15788Smv143129 /*
25788Smv143129 * CDDL HEADER START
35788Smv143129 *
45788Smv143129 * The contents of this file are subject to the terms of the
55788Smv143129 * Common Development and Distribution License (the "License").
65788Smv143129 * You may not use this file except in compliance with the License.
75788Smv143129 *
85788Smv143129 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
95788Smv143129 * or http://www.opensolaris.org/os/licensing.
105788Smv143129 * See the License for the specific language governing permissions
115788Smv143129 * and limitations under the License.
125788Smv143129 *
135788Smv143129 * When distributing Covered Code, include this CDDL HEADER in each
145788Smv143129 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
155788Smv143129 * If applicable, add the following below this CDDL HEADER, with the
165788Smv143129 * fields enclosed by brackets "[]" replaced with your own identifying
175788Smv143129 * information: Portions Copyright [yyyy] [name of copyright owner]
185788Smv143129 *
195788Smv143129 * CDDL HEADER END
205788Smv143129 */
215788Smv143129
225788Smv143129 /*
239039SMadhavan.Venkataraman@Sun.COM * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
245788Smv143129 * Use is subject to license terms.
255788Smv143129 */
265788Smv143129
275788Smv143129 #include <sys/thread.h>
285788Smv143129 #include <sys/proc.h>
295788Smv143129 #include <sys/task.h>
305788Smv143129 #include <sys/cmn_err.h>
315788Smv143129 #include <sys/class.h>
325788Smv143129 #include <sys/sdt.h>
335788Smv143129 #include <sys/atomic.h>
345788Smv143129 #include <sys/cpu.h>
355788Smv143129 #include <sys/clock_tick.h>
3611066Srafael.vanoni@sun.com #include <sys/clock_impl.h>
375788Smv143129 #include <sys/sysmacros.h>
385788Smv143129 #include <vm/rm.h>
395788Smv143129
405788Smv143129 /*
415788Smv143129 * This file contains the implementation of clock tick accounting for threads.
425788Smv143129 * Every tick, user threads running on various CPUs are located and charged
435788Smv143129 * with a tick to account for their use of CPU time.
445788Smv143129 *
455788Smv143129 * Every tick, the clock() handler calls clock_tick_schedule() to perform tick
465788Smv143129 * accounting for all the threads in the system. Tick accounting is done in
475788Smv143129 * two phases:
485788Smv143129 *
495788Smv143129 * Tick scheduling Done in clock_tick_schedule(). In this phase, cross
505788Smv143129 * calls are scheduled to multiple CPUs to perform
515788Smv143129 * multi-threaded tick accounting. The CPUs are chosen
525788Smv143129 * on a rotational basis so as to distribute the tick
535788Smv143129 * accounting load evenly across all CPUs.
545788Smv143129 *
555788Smv143129 * Tick execution Done in clock_tick_execute(). In this phase, tick
565788Smv143129 * accounting is actually performed by softint handlers
575788Smv143129 * on multiple CPUs.
585788Smv143129 *
595788Smv143129 * This implementation gives us a multi-threaded tick processing facility that
605788Smv143129 * is suitable for configurations with a large number of CPUs. On smaller
615788Smv143129 * configurations it may be desirable to let the processing be single-threaded
625788Smv143129 * and just allow clock() to do it as it has been done traditionally. To
635788Smv143129 * facilitate this, a variable, clock_tick_threshold, is defined. Platforms
645788Smv143129 * that desire multi-threading should set this variable to something
655788Smv143129 * appropriate. A recommended value may be found in clock_tick.h. At boot time,
665788Smv143129 * if the number of CPUs is greater than clock_tick_threshold, multi-threading
675788Smv143129 * kicks in. Note that this is a decision made at boot time. If more CPUs
685788Smv143129 * are dynamically added later on to exceed the threshold, no attempt is made
695788Smv143129 * to switch to multi-threaded. Similarly, if CPUs are removed dynamically
705788Smv143129 * no attempt is made to switch to single-threaded. This is to keep the
715788Smv143129 * implementation simple. Also note that the threshold can be changed for a
725788Smv143129 * specific customer configuration via /etc/system.
735788Smv143129 *
745788Smv143129 * The boot time decision is reflected in clock_tick_single_threaded.
755788Smv143129 */
765788Smv143129
775788Smv143129 /*
785788Smv143129 * clock_tick_threshold
795788Smv143129 * If the number of CPUs at boot time exceeds this threshold,
805788Smv143129 * multi-threaded tick accounting kicks in.
815788Smv143129 *
825788Smv143129 * clock_tick_ncpus
835788Smv143129 * The number of CPUs in a set. Each set is scheduled for tick execution
845788Smv143129 * on a separate processor.
855788Smv143129 *
865788Smv143129 * clock_tick_single_threaded
875788Smv143129 * Indicates whether or not tick accounting is single threaded.
885788Smv143129 *
895788Smv143129 * clock_tick_total_cpus
905788Smv143129 * Total number of online CPUs.
915788Smv143129 *
925788Smv143129 * clock_tick_cpus
935788Smv143129 * Array of online CPU pointers.
945788Smv143129 *
955788Smv143129 * clock_tick_cpu
965788Smv143129 * Per-CPU, cache-aligned data structures to facilitate multi-threading.
975788Smv143129 *
985788Smv143129 * clock_tick_active
995788Smv143129 * Counter that indicates the number of active tick processing softints
1005788Smv143129 * in the system.
1015788Smv143129 *
1025788Smv143129 * clock_tick_pending
1035788Smv143129 * Number of pending ticks that need to be accounted by the softint
1045788Smv143129 * handlers.
1055788Smv143129 *
1065788Smv143129 * clock_tick_lock
1075788Smv143129 * Mutex to synchronize between clock_tick_schedule() and
1085788Smv143129 * CPU online/offline.
1095788Smv143129 *
1105788Smv143129 * clock_cpu_id
1115788Smv143129 * CPU id of the clock() CPU. Used to detect when the clock CPU
1125788Smv143129 * is offlined.
1135788Smv143129 *
1145788Smv143129 * clock_tick_online_cpuset
1155788Smv143129 * CPU set of all online processors that can be X-called.
1165788Smv143129 *
1175788Smv143129 * clock_tick_proc_max
1185788Smv143129 * Each process is allowed to accumulate a few ticks before checking
1195788Smv143129 * for the task CPU time resource limit. We lower the number of calls
1205788Smv143129 * to rctl_test() to make tick accounting more scalable. The tradeoff
1215788Smv143129 * is that the limit may not get enforced in a timely manner. This is
1225788Smv143129 * typically not a problem.
1235788Smv143129 *
1245788Smv143129 * clock_tick_set
1255788Smv143129 * Per-set structures. Each structure contains the range of CPUs
1265788Smv143129 * to be processed for the set.
1275788Smv143129 *
1285788Smv143129 * clock_tick_nsets;
1295788Smv143129 * Number of sets.
1305788Smv143129 *
1315788Smv143129 * clock_tick_scan
1325788Smv143129 * Where to begin the scan for single-threaded mode. In multi-threaded,
1335788Smv143129 * the clock_tick_set itself contains a field for this.
1345788Smv143129 */
1355788Smv143129 int clock_tick_threshold;
1365788Smv143129 int clock_tick_ncpus;
1375788Smv143129 int clock_tick_single_threaded;
1385788Smv143129 int clock_tick_total_cpus;
1395788Smv143129 cpu_t *clock_tick_cpus[NCPU];
1405788Smv143129 clock_tick_cpu_t *clock_tick_cpu[NCPU];
1415788Smv143129 ulong_t clock_tick_active;
1425788Smv143129 int clock_tick_pending;
1435788Smv143129 kmutex_t clock_tick_lock;
1445788Smv143129 processorid_t clock_cpu_id;
1455788Smv143129 cpuset_t clock_tick_online_cpuset;
1465788Smv143129 clock_t clock_tick_proc_max;
1475788Smv143129 clock_tick_set_t *clock_tick_set;
1485788Smv143129 int clock_tick_nsets;
1495788Smv143129 int clock_tick_scan;
1509039SMadhavan.Venkataraman@Sun.COM ulong_t clock_tick_intr;
1515788Smv143129
1525788Smv143129 static uint_t clock_tick_execute(caddr_t, caddr_t);
1535788Smv143129 static void clock_tick_execute_common(int, int, int, clock_t, int);
1545788Smv143129
1555788Smv143129 #define CLOCK_TICK_ALIGN 64 /* cache alignment */
1565788Smv143129
1575788Smv143129 /*
1585788Smv143129 * Clock tick initialization is done in two phases:
1595788Smv143129 *
1605788Smv143129 * 1. Before clock_init() is called, clock_tick_init_pre() is called to set
1615788Smv143129 * up single-threading so the clock() can begin to do its job.
1625788Smv143129 *
1635788Smv143129 * 2. After the slave CPUs are initialized at boot time, we know the number
1645788Smv143129 * of CPUs. clock_tick_init_post() is called to set up multi-threading if
1655788Smv143129 * required.
1665788Smv143129 */
1675788Smv143129 void
clock_tick_init_pre(void)1685788Smv143129 clock_tick_init_pre(void)
1695788Smv143129 {
1705788Smv143129 clock_tick_cpu_t *ctp;
1715788Smv143129 int i, n;
1725788Smv143129 clock_tick_set_t *csp;
1735788Smv143129 uintptr_t buf;
1745788Smv143129 size_t size;
1755788Smv143129
1765788Smv143129 clock_tick_single_threaded = 1;
1775788Smv143129
1785788Smv143129 size = P2ROUNDUP(sizeof (clock_tick_cpu_t), CLOCK_TICK_ALIGN);
1795788Smv143129 buf = (uintptr_t)kmem_zalloc(size * NCPU + CLOCK_TICK_ALIGN, KM_SLEEP);
1805788Smv143129 buf = P2ROUNDUP(buf, CLOCK_TICK_ALIGN);
1815788Smv143129
1825788Smv143129 /*
1835788Smv143129 * Perform initialization in case multi-threading is chosen later.
1845788Smv143129 */
1859039SMadhavan.Venkataraman@Sun.COM if (&create_softint != NULL) {
1869039SMadhavan.Venkataraman@Sun.COM clock_tick_intr = create_softint(LOCK_LEVEL,
1879039SMadhavan.Venkataraman@Sun.COM clock_tick_execute, (caddr_t)NULL);
1889039SMadhavan.Venkataraman@Sun.COM }
1895788Smv143129 for (i = 0; i < NCPU; i++, buf += size) {
1905788Smv143129 ctp = (clock_tick_cpu_t *)buf;
1915788Smv143129 clock_tick_cpu[i] = ctp;
1925788Smv143129 mutex_init(&ctp->ct_lock, NULL, MUTEX_DEFAULT, NULL);
1935788Smv143129 if (&create_softint != NULL) {
1949039SMadhavan.Venkataraman@Sun.COM ctp->ct_intr = clock_tick_intr;
1955788Smv143129 }
1965788Smv143129 ctp->ct_pending = 0;
1975788Smv143129 }
1985788Smv143129
1995788Smv143129 mutex_init(&clock_tick_lock, NULL, MUTEX_DEFAULT, NULL);
2005788Smv143129
2015788Smv143129 /*
2025788Smv143129 * Compute clock_tick_ncpus here. We need it to compute the
2035788Smv143129 * maximum number of tick sets we need to support.
2045788Smv143129 */
2055788Smv143129 ASSERT(clock_tick_ncpus >= 0);
2065788Smv143129 if (clock_tick_ncpus == 0)
2075788Smv143129 clock_tick_ncpus = CLOCK_TICK_NCPUS;
2085788Smv143129 if (clock_tick_ncpus > max_ncpus)
2095788Smv143129 clock_tick_ncpus = max_ncpus;
2105788Smv143129
2115788Smv143129 /*
2125788Smv143129 * Allocate and initialize the tick sets.
2135788Smv143129 */
2145788Smv143129 n = (max_ncpus + clock_tick_ncpus - 1)/clock_tick_ncpus;
2155788Smv143129 clock_tick_set = kmem_zalloc(sizeof (clock_tick_set_t) * n, KM_SLEEP);
2165788Smv143129 for (i = 0; i < n; i++) {
2175788Smv143129 csp = &clock_tick_set[i];
2185788Smv143129 csp->ct_start = i * clock_tick_ncpus;
2195788Smv143129 csp->ct_scan = csp->ct_start;
2205788Smv143129 csp->ct_end = csp->ct_start;
2215788Smv143129 }
2225788Smv143129 }
2235788Smv143129
2245788Smv143129 void
clock_tick_init_post(void)2255788Smv143129 clock_tick_init_post(void)
2265788Smv143129 {
2275788Smv143129 /*
2285788Smv143129 * If a platform does not provide create_softint() and invoke_softint(),
2295788Smv143129 * then we assume single threaded.
2305788Smv143129 */
2315788Smv143129 if (&invoke_softint == NULL)
2325788Smv143129 clock_tick_threshold = 0;
2335788Smv143129
2345788Smv143129 ASSERT(clock_tick_threshold >= 0);
2355788Smv143129
2365788Smv143129 if (clock_tick_threshold == 0)
2375788Smv143129 clock_tick_threshold = max_ncpus;
2385788Smv143129
2395788Smv143129 /*
2405788Smv143129 * If a platform does not specify a threshold or if the number of CPUs
2415788Smv143129 * at boot time does not exceed the threshold, tick accounting remains
2425788Smv143129 * single-threaded.
2435788Smv143129 */
2445788Smv143129 if (ncpus <= clock_tick_threshold) {
2455788Smv143129 clock_tick_ncpus = max_ncpus;
2465788Smv143129 clock_tick_proc_max = 1;
2475788Smv143129 return;
2485788Smv143129 }
2495788Smv143129
2505788Smv143129 /*
2515788Smv143129 * OK. Multi-thread tick processing. If a platform has not specified
2525788Smv143129 * the CPU set size for multi-threading, then use the default value.
2535788Smv143129 * This value has been arrived through measurements on large
2545788Smv143129 * configuration systems.
2555788Smv143129 */
2565788Smv143129 clock_tick_single_threaded = 0;
2575788Smv143129 if (clock_tick_proc_max == 0) {
2585788Smv143129 clock_tick_proc_max = CLOCK_TICK_PROC_MAX;
2595788Smv143129 if (hires_tick)
2605788Smv143129 clock_tick_proc_max *= 10;
2615788Smv143129 }
2625788Smv143129 }
2635788Smv143129
2645788Smv143129 static void
clock_tick_schedule_one(clock_tick_set_t * csp,int pending,processorid_t cid)2655788Smv143129 clock_tick_schedule_one(clock_tick_set_t *csp, int pending, processorid_t cid)
2665788Smv143129 {
2675788Smv143129 clock_tick_cpu_t *ctp;
2685788Smv143129
2695788Smv143129 ASSERT(&invoke_softint != NULL);
2709039SMadhavan.Venkataraman@Sun.COM
2719039SMadhavan.Venkataraman@Sun.COM atomic_inc_ulong(&clock_tick_active);
2729039SMadhavan.Venkataraman@Sun.COM
2735788Smv143129 /*
2745788Smv143129 * Schedule tick accounting for a set of CPUs.
2755788Smv143129 */
2765788Smv143129 ctp = clock_tick_cpu[cid];
2775788Smv143129 mutex_enter(&ctp->ct_lock);
278*11099Srafael.vanoni@sun.com ctp->ct_lbolt = LBOLT_NO_ACCOUNT;
2795788Smv143129 ctp->ct_pending += pending;
2805788Smv143129 ctp->ct_start = csp->ct_start;
2815788Smv143129 ctp->ct_end = csp->ct_end;
2825788Smv143129 ctp->ct_scan = csp->ct_scan;
2835788Smv143129 mutex_exit(&ctp->ct_lock);
2845788Smv143129
2855788Smv143129 invoke_softint(cid, ctp->ct_intr);
2865788Smv143129 /*
2875788Smv143129 * Return without waiting for the softint to finish.
2885788Smv143129 */
2895788Smv143129 }
2905788Smv143129
2915788Smv143129 static void
clock_tick_process(cpu_t * cp,clock_t mylbolt,int pending)2925788Smv143129 clock_tick_process(cpu_t *cp, clock_t mylbolt, int pending)
2935788Smv143129 {
2945788Smv143129 kthread_t *t;
2955788Smv143129 kmutex_t *plockp;
2965788Smv143129 int notick, intr;
2975788Smv143129 klwp_id_t lwp;
2985788Smv143129
2995788Smv143129 /*
3005788Smv143129 * The locking here is rather tricky. thread_free_prevent()
3015788Smv143129 * prevents the thread returned from being freed while we
3025788Smv143129 * are looking at it. We can then check if the thread
3035788Smv143129 * is exiting and get the appropriate p_lock if it
3045788Smv143129 * is not. We have to be careful, though, because
3055788Smv143129 * the _process_ can still be freed while we've
3065788Smv143129 * prevented thread free. To avoid touching the
3075788Smv143129 * proc structure we put a pointer to the p_lock in the
3085788Smv143129 * thread structure. The p_lock is persistent so we
3095788Smv143129 * can acquire it even if the process is gone. At that
3105788Smv143129 * point we can check (again) if the thread is exiting
3115788Smv143129 * and either drop the lock or do the tick processing.
3125788Smv143129 */
3135788Smv143129 t = cp->cpu_thread; /* Current running thread */
3145788Smv143129 if (CPU == cp) {
3155788Smv143129 /*
3165788Smv143129 * 't' will be the tick processing thread on this
3175788Smv143129 * CPU. Use the pinned thread (if any) on this CPU
3185788Smv143129 * as the target of the clock tick.
3195788Smv143129 */
3205788Smv143129 if (t->t_intr != NULL)
3215788Smv143129 t = t->t_intr;
3225788Smv143129 }
3235788Smv143129
3245788Smv143129 /*
3255788Smv143129 * We use thread_free_prevent to keep the currently running
3265788Smv143129 * thread from being freed or recycled while we're
3275788Smv143129 * looking at it.
3285788Smv143129 */
3295788Smv143129 thread_free_prevent(t);
3305788Smv143129 /*
3315788Smv143129 * We cannot hold the cpu_lock to prevent the
3325788Smv143129 * cpu_active from changing in the clock interrupt.
3335788Smv143129 * As long as we don't block (or don't get pre-empted)
3345788Smv143129 * the cpu_list will not change (all threads are paused
3355788Smv143129 * before list modification).
3365788Smv143129 */
3375788Smv143129 if (CLOCK_TICK_CPU_OFFLINE(cp)) {
3385788Smv143129 thread_free_allow(t);
3395788Smv143129 return;
3405788Smv143129 }
3415788Smv143129
3425788Smv143129 /*
3435788Smv143129 * Make sure the thread is still on the CPU.
3445788Smv143129 */
3455788Smv143129 if ((t != cp->cpu_thread) &&
3465788Smv143129 ((cp != CPU) || (t != cp->cpu_thread->t_intr))) {
3475788Smv143129 /*
3485788Smv143129 * We could not locate the thread. Skip this CPU. Race
3495788Smv143129 * conditions while performing these checks are benign.
3505788Smv143129 * These checks are not perfect and they don't need
3515788Smv143129 * to be.
3525788Smv143129 */
3535788Smv143129 thread_free_allow(t);
3545788Smv143129 return;
3555788Smv143129 }
3565788Smv143129
3575788Smv143129 intr = t->t_flag & T_INTR_THREAD;
3585788Smv143129 lwp = ttolwp(t);
3595788Smv143129 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
3605788Smv143129 /*
3615788Smv143129 * Thread is exiting (or uninteresting) so don't
3625788Smv143129 * do tick processing.
3635788Smv143129 */
3645788Smv143129 thread_free_allow(t);
3655788Smv143129 return;
3665788Smv143129 }
3675788Smv143129
3685788Smv143129 /*
3695788Smv143129 * OK, try to grab the process lock. See
3705788Smv143129 * comments above for why we're not using
3715788Smv143129 * ttoproc(t)->p_lockp here.
3725788Smv143129 */
3735788Smv143129 plockp = t->t_plockp;
3745788Smv143129 mutex_enter(plockp);
3755788Smv143129 /* See above comment. */
3765788Smv143129 if (CLOCK_TICK_CPU_OFFLINE(cp)) {
3775788Smv143129 mutex_exit(plockp);
3785788Smv143129 thread_free_allow(t);
3795788Smv143129 return;
3805788Smv143129 }
3815788Smv143129
3825788Smv143129 /*
3835788Smv143129 * The thread may have exited between when we
3845788Smv143129 * checked above, and when we got the p_lock.
3855788Smv143129 */
3865788Smv143129 if (t->t_proc_flag & TP_LWPEXIT) {
3875788Smv143129 mutex_exit(plockp);
3885788Smv143129 thread_free_allow(t);
3895788Smv143129 return;
3905788Smv143129 }
3915788Smv143129
3925788Smv143129 /*
3935788Smv143129 * Either we have the p_lock for the thread's process,
3945788Smv143129 * or we don't care about the thread structure any more.
3955788Smv143129 * Either way we can allow thread free.
3965788Smv143129 */
3975788Smv143129 thread_free_allow(t);
3985788Smv143129
3995788Smv143129 /*
4005788Smv143129 * If we haven't done tick processing for this
4015788Smv143129 * lwp, then do it now. Since we don't hold the
4025788Smv143129 * lwp down on a CPU it can migrate and show up
4035788Smv143129 * more than once, hence the lbolt check. mylbolt
4045788Smv143129 * is copied at the time of tick scheduling to prevent
4055788Smv143129 * lbolt mismatches.
4065788Smv143129 *
4075788Smv143129 * Also, make sure that it's okay to perform the
4085788Smv143129 * tick processing before calling clock_tick.
4095788Smv143129 * Setting notick to a TRUE value (ie. not 0)
4105788Smv143129 * results in tick processing not being performed for
4115788Smv143129 * that thread.
4125788Smv143129 */
4135788Smv143129 notick = ((cp->cpu_flags & CPU_QUIESCED) || CPU_ON_INTR(cp) ||
4145788Smv143129 (cp->cpu_dispthread == cp->cpu_idle_thread));
4155788Smv143129
4165788Smv143129 if ((!notick) && (t->t_lbolt < mylbolt)) {
4175788Smv143129 t->t_lbolt = mylbolt;
4185788Smv143129 clock_tick(t, pending);
4195788Smv143129 }
4205788Smv143129
4215788Smv143129 mutex_exit(plockp);
4225788Smv143129 }
4235788Smv143129
4245788Smv143129 void
clock_tick_schedule(int one_sec)4255788Smv143129 clock_tick_schedule(int one_sec)
4265788Smv143129 {
4275788Smv143129 ulong_t active;
4285788Smv143129 int i, end;
4295788Smv143129 clock_tick_set_t *csp;
4305788Smv143129 cpu_t *cp;
4315788Smv143129
4325788Smv143129 if (clock_cpu_id != CPU->cpu_id)
4335788Smv143129 clock_cpu_id = CPU->cpu_id;
4345788Smv143129
4355788Smv143129 if (clock_tick_single_threaded) {
4365788Smv143129 /*
4375788Smv143129 * Each tick cycle, start the scan from a different
4385788Smv143129 * CPU for the sake of fairness.
4395788Smv143129 */
4405788Smv143129 end = clock_tick_total_cpus;
4415788Smv143129 clock_tick_scan++;
4425788Smv143129 if (clock_tick_scan >= end)
4435788Smv143129 clock_tick_scan = 0;
4445788Smv143129
44511066Srafael.vanoni@sun.com clock_tick_execute_common(0, clock_tick_scan, end,
446*11099Srafael.vanoni@sun.com LBOLT_NO_ACCOUNT, 1);
4475788Smv143129
4485788Smv143129 return;
4495788Smv143129 }
4505788Smv143129
4515788Smv143129 /*
4525788Smv143129 * If the previous invocation of handlers is not yet finished, then
4535788Smv143129 * simply increment a pending count and return. Eventually when they
4545788Smv143129 * finish, the pending count is passed down to the next set of
4555788Smv143129 * handlers to process. This way, ticks that have already elapsed
4565788Smv143129 * in the past are handled as quickly as possible to minimize the
4575788Smv143129 * chances of threads getting away before their pending ticks are
4585788Smv143129 * accounted. The other benefit is that if the pending count is
4595788Smv143129 * more than one, it can be handled by a single invocation of
4605788Smv143129 * clock_tick(). This is a good optimization for large configuration
4615788Smv143129 * busy systems where tick accounting can get backed up for various
4625788Smv143129 * reasons.
4635788Smv143129 */
4645788Smv143129 clock_tick_pending++;
4655788Smv143129
4665788Smv143129 active = clock_tick_active;
4675788Smv143129 active = atomic_cas_ulong(&clock_tick_active, active, active);
4685788Smv143129 if (active)
4695788Smv143129 return;
4705788Smv143129
4715788Smv143129 /*
4725788Smv143129 * We want to handle the clock CPU here. If we
4735788Smv143129 * scheduled the accounting for the clock CPU to another
4745788Smv143129 * processor, that processor will find only the clock() thread
4755788Smv143129 * running and not account for any user thread below it. Also,
4765788Smv143129 * we want to handle this before we block on anything and allow
4775788Smv143129 * the pinned thread below the current thread to escape.
4785788Smv143129 */
479*11099Srafael.vanoni@sun.com clock_tick_process(CPU, LBOLT_NO_ACCOUNT, clock_tick_pending);
4805788Smv143129
4815788Smv143129 mutex_enter(&clock_tick_lock);
4825788Smv143129
4835788Smv143129 /*
4845788Smv143129 * Schedule each set on a separate processor.
4855788Smv143129 */
4865788Smv143129 cp = clock_cpu_list;
4875788Smv143129 for (i = 0; i < clock_tick_nsets; i++) {
4885788Smv143129 csp = &clock_tick_set[i];
4895788Smv143129
4905788Smv143129 /*
4915788Smv143129 * Pick the next online CPU in list for scheduling tick
4925788Smv143129 * accounting. The clock_tick_lock is held by the caller.
4935788Smv143129 * So, CPU online/offline cannot muck with this while
4945788Smv143129 * we are picking our CPU to X-call.
4955788Smv143129 */
4965788Smv143129 if (cp == CPU)
4975788Smv143129 cp = cp->cpu_next_onln;
4985788Smv143129
4995788Smv143129 /*
5005788Smv143129 * Each tick cycle, start the scan from a different
5015788Smv143129 * CPU for the sake of fairness.
5025788Smv143129 */
5035788Smv143129 csp->ct_scan++;
5045788Smv143129 if (csp->ct_scan >= csp->ct_end)
5055788Smv143129 csp->ct_scan = csp->ct_start;
5065788Smv143129
5075788Smv143129 clock_tick_schedule_one(csp, clock_tick_pending, cp->cpu_id);
5085788Smv143129
5095788Smv143129 cp = cp->cpu_next_onln;
5105788Smv143129 }
5115788Smv143129
5125788Smv143129 if (one_sec) {
5135788Smv143129 /*
5145788Smv143129 * Move the CPU pointer around every second. This is so
5155788Smv143129 * all the CPUs can be X-called in a round-robin fashion
5165788Smv143129 * to evenly distribute the X-calls. We don't do this
5175788Smv143129 * at a faster rate than this because we don't want
5185788Smv143129 * to affect cache performance negatively.
5195788Smv143129 */
5205788Smv143129 clock_cpu_list = clock_cpu_list->cpu_next_onln;
5215788Smv143129 }
5225788Smv143129
5235788Smv143129 mutex_exit(&clock_tick_lock);
5245788Smv143129
5255788Smv143129 clock_tick_pending = 0;
5265788Smv143129 }
5275788Smv143129
5285788Smv143129 static void
clock_tick_execute_common(int start,int scan,int end,clock_t mylbolt,int pending)5295788Smv143129 clock_tick_execute_common(int start, int scan, int end, clock_t mylbolt,
5305788Smv143129 int pending)
5315788Smv143129 {
5325788Smv143129 cpu_t *cp;
5335788Smv143129 int i;
5345788Smv143129
5355788Smv143129 ASSERT((start <= scan) && (scan <= end));
5365788Smv143129
5375788Smv143129 /*
5385788Smv143129 * Handle the thread on current CPU first. This is to prevent a
5395788Smv143129 * pinned thread from escaping if we ever block on something.
5405788Smv143129 * Note that in the single-threaded mode, this handles the clock
5415788Smv143129 * CPU.
5425788Smv143129 */
5435788Smv143129 clock_tick_process(CPU, mylbolt, pending);
5445788Smv143129
5455788Smv143129 /*
5465788Smv143129 * Perform tick accounting for the threads running on
5475788Smv143129 * the scheduled CPUs.
5485788Smv143129 */
5495788Smv143129 for (i = scan; i < end; i++) {
5505788Smv143129 cp = clock_tick_cpus[i];
5515788Smv143129 if ((cp == NULL) || (cp == CPU) || (cp->cpu_id == clock_cpu_id))
5525788Smv143129 continue;
5535788Smv143129 clock_tick_process(cp, mylbolt, pending);
5545788Smv143129 }
5555788Smv143129
5565788Smv143129 for (i = start; i < scan; i++) {
5575788Smv143129 cp = clock_tick_cpus[i];
5585788Smv143129 if ((cp == NULL) || (cp == CPU) || (cp->cpu_id == clock_cpu_id))
5595788Smv143129 continue;
5605788Smv143129 clock_tick_process(cp, mylbolt, pending);
5615788Smv143129 }
5625788Smv143129 }
5635788Smv143129
5645788Smv143129 /*ARGSUSED*/
5655788Smv143129 static uint_t
clock_tick_execute(caddr_t arg1,caddr_t arg2)5665788Smv143129 clock_tick_execute(caddr_t arg1, caddr_t arg2)
5675788Smv143129 {
5685788Smv143129 clock_tick_cpu_t *ctp;
5695788Smv143129 int start, scan, end, pending;
5705788Smv143129 clock_t mylbolt;
5715788Smv143129
5725788Smv143129 /*
5735788Smv143129 * We could have raced with cpu offline. We don't want to
5745788Smv143129 * process anything on an offlined CPU. If we got blocked
5755788Smv143129 * on anything, we may not get scheduled when we wakeup
5765788Smv143129 * later on.
5775788Smv143129 */
5785788Smv143129 if (!CLOCK_TICK_XCALL_SAFE(CPU))
5799039SMadhavan.Venkataraman@Sun.COM goto out;
5805788Smv143129
5819039SMadhavan.Venkataraman@Sun.COM ctp = clock_tick_cpu[CPU->cpu_id];
5825788Smv143129
5835788Smv143129 mutex_enter(&ctp->ct_lock);
5845788Smv143129 pending = ctp->ct_pending;
5855788Smv143129 if (pending == 0) {
5865788Smv143129 /*
5875788Smv143129 * If a CPU is busy at LOCK_LEVEL, then an invocation
5885788Smv143129 * of this softint may be queued for some time. In that case,
5895788Smv143129 * clock_tick_active will not be incremented.
5905788Smv143129 * clock_tick_schedule() will then assume that the previous
5915788Smv143129 * invocation is done and post a new softint. The first one
5925788Smv143129 * that gets in will reset the pending count so the
5935788Smv143129 * second one is a noop.
5945788Smv143129 */
5955788Smv143129 mutex_exit(&ctp->ct_lock);
5965788Smv143129 goto out;
5975788Smv143129 }
5985788Smv143129 ctp->ct_pending = 0;
5995788Smv143129 start = ctp->ct_start;
6005788Smv143129 end = ctp->ct_end;
6015788Smv143129 scan = ctp->ct_scan;
6025788Smv143129 mylbolt = ctp->ct_lbolt;
6035788Smv143129 mutex_exit(&ctp->ct_lock);
6045788Smv143129
6055788Smv143129 clock_tick_execute_common(start, scan, end, mylbolt, pending);
6065788Smv143129
6075788Smv143129 out:
6085788Smv143129 /*
6095788Smv143129 * Signal completion to the clock handler.
6105788Smv143129 */
6115788Smv143129 atomic_dec_ulong(&clock_tick_active);
6125788Smv143129
6135788Smv143129 return (1);
6145788Smv143129 }
6155788Smv143129
6165788Smv143129 /*ARGSUSED*/
6175788Smv143129 static int
clock_tick_cpu_setup(cpu_setup_t what,int cid,void * arg)6185788Smv143129 clock_tick_cpu_setup(cpu_setup_t what, int cid, void *arg)
6195788Smv143129 {
6205788Smv143129 cpu_t *cp, *ncp;
6215788Smv143129 int i, set;
6225788Smv143129 clock_tick_set_t *csp;
6235788Smv143129
6245788Smv143129 /*
6255788Smv143129 * This function performs some computations at CPU offline/online
6265788Smv143129 * time. The computed values are used during tick scheduling and
6275788Smv143129 * execution phases. This avoids having to compute things on
6285788Smv143129 * an every tick basis. The other benefit is that we perform the
6295788Smv143129 * computations only for onlined CPUs (not offlined ones). As a
6305788Smv143129 * result, no tick processing is attempted for offlined CPUs.
6315788Smv143129 *
6325788Smv143129 * Also, cpu_offline() calls this function before checking for
6335788Smv143129 * active interrupt threads. This allows us to avoid posting
6345788Smv143129 * cross calls to CPUs that are being offlined.
6355788Smv143129 */
6365788Smv143129
6375788Smv143129 cp = cpu[cid];
6385788Smv143129
6395788Smv143129 mutex_enter(&clock_tick_lock);
6405788Smv143129
6415788Smv143129 switch (what) {
6425788Smv143129 case CPU_ON:
6435788Smv143129 clock_tick_cpus[clock_tick_total_cpus] = cp;
6445788Smv143129 set = clock_tick_total_cpus / clock_tick_ncpus;
6455788Smv143129 csp = &clock_tick_set[set];
6465788Smv143129 csp->ct_end++;
6475788Smv143129 clock_tick_total_cpus++;
6485788Smv143129 clock_tick_nsets =
6495788Smv143129 (clock_tick_total_cpus + clock_tick_ncpus - 1) /
6505788Smv143129 clock_tick_ncpus;
6515788Smv143129 CPUSET_ADD(clock_tick_online_cpuset, cp->cpu_id);
6525788Smv143129 membar_sync();
6535788Smv143129 break;
6545788Smv143129
6555788Smv143129 case CPU_OFF:
6565788Smv143129 if (&sync_softint != NULL)
6575788Smv143129 sync_softint(clock_tick_online_cpuset);
6585788Smv143129 CPUSET_DEL(clock_tick_online_cpuset, cp->cpu_id);
6595788Smv143129 clock_tick_total_cpus--;
6605788Smv143129 clock_tick_cpus[clock_tick_total_cpus] = NULL;
6615788Smv143129 clock_tick_nsets =
6625788Smv143129 (clock_tick_total_cpus + clock_tick_ncpus - 1) /
6635788Smv143129 clock_tick_ncpus;
6645788Smv143129 set = clock_tick_total_cpus / clock_tick_ncpus;
6655788Smv143129 csp = &clock_tick_set[set];
6665788Smv143129 csp->ct_end--;
6675788Smv143129
6685788Smv143129 i = 0;
6695788Smv143129 ncp = cpu_active;
6705788Smv143129 do {
6715788Smv143129 if (cp == ncp)
6725788Smv143129 continue;
6735788Smv143129 clock_tick_cpus[i] = ncp;
6745788Smv143129 i++;
6755788Smv143129 } while ((ncp = ncp->cpu_next_onln) != cpu_active);
6765788Smv143129 ASSERT(i == clock_tick_total_cpus);
6775788Smv143129 membar_sync();
6785788Smv143129 break;
6795788Smv143129
6805788Smv143129 default:
6815788Smv143129 break;
6825788Smv143129 }
6835788Smv143129
6845788Smv143129 mutex_exit(&clock_tick_lock);
6855788Smv143129
6865788Smv143129 return (0);
6875788Smv143129 }
6885788Smv143129
6895788Smv143129
6905788Smv143129 void
clock_tick_mp_init(void)6915788Smv143129 clock_tick_mp_init(void)
6925788Smv143129 {
6935788Smv143129 cpu_t *cp;
6945788Smv143129
6955788Smv143129 mutex_enter(&cpu_lock);
6965788Smv143129
6975788Smv143129 cp = cpu_active;
6985788Smv143129 do {
6995788Smv143129 (void) clock_tick_cpu_setup(CPU_ON, cp->cpu_id, NULL);
7005788Smv143129 } while ((cp = cp->cpu_next_onln) != cpu_active);
7015788Smv143129
7025788Smv143129 register_cpu_setup_func(clock_tick_cpu_setup, NULL);
7035788Smv143129
7045788Smv143129 mutex_exit(&cpu_lock);
7055788Smv143129 }
706