tonic-gate 
23130Sstevel@tonic-gate 	ASSERT(hdlr.cyh_func != NULL);
23140Sstevel@tonic-gate 	ASSERT(hdlr.cyh_level < CY_LEVELS);
23150Sstevel@tonic-gate 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
23160Sstevel@tonic-gate 
23170Sstevel@tonic-gate 	ocpu->cyo_cpu = cpu;
23180Sstevel@tonic-gate 	ocpu->cyo_arg = hdlr.cyh_arg;
23190Sstevel@tonic-gate 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
23200Sstevel@tonic-gate 	ocpu->cyo_next = idp->cyi_omni_list;
23210Sstevel@tonic-gate 	idp->cyi_omni_list = ocpu;
23220Sstevel@tonic-gate }
23230Sstevel@tonic-gate 
23240Sstevel@tonic-gate static void
23250Sstevel@tonic-gate cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
23260Sstevel@tonic-gate {
23270Sstevel@tonic-gate 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
23280Sstevel@tonic-gate 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
23290Sstevel@tonic-gate 
23300Sstevel@tonic-gate 	CYC_PTRACE("omni-stop", cpu, idp);
23310Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
23320Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
23330Sstevel@tonic-gate 	ASSERT(idp->cyi_cpu == NULL);
23340Sstevel@tonic-gate 	ASSERT(ocpu != NULL);
23350Sstevel@tonic-gate 
23360Sstevel@tonic-gate 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
23370Sstevel@tonic-gate 		prev = ocpu;
23380Sstevel@tonic-gate 		ocpu = ocpu->cyo_next;
23390Sstevel@tonic-gate 	}
23400Sstevel@tonic-gate 
23410Sstevel@tonic-gate 	/*
23420Sstevel@tonic-gate 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
23430Sstevel@tonic-gate 	 * CPU -- the definition of an omnipresent cyclic is that it runs
23440Sstevel@tonic-gate 	 * on all online CPUs.
23450Sstevel@tonic-gate 	 */
23460Sstevel@tonic-gate 	ASSERT(ocpu != NULL);
23470Sstevel@tonic-gate 
23480Sstevel@tonic-gate 	if (prev == NULL) {
23490Sstevel@tonic-gate 		idp->cyi_omni_list = ocpu->cyo_next;
23500Sstevel@tonic-gate 	} else {
23510Sstevel@tonic-gate 		prev->cyo_next = ocpu->cyo_next;
23520Sstevel@tonic-gate 	}
23530Sstevel@tonic-gate 
23540Sstevel@tonic-gate 	(void) cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL, CY_WAIT);
23550Sstevel@tonic-gate 
23560Sstevel@tonic-gate 	/*
23570Sstevel@tonic-gate 	 * The cyclic has been removed from this CPU; time to call the
23580Sstevel@tonic-gate 	 * omnipresent offline handler.
23590Sstevel@tonic-gate 	 */
23600Sstevel@tonic-gate 	if (omni->cyo_offline != NULL)
23610Sstevel@tonic-gate 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
23620Sstevel@tonic-gate 
23630Sstevel@tonic-gate 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
23640Sstevel@tonic-gate }
23650Sstevel@tonic-gate 
23660Sstevel@tonic-gate static cyc_id_t *
23670Sstevel@tonic-gate cyclic_new_id()
23680Sstevel@tonic-gate {
23690Sstevel@tonic-gate 	cyc_id_t *idp;
23700Sstevel@tonic-gate 
23710Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
23720Sstevel@tonic-gate 
23730Sstevel@tonic-gate 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
23740Sstevel@tonic-gate 
23750Sstevel@tonic-gate 	/*
23760Sstevel@tonic-gate 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
23770Sstevel@tonic-gate 	 * associated with the cyclic.  If and only if this field is NULL, the
23780Sstevel@tonic-gate 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
23790Sstevel@tonic-gate 	 * NULL for an omnipresent cyclic while the cyclic is being created
23800Sstevel@tonic-gate 	 * or destroyed.
23810Sstevel@tonic-gate 	 */
23820Sstevel@tonic-gate 	idp->cyi_cpu = NULL;
23830Sstevel@tonic-gate 	idp->cyi_ndx = 0;
23840Sstevel@tonic-gate 
23850Sstevel@tonic-gate 	idp->cyi_next = cyclic_id_head;
23860Sstevel@tonic-gate 	idp->cyi_prev = NULL;
23870Sstevel@tonic-gate 	idp->cyi_omni_list = NULL;
23880Sstevel@tonic-gate 
23890Sstevel@tonic-gate 	if (cyclic_id_head != NULL) {
23900Sstevel@tonic-gate 		ASSERT(cyclic_id_head->cyi_prev == NULL);
23910Sstevel@tonic-gate 		cyclic_id_head->cyi_prev = idp;
23920Sstevel@tonic-gate 	}
23930Sstevel@tonic-gate 
23940Sstevel@tonic-gate 	cyclic_id_head = idp;
23950Sstevel@tonic-gate 
23960Sstevel@tonic-gate 	return (idp);
23970Sstevel@tonic-gate }
23980Sstevel@tonic-gate 
23990Sstevel@tonic-gate /*
24000Sstevel@tonic-gate  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
24010Sstevel@tonic-gate  *
24020Sstevel@tonic-gate  *  Overview
24030Sstevel@tonic-gate  *
24040Sstevel@tonic-gate  *    cyclic_add() will create an unbound cyclic with the specified handler and
24050Sstevel@tonic-gate  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
24060Sstevel@tonic-gate  *    and is in the system CPU partition.
24070Sstevel@tonic-gate  *
24080Sstevel@tonic-gate  *  Arguments and notes
24090Sstevel@tonic-gate  *
24100Sstevel@tonic-gate  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
24110Sstevel@tonic-gate  *    following members:
24120Sstevel@tonic-gate  *
24130Sstevel@tonic-gate  *      cyc_func_t cyh_func    <-- Cyclic handler
24140Sstevel@tonic-gate  *      void *cyh_arg          <-- Argument to cyclic handler
24150Sstevel@tonic-gate  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
24160Sstevel@tonic-gate  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
24170Sstevel@tonic-gate  *
24180Sstevel@tonic-gate  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
24190Sstevel@tonic-gate  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
24200Sstevel@tonic-gate  *    the precise interrupt priority levels, within the following constraints:
24210Sstevel@tonic-gate  *
24220Sstevel@tonic-gate  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
24230Sstevel@tonic-gate  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
24240Sstevel@tonic-gate  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
24250Sstevel@tonic-gate  *
24260Sstevel@tonic-gate  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
24270Sstevel@tonic-gate  *    has the following members:
24280Sstevel@tonic-gate  *
24290Sstevel@tonic-gate  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
24300Sstevel@tonic-gate  *                                 which to start firing
24310Sstevel@tonic-gate  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
24320Sstevel@tonic-gate  *
24330Sstevel@tonic-gate  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
24340Sstevel@tonic-gate  *    is set to 0, the cyclic will start to fire when cyt_interval next
24350Sstevel@tonic-gate  *    divides the number of nanoseconds since boot.
24360Sstevel@tonic-gate  *
24370Sstevel@tonic-gate  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
24380Sstevel@tonic-gate  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
24390Sstevel@tonic-gate  *    assert that cyt_interval is non-zero).  The maximum value for either
24400Sstevel@tonic-gate  *    field is INT64_MAX; the caller is responsible for assuring that
24410Sstevel@tonic-gate  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
24420Sstevel@tonic-gate  *
24430Sstevel@tonic-gate  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
24440Sstevel@tonic-gate  *    to have been called (t - cyt_when) / cyt_interval times.  This will
24450Sstevel@tonic-gate  *    be true even if interrupts have been disabled for periods greater than
24460Sstevel@tonic-gate  *    cyt_interval nanoseconds.  In order to compensate for such periods,
24470Sstevel@tonic-gate  *    the cyclic handler may be called a finite number of times with an
24480Sstevel@tonic-gate  *    arbitrarily small interval.
24490Sstevel@tonic-gate  *
24500Sstevel@tonic-gate  *    The cyclic subsystem will not enforce any lower bound on the interval;
24510Sstevel@tonic-gate  *    if the interval is less than the time required to process an interrupt,
24520Sstevel@tonic-gate  *    the CPU will wedge.  It's the responsibility of the caller to assure that
24530Sstevel@tonic-gate  *    either the value of the interval is sane, or that its caller has
24540Sstevel@tonic-gate  *    sufficient privilege to deny service (i.e. its caller is root).
24550Sstevel@tonic-gate  *
24560Sstevel@tonic-gate  *    The cyclic handler is guaranteed to be single threaded, even while the
24570Sstevel@tonic-gate  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
24580Sstevel@tonic-gate  *    That is, a given cyclic handler will never be executed simultaneously
24590Sstevel@tonic-gate  *    on different CPUs.
24600Sstevel@tonic-gate  *
24610Sstevel@tonic-gate  *  Return value
24620Sstevel@tonic-gate  *
24630Sstevel@tonic-gate  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
24640Sstevel@tonic-gate  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
24650Sstevel@tonic-gate  *
24660Sstevel@tonic-gate  *  Caller's context
24670Sstevel@tonic-gate  *
24680Sstevel@tonic-gate  *    cpu_lock must be held by the caller, and the caller must not be in
24690Sstevel@tonic-gate  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
24700Sstevel@tonic-gate  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
24710Sstevel@tonic-gate  *    apply.  A cyclic may be added even in the presence of CPUs that have
24720Sstevel@tonic-gate  *    not been configured with respect to the cyclic subsystem, but only
24730Sstevel@tonic-gate  *    configured CPUs will be eligible to run the new cyclic.
24740Sstevel@tonic-gate  *
24750Sstevel@tonic-gate  *  Cyclic handler's context
24760Sstevel@tonic-gate  *
24770Sstevel@tonic-gate  *    Cyclic handlers will be executed in the interrupt context corresponding
24780Sstevel@tonic-gate  *    to the specified level (i.e. either high, lock or low level).  The
24790Sstevel@tonic-gate  *    usual context rules apply.
24800Sstevel@tonic-gate  *
24810Sstevel@tonic-gate  *    A cyclic handler may not grab ANY locks held by the caller of any of
24820Sstevel@tonic-gate  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
24830Sstevel@tonic-gate  *    these functions may require blocking on cyclic handler completion.
24840Sstevel@tonic-gate  *    Moreover, cyclic handlers may not make any call back into the cyclic
24850Sstevel@tonic-gate  *    subsystem.
24860Sstevel@tonic-gate  */
24870Sstevel@tonic-gate cyclic_id_t
24880Sstevel@tonic-gate cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
24890Sstevel@tonic-gate {
24900Sstevel@tonic-gate 	cyc_id_t *idp = cyclic_new_id();
24910Sstevel@tonic-gate 
24920Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
24930Sstevel@tonic-gate 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
24940Sstevel@tonic-gate 
24950Sstevel@tonic-gate 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
24960Sstevel@tonic-gate 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
24970Sstevel@tonic-gate 
24980Sstevel@tonic-gate 	return ((uintptr_t)idp);
24990Sstevel@tonic-gate }
25000Sstevel@tonic-gate 
25010Sstevel@tonic-gate /*
25020Sstevel@tonic-gate  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
25030Sstevel@tonic-gate  *
25040Sstevel@tonic-gate  *  Overview
25050Sstevel@tonic-gate  *
25060Sstevel@tonic-gate  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
25070Sstevel@tonic-gate  *    online and offline handlers.  Omnipresent cyclics run on all online
25080Sstevel@tonic-gate  *    CPUs, including CPUs which have unbound interrupts disabled.
25090Sstevel@tonic-gate  *
25100Sstevel@tonic-gate  *  Arguments
25110Sstevel@tonic-gate  *
25120Sstevel@tonic-gate  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
25130Sstevel@tonic-gate  *    has the following members:
25140Sstevel@tonic-gate  *
25150Sstevel@tonic-gate  *      void (*cyo_online)()   <-- Online handler
25160Sstevel@tonic-gate  *      void (*cyo_offline)()  <-- Offline handler
25170Sstevel@tonic-gate  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
25180Sstevel@tonic-gate  *
25190Sstevel@tonic-gate  *  Online handler
25200Sstevel@tonic-gate  *
25210Sstevel@tonic-gate  *    The cyo_online member is a pointer to a function which has the following
25220Sstevel@tonic-gate  *    four arguments:
25230Sstevel@tonic-gate  *
25240Sstevel@tonic-gate  *      void *                 <-- Argument (cyo_arg)
25250Sstevel@tonic-gate  *      cpu_t *                <-- Pointer to CPU about to be onlined
25260Sstevel@tonic-gate  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
25270Sstevel@tonic-gate  *                                 by omni online handler
25280Sstevel@tonic-gate  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
25290Sstevel@tonic-gate  *                                 omni online handler
25300Sstevel@tonic-gate  *
25310Sstevel@tonic-gate  *    The omni cyclic online handler is always called _before_ the omni
25320Sstevel@tonic-gate  *    cyclic begins to fire on the specified CPU.  As the above argument
25330Sstevel@tonic-gate  *    description implies, the online handler must fill in the two structures
25340Sstevel@tonic-gate  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
25350Sstevel@tonic-gate  *    same two structures passed to cyclic_add(), outlined above.  This
25360Sstevel@tonic-gate  *    allows the omni cyclic to have maximum flexibility; different CPUs may
25370Sstevel@tonic-gate  *    optionally
25380Sstevel@tonic-gate  *
25390Sstevel@tonic-gate  *      (a)  have different intervals
25400Sstevel@tonic-gate  *      (b)  be explicitly in or out of phase with one another
25410Sstevel@tonic-gate  *      (c)  have different handlers
25420Sstevel@tonic-gate  *      (d)  have different handler arguments
25430Sstevel@tonic-gate  *      (e)  fire at different levels
25440Sstevel@tonic-gate  *
25450Sstevel@tonic-gate  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
25460Sstevel@tonic-gate  *
25470Sstevel@tonic-gate  *    The omni online handler is called in the same context as cyclic_add(),
25480Sstevel@tonic-gate  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
25490Sstevel@tonic-gate  *    kernel memory allocations, and may grab locks which are also acquired
25500Sstevel@tonic-gate  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
25510Sstevel@tonic-gate  *    call back into the cyclic subsystem, and should be generally careful
25520Sstevel@tonic-gate  *    about calling into arbitrary kernel subsystems.
25530Sstevel@tonic-gate  *
25540Sstevel@tonic-gate  *  Offline handler
25550Sstevel@tonic-gate  *
25560Sstevel@tonic-gate  *    The cyo_offline member is a pointer to a function which has the following
25570Sstevel@tonic-gate  *    three arguments:
25580Sstevel@tonic-gate  *
25590Sstevel@tonic-gate  *      void *                 <-- Argument (cyo_arg)
25600Sstevel@tonic-gate  *      cpu_t *                <-- Pointer to CPU about to be offlined
25610Sstevel@tonic-gate  *      void *                 <-- CPU's cyclic argument (that is, value
25620Sstevel@tonic-gate  *                                 to which cyh_arg member of the cyc_handler_t
25630Sstevel@tonic-gate  *                                 was set in the omni online handler)
25640Sstevel@tonic-gate  *
25650Sstevel@tonic-gate  *    The omni cyclic offline handler is always called _after_ the omni
25660Sstevel@tonic-gate  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
25670Sstevel@tonic-gate  *    allow cleanup of any resources dynamically allocated in the omni cyclic
25680Sstevel@tonic-gate  *    online handler.  The context of the offline handler is identical to
25690Sstevel@tonic-gate  *    that of the online handler; the same constraints and liberties apply.
25700Sstevel@tonic-gate  *
25710Sstevel@tonic-gate  *    The offline handler is optional; it may be NULL.
25720Sstevel@tonic-gate  *
25730Sstevel@tonic-gate  *  Return value
25740Sstevel@tonic-gate  *
25750Sstevel@tonic-gate  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
25760Sstevel@tonic-gate  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
25770Sstevel@tonic-gate  *
25780Sstevel@tonic-gate  *  Caller's context
25790Sstevel@tonic-gate  *
25800Sstevel@tonic-gate  *    The caller's context is identical to that of cyclic_add(), specified
25810Sstevel@tonic-gate  *    above.
25820Sstevel@tonic-gate  */
25830Sstevel@tonic-gate cyclic_id_t
25840Sstevel@tonic-gate cyclic_add_omni(cyc_omni_handler_t *omni)
25850Sstevel@tonic-gate {
25860Sstevel@tonic-gate 	cyc_id_t *idp = cyclic_new_id();
25870Sstevel@tonic-gate 	cyc_cpu_t *cpu;
25880Sstevel@tonic-gate 	cpu_t *c;
25890Sstevel@tonic-gate 
25900Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
25910Sstevel@tonic-gate 	ASSERT(omni != NULL && omni->cyo_online != NULL);
25920Sstevel@tonic-gate 
25930Sstevel@tonic-gate 	idp->cyi_omni_hdlr = *omni;
25940Sstevel@tonic-gate 
25950Sstevel@tonic-gate 	c = cpu_list;
25960Sstevel@tonic-gate 	do {
25970Sstevel@tonic-gate 		if ((cpu = c->cpu_cyclic) == NULL)
25980Sstevel@tonic-gate 			continue;
25990Sstevel@tonic-gate 
26000Sstevel@tonic-gate 		if (cpu->cyp_state != CYS_ONLINE) {
26010Sstevel@tonic-gate 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
26020Sstevel@tonic-gate 			continue;
26030Sstevel@tonic-gate 		}
26040Sstevel@tonic-gate 
26050Sstevel@tonic-gate 		cyclic_omni_start(idp, cpu);
26060Sstevel@tonic-gate 	} while ((c = c->cpu_next) != cpu_list);
26070Sstevel@tonic-gate 
26080Sstevel@tonic-gate 	/*
26090Sstevel@tonic-gate 	 * We must have found at least one online CPU on which to run
26100Sstevel@tonic-gate 	 * this cyclic.
26110Sstevel@tonic-gate 	 */
26120Sstevel@tonic-gate 	ASSERT(idp->cyi_omni_list != NULL);
26130Sstevel@tonic-gate 	ASSERT(idp->cyi_cpu == NULL);
26140Sstevel@tonic-gate 
26150Sstevel@tonic-gate 	return ((uintptr_t)idp);
26160Sstevel@tonic-gate }
26170Sstevel@tonic-gate 
26180Sstevel@tonic-gate /*
26190Sstevel@tonic-gate  *  void cyclic_remove(cyclic_id_t)
26200Sstevel@tonic-gate  *
26210Sstevel@tonic-gate  *  Overview
26220Sstevel@tonic-gate  *
26230Sstevel@tonic-gate  *    cyclic_remove() will remove the specified cyclic from the system.
26240Sstevel@tonic-gate  *
26250Sstevel@tonic-gate  *  Arguments and notes
26260Sstevel@tonic-gate  *
26270Sstevel@tonic-gate  *    The only argument is a cyclic_id returned from either cyclic_add() or
26280Sstevel@tonic-gate  *    cyclic_add_omni().
26290Sstevel@tonic-gate  *
26300Sstevel@tonic-gate  *    By the time cyclic_remove() returns, the caller is guaranteed that the
26310Sstevel@tonic-gate  *    removed cyclic handler has completed execution (this is the same
26320Sstevel@tonic-gate  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
26330Sstevel@tonic-gate  *    need to block, waiting for the removed cyclic to complete execution.
26340Sstevel@tonic-gate  *    This leads to an important constraint on the caller:  no lock may be
26350Sstevel@tonic-gate  *    held across cyclic_remove() that also may be acquired by a cyclic
26360Sstevel@tonic-gate  *    handler.
26370Sstevel@tonic-gate  *
26380Sstevel@tonic-gate  *  Return value
26390Sstevel@tonic-gate  *
26400Sstevel@tonic-gate  *    None; cyclic_remove() always succeeds.
26410Sstevel@tonic-gate  *
26420Sstevel@tonic-gate  *  Caller's context
26430Sstevel@tonic-gate  *
26440Sstevel@tonic-gate  *    cpu_lock must be held by the caller, and the caller must not be in
26450Sstevel@tonic-gate  *    interrupt context.  The caller may not hold any locks which are also
26460Sstevel@tonic-gate  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
26470Sstevel@tonic-gate  */
26480Sstevel@tonic-gate void
26490Sstevel@tonic-gate cyclic_remove(cyclic_id_t id)
26500Sstevel@tonic-gate {
26510Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
26520Sstevel@tonic-gate 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
26530Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu;
26540Sstevel@tonic-gate 
26550Sstevel@tonic-gate 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
26560Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
26570Sstevel@tonic-gate 
26580Sstevel@tonic-gate 	if (cpu != NULL) {
26590Sstevel@tonic-gate 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
26600Sstevel@tonic-gate 	} else {
26610Sstevel@tonic-gate 		ASSERT(idp->cyi_omni_list != NULL);
26620Sstevel@tonic-gate 		while (idp->cyi_omni_list != NULL)
26630Sstevel@tonic-gate 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
26640Sstevel@tonic-gate 	}
26650Sstevel@tonic-gate 
26660Sstevel@tonic-gate 	if (prev != NULL) {
26670Sstevel@tonic-gate 		ASSERT(cyclic_id_head != idp);
26680Sstevel@tonic-gate 		prev->cyi_next = next;
26690Sstevel@tonic-gate 	} else {
26700Sstevel@tonic-gate 		ASSERT(cyclic_id_head == idp);
26710Sstevel@tonic-gate 		cyclic_id_head = next;
26720Sstevel@tonic-gate 	}
26730Sstevel@tonic-gate 
26740Sstevel@tonic-gate 	if (next != NULL)
26750Sstevel@tonic-gate 		next->cyi_prev = prev;
26760Sstevel@tonic-gate 
26770Sstevel@tonic-gate 	kmem_cache_free(cyclic_id_cache, idp);
26780Sstevel@tonic-gate }
26790Sstevel@tonic-gate 
26800Sstevel@tonic-gate /*
26810Sstevel@tonic-gate  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
26820Sstevel@tonic-gate  *
26830Sstevel@tonic-gate  *  Overview
26840Sstevel@tonic-gate  *
26850Sstevel@tonic-gate  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
26860Sstevel@tonic-gate  *    of a cyclic.
26870Sstevel@tonic-gate  *
26880Sstevel@tonic-gate  *  Arguments and notes
26890Sstevel@tonic-gate  *
26900Sstevel@tonic-gate  *    The first argument is a cyclic_id retuned from cyclic_add().
26910Sstevel@tonic-gate  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
26920Sstevel@tonic-gate  *    cyclic_add_omni().
26930Sstevel@tonic-gate  *
26940Sstevel@tonic-gate  *    The second argument specifies the CPU to which to bind the specified
26950Sstevel@tonic-gate  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
26960Sstevel@tonic-gate  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
26970Sstevel@tonic-gate  *    from its CPU may cause it to be juggled to another CPU.  If the specified
26980Sstevel@tonic-gate  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
26990Sstevel@tonic-gate  *    CPU.
27000Sstevel@tonic-gate  *
27010Sstevel@tonic-gate  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
27020Sstevel@tonic-gate  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
27030Sstevel@tonic-gate  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
27040Sstevel@tonic-gate  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
27050Sstevel@tonic-gate  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
27060Sstevel@tonic-gate  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
27070Sstevel@tonic-gate  *    panic.
27080Sstevel@tonic-gate  *
27090Sstevel@tonic-gate  *    The third argument specifies the CPU partition to which to bind the
27100Sstevel@tonic-gate  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
27110Sstevel@tonic-gate  *    other than the one specified, it will be unbound from its bound
27120Sstevel@tonic-gate  *    partition.  Unbinding the cyclic from its CPU partition may cause it
27130Sstevel@tonic-gate  *    to be juggled to another CPU.  If the specified CPU partition is
27140Sstevel@tonic-gate  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
27150Sstevel@tonic-gate  *    partition.
27160Sstevel@tonic-gate  *
27170Sstevel@tonic-gate  *    It is the caller's responsibility to assure that the specified CPU
27180Sstevel@tonic-gate  *    partition contains a CPU.  If it does not, the cyclic subsystem will
27190Sstevel@tonic-gate  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
27200Sstevel@tonic-gate  *    to destroy the partition will return EBUSY).  If a CPU with
27210Sstevel@tonic-gate  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
27220Sstevel@tonic-gate  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
27230Sstevel@tonic-gate  *    away only if there exists another CPU in the partition in the P_ONLINE
27240Sstevel@tonic-gate  *    state.
27250Sstevel@tonic-gate  *
27260Sstevel@tonic-gate  *    It is the caller's responsibility to assure that the specified CPU and
27270Sstevel@tonic-gate  *    CPU partition are self-consistent.  If both parameters are non-NULL,
27280Sstevel@tonic-gate  *    and the specified CPU partition does not contain the specified CPU, the
27290Sstevel@tonic-gate  *    cyclic subsystem will panic.
27300Sstevel@tonic-gate  *
27310Sstevel@tonic-gate  *    It is the caller's responsibility to assure that the specified CPU has
27320Sstevel@tonic-gate  *    been configured with respect to the cyclic subsystem.  Generally, this
27330Sstevel@tonic-gate  *    is always true for valid, on-line CPUs.  The only periods of time during
27340Sstevel@tonic-gate  *    which this may not be true are during MP boot (i.e. after cyclic_init()
27350Sstevel@tonic-gate  *    is called but before cyclic_mp_init() is called) or during dynamic
27360Sstevel@tonic-gate  *    reconfiguration; cyclic_bind() should only be called with great care
27370Sstevel@tonic-gate  *    from these contexts.
27380Sstevel@tonic-gate  *
27390Sstevel@tonic-gate  *  Return value
27400Sstevel@tonic-gate  *
27410Sstevel@tonic-gate  *    None; cyclic_bind() always succeeds.
27420Sstevel@tonic-gate  *
27430Sstevel@tonic-gate  *  Caller's context
27440Sstevel@tonic-gate  *
27450Sstevel@tonic-gate  *    cpu_lock must be held by the caller, and the caller must not be in
27460Sstevel@tonic-gate  *    interrupt context.  The caller may not hold any locks which are also
27470Sstevel@tonic-gate  *    grabbed by any cyclic handler.
27480Sstevel@tonic-gate  */
27490Sstevel@tonic-gate void
27500Sstevel@tonic-gate cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
27510Sstevel@tonic-gate {
27520Sstevel@tonic-gate 	cyc_id_t *idp = (cyc_id_t *)id;
27530Sstevel@tonic-gate 	cyc_cpu_t *cpu = idp->cyi_cpu;
27540Sstevel@tonic-gate 	cpu_t *c;
27550Sstevel@tonic-gate 	uint16_t flags;
27560Sstevel@tonic-gate 
27570Sstevel@tonic-gate 	CYC_PTRACE("bind", d, part);
27580Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
27590Sstevel@tonic-gate 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
27600Sstevel@tonic-gate 
27610Sstevel@tonic-gate 	if (cpu == NULL) {
27620Sstevel@tonic-gate 		ASSERT(idp->cyi_omni_list != NULL);
27630Sstevel@tonic-gate 		panic("attempt to change binding of omnipresent cyclic");
27640Sstevel@tonic-gate 	}
27650Sstevel@tonic-gate 
27660Sstevel@tonic-gate 	c = cpu->cyp_cpu;
27670Sstevel@tonic-gate 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
27680Sstevel@tonic-gate 
27690Sstevel@tonic-gate 	if (c != d && (flags & CYF_CPU_BOUND))
27700Sstevel@tonic-gate 		cyclic_unbind_cpu(id);
27710Sstevel@tonic-gate 
27720Sstevel@tonic-gate 	/*
27730Sstevel@tonic-gate 	 * Reload our cpu (we may have migrated).  We don't have to reload
27740Sstevel@tonic-gate 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
27750Sstevel@tonic-gate 	 * CYF_PART_BOUND now.
27760Sstevel@tonic-gate 	 */
27770Sstevel@tonic-gate 	cpu = idp->cyi_cpu;
27780Sstevel@tonic-gate 	c = cpu->cyp_cpu;
27790Sstevel@tonic-gate 
27800Sstevel@tonic-gate 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
27810Sstevel@tonic-gate 		cyclic_unbind_cpupart(id);
27820Sstevel@tonic-gate 
27830Sstevel@tonic-gate 	/*
27840Sstevel@tonic-gate 	 * Now reload the flags field, asserting that if we are CPU bound,
27850Sstevel@tonic-gate 	 * the CPU was specified (and likewise, if we are partition bound,
27860Sstevel@tonic-gate 	 * the partition was specified).
27870Sstevel@tonic-gate 	 */
27880Sstevel@tonic-gate 	cpu = idp->cyi_cpu;
27890Sstevel@tonic-gate 	c = cpu->cyp_cpu;
27900Sstevel@tonic-gate 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
27910Sstevel@tonic-gate 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
27920Sstevel@tonic-gate 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
27930Sstevel@tonic-gate 
27940Sstevel@tonic-gate 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
27950Sstevel@tonic-gate 		cyclic_bind_cpu(id, d);
27960Sstevel@tonic-gate 
27970Sstevel@tonic-gate 	if (!(flags & CYF_PART_BOUND) && part != NULL)
27980Sstevel@tonic-gate 		cyclic_bind_cpupart(id, part);
27990Sstevel@tonic-gate }
28000Sstevel@tonic-gate 
28010Sstevel@tonic-gate hrtime_t
28020Sstevel@tonic-gate cyclic_getres()
28030Sstevel@tonic-gate {
28040Sstevel@tonic-gate 	return (cyclic_resolution);
28050Sstevel@tonic-gate }
28060Sstevel@tonic-gate 
28070Sstevel@tonic-gate void
28080Sstevel@tonic-gate cyclic_init(cyc_backend_t *be, hrtime_t resolution)
28090Sstevel@tonic-gate {
28100Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
28110Sstevel@tonic-gate 
28120Sstevel@tonic-gate 	CYC_PTRACE("init", be, resolution);
28130Sstevel@tonic-gate 	cyclic_resolution = resolution;
28140Sstevel@tonic-gate 
28150Sstevel@tonic-gate 	/*
28160Sstevel@tonic-gate 	 * Copy the passed cyc_backend into the backend template.  This must
28170Sstevel@tonic-gate 	 * be done before the CPU can be configured.
28180Sstevel@tonic-gate 	 */
28190Sstevel@tonic-gate 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
28200Sstevel@tonic-gate 
28210Sstevel@tonic-gate 	/*
28220Sstevel@tonic-gate 	 * It's safe to look at the "CPU" pointer without disabling kernel
28230Sstevel@tonic-gate 	 * preemption; cyclic_init() is called only during startup by the
28240Sstevel@tonic-gate 	 * cyclic backend.
28250Sstevel@tonic-gate 	 */
28260Sstevel@tonic-gate 	cyclic_configure(CPU);
28270Sstevel@tonic-gate 	cyclic_online(CPU);
28280Sstevel@tonic-gate }
28290Sstevel@tonic-gate 
28300Sstevel@tonic-gate /*
28310Sstevel@tonic-gate  * It is assumed that cyclic_mp_init() is called some time after cyclic
28320Sstevel@tonic-gate  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
28330Sstevel@tonic-gate  * find the already initialized CPU, and initialize every other CPU with the
28340Sstevel@tonic-gate  * same backend.  Finally, we register a cpu_setup function.
28350Sstevel@tonic-gate  */
28360Sstevel@tonic-gate void
28370Sstevel@tonic-gate cyclic_mp_init()
28380Sstevel@tonic-gate {
28390Sstevel@tonic-gate 	cpu_t *c;
28400Sstevel@tonic-gate 
28410Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
28420Sstevel@tonic-gate 
28430Sstevel@tonic-gate 	c = cpu_list;
28440Sstevel@tonic-gate 	do {
28450Sstevel@tonic-gate 		if (c->cpu_cyclic == NULL) {
28460Sstevel@tonic-gate 			cyclic_configure(c);
28470Sstevel@tonic-gate 			cyclic_online(c);
28480Sstevel@tonic-gate 		}
28490Sstevel@tonic-gate 	} while ((c = c->cpu_next) != cpu_list);
28500Sstevel@tonic-gate 
28510Sstevel@tonic-gate 	register_cpu_setup_func((cpu_setup_func_t *)cyclic_cpu_setup, NULL);
28520Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
28530Sstevel@tonic-gate }
28540Sstevel@tonic-gate 
28550Sstevel@tonic-gate /*
28560Sstevel@tonic-gate  *  int cyclic_juggle(cpu_t *)
28570Sstevel@tonic-gate  *
28580Sstevel@tonic-gate  *  Overview
28590Sstevel@tonic-gate  *
28600Sstevel@tonic-gate  *    cyclic_juggle() juggles as many cyclics as possible away from the
28610Sstevel@tonic-gate  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
28620Sstevel@tonic-gate  *    or partition-bound.
28630Sstevel@tonic-gate  *
28640Sstevel@tonic-gate  *  Arguments and notes
28650Sstevel@tonic-gate  *
28660Sstevel@tonic-gate  *    The only argument to cyclic_juggle() is the CPU from which cyclics
28670Sstevel@tonic-gate  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
28680Sstevel@tonic-gate  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
28690Sstevel@tonic-gate  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
28700Sstevel@tonic-gate  *    assures that a cyclic will never fire late or spuriously, even while
28710Sstevel@tonic-gate  *    being juggled.
28720Sstevel@tonic-gate  *
28730Sstevel@tonic-gate  *  Return value
28740Sstevel@tonic-gate  *
28750Sstevel@tonic-gate  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
28760Sstevel@tonic-gate  *    be juggled away from the CPU, and zero if one or more cyclics could
28770Sstevel@tonic-gate  *    not be juggled away.
28780Sstevel@tonic-gate  *
28790Sstevel@tonic-gate  *  Caller's context
28800Sstevel@tonic-gate  *
28810Sstevel@tonic-gate  *    cpu_lock must be held by the caller, and the caller must not be in
28820Sstevel@tonic-gate  *    interrupt context.  The caller may not hold any locks which are also
28830Sstevel@tonic-gate  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
28840Sstevel@tonic-gate  *    in any context satisfying these constraints, it _must_ be called
28850Sstevel@tonic-gate  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
28860Sstevel@tonic-gate  *    Failure to do so could result in an assertion failure in the cyclic
28870Sstevel@tonic-gate  *    subsystem.
28880Sstevel@tonic-gate  */
28890Sstevel@tonic-gate int
28900Sstevel@tonic-gate cyclic_juggle(cpu_t *c)
28910Sstevel@tonic-gate {
28920Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
28930Sstevel@tonic-gate 	cyc_id_t *idp;
28940Sstevel@tonic-gate 	int all_juggled = 1;
28950Sstevel@tonic-gate 
28960Sstevel@tonic-gate 	CYC_PTRACE1("juggle", c);
28970Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
28980Sstevel@tonic-gate 
28990Sstevel@tonic-gate 	/*
29000Sstevel@tonic-gate 	 * We'll go through each cyclic on the CPU, attempting to juggle
29010Sstevel@tonic-gate 	 * each one elsewhere.
29020Sstevel@tonic-gate 	 */
29030Sstevel@tonic-gate 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
29040Sstevel@tonic-gate 		if (idp->cyi_cpu != cpu)
29050Sstevel@tonic-gate 			continue;
29060Sstevel@tonic-gate 
29070Sstevel@tonic-gate 		if (cyclic_juggle_one(idp) == 0) {
29080Sstevel@tonic-gate 			all_juggled = 0;
29090Sstevel@tonic-gate 			continue;
29100Sstevel@tonic-gate 		}
29110Sstevel@tonic-gate 
29120Sstevel@tonic-gate 		ASSERT(idp->cyi_cpu != cpu);
29130Sstevel@tonic-gate 	}
29140Sstevel@tonic-gate 
29150Sstevel@tonic-gate 	return (all_juggled);
29160Sstevel@tonic-gate }
29170Sstevel@tonic-gate 
29180Sstevel@tonic-gate /*
29190Sstevel@tonic-gate  *  int cyclic_offline(cpu_t *)
29200Sstevel@tonic-gate  *
29210Sstevel@tonic-gate  *  Overview
29220Sstevel@tonic-gate  *
29230Sstevel@tonic-gate  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
29240Sstevel@tonic-gate  *
29250Sstevel@tonic-gate  *  Arguments and notes
29260Sstevel@tonic-gate  *
29270Sstevel@tonic-gate  *    The only argument to cyclic_offline() is a CPU to offline.
29280Sstevel@tonic-gate  *    cyclic_offline() will attempt to juggle cyclics away from the specified
29290Sstevel@tonic-gate  *    CPU.
29300Sstevel@tonic-gate  *
29310Sstevel@tonic-gate  *  Return value
29320Sstevel@tonic-gate  *
29330Sstevel@tonic-gate  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
29340Sstevel@tonic-gate  *    and the cyclic subsystem on the CPU was successfully offlines.
29350Sstevel@tonic-gate  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
29360Sstevel@tonic-gate  *    offline operation.  All remaining cyclics on the CPU will either be
29370Sstevel@tonic-gate  *    CPU- or partition-bound.
29380Sstevel@tonic-gate  *
29390Sstevel@tonic-gate  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
29400Sstevel@tonic-gate  *    on cyclic juggling.
29410Sstevel@tonic-gate  *
29420Sstevel@tonic-gate  *  Caller's context
29430Sstevel@tonic-gate  *
29440Sstevel@tonic-gate  *    The only caller of cyclic_offline() should be the processor management
29450Sstevel@tonic-gate  *    subsystem.  It is expected that the caller of cyclic_offline() will
29460Sstevel@tonic-gate  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
29470Sstevel@tonic-gate  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
29480Sstevel@tonic-gate  *    fail the CPU offline operation if cyclic_offline() returns failure.
29490Sstevel@tonic-gate  */
29500Sstevel@tonic-gate int
29510Sstevel@tonic-gate cyclic_offline(cpu_t *c)
29520Sstevel@tonic-gate {
29530Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
29540Sstevel@tonic-gate 	cyc_id_t *idp;
29550Sstevel@tonic-gate 
29560Sstevel@tonic-gate 	CYC_PTRACE1("offline", cpu);
29570Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
29580Sstevel@tonic-gate 
29590Sstevel@tonic-gate 	if (!cyclic_juggle(c))
29600Sstevel@tonic-gate 		return (0);
29610Sstevel@tonic-gate 
29620Sstevel@tonic-gate 	/*
29630Sstevel@tonic-gate 	 * This CPU is headed offline; we need to now stop omnipresent
29640Sstevel@tonic-gate 	 * cyclic firing on this CPU.
29650Sstevel@tonic-gate 	 */
29660Sstevel@tonic-gate 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
29670Sstevel@tonic-gate 		if (idp->cyi_cpu != NULL)
29680Sstevel@tonic-gate 			continue;
29690Sstevel@tonic-gate 
29700Sstevel@tonic-gate 		/*
29710Sstevel@tonic-gate 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
29720Sstevel@tonic-gate 		 * must be non-NULL.
29730Sstevel@tonic-gate 		 */
29740Sstevel@tonic-gate 		ASSERT(idp->cyi_omni_list != NULL);
29750Sstevel@tonic-gate 		cyclic_omni_stop(idp, cpu);
29760Sstevel@tonic-gate 	}
29770Sstevel@tonic-gate 
29780Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_ONLINE);
29790Sstevel@tonic-gate 	cpu->cyp_state = CYS_OFFLINE;
29800Sstevel@tonic-gate 
29810Sstevel@tonic-gate 	return (1);
29820Sstevel@tonic-gate }
29830Sstevel@tonic-gate 
29840Sstevel@tonic-gate /*
29850Sstevel@tonic-gate  *  void cyclic_online(cpu_t *)
29860Sstevel@tonic-gate  *
29870Sstevel@tonic-gate  *  Overview
29880Sstevel@tonic-gate  *
29890Sstevel@tonic-gate  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
29900Sstevel@tonic-gate  *
29910Sstevel@tonic-gate  *  Arguments and notes
29920Sstevel@tonic-gate  *
29930Sstevel@tonic-gate  *    cyclic_online()'s only argument is a CPU to online.  The specified
29940Sstevel@tonic-gate  *    CPU must have been previously offlined with cyclic_offline().  After
29950Sstevel@tonic-gate  *    cyclic_online() returns, the specified CPU will be eligible to execute
29960Sstevel@tonic-gate  *    cyclics.
29970Sstevel@tonic-gate  *
29980Sstevel@tonic-gate  *  Return value
29990Sstevel@tonic-gate  *
30000Sstevel@tonic-gate  *    None; cyclic_online() always succeeds.
30010Sstevel@tonic-gate  *
30020Sstevel@tonic-gate  *  Caller's context
30030Sstevel@tonic-gate  *
30040Sstevel@tonic-gate  *    cyclic_online() should only be called by the processor management
30050Sstevel@tonic-gate  *    subsystem; cpu_lock must be held.
30060Sstevel@tonic-gate  */
30070Sstevel@tonic-gate void
30080Sstevel@tonic-gate cyclic_online(cpu_t *c)
30090Sstevel@tonic-gate {
30100Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic;
30110Sstevel@tonic-gate 	cyc_id_t *idp;
30120Sstevel@tonic-gate 
30130Sstevel@tonic-gate 	CYC_PTRACE1("online", cpu);
30140Sstevel@tonic-gate 	ASSERT(c->cpu_flags & CPU_ENABLE);
30150Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
30160Sstevel@tonic-gate 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
30170Sstevel@tonic-gate 
30180Sstevel@tonic-gate 	cpu->cyp_state = CYS_ONLINE;
30190Sstevel@tonic-gate 
30200Sstevel@tonic-gate 	/*
30210Sstevel@tonic-gate 	 * Now that this CPU is open for business, we need to start firing
30220Sstevel@tonic-gate 	 * all omnipresent cyclics on it.
30230Sstevel@tonic-gate 	 */
30240Sstevel@tonic-gate 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
30250Sstevel@tonic-gate 		if (idp->cyi_cpu != NULL)
30260Sstevel@tonic-gate 			continue;
30270Sstevel@tonic-gate 
30280Sstevel@tonic-gate 		cyclic_omni_start(idp, cpu);
30290Sstevel@tonic-gate 	}
30300Sstevel@tonic-gate }
30310Sstevel@tonic-gate 
30320Sstevel@tonic-gate /*
30330Sstevel@tonic-gate  *  void cyclic_move_in(cpu_t *)
30340Sstevel@tonic-gate  *
30350Sstevel@tonic-gate  *  Overview
30360Sstevel@tonic-gate  *
30370Sstevel@tonic-gate  *    cyclic_move_in() is called by the CPU partition code immediately after
30380Sstevel@tonic-gate  *    the specified CPU has moved into a new partition.
30390Sstevel@tonic-gate  *
30400Sstevel@tonic-gate  *  Arguments and notes
30410Sstevel@tonic-gate  *
30420Sstevel@tonic-gate  *    The only argument to cyclic_move_in() is a CPU which has moved into a
30430Sstevel@tonic-gate  *    new partition.  If the specified CPU is P_ONLINE, and every other
30440Sstevel@tonic-gate  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
30450Sstevel@tonic-gate  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
30460Sstevel@tonic-gate  *    CPU.
30470Sstevel@tonic-gate  *
30480Sstevel@tonic-gate  *  Return value
30490Sstevel@tonic-gate  *
30500Sstevel@tonic-gate  *    None; cyclic_move_in() always succeeds.
30510Sstevel@tonic-gate  *
30520Sstevel@tonic-gate  *  Caller's context
30530Sstevel@tonic-gate  *
30540Sstevel@tonic-gate  *    cyclic_move_in() should _only_ be called immediately after a CPU has
30550Sstevel@tonic-gate  *    moved into a new partition, with cpu_lock held.  As with other calls
30560Sstevel@tonic-gate  *    into the cyclic subsystem, no lock may be held which is also grabbed
30570Sstevel@tonic-gate  *    by any cyclic handler.
30580Sstevel@tonic-gate  */
30590Sstevel@tonic-gate void
30600Sstevel@tonic-gate cyclic_move_in(cpu_t *d)
30610Sstevel@tonic-gate {
30620Sstevel@tonic-gate 	cyc_id_t *idp;
30630Sstevel@tonic-gate 	cyc_cpu_t *dest = d->cpu_cyclic;
30640Sstevel@tonic-gate 	cyclic_t *cyclic;
30650Sstevel@tonic-gate 	cpupart_t *part = d->cpu_part;
30660Sstevel@tonic-gate 
30670Sstevel@tonic-gate 	CYC_PTRACE("move-in", dest, part);
30680Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
30690Sstevel@tonic-gate 
30700Sstevel@tonic-gate 	/*
30710Sstevel@tonic-gate 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
30720Sstevel@tonic-gate 	 * we find one, check to see if it is currently on a CPU which has
30730Sstevel@tonic-gate 	 * interrupts disabled.  If it is (and if this CPU currently has
30740Sstevel@tonic-gate 	 * interrupts enabled), we'll juggle those cyclics over here.
30750Sstevel@tonic-gate 	 */
30760Sstevel@tonic-gate 	if (!(d->cpu_flags & CPU_ENABLE)) {
30770Sstevel@tonic-gate 		CYC_PTRACE1("move-in-none", dest);
30780Sstevel@tonic-gate 		return;
30790Sstevel@tonic-gate 	}
30800Sstevel@tonic-gate 
30810Sstevel@tonic-gate 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
30820Sstevel@tonic-gate 		cyc_cpu_t *cpu = idp->cyi_cpu;
30830Sstevel@tonic-gate 		cpu_t *c;
30840Sstevel@tonic-gate 
30850Sstevel@tonic-gate 		/*
30860Sstevel@tonic-gate 		 * Omnipresent cyclics are exempt from juggling.
30870Sstevel@tonic-gate 		 */
30880Sstevel@tonic-gate 		if (cpu == NULL)
30890Sstevel@tonic-gate 			continue;
30900Sstevel@tonic-gate 
30910Sstevel@tonic-gate 		c = cpu->cyp_cpu;
30920Sstevel@tonic-gate 
30930Sstevel@tonic-gate 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
30940Sstevel@tonic-gate 			continue;
30950Sstevel@tonic-gate 
30960Sstevel@tonic-gate 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
30970Sstevel@tonic-gate 
30980Sstevel@tonic-gate 		if (cyclic->cy_flags & CYF_CPU_BOUND)
30990Sstevel@tonic-gate 			continue;
31000Sstevel@tonic-gate 
31010Sstevel@tonic-gate 		/*
31020Sstevel@tonic-gate 		 * We know that this cyclic is bound to its processor set
31030Sstevel@tonic-gate 		 * (otherwise, it would not be on a CPU with interrupts
31040Sstevel@tonic-gate 		 * disabled); juggle it to our CPU.
31050Sstevel@tonic-gate 		 */
31060Sstevel@tonic-gate 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
31070Sstevel@tonic-gate 		cyclic_juggle_one_to(idp, dest);
31080Sstevel@tonic-gate 	}
31090Sstevel@tonic-gate 
31100Sstevel@tonic-gate 	CYC_PTRACE1("move-in-done", dest);
31110Sstevel@tonic-gate }
31120Sstevel@tonic-gate 
31130Sstevel@tonic-gate /*
31140Sstevel@tonic-gate  *  int cyclic_move_out(cpu_t *)
31150Sstevel@tonic-gate  *
31160Sstevel@tonic-gate  *  Overview
31170Sstevel@tonic-gate  *
31180Sstevel@tonic-gate  *    cyclic_move_out() is called by the CPU partition code immediately before
31190Sstevel@tonic-gate  *    the specified CPU is to move out of its partition.
31200Sstevel@tonic-gate  *
31210Sstevel@tonic-gate  *  Arguments and notes
31220Sstevel@tonic-gate  *
31230Sstevel@tonic-gate  *    The only argument to cyclic_move_out() is a CPU which is to move out of
31240Sstevel@tonic-gate  *    its partition.
31250Sstevel@tonic-gate  *
31260Sstevel@tonic-gate  *    cyclic_move_out() will attempt to juggle away all partition-bound
31270Sstevel@tonic-gate  *    cyclics.  If the specified CPU is the last CPU in a partition with
31280Sstevel@tonic-gate  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
31290Sstevel@tonic-gate  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
31300Sstevel@tonic-gate  *    cyclic_move_out() will fail.
31310Sstevel@tonic-gate  *
31320Sstevel@tonic-gate  *    Note that cyclic_move_out() will _only_ attempt to juggle away
31330Sstevel@tonic-gate  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
31340Sstevel@tonic-gate  *    and unbound cyclics are not affected by changing the partition
31350Sstevel@tonic-gate  *    affiliation of the CPU.
31360Sstevel@tonic-gate  *
31370Sstevel@tonic-gate  *  Return value
31380Sstevel@tonic-gate  *
31390Sstevel@tonic-gate  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
31400Sstevel@tonic-gate  *    were juggled away; 0 if some cyclics remain.
31410Sstevel@tonic-gate  *
31420Sstevel@tonic-gate  *  Caller's context
31430Sstevel@tonic-gate  *
31440Sstevel@tonic-gate  *    cyclic_move_out() should _only_ be called immediately before a CPU has
31450Sstevel@tonic-gate  *    moved out of its partition, with cpu_lock held.  It is expected that
31460Sstevel@tonic-gate  *    the caller of cyclic_move_out() will change the processor set affiliation
31470Sstevel@tonic-gate  *    of the specified CPU immediately after cyclic_move_out() returns
31480Sstevel@tonic-gate  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
31490Sstevel@tonic-gate  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
31500Sstevel@tonic-gate  *    returns failure.  As with other calls into the cyclic subsystem, no lock
31510Sstevel@tonic-gate  *    may be held which is also grabbed by any cyclic handler.
31520Sstevel@tonic-gate  */
31530Sstevel@tonic-gate int
31540Sstevel@tonic-gate cyclic_move_out(cpu_t *c)
31550Sstevel@tonic-gate {
31560Sstevel@tonic-gate 	cyc_id_t *idp;
31570Sstevel@tonic-gate 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
31580Sstevel@tonic-gate 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
31590Sstevel@tonic-gate 	cpupart_t *part = c->cpu_part;
31600Sstevel@tonic-gate 
31610Sstevel@tonic-gate 	CYC_PTRACE1("move-out", cpu);
31620Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
31630Sstevel@tonic-gate 
31640Sstevel@tonic-gate 	/*
31650Sstevel@tonic-gate 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
31660Sstevel@tonic-gate 	 * to try to juggle them away.
31670Sstevel@tonic-gate 	 */
31680Sstevel@tonic-gate 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
31690Sstevel@tonic-gate 
31700Sstevel@tonic-gate 		if (idp->cyi_cpu != cpu)
31710Sstevel@tonic-gate 			continue;
31720Sstevel@tonic-gate 
31730Sstevel@tonic-gate 		cyclic = &cyclics[idp->cyi_ndx];
31740Sstevel@tonic-gate 
31750Sstevel@tonic-gate 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
31760Sstevel@tonic-gate 			continue;
31770Sstevel@tonic-gate 
31780Sstevel@tonic-gate 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
31790Sstevel@tonic-gate 
31800Sstevel@tonic-gate 		if (dest == NULL) {
31810Sstevel@tonic-gate 			/*
31820Sstevel@tonic-gate 			 * We can't juggle this cyclic; we need to return
31830Sstevel@tonic-gate 			 * failure (we won't bother trying to juggle away
31840Sstevel@tonic-gate 			 * other cyclics).
31850Sstevel@tonic-gate 			 */
31860Sstevel@tonic-gate 			CYC_PTRACE("move-out-fail", cpu, idp);
31870Sstevel@tonic-gate 			return (0);
31880Sstevel@tonic-gate 		}
31890Sstevel@tonic-gate 		cyclic_juggle_one_to(idp, dest);
31900Sstevel@tonic-gate 	}
31910Sstevel@tonic-gate 
31920Sstevel@tonic-gate 	CYC_PTRACE1("move-out-done", cpu);
31930Sstevel@tonic-gate 	return (1);
31940Sstevel@tonic-gate }
31950Sstevel@tonic-gate 
31960Sstevel@tonic-gate /*
31970Sstevel@tonic-gate  *  void cyclic_suspend()
31980Sstevel@tonic-gate  *
31990Sstevel@tonic-gate  *  Overview
32000Sstevel@tonic-gate  *
32010Sstevel@tonic-gate  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
32020Sstevel@tonic-gate  *    subsystem.  It should be called only by subsystems which are attempting
32030Sstevel@tonic-gate  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
32040Sstevel@tonic-gate  *    reconfiguration).
32050Sstevel@tonic-gate  *
32060Sstevel@tonic-gate  *  Arguments and notes
32070Sstevel@tonic-gate  *
32080Sstevel@tonic-gate  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
32090Sstevel@tonic-gate  *    disables its backend (offline CPUs disable their backends as part of
32100Sstevel@tonic-gate  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
32110Sstevel@tonic-gate  *    interrupts.
32120Sstevel@tonic-gate  *
32130Sstevel@tonic-gate  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
32140Sstevel@tonic-gate  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
32150Sstevel@tonic-gate  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
32160Sstevel@tonic-gate  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
32170Sstevel@tonic-gate  *    called after the interrupt thread becomes unblocked.  The
32180Sstevel@tonic-gate  *    post-cyclic_suspend() activity is bounded by the pend count on all
32190Sstevel@tonic-gate  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
32200Sstevel@tonic-gate  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
32210Sstevel@tonic-gate  *    this condition.
32220Sstevel@tonic-gate  *
32230Sstevel@tonic-gate  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
32240Sstevel@tonic-gate  *    guaranteed to monotonically increase between cyclic_suspend() and
32250Sstevel@tonic-gate  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
32260Sstevel@tonic-gate  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
32270Sstevel@tonic-gate  *    That is, every timestamp obtained before cyclic_suspend() will be less
32280Sstevel@tonic-gate  *    than every timestamp obtained after cyclic_resume().
32290Sstevel@tonic-gate  *
32300Sstevel@tonic-gate  *  Return value
32310Sstevel@tonic-gate  *
32320Sstevel@tonic-gate  *    None; cyclic_suspend() always succeeds.
32330Sstevel@tonic-gate  *
32340Sstevel@tonic-gate  *  Caller's context
32350Sstevel@tonic-gate  *
32360Sstevel@tonic-gate  *    The cyclic subsystem must be configured on every valid CPU;
32370Sstevel@tonic-gate  *    cyclic_suspend() may not be called during boot or during dynamic
32380Sstevel@tonic-gate  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
32390Sstevel@tonic-gate  *    cannot be in high-level interrupt context.  However, unlike most other
32400Sstevel@tonic-gate  *    cyclic entry points, cyclic_suspend() may be called with locks held
32410Sstevel@tonic-gate  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
32420Sstevel@tonic-gate  *    handlers.
32430Sstevel@tonic-gate  */
32440Sstevel@tonic-gate void
32450Sstevel@tonic-gate cyclic_suspend()
32460Sstevel@tonic-gate {
32470Sstevel@tonic-gate 	cpu_t *c;
32480Sstevel@tonic-gate 	cyc_cpu_t *cpu;
32490Sstevel@tonic-gate 	cyc_xcallarg_t arg;
32500Sstevel@tonic-gate 	cyc_backend_t *be;
32510Sstevel@tonic-gate 
32520Sstevel@tonic-gate 	CYC_PTRACE0("suspend");
32530Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
32540Sstevel@tonic-gate 	c = cpu_list;
32550Sstevel@tonic-gate 
32560Sstevel@tonic-gate 	do {
32570Sstevel@tonic-gate 		cpu = c->cpu_cyclic;
32580Sstevel@tonic-gate 		be = cpu->cyp_backend;
32590Sstevel@tonic-gate 		arg.cyx_cpu = cpu;
32600Sstevel@tonic-gate 
32610Sstevel@tonic-gate 		be->cyb_xcall(be->cyb_arg, c,
32620Sstevel@tonic-gate 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
32630Sstevel@tonic-gate 	} while ((c = c->cpu_next) != cpu_list);
32640Sstevel@tonic-gate }
32650Sstevel@tonic-gate 
32660Sstevel@tonic-gate /*
32670Sstevel@tonic-gate  *  void cyclic_resume()
32680Sstevel@tonic-gate  *
32690Sstevel@tonic-gate  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
32700Sstevel@tonic-gate  *    subsystem.  It should be called only by system-suspending subsystems.
32710Sstevel@tonic-gate  *
32720Sstevel@tonic-gate  *  Arguments and notes
32730Sstevel@tonic-gate  *
32740Sstevel@tonic-gate  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
32750Sstevel@tonic-gate  *    reenables and reprograms its backend (offline CPUs are not reenabled).
32760Sstevel@tonic-gate  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
32770Sstevel@tonic-gate  *    guaranteed to monotonically increase between cyclic_suspend() and
32780Sstevel@tonic-gate  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
32790Sstevel@tonic-gate  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
32800Sstevel@tonic-gate  *    That is, every timestamp obtained before cyclic_suspend() will be less
32810Sstevel@tonic-gate  *    than every timestamp obtained after cyclic_resume().
32820Sstevel@tonic-gate  *
32830Sstevel@tonic-gate  *  Return value
32840Sstevel@tonic-gate  *
32850Sstevel@tonic-gate  *    None; cyclic_resume() always succeeds.
32860Sstevel@tonic-gate  *
32870Sstevel@tonic-gate  *  Caller's context
32880Sstevel@tonic-gate  *
32890Sstevel@tonic-gate  *    The cyclic subsystem must be configured on every valid CPU;
32900Sstevel@tonic-gate  *    cyclic_resume() may not be called during boot or during dynamic
32910Sstevel@tonic-gate  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
32920Sstevel@tonic-gate  *    cannot be in high-level interrupt context.  However, unlike most other
32930Sstevel@tonic-gate  *    cyclic entry points, cyclic_resume() may be called with locks held which
32940Sstevel@tonic-gate  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
32950Sstevel@tonic-gate  */
32960Sstevel@tonic-gate void
32970Sstevel@tonic-gate cyclic_resume()
32980Sstevel@tonic-gate {
32990Sstevel@tonic-gate 	cpu_t *c;
33000Sstevel@tonic-gate 	cyc_cpu_t *cpu;
33010Sstevel@tonic-gate 	cyc_xcallarg_t arg;
33020Sstevel@tonic-gate 	cyc_backend_t *be;
33030Sstevel@tonic-gate 
33040Sstevel@tonic-gate 	CYC_PTRACE0("resume");
33050Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
33060Sstevel@tonic-gate 
33070Sstevel@tonic-gate 	c = cpu_list;
33080Sstevel@tonic-gate 
33090Sstevel@tonic-gate 	do {
33100Sstevel@tonic-gate 		cpu = c->cpu_cyclic;
33110Sstevel@tonic-gate 		be = cpu->cyp_backend;
33120Sstevel@tonic-gate 		arg.cyx_cpu = cpu;
33130Sstevel@tonic-gate 
33140Sstevel@tonic-gate 		be->cyb_xcall(be->cyb_arg, c,
33150Sstevel@tonic-gate 		    (cyc_func_t)cyclic_resume_xcall, &arg);
33160Sstevel@tonic-gate 	} while ((c = c->cpu_next) != cpu_list);
33170Sstevel@tonic-gate }
3318