10Sstevel@tonic-gate /* 20Sstevel@tonic-gate * CDDL HEADER START 30Sstevel@tonic-gate * 40Sstevel@tonic-gate * The contents of this file are subject to the terms of the 50Sstevel@tonic-gate * Common Development and Distribution License, Version 1.0 only 60Sstevel@tonic-gate * (the "License"). You may not use this file except in compliance 70Sstevel@tonic-gate * with the License. 80Sstevel@tonic-gate * 90Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 100Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 110Sstevel@tonic-gate * See the License for the specific language governing permissions 120Sstevel@tonic-gate * and limitations under the License. 130Sstevel@tonic-gate * 140Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 150Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 160Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 170Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 180Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 190Sstevel@tonic-gate * 200Sstevel@tonic-gate * CDDL HEADER END 210Sstevel@tonic-gate */ 220Sstevel@tonic-gate /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 230Sstevel@tonic-gate /* All Rights Reserved */ 240Sstevel@tonic-gate 250Sstevel@tonic-gate 260Sstevel@tonic-gate /* 270Sstevel@tonic-gate * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 280Sstevel@tonic-gate * Use is subject to license terms. 290Sstevel@tonic-gate */ 300Sstevel@tonic-gate 310Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 320Sstevel@tonic-gate 330Sstevel@tonic-gate #include <sys/param.h> 340Sstevel@tonic-gate #include <sys/t_lock.h> 350Sstevel@tonic-gate #include <sys/types.h> 360Sstevel@tonic-gate #include <sys/tuneable.h> 370Sstevel@tonic-gate #include <sys/sysmacros.h> 380Sstevel@tonic-gate #include <sys/systm.h> 390Sstevel@tonic-gate #include <sys/cpuvar.h> 400Sstevel@tonic-gate #include <sys/lgrp.h> 410Sstevel@tonic-gate #include <sys/user.h> 420Sstevel@tonic-gate #include <sys/proc.h> 430Sstevel@tonic-gate #include <sys/callo.h> 440Sstevel@tonic-gate #include <sys/kmem.h> 450Sstevel@tonic-gate #include <sys/var.h> 460Sstevel@tonic-gate #include <sys/cmn_err.h> 470Sstevel@tonic-gate #include <sys/swap.h> 480Sstevel@tonic-gate #include <sys/vmsystm.h> 490Sstevel@tonic-gate #include <sys/class.h> 500Sstevel@tonic-gate #include <sys/time.h> 510Sstevel@tonic-gate #include <sys/debug.h> 520Sstevel@tonic-gate #include <sys/vtrace.h> 530Sstevel@tonic-gate #include <sys/spl.h> 540Sstevel@tonic-gate #include <sys/atomic.h> 550Sstevel@tonic-gate #include <sys/dumphdr.h> 560Sstevel@tonic-gate #include <sys/archsystm.h> 570Sstevel@tonic-gate #include <sys/fs/swapnode.h> 580Sstevel@tonic-gate #include <sys/panic.h> 590Sstevel@tonic-gate #include <sys/disp.h> 600Sstevel@tonic-gate #include <sys/msacct.h> 610Sstevel@tonic-gate #include <sys/mem_cage.h> 620Sstevel@tonic-gate 630Sstevel@tonic-gate #include <vm/page.h> 640Sstevel@tonic-gate #include <vm/anon.h> 650Sstevel@tonic-gate #include <vm/rm.h> 660Sstevel@tonic-gate #include <sys/cyclic.h> 670Sstevel@tonic-gate #include <sys/cpupart.h> 680Sstevel@tonic-gate #include <sys/rctl.h> 690Sstevel@tonic-gate #include <sys/task.h> 700Sstevel@tonic-gate #include <sys/chip.h> 710Sstevel@tonic-gate #include <sys/sdt.h> 720Sstevel@tonic-gate 730Sstevel@tonic-gate /* 740Sstevel@tonic-gate * for NTP support 750Sstevel@tonic-gate */ 760Sstevel@tonic-gate #include <sys/timex.h> 770Sstevel@tonic-gate #include <sys/inttypes.h> 780Sstevel@tonic-gate 790Sstevel@tonic-gate /* 800Sstevel@tonic-gate * clock is called straight from 810Sstevel@tonic-gate * the real time clock interrupt. 820Sstevel@tonic-gate * 830Sstevel@tonic-gate * Functions: 840Sstevel@tonic-gate * reprime clock 850Sstevel@tonic-gate * schedule callouts 860Sstevel@tonic-gate * maintain date 870Sstevel@tonic-gate * jab the scheduler 880Sstevel@tonic-gate */ 890Sstevel@tonic-gate 900Sstevel@tonic-gate extern kcondvar_t fsflush_cv; 910Sstevel@tonic-gate extern sysinfo_t sysinfo; 920Sstevel@tonic-gate extern vminfo_t vminfo; 930Sstevel@tonic-gate extern int idleswtch; /* flag set while idle in pswtch() */ 940Sstevel@tonic-gate 950Sstevel@tonic-gate /* 960Sstevel@tonic-gate * high-precision avenrun values. These are needed to make the 970Sstevel@tonic-gate * regular avenrun values accurate. 980Sstevel@tonic-gate */ 990Sstevel@tonic-gate static uint64_t hp_avenrun[3]; 1000Sstevel@tonic-gate int avenrun[3]; /* FSCALED average run queue lengths */ 1010Sstevel@tonic-gate time_t time; /* time in seconds since 1970 - for compatibility only */ 1020Sstevel@tonic-gate 1030Sstevel@tonic-gate static struct loadavg_s loadavg; 1040Sstevel@tonic-gate /* 1050Sstevel@tonic-gate * Phase/frequency-lock loop (PLL/FLL) definitions 1060Sstevel@tonic-gate * 1070Sstevel@tonic-gate * The following variables are read and set by the ntp_adjtime() system 1080Sstevel@tonic-gate * call. 1090Sstevel@tonic-gate * 1100Sstevel@tonic-gate * time_state shows the state of the system clock, with values defined 1110Sstevel@tonic-gate * in the timex.h header file. 1120Sstevel@tonic-gate * 1130Sstevel@tonic-gate * time_status shows the status of the system clock, with bits defined 1140Sstevel@tonic-gate * in the timex.h header file. 1150Sstevel@tonic-gate * 1160Sstevel@tonic-gate * time_offset is used by the PLL/FLL to adjust the system time in small 1170Sstevel@tonic-gate * increments. 1180Sstevel@tonic-gate * 1190Sstevel@tonic-gate * time_constant determines the bandwidth or "stiffness" of the PLL. 1200Sstevel@tonic-gate * 1210Sstevel@tonic-gate * time_tolerance determines maximum frequency error or tolerance of the 1220Sstevel@tonic-gate * CPU clock oscillator and is a property of the architecture; however, 1230Sstevel@tonic-gate * in principle it could change as result of the presence of external 1240Sstevel@tonic-gate * discipline signals, for instance. 1250Sstevel@tonic-gate * 1260Sstevel@tonic-gate * time_precision is usually equal to the kernel tick variable; however, 1270Sstevel@tonic-gate * in cases where a precision clock counter or external clock is 1280Sstevel@tonic-gate * available, the resolution can be much less than this and depend on 1290Sstevel@tonic-gate * whether the external clock is working or not. 1300Sstevel@tonic-gate * 1310Sstevel@tonic-gate * time_maxerror is initialized by a ntp_adjtime() call and increased by 1320Sstevel@tonic-gate * the kernel once each second to reflect the maximum error bound 1330Sstevel@tonic-gate * growth. 1340Sstevel@tonic-gate * 1350Sstevel@tonic-gate * time_esterror is set and read by the ntp_adjtime() call, but 1360Sstevel@tonic-gate * otherwise not used by the kernel. 1370Sstevel@tonic-gate */ 1380Sstevel@tonic-gate int32_t time_state = TIME_OK; /* clock state */ 1390Sstevel@tonic-gate int32_t time_status = STA_UNSYNC; /* clock status bits */ 1400Sstevel@tonic-gate int32_t time_offset = 0; /* time offset (us) */ 1410Sstevel@tonic-gate int32_t time_constant = 0; /* pll time constant */ 1420Sstevel@tonic-gate int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 1430Sstevel@tonic-gate int32_t time_precision = 1; /* clock precision (us) */ 1440Sstevel@tonic-gate int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 1450Sstevel@tonic-gate int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 1460Sstevel@tonic-gate 1470Sstevel@tonic-gate /* 1480Sstevel@tonic-gate * The following variables establish the state of the PLL/FLL and the 1490Sstevel@tonic-gate * residual time and frequency offset of the local clock. The scale 1500Sstevel@tonic-gate * factors are defined in the timex.h header file. 1510Sstevel@tonic-gate * 1520Sstevel@tonic-gate * time_phase and time_freq are the phase increment and the frequency 1530Sstevel@tonic-gate * increment, respectively, of the kernel time variable. 1540Sstevel@tonic-gate * 1550Sstevel@tonic-gate * time_freq is set via ntp_adjtime() from a value stored in a file when 1560Sstevel@tonic-gate * the synchronization daemon is first started. Its value is retrieved 1570Sstevel@tonic-gate * via ntp_adjtime() and written to the file about once per hour by the 1580Sstevel@tonic-gate * daemon. 1590Sstevel@tonic-gate * 1600Sstevel@tonic-gate * time_adj is the adjustment added to the value of tick at each timer 1610Sstevel@tonic-gate * interrupt and is recomputed from time_phase and time_freq at each 1620Sstevel@tonic-gate * seconds rollover. 1630Sstevel@tonic-gate * 1640Sstevel@tonic-gate * time_reftime is the second's portion of the system time at the last 1650Sstevel@tonic-gate * call to ntp_adjtime(). It is used to adjust the time_freq variable 1660Sstevel@tonic-gate * and to increase the time_maxerror as the time since last update 1670Sstevel@tonic-gate * increases. 1680Sstevel@tonic-gate */ 1690Sstevel@tonic-gate int32_t time_phase = 0; /* phase offset (scaled us) */ 1700Sstevel@tonic-gate int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 1710Sstevel@tonic-gate int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 1720Sstevel@tonic-gate int32_t time_reftime = 0; /* time at last adjustment (s) */ 1730Sstevel@tonic-gate 1740Sstevel@tonic-gate /* 1750Sstevel@tonic-gate * The scale factors of the following variables are defined in the 1760Sstevel@tonic-gate * timex.h header file. 1770Sstevel@tonic-gate * 1780Sstevel@tonic-gate * pps_time contains the time at each calibration interval, as read by 1790Sstevel@tonic-gate * microtime(). pps_count counts the seconds of the calibration 1800Sstevel@tonic-gate * interval, the duration of which is nominally pps_shift in powers of 1810Sstevel@tonic-gate * two. 1820Sstevel@tonic-gate * 1830Sstevel@tonic-gate * pps_offset is the time offset produced by the time median filter 1840Sstevel@tonic-gate * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 1850Sstevel@tonic-gate * this filter. 1860Sstevel@tonic-gate * 1870Sstevel@tonic-gate * pps_freq is the frequency offset produced by the frequency median 1880Sstevel@tonic-gate * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 1890Sstevel@tonic-gate * by this filter. 1900Sstevel@tonic-gate * 1910Sstevel@tonic-gate * pps_usec is latched from a high resolution counter or external clock 1920Sstevel@tonic-gate * at pps_time. Here we want the hardware counter contents only, not the 1930Sstevel@tonic-gate * contents plus the time_tv.usec as usual. 1940Sstevel@tonic-gate * 1950Sstevel@tonic-gate * pps_valid counts the number of seconds since the last PPS update. It 1960Sstevel@tonic-gate * is used as a watchdog timer to disable the PPS discipline should the 1970Sstevel@tonic-gate * PPS signal be lost. 1980Sstevel@tonic-gate * 1990Sstevel@tonic-gate * pps_glitch counts the number of seconds since the beginning of an 2000Sstevel@tonic-gate * offset burst more than tick/2 from current nominal offset. It is used 2010Sstevel@tonic-gate * mainly to suppress error bursts due to priority conflicts between the 2020Sstevel@tonic-gate * PPS interrupt and timer interrupt. 2030Sstevel@tonic-gate * 2040Sstevel@tonic-gate * pps_intcnt counts the calibration intervals for use in the interval- 2050Sstevel@tonic-gate * adaptation algorithm. It's just too complicated for words. 2060Sstevel@tonic-gate */ 2070Sstevel@tonic-gate struct timeval pps_time; /* kernel time at last interval */ 2080Sstevel@tonic-gate int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 2090Sstevel@tonic-gate int32_t pps_offset = 0; /* pps time offset (us) */ 2100Sstevel@tonic-gate int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 2110Sstevel@tonic-gate int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 2120Sstevel@tonic-gate int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 2130Sstevel@tonic-gate int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 2140Sstevel@tonic-gate int32_t pps_usec = 0; /* microsec counter at last interval */ 2150Sstevel@tonic-gate int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 2160Sstevel@tonic-gate int32_t pps_glitch = 0; /* pps signal glitch counter */ 2170Sstevel@tonic-gate int32_t pps_count = 0; /* calibration interval counter (s) */ 2180Sstevel@tonic-gate int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 2190Sstevel@tonic-gate int32_t pps_intcnt = 0; /* intervals at current duration */ 2200Sstevel@tonic-gate 2210Sstevel@tonic-gate /* 2220Sstevel@tonic-gate * PPS signal quality monitors 2230Sstevel@tonic-gate * 2240Sstevel@tonic-gate * pps_jitcnt counts the seconds that have been discarded because the 2250Sstevel@tonic-gate * jitter measured by the time median filter exceeds the limit MAXTIME 2260Sstevel@tonic-gate * (100 us). 2270Sstevel@tonic-gate * 2280Sstevel@tonic-gate * pps_calcnt counts the frequency calibration intervals, which are 2290Sstevel@tonic-gate * variable from 4 s to 256 s. 2300Sstevel@tonic-gate * 2310Sstevel@tonic-gate * pps_errcnt counts the calibration intervals which have been discarded 2320Sstevel@tonic-gate * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 2330Sstevel@tonic-gate * calibration interval jitter exceeds two ticks. 2340Sstevel@tonic-gate * 2350Sstevel@tonic-gate * pps_stbcnt counts the calibration intervals that have been discarded 2360Sstevel@tonic-gate * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 2370Sstevel@tonic-gate */ 2380Sstevel@tonic-gate int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 2390Sstevel@tonic-gate int32_t pps_calcnt = 0; /* calibration intervals */ 2400Sstevel@tonic-gate int32_t pps_errcnt = 0; /* calibration errors */ 2410Sstevel@tonic-gate int32_t pps_stbcnt = 0; /* stability limit exceeded */ 2420Sstevel@tonic-gate 2430Sstevel@tonic-gate /* The following variables require no explicit locking */ 2440Sstevel@tonic-gate volatile clock_t lbolt; /* time in Hz since last boot */ 2450Sstevel@tonic-gate volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 2460Sstevel@tonic-gate 2470Sstevel@tonic-gate kcondvar_t lbolt_cv; 2480Sstevel@tonic-gate int one_sec = 1; /* turned on once every second */ 2490Sstevel@tonic-gate static int fsflushcnt; /* counter for t_fsflushr */ 2500Sstevel@tonic-gate int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 2510Sstevel@tonic-gate int tod_needsync = 0; /* need to sync tod chip with software time */ 2520Sstevel@tonic-gate static int tod_broken = 0; /* clock chip doesn't work */ 2530Sstevel@tonic-gate time_t boot_time = 0; /* Boot time in seconds since 1970 */ 2540Sstevel@tonic-gate cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 2550Sstevel@tonic-gate cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 2560Sstevel@tonic-gate 2570Sstevel@tonic-gate static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 2580Sstevel@tonic-gate 2590Sstevel@tonic-gate /* 2600Sstevel@tonic-gate * rechoose_interval_history is used to detect when rechoose_interval's 2610Sstevel@tonic-gate * value has changed (via hotpatching for example), so that the 2620Sstevel@tonic-gate * cached values in the cpu structures may be updated. 2630Sstevel@tonic-gate */ 2640Sstevel@tonic-gate static int rechoose_interval_history = RECHOOSE_INTERVAL; 2650Sstevel@tonic-gate 2660Sstevel@tonic-gate /* 2670Sstevel@tonic-gate * for tod fault detection 2680Sstevel@tonic-gate */ 2690Sstevel@tonic-gate #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 2700Sstevel@tonic-gate #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 2710Sstevel@tonic-gate #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 2720Sstevel@tonic-gate #define TOD_FILTER_N 4 2730Sstevel@tonic-gate #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 2740Sstevel@tonic-gate static int tod_faulted = TOD_NOFAULT; 2750Sstevel@tonic-gate static int tod_fault_reset_flag = 0; 2760Sstevel@tonic-gate 2770Sstevel@tonic-gate /* patchable via /etc/system */ 2780Sstevel@tonic-gate int tod_validate_enable = 1; 2790Sstevel@tonic-gate 2800Sstevel@tonic-gate /* 2810Sstevel@tonic-gate * tod_fault_table[] must be aligned with 2820Sstevel@tonic-gate * enum tod_fault_type in systm.h 2830Sstevel@tonic-gate */ 2840Sstevel@tonic-gate static char *tod_fault_table[] = { 2850Sstevel@tonic-gate "Reversed", /* TOD_REVERSED */ 2860Sstevel@tonic-gate "Stalled", /* TOD_STALLED */ 2870Sstevel@tonic-gate "Jumped", /* TOD_JUMPED */ 2880Sstevel@tonic-gate "Changed in Clock Rate" /* TOD_RATECHANGED */ 2890Sstevel@tonic-gate /* 2900Sstevel@tonic-gate * no strings needed for TOD_NOFAULT 2910Sstevel@tonic-gate */ 2920Sstevel@tonic-gate }; 2930Sstevel@tonic-gate 2940Sstevel@tonic-gate /* 2950Sstevel@tonic-gate * test hook for tod broken detection in tod_validate 2960Sstevel@tonic-gate */ 2970Sstevel@tonic-gate int tod_unit_test = 0; 2980Sstevel@tonic-gate time_t tod_test_injector; 2990Sstevel@tonic-gate 3000Sstevel@tonic-gate #define CLOCK_ADJ_HIST_SIZE 4 3010Sstevel@tonic-gate 3020Sstevel@tonic-gate static int adj_hist_entry; 3030Sstevel@tonic-gate 3040Sstevel@tonic-gate int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 3050Sstevel@tonic-gate 3060Sstevel@tonic-gate static void clock_tick(kthread_t *); 3070Sstevel@tonic-gate static void calcloadavg(int, uint64_t *); 3080Sstevel@tonic-gate static int genloadavg(struct loadavg_s *); 3090Sstevel@tonic-gate static void loadavg_update(); 3100Sstevel@tonic-gate 3110Sstevel@tonic-gate void (*cmm_clock_callout)() = NULL; 3120Sstevel@tonic-gate 3130Sstevel@tonic-gate #ifdef KSLICE 3140Sstevel@tonic-gate int kslice = KSLICE; 3150Sstevel@tonic-gate #endif 3160Sstevel@tonic-gate 3170Sstevel@tonic-gate static void 3180Sstevel@tonic-gate clock(void) 3190Sstevel@tonic-gate { 3200Sstevel@tonic-gate kthread_t *t; 3210Sstevel@tonic-gate kmutex_t *plockp; /* pointer to thread's process lock */ 3220Sstevel@tonic-gate int pinned_intr = 0; 3230Sstevel@tonic-gate uint_t nrunnable, nrunning; 3240Sstevel@tonic-gate uint_t w_io; 3250Sstevel@tonic-gate cpu_t *cp; 3260Sstevel@tonic-gate cpupart_t *cpupart; 3270Sstevel@tonic-gate int exiting; 3280Sstevel@tonic-gate extern void set_anoninfo(); 3290Sstevel@tonic-gate extern void set_freemem(); 3300Sstevel@tonic-gate void (*funcp)(); 3310Sstevel@tonic-gate int32_t ltemp; 3320Sstevel@tonic-gate int64_t lltemp; 3330Sstevel@tonic-gate int s; 3340Sstevel@tonic-gate int do_lgrp_load; 3350Sstevel@tonic-gate int rechoose_update = 0; 3360Sstevel@tonic-gate int rechoose; 3370Sstevel@tonic-gate int i; 3380Sstevel@tonic-gate 3390Sstevel@tonic-gate if (panicstr) 3400Sstevel@tonic-gate return; 3410Sstevel@tonic-gate 3420Sstevel@tonic-gate set_anoninfo(); 3430Sstevel@tonic-gate /* 3440Sstevel@tonic-gate * Make sure that 'freemem' do not drift too far from the truth 3450Sstevel@tonic-gate */ 3460Sstevel@tonic-gate set_freemem(); 3470Sstevel@tonic-gate 3480Sstevel@tonic-gate 3490Sstevel@tonic-gate /* 3500Sstevel@tonic-gate * Before the section which is repeated is executed, we do 3510Sstevel@tonic-gate * the time delta processing which occurs every clock tick 3520Sstevel@tonic-gate * 3530Sstevel@tonic-gate * There is additional processing which happens every time 3540Sstevel@tonic-gate * the nanosecond counter rolls over which is described 3550Sstevel@tonic-gate * below - see the section which begins with : if (one_sec) 3560Sstevel@tonic-gate * 3570Sstevel@tonic-gate * This section marks the beginning of the precision-kernel 3580Sstevel@tonic-gate * code fragment. 3590Sstevel@tonic-gate * 3600Sstevel@tonic-gate * First, compute the phase adjustment. If the low-order bits 3610Sstevel@tonic-gate * (time_phase) of the update overflow, bump the higher order 3620Sstevel@tonic-gate * bits (time_update). 3630Sstevel@tonic-gate */ 3640Sstevel@tonic-gate time_phase += time_adj; 3650Sstevel@tonic-gate if (time_phase <= -FINEUSEC) { 3660Sstevel@tonic-gate ltemp = -time_phase / SCALE_PHASE; 3670Sstevel@tonic-gate time_phase += ltemp * SCALE_PHASE; 3680Sstevel@tonic-gate s = hr_clock_lock(); 3690Sstevel@tonic-gate timedelta -= ltemp * (NANOSEC/MICROSEC); 3700Sstevel@tonic-gate hr_clock_unlock(s); 3710Sstevel@tonic-gate } else if (time_phase >= FINEUSEC) { 3720Sstevel@tonic-gate ltemp = time_phase / SCALE_PHASE; 3730Sstevel@tonic-gate time_phase -= ltemp * SCALE_PHASE; 3740Sstevel@tonic-gate s = hr_clock_lock(); 3750Sstevel@tonic-gate timedelta += ltemp * (NANOSEC/MICROSEC); 3760Sstevel@tonic-gate hr_clock_unlock(s); 3770Sstevel@tonic-gate } 3780Sstevel@tonic-gate 3790Sstevel@tonic-gate /* 3800Sstevel@tonic-gate * End of precision-kernel code fragment which is processed 3810Sstevel@tonic-gate * every timer interrupt. 3820Sstevel@tonic-gate * 3830Sstevel@tonic-gate * Continue with the interrupt processing as scheduled. 3840Sstevel@tonic-gate * 3850Sstevel@tonic-gate * Did we pin another interrupt thread? Need to check this before 3860Sstevel@tonic-gate * grabbing any adaptive locks, since if we block on a lock the 3870Sstevel@tonic-gate * pinned thread could escape. Note that this is just a heuristic; 3880Sstevel@tonic-gate * if we take multiple laps though clock() without returning from 3890Sstevel@tonic-gate * the interrupt because we have another clock tick pending, then 3900Sstevel@tonic-gate * the pinned interrupt could be released by one of the previous 3910Sstevel@tonic-gate * laps. The only consequence is that the CPU will be counted as 3920Sstevel@tonic-gate * in idle (or wait) state once the pinned interrupt is released. 3930Sstevel@tonic-gate * Since this accounting is inaccurate by nature, this isn't a big 3940Sstevel@tonic-gate * deal --- but we should try to get it right in the common case 3950Sstevel@tonic-gate * where we only call clock() once per interrupt. 3960Sstevel@tonic-gate */ 3970Sstevel@tonic-gate if (curthread->t_intr != NULL) 3980Sstevel@tonic-gate pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 3990Sstevel@tonic-gate 4000Sstevel@tonic-gate /* 4010Sstevel@tonic-gate * Count the number of runnable threads and the number waiting 4020Sstevel@tonic-gate * for some form of I/O to complete -- gets added to 4030Sstevel@tonic-gate * sysinfo.waiting. To know the state of the system, must add 4040Sstevel@tonic-gate * wait counts from all CPUs. Also add up the per-partition 4050Sstevel@tonic-gate * statistics. 4060Sstevel@tonic-gate */ 4070Sstevel@tonic-gate w_io = 0; 4080Sstevel@tonic-gate nrunnable = 0; 4090Sstevel@tonic-gate 4100Sstevel@tonic-gate /* 4110Sstevel@tonic-gate * keep track of when to update lgrp/part loads 4120Sstevel@tonic-gate */ 4130Sstevel@tonic-gate 4140Sstevel@tonic-gate do_lgrp_load = 0; 4150Sstevel@tonic-gate if (lgrp_ticks++ >= hz / 10) { 4160Sstevel@tonic-gate lgrp_ticks = 0; 4170Sstevel@tonic-gate do_lgrp_load = 1; 4180Sstevel@tonic-gate } 4190Sstevel@tonic-gate 4200Sstevel@tonic-gate /* 4210Sstevel@tonic-gate * The dispatcher tunable rechoose_interval may be hot-patched. 4220Sstevel@tonic-gate * Note if it has a new value. If so, the effective rechoose_interval 4230Sstevel@tonic-gate * cached in the cpu structures needs to be updated. 4240Sstevel@tonic-gate * If needed we'll do this during the walk of the cpu_list below. 4250Sstevel@tonic-gate */ 4260Sstevel@tonic-gate if (rechoose_interval != rechoose_interval_history) { 4270Sstevel@tonic-gate rechoose_interval_history = rechoose_interval; 4280Sstevel@tonic-gate rechoose_update = 1; 4290Sstevel@tonic-gate } 4300Sstevel@tonic-gate 4310Sstevel@tonic-gate if (one_sec) 4320Sstevel@tonic-gate loadavg_update(); 4330Sstevel@tonic-gate 4340Sstevel@tonic-gate 4350Sstevel@tonic-gate /* 4360Sstevel@tonic-gate * First count the threads waiting on kpreempt queues in each 4370Sstevel@tonic-gate * CPU partition. 4380Sstevel@tonic-gate */ 4390Sstevel@tonic-gate 4400Sstevel@tonic-gate cpupart = cp_list_head; 4410Sstevel@tonic-gate do { 4420Sstevel@tonic-gate uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 4430Sstevel@tonic-gate 4440Sstevel@tonic-gate cpupart->cp_updates++; 4450Sstevel@tonic-gate nrunnable += cpupart_nrunnable; 4460Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpupart_nrunnable; 4470Sstevel@tonic-gate if (one_sec) { 4480Sstevel@tonic-gate cpupart->cp_nrunning = 0; 4490Sstevel@tonic-gate cpupart->cp_nrunnable = cpupart_nrunnable; 4500Sstevel@tonic-gate } 4510Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 4520Sstevel@tonic-gate 4530Sstevel@tonic-gate 4540Sstevel@tonic-gate /* Now count the per-CPU statistics. */ 4550Sstevel@tonic-gate cp = cpu_list; 4560Sstevel@tonic-gate do { 4570Sstevel@tonic-gate uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 4580Sstevel@tonic-gate 4590Sstevel@tonic-gate nrunnable += cpu_nrunnable; 4600Sstevel@tonic-gate cpupart = cp->cpu_part; 4610Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpu_nrunnable; 4620Sstevel@tonic-gate if (one_sec) 4630Sstevel@tonic-gate cpupart->cp_nrunnable += cpu_nrunnable; 4640Sstevel@tonic-gate if (do_lgrp_load && 4650Sstevel@tonic-gate (cp->cpu_flags & CPU_EXISTS)) { 4660Sstevel@tonic-gate /* 4670Sstevel@tonic-gate * When updating the lgroup's load average, 4680Sstevel@tonic-gate * account for the thread running on the CPU. 4690Sstevel@tonic-gate * If the CPU is the current one, then we need 4700Sstevel@tonic-gate * to account for the underlying thread which 4710Sstevel@tonic-gate * got the clock interrupt not the thread that is 4720Sstevel@tonic-gate * handling the interrupt and caculating the load 4730Sstevel@tonic-gate * average 4740Sstevel@tonic-gate */ 4750Sstevel@tonic-gate t = cp->cpu_thread; 4760Sstevel@tonic-gate if (CPU == cp) 4770Sstevel@tonic-gate t = t->t_intr; 4780Sstevel@tonic-gate 4790Sstevel@tonic-gate /* 4800Sstevel@tonic-gate * Account for the load average for this thread if 4810Sstevel@tonic-gate * it isn't the idle thread or it is on the interrupt 4820Sstevel@tonic-gate * stack and not the current CPU handling the clock 4830Sstevel@tonic-gate * interrupt 4840Sstevel@tonic-gate */ 4850Sstevel@tonic-gate if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 4860Sstevel@tonic-gate CPU_ON_INTR(cp))) { 4870Sstevel@tonic-gate if (t->t_lpl == cp->cpu_lpl) { 4880Sstevel@tonic-gate /* local thread */ 4890Sstevel@tonic-gate cpu_nrunnable++; 4900Sstevel@tonic-gate } else { 4910Sstevel@tonic-gate /* 4920Sstevel@tonic-gate * This is a remote thread, charge it 4930Sstevel@tonic-gate * against its home lgroup. Note that 4940Sstevel@tonic-gate * we notice that a thread is remote 4950Sstevel@tonic-gate * only if it's currently executing. 4960Sstevel@tonic-gate * This is a reasonable approximation, 4970Sstevel@tonic-gate * since queued remote threads are rare. 4980Sstevel@tonic-gate * Note also that if we didn't charge 4990Sstevel@tonic-gate * it to its home lgroup, remote 5000Sstevel@tonic-gate * execution would often make a system 5010Sstevel@tonic-gate * appear balanced even though it was 5020Sstevel@tonic-gate * not, and thread placement/migration 5030Sstevel@tonic-gate * would often not be done correctly. 5040Sstevel@tonic-gate */ 5050Sstevel@tonic-gate lgrp_loadavg(t->t_lpl, 5060Sstevel@tonic-gate LGRP_LOADAVG_IN_THREAD_MAX, 0); 5070Sstevel@tonic-gate } 5080Sstevel@tonic-gate } 5090Sstevel@tonic-gate lgrp_loadavg(cp->cpu_lpl, 5100Sstevel@tonic-gate cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 5110Sstevel@tonic-gate } 5120Sstevel@tonic-gate /* 5130Sstevel@tonic-gate * The platform may define a per physical processor 5140Sstevel@tonic-gate * adjustment of rechoose_interval. The effective 5150Sstevel@tonic-gate * (base + adjustment) rechoose_interval is cached 5160Sstevel@tonic-gate * in the cpu structures for efficiency. Above we detect 5170Sstevel@tonic-gate * if the cached values need updating, and here is where 5180Sstevel@tonic-gate * the update happens. 5190Sstevel@tonic-gate */ 5200Sstevel@tonic-gate if (rechoose_update) { 5210Sstevel@tonic-gate rechoose = rechoose_interval + 5220Sstevel@tonic-gate cp->cpu_chip->chip_rechoose_adj; 5230Sstevel@tonic-gate cp->cpu_rechoose = (rechoose < 0) ? 0 : rechoose; 5240Sstevel@tonic-gate } 5250Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 5260Sstevel@tonic-gate 5270Sstevel@tonic-gate /* 5280Sstevel@tonic-gate * Do tick processing for all the active threads running in 5290Sstevel@tonic-gate * the system. 5300Sstevel@tonic-gate */ 5310Sstevel@tonic-gate cp = cpu_list; 5320Sstevel@tonic-gate nrunning = 0; 5330Sstevel@tonic-gate do { 5340Sstevel@tonic-gate klwp_id_t lwp; 5350Sstevel@tonic-gate int intr; 5360Sstevel@tonic-gate int thread_away; 5370Sstevel@tonic-gate 5380Sstevel@tonic-gate /* 5390Sstevel@tonic-gate * Don't do any tick processing on CPUs that 5400Sstevel@tonic-gate * aren't even in the system or aren't up yet. 5410Sstevel@tonic-gate */ 5420Sstevel@tonic-gate if ((cp->cpu_flags & CPU_EXISTS) == 0) { 5430Sstevel@tonic-gate continue; 5440Sstevel@tonic-gate } 5450Sstevel@tonic-gate 5460Sstevel@tonic-gate /* 5470Sstevel@tonic-gate * The locking here is rather tricky. We use 5480Sstevel@tonic-gate * thread_free_lock to keep the currently running 5490Sstevel@tonic-gate * thread from being freed or recycled while we're 5500Sstevel@tonic-gate * looking at it. We can then check if the thread 5510Sstevel@tonic-gate * is exiting and get the appropriate p_lock if it 5520Sstevel@tonic-gate * is not. We have to be careful, though, because 5530Sstevel@tonic-gate * the _process_ can still be freed while we're 5540Sstevel@tonic-gate * holding thread_free_lock. To avoid touching the 5550Sstevel@tonic-gate * proc structure we put a pointer to the p_lock in the 5560Sstevel@tonic-gate * thread structure. The p_lock is persistent so we 5570Sstevel@tonic-gate * can acquire it even if the process is gone. At that 5580Sstevel@tonic-gate * point we can check (again) if the thread is exiting 5590Sstevel@tonic-gate * and either drop the lock or do the tick processing. 5600Sstevel@tonic-gate */ 5610Sstevel@tonic-gate mutex_enter(&thread_free_lock); 5620Sstevel@tonic-gate /* 5630Sstevel@tonic-gate * We cannot hold the cpu_lock to prevent the 5640Sstevel@tonic-gate * cpu_list from changing in the clock interrupt. 5650Sstevel@tonic-gate * As long as we don't block (or don't get pre-empted) 5660Sstevel@tonic-gate * the cpu_list will not change (all threads are paused 5670Sstevel@tonic-gate * before list modification). If the list does change 5680Sstevel@tonic-gate * any deleted cpu structures will remain with cpu_next 5690Sstevel@tonic-gate * set to NULL, hence the following test. 5700Sstevel@tonic-gate */ 5710Sstevel@tonic-gate if (cp->cpu_next == NULL) { 5720Sstevel@tonic-gate mutex_exit(&thread_free_lock); 5730Sstevel@tonic-gate break; 5740Sstevel@tonic-gate } 5750Sstevel@tonic-gate t = cp->cpu_thread; /* Current running thread */ 5760Sstevel@tonic-gate if (CPU == cp) { 5770Sstevel@tonic-gate /* 5780Sstevel@tonic-gate * 't' will be the clock interrupt thread on this 5790Sstevel@tonic-gate * CPU. Use the pinned thread (if any) on this CPU 5800Sstevel@tonic-gate * as the target of the clock tick. If we pinned 5810Sstevel@tonic-gate * an interrupt, though, just keep using the clock 5820Sstevel@tonic-gate * interrupt thread since the formerly pinned one 5830Sstevel@tonic-gate * may have gone away. One interrupt thread is as 5840Sstevel@tonic-gate * good as another, and this means we don't have 5850Sstevel@tonic-gate * to continue to check pinned_intr in subsequent 5860Sstevel@tonic-gate * code. 5870Sstevel@tonic-gate */ 5880Sstevel@tonic-gate ASSERT(t == curthread); 5890Sstevel@tonic-gate if (t->t_intr != NULL && !pinned_intr) 5900Sstevel@tonic-gate t = t->t_intr; 5910Sstevel@tonic-gate } 5920Sstevel@tonic-gate 5930Sstevel@tonic-gate intr = t->t_flag & T_INTR_THREAD; 5940Sstevel@tonic-gate lwp = ttolwp(t); 5950Sstevel@tonic-gate if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 5960Sstevel@tonic-gate /* 5970Sstevel@tonic-gate * Thread is exiting (or uninteresting) so don't 5980Sstevel@tonic-gate * do tick processing or grab p_lock. Once we 5990Sstevel@tonic-gate * drop thread_free_lock we can't look inside the 6000Sstevel@tonic-gate * thread or lwp structure, since the thread may 6010Sstevel@tonic-gate * have gone away. 6020Sstevel@tonic-gate */ 6030Sstevel@tonic-gate exiting = 1; 6040Sstevel@tonic-gate } else { 6050Sstevel@tonic-gate /* 6060Sstevel@tonic-gate * OK, try to grab the process lock. See 6070Sstevel@tonic-gate * comments above for why we're not using 6080Sstevel@tonic-gate * ttoproc(t)->p_lockp here. 6090Sstevel@tonic-gate */ 6100Sstevel@tonic-gate plockp = t->t_plockp; 6110Sstevel@tonic-gate mutex_enter(plockp); 6120Sstevel@tonic-gate /* See above comment. */ 6130Sstevel@tonic-gate if (cp->cpu_next == NULL) { 6140Sstevel@tonic-gate mutex_exit(plockp); 6150Sstevel@tonic-gate mutex_exit(&thread_free_lock); 6160Sstevel@tonic-gate break; 6170Sstevel@tonic-gate } 6180Sstevel@tonic-gate /* 6190Sstevel@tonic-gate * The thread may have exited between when we 6200Sstevel@tonic-gate * checked above, and when we got the p_lock. 6210Sstevel@tonic-gate */ 6220Sstevel@tonic-gate if (t->t_proc_flag & TP_LWPEXIT) { 6230Sstevel@tonic-gate mutex_exit(plockp); 6240Sstevel@tonic-gate exiting = 1; 6250Sstevel@tonic-gate } else { 6260Sstevel@tonic-gate exiting = 0; 6270Sstevel@tonic-gate } 6280Sstevel@tonic-gate } 6290Sstevel@tonic-gate /* 6300Sstevel@tonic-gate * Either we have the p_lock for the thread's process, 6310Sstevel@tonic-gate * or we don't care about the thread structure any more. 6320Sstevel@tonic-gate * Either way we can drop thread_free_lock. 6330Sstevel@tonic-gate */ 6340Sstevel@tonic-gate mutex_exit(&thread_free_lock); 6350Sstevel@tonic-gate 6360Sstevel@tonic-gate /* 6370Sstevel@tonic-gate * Update user, system, and idle cpu times. 6380Sstevel@tonic-gate */ 6390Sstevel@tonic-gate if (one_sec) { 6400Sstevel@tonic-gate nrunning++; 6410Sstevel@tonic-gate cp->cpu_part->cp_nrunning++; 6420Sstevel@tonic-gate } 6430Sstevel@tonic-gate /* 6440Sstevel@tonic-gate * If we haven't done tick processing for this 6450Sstevel@tonic-gate * lwp, then do it now. Since we don't hold the 6460Sstevel@tonic-gate * lwp down on a CPU it can migrate and show up 6470Sstevel@tonic-gate * more than once, hence the lbolt check. 6480Sstevel@tonic-gate * 6490Sstevel@tonic-gate * Also, make sure that it's okay to perform the 6500Sstevel@tonic-gate * tick processing before calling clock_tick. 6510Sstevel@tonic-gate * Setting thread_away to a TRUE value (ie. not 0) 6520Sstevel@tonic-gate * results in tick processing not being performed for 6530Sstevel@tonic-gate * that thread. Or, in other words, keeps the thread 6540Sstevel@tonic-gate * away from clock_tick processing. 6550Sstevel@tonic-gate */ 6560Sstevel@tonic-gate thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 6570Sstevel@tonic-gate CPU_ON_INTR(cp) || intr || 6580Sstevel@tonic-gate (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 6590Sstevel@tonic-gate 6600Sstevel@tonic-gate if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 6610Sstevel@tonic-gate t->t_lbolt = lbolt; 6620Sstevel@tonic-gate clock_tick(t); 6630Sstevel@tonic-gate } 6640Sstevel@tonic-gate 6650Sstevel@tonic-gate #ifdef KSLICE 6660Sstevel@tonic-gate /* 6670Sstevel@tonic-gate * Ah what the heck, give this kid a taste of the real 6680Sstevel@tonic-gate * world and yank the rug out from under it. 6690Sstevel@tonic-gate * But, only if we are running UniProcessor. 6700Sstevel@tonic-gate */ 6710Sstevel@tonic-gate if ((kslice) && (ncpus == 1)) { 6720Sstevel@tonic-gate aston(t); 6730Sstevel@tonic-gate cp->cpu_runrun = 1; 6740Sstevel@tonic-gate cp->cpu_kprunrun = 1; 6750Sstevel@tonic-gate } 6760Sstevel@tonic-gate #endif 6770Sstevel@tonic-gate if (!exiting) 6780Sstevel@tonic-gate mutex_exit(plockp); 6790Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 6800Sstevel@tonic-gate 6810Sstevel@tonic-gate /* 6820Sstevel@tonic-gate * bump time in ticks 6830Sstevel@tonic-gate * 6840Sstevel@tonic-gate * We rely on there being only one clock thread and hence 6850Sstevel@tonic-gate * don't need a lock to protect lbolt. 6860Sstevel@tonic-gate */ 6870Sstevel@tonic-gate lbolt++; 6880Sstevel@tonic-gate atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 6890Sstevel@tonic-gate 6900Sstevel@tonic-gate /* 6910Sstevel@tonic-gate * Check for a callout that needs be called from the clock 6920Sstevel@tonic-gate * thread to support the membership protocol in a clustered 6930Sstevel@tonic-gate * system. Copy the function pointer so that we can reset 6940Sstevel@tonic-gate * this to NULL if needed. 6950Sstevel@tonic-gate */ 6960Sstevel@tonic-gate if ((funcp = cmm_clock_callout) != NULL) 6970Sstevel@tonic-gate (*funcp)(); 6980Sstevel@tonic-gate 6990Sstevel@tonic-gate /* 7000Sstevel@tonic-gate * Wakeup the cageout thread waiters once per second. 7010Sstevel@tonic-gate */ 7020Sstevel@tonic-gate if (one_sec) 7030Sstevel@tonic-gate kcage_tick(); 7040Sstevel@tonic-gate 7050Sstevel@tonic-gate /* 7060Sstevel@tonic-gate * Schedule timeout() requests if any are due at this time. 7070Sstevel@tonic-gate */ 7080Sstevel@tonic-gate callout_schedule(); 7090Sstevel@tonic-gate 7100Sstevel@tonic-gate if (one_sec) { 7110Sstevel@tonic-gate 7120Sstevel@tonic-gate int drift, absdrift; 7130Sstevel@tonic-gate timestruc_t tod; 7140Sstevel@tonic-gate int s; 7150Sstevel@tonic-gate 7160Sstevel@tonic-gate /* 7170Sstevel@tonic-gate * Beginning of precision-kernel code fragment executed 7180Sstevel@tonic-gate * every second. 7190Sstevel@tonic-gate * 7200Sstevel@tonic-gate * On rollover of the second the phase adjustment to be 7210Sstevel@tonic-gate * used for the next second is calculated. Also, the 7220Sstevel@tonic-gate * maximum error is increased by the tolerance. If the 7230Sstevel@tonic-gate * PPS frequency discipline code is present, the phase is 7240Sstevel@tonic-gate * increased to compensate for the CPU clock oscillator 7250Sstevel@tonic-gate * frequency error. 7260Sstevel@tonic-gate * 7270Sstevel@tonic-gate * On a 32-bit machine and given parameters in the timex.h 7280Sstevel@tonic-gate * header file, the maximum phase adjustment is +-512 ms 7290Sstevel@tonic-gate * and maximum frequency offset is (a tad less than) 7300Sstevel@tonic-gate * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 7310Sstevel@tonic-gate */ 7320Sstevel@tonic-gate time_maxerror += time_tolerance / SCALE_USEC; 7330Sstevel@tonic-gate 7340Sstevel@tonic-gate /* 7350Sstevel@tonic-gate * Leap second processing. If in leap-insert state at 7360Sstevel@tonic-gate * the end of the day, the system clock is set back one 7370Sstevel@tonic-gate * second; if in leap-delete state, the system clock is 7380Sstevel@tonic-gate * set ahead one second. The microtime() routine or 7390Sstevel@tonic-gate * external clock driver will insure that reported time 7400Sstevel@tonic-gate * is always monotonic. The ugly divides should be 7410Sstevel@tonic-gate * replaced. 7420Sstevel@tonic-gate */ 7430Sstevel@tonic-gate switch (time_state) { 7440Sstevel@tonic-gate 7450Sstevel@tonic-gate case TIME_OK: 7460Sstevel@tonic-gate if (time_status & STA_INS) 7470Sstevel@tonic-gate time_state = TIME_INS; 7480Sstevel@tonic-gate else if (time_status & STA_DEL) 7490Sstevel@tonic-gate time_state = TIME_DEL; 7500Sstevel@tonic-gate break; 7510Sstevel@tonic-gate 7520Sstevel@tonic-gate case TIME_INS: 7530Sstevel@tonic-gate if (hrestime.tv_sec % 86400 == 0) { 7540Sstevel@tonic-gate s = hr_clock_lock(); 7550Sstevel@tonic-gate hrestime.tv_sec--; 7560Sstevel@tonic-gate hr_clock_unlock(s); 7570Sstevel@tonic-gate time_state = TIME_OOP; 7580Sstevel@tonic-gate } 7590Sstevel@tonic-gate break; 7600Sstevel@tonic-gate 7610Sstevel@tonic-gate case TIME_DEL: 7620Sstevel@tonic-gate if ((hrestime.tv_sec + 1) % 86400 == 0) { 7630Sstevel@tonic-gate s = hr_clock_lock(); 7640Sstevel@tonic-gate hrestime.tv_sec++; 7650Sstevel@tonic-gate hr_clock_unlock(s); 7660Sstevel@tonic-gate time_state = TIME_WAIT; 7670Sstevel@tonic-gate } 7680Sstevel@tonic-gate break; 7690Sstevel@tonic-gate 7700Sstevel@tonic-gate case TIME_OOP: 7710Sstevel@tonic-gate time_state = TIME_WAIT; 7720Sstevel@tonic-gate break; 7730Sstevel@tonic-gate 7740Sstevel@tonic-gate case TIME_WAIT: 7750Sstevel@tonic-gate if (!(time_status & (STA_INS | STA_DEL))) 7760Sstevel@tonic-gate time_state = TIME_OK; 7770Sstevel@tonic-gate default: 7780Sstevel@tonic-gate break; 7790Sstevel@tonic-gate } 7800Sstevel@tonic-gate 7810Sstevel@tonic-gate /* 7820Sstevel@tonic-gate * Compute the phase adjustment for the next second. In 7830Sstevel@tonic-gate * PLL mode, the offset is reduced by a fixed factor 7840Sstevel@tonic-gate * times the time constant. In FLL mode the offset is 7850Sstevel@tonic-gate * used directly. In either mode, the maximum phase 7860Sstevel@tonic-gate * adjustment for each second is clamped so as to spread 7870Sstevel@tonic-gate * the adjustment over not more than the number of 7880Sstevel@tonic-gate * seconds between updates. 7890Sstevel@tonic-gate */ 7900Sstevel@tonic-gate if (time_offset == 0) 7910Sstevel@tonic-gate time_adj = 0; 7920Sstevel@tonic-gate else if (time_offset < 0) { 7930Sstevel@tonic-gate lltemp = -time_offset; 7940Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 7950Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 7960Sstevel@tonic-gate lltemp *= (1 << time_constant) / 7970Sstevel@tonic-gate SCALE_KG; 7980Sstevel@tonic-gate else 7990Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 8000Sstevel@tonic-gate time_constant; 8010Sstevel@tonic-gate } 8020Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 8030Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 8040Sstevel@tonic-gate time_offset += lltemp; 8050Sstevel@tonic-gate time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 8060Sstevel@tonic-gate } else { 8070Sstevel@tonic-gate lltemp = time_offset; 8080Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 8090Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 8100Sstevel@tonic-gate lltemp *= (1 << time_constant) / 8110Sstevel@tonic-gate SCALE_KG; 8120Sstevel@tonic-gate else 8130Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 8140Sstevel@tonic-gate time_constant; 8150Sstevel@tonic-gate } 8160Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 8170Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 8180Sstevel@tonic-gate time_offset -= lltemp; 8190Sstevel@tonic-gate time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 8200Sstevel@tonic-gate } 8210Sstevel@tonic-gate 8220Sstevel@tonic-gate /* 8230Sstevel@tonic-gate * Compute the frequency estimate and additional phase 8240Sstevel@tonic-gate * adjustment due to frequency error for the next 8250Sstevel@tonic-gate * second. When the PPS signal is engaged, gnaw on the 8260Sstevel@tonic-gate * watchdog counter and update the frequency computed by 8270Sstevel@tonic-gate * the pll and the PPS signal. 8280Sstevel@tonic-gate */ 8290Sstevel@tonic-gate pps_valid++; 8300Sstevel@tonic-gate if (pps_valid == PPS_VALID) { 8310Sstevel@tonic-gate pps_jitter = MAXTIME; 8320Sstevel@tonic-gate pps_stabil = MAXFREQ; 8330Sstevel@tonic-gate time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 8340Sstevel@tonic-gate STA_PPSWANDER | STA_PPSERROR); 8350Sstevel@tonic-gate } 8360Sstevel@tonic-gate lltemp = time_freq + pps_freq; 8370Sstevel@tonic-gate 8380Sstevel@tonic-gate if (lltemp) 8390Sstevel@tonic-gate time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 8400Sstevel@tonic-gate 8410Sstevel@tonic-gate /* 8420Sstevel@tonic-gate * End of precision kernel-code fragment 8430Sstevel@tonic-gate * 8440Sstevel@tonic-gate * The section below should be modified if we are planning 8450Sstevel@tonic-gate * to use NTP for synchronization. 8460Sstevel@tonic-gate * 8470Sstevel@tonic-gate * Note: the clock synchronization code now assumes 8480Sstevel@tonic-gate * the following: 8490Sstevel@tonic-gate * - if dosynctodr is 1, then compute the drift between 8500Sstevel@tonic-gate * the tod chip and software time and adjust one or 8510Sstevel@tonic-gate * the other depending on the circumstances 8520Sstevel@tonic-gate * 8530Sstevel@tonic-gate * - if dosynctodr is 0, then the tod chip is independent 8540Sstevel@tonic-gate * of the software clock and should not be adjusted, 8550Sstevel@tonic-gate * but allowed to free run. this allows NTP to sync. 8560Sstevel@tonic-gate * hrestime without any interference from the tod chip. 8570Sstevel@tonic-gate */ 8580Sstevel@tonic-gate 8590Sstevel@tonic-gate mutex_enter(&tod_lock); 8600Sstevel@tonic-gate tod = tod_get(); 8610Sstevel@tonic-gate drift = tod.tv_sec - hrestime.tv_sec; 8620Sstevel@tonic-gate absdrift = (drift >= 0) ? drift : -drift; 8630Sstevel@tonic-gate if (tod_needsync || absdrift > 1) { 8640Sstevel@tonic-gate int s; 8650Sstevel@tonic-gate if (absdrift > 2) { 8660Sstevel@tonic-gate if (!tod_broken && tod_faulted == TOD_NOFAULT) { 8670Sstevel@tonic-gate s = hr_clock_lock(); 8680Sstevel@tonic-gate hrestime = tod; 8690Sstevel@tonic-gate membar_enter(); /* hrestime visible */ 8700Sstevel@tonic-gate timedelta = 0; 8710Sstevel@tonic-gate timechanged++; 8720Sstevel@tonic-gate tod_needsync = 0; 8730Sstevel@tonic-gate hr_clock_unlock(s); 8740Sstevel@tonic-gate } 8750Sstevel@tonic-gate } else { 8760Sstevel@tonic-gate if (tod_needsync || !dosynctodr) { 8770Sstevel@tonic-gate gethrestime(&tod); 8780Sstevel@tonic-gate tod_set(tod); 8790Sstevel@tonic-gate s = hr_clock_lock(); 8800Sstevel@tonic-gate if (timedelta == 0) 8810Sstevel@tonic-gate tod_needsync = 0; 8820Sstevel@tonic-gate hr_clock_unlock(s); 8830Sstevel@tonic-gate } else { 8840Sstevel@tonic-gate /* 8850Sstevel@tonic-gate * If the drift is 2 seconds on the 8860Sstevel@tonic-gate * money, then the TOD is adjusting 8870Sstevel@tonic-gate * the clock; record that. 8880Sstevel@tonic-gate */ 8890Sstevel@tonic-gate clock_adj_hist[adj_hist_entry++ % 8900Sstevel@tonic-gate CLOCK_ADJ_HIST_SIZE] = lbolt64; 8910Sstevel@tonic-gate s = hr_clock_lock(); 8920Sstevel@tonic-gate timedelta = (int64_t)drift*NANOSEC; 8930Sstevel@tonic-gate hr_clock_unlock(s); 8940Sstevel@tonic-gate } 8950Sstevel@tonic-gate } 8960Sstevel@tonic-gate } 8970Sstevel@tonic-gate one_sec = 0; 8980Sstevel@tonic-gate time = gethrestime_sec(); /* for crusty old kmem readers */ 8990Sstevel@tonic-gate mutex_exit(&tod_lock); 9000Sstevel@tonic-gate 9010Sstevel@tonic-gate /* 9020Sstevel@tonic-gate * Some drivers still depend on this... XXX 9030Sstevel@tonic-gate */ 9040Sstevel@tonic-gate cv_broadcast(&lbolt_cv); 9050Sstevel@tonic-gate 9060Sstevel@tonic-gate sysinfo.updates++; 9070Sstevel@tonic-gate vminfo.freemem += freemem; 9080Sstevel@tonic-gate { 9090Sstevel@tonic-gate pgcnt_t maxswap, resv, free; 9100Sstevel@tonic-gate pgcnt_t avail = 9110Sstevel@tonic-gate MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 9120Sstevel@tonic-gate 9130Sstevel@tonic-gate maxswap = k_anoninfo.ani_mem_resv 9140Sstevel@tonic-gate + k_anoninfo.ani_max +avail; 9150Sstevel@tonic-gate free = k_anoninfo.ani_free + avail; 9160Sstevel@tonic-gate resv = k_anoninfo.ani_phys_resv + 9170Sstevel@tonic-gate k_anoninfo.ani_mem_resv; 9180Sstevel@tonic-gate 9190Sstevel@tonic-gate vminfo.swap_resv += resv; 9200Sstevel@tonic-gate /* number of reserved and allocated pages */ 9210Sstevel@tonic-gate #ifdef DEBUG 9220Sstevel@tonic-gate if (maxswap < free) 9230Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < free"); 9240Sstevel@tonic-gate if (maxswap < resv) 9250Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < resv"); 9260Sstevel@tonic-gate #endif 9270Sstevel@tonic-gate vminfo.swap_alloc += maxswap - free; 9280Sstevel@tonic-gate vminfo.swap_avail += maxswap - resv; 9290Sstevel@tonic-gate vminfo.swap_free += free; 9300Sstevel@tonic-gate } 9310Sstevel@tonic-gate if (nrunnable) { 9320Sstevel@tonic-gate sysinfo.runque += nrunnable; 9330Sstevel@tonic-gate sysinfo.runocc++; 9340Sstevel@tonic-gate } 9350Sstevel@tonic-gate if (nswapped) { 9360Sstevel@tonic-gate sysinfo.swpque += nswapped; 9370Sstevel@tonic-gate sysinfo.swpocc++; 9380Sstevel@tonic-gate } 9390Sstevel@tonic-gate sysinfo.waiting += w_io; 9400Sstevel@tonic-gate 9410Sstevel@tonic-gate /* 9420Sstevel@tonic-gate * Wake up fsflush to write out DELWRI 9430Sstevel@tonic-gate * buffers, dirty pages and other cached 9440Sstevel@tonic-gate * administrative data, e.g. inodes. 9450Sstevel@tonic-gate */ 9460Sstevel@tonic-gate if (--fsflushcnt <= 0) { 9470Sstevel@tonic-gate fsflushcnt = tune.t_fsflushr; 9480Sstevel@tonic-gate cv_signal(&fsflush_cv); 9490Sstevel@tonic-gate } 9500Sstevel@tonic-gate 9510Sstevel@tonic-gate vmmeter(); 9520Sstevel@tonic-gate calcloadavg(genloadavg(&loadavg), hp_avenrun); 9530Sstevel@tonic-gate for (i = 0; i < 3; i++) 9540Sstevel@tonic-gate /* 9550Sstevel@tonic-gate * At the moment avenrun[] can only hold 31 9560Sstevel@tonic-gate * bits of load average as it is a signed 9570Sstevel@tonic-gate * int in the API. We need to ensure that 9580Sstevel@tonic-gate * hp_avenrun[i] >> (16 - FSHIFT) will not be 9590Sstevel@tonic-gate * too large. If it is, we put the largest value 9600Sstevel@tonic-gate * that we can use into avenrun[i]. This is 9610Sstevel@tonic-gate * kludgey, but about all we can do until we 9620Sstevel@tonic-gate * avenrun[] is declared as an array of uint64[] 9630Sstevel@tonic-gate */ 9640Sstevel@tonic-gate if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 9650Sstevel@tonic-gate avenrun[i] = (int32_t)(hp_avenrun[i] >> 9660Sstevel@tonic-gate (16 - FSHIFT)); 9670Sstevel@tonic-gate else 9680Sstevel@tonic-gate avenrun[i] = 0x7fffffff; 9690Sstevel@tonic-gate 9700Sstevel@tonic-gate cpupart = cp_list_head; 9710Sstevel@tonic-gate do { 9720Sstevel@tonic-gate calcloadavg(genloadavg(&cpupart->cp_loadavg), 9730Sstevel@tonic-gate cpupart->cp_hp_avenrun); 9740Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 9750Sstevel@tonic-gate 9760Sstevel@tonic-gate /* 9770Sstevel@tonic-gate * Wake up the swapper thread if necessary. 9780Sstevel@tonic-gate */ 9790Sstevel@tonic-gate if (runin || 9800Sstevel@tonic-gate (runout && (avefree < desfree || wake_sched_sec))) { 9810Sstevel@tonic-gate t = &t0; 9820Sstevel@tonic-gate thread_lock(t); 9830Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 9840Sstevel@tonic-gate runin = runout = 0; 9850Sstevel@tonic-gate wake_sched_sec = 0; 9860Sstevel@tonic-gate t->t_whystop = 0; 9870Sstevel@tonic-gate t->t_whatstop = 0; 9880Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 9890Sstevel@tonic-gate THREAD_TRANSITION(t); 9900Sstevel@tonic-gate setfrontdq(t); 9910Sstevel@tonic-gate } 9920Sstevel@tonic-gate thread_unlock(t); 9930Sstevel@tonic-gate } 9940Sstevel@tonic-gate } 9950Sstevel@tonic-gate 9960Sstevel@tonic-gate /* 9970Sstevel@tonic-gate * Wake up the swapper if any high priority swapped-out threads 9980Sstevel@tonic-gate * became runable during the last tick. 9990Sstevel@tonic-gate */ 10000Sstevel@tonic-gate if (wake_sched) { 10010Sstevel@tonic-gate t = &t0; 10020Sstevel@tonic-gate thread_lock(t); 10030Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 10040Sstevel@tonic-gate runin = runout = 0; 10050Sstevel@tonic-gate wake_sched = 0; 10060Sstevel@tonic-gate t->t_whystop = 0; 10070Sstevel@tonic-gate t->t_whatstop = 0; 10080Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 10090Sstevel@tonic-gate THREAD_TRANSITION(t); 10100Sstevel@tonic-gate setfrontdq(t); 10110Sstevel@tonic-gate } 10120Sstevel@tonic-gate thread_unlock(t); 10130Sstevel@tonic-gate } 10140Sstevel@tonic-gate } 10150Sstevel@tonic-gate 10160Sstevel@tonic-gate void 10170Sstevel@tonic-gate clock_init(void) 10180Sstevel@tonic-gate { 10190Sstevel@tonic-gate cyc_handler_t hdlr; 10200Sstevel@tonic-gate cyc_time_t when; 10210Sstevel@tonic-gate 10220Sstevel@tonic-gate hdlr.cyh_func = (cyc_func_t)clock; 10230Sstevel@tonic-gate hdlr.cyh_level = CY_LOCK_LEVEL; 10240Sstevel@tonic-gate hdlr.cyh_arg = NULL; 10250Sstevel@tonic-gate 10260Sstevel@tonic-gate when.cyt_when = 0; 10270Sstevel@tonic-gate when.cyt_interval = nsec_per_tick; 10280Sstevel@tonic-gate 10290Sstevel@tonic-gate mutex_enter(&cpu_lock); 10300Sstevel@tonic-gate clock_cyclic = cyclic_add(&hdlr, &when); 10310Sstevel@tonic-gate mutex_exit(&cpu_lock); 10320Sstevel@tonic-gate } 10330Sstevel@tonic-gate 10340Sstevel@tonic-gate /* 10350Sstevel@tonic-gate * Called before calcloadavg to get 10-sec moving loadavg together 10360Sstevel@tonic-gate */ 10370Sstevel@tonic-gate 10380Sstevel@tonic-gate static int 10390Sstevel@tonic-gate genloadavg(struct loadavg_s *avgs) 10400Sstevel@tonic-gate { 10410Sstevel@tonic-gate int avg; 10420Sstevel@tonic-gate int spos; /* starting position */ 10430Sstevel@tonic-gate int cpos; /* moving current position */ 10440Sstevel@tonic-gate int i; 10450Sstevel@tonic-gate int slen; 10460Sstevel@tonic-gate hrtime_t hr_avg; 10470Sstevel@tonic-gate 10480Sstevel@tonic-gate /* 10-second snapshot, calculate first positon */ 10490Sstevel@tonic-gate if (avgs->lg_len == 0) { 10500Sstevel@tonic-gate return (0); 10510Sstevel@tonic-gate } 10520Sstevel@tonic-gate slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 10530Sstevel@tonic-gate 10540Sstevel@tonic-gate spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 10550Sstevel@tonic-gate S_LOADAVG_SZ + (avgs->lg_cur - 1); 10560Sstevel@tonic-gate for (i = hr_avg = 0; i < slen; i++) { 10570Sstevel@tonic-gate cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 10580Sstevel@tonic-gate hr_avg += avgs->lg_loads[cpos]; 10590Sstevel@tonic-gate } 10600Sstevel@tonic-gate 10610Sstevel@tonic-gate hr_avg = hr_avg / slen; 10620Sstevel@tonic-gate avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 10630Sstevel@tonic-gate 10640Sstevel@tonic-gate return (avg); 10650Sstevel@tonic-gate } 10660Sstevel@tonic-gate 10670Sstevel@tonic-gate /* 10680Sstevel@tonic-gate * Run every second from clock () to update the loadavg count available to the 10690Sstevel@tonic-gate * system and cpu-partitions. 10700Sstevel@tonic-gate * 10710Sstevel@tonic-gate * This works by sampling the previous usr, sys, wait time elapsed, 10720Sstevel@tonic-gate * computing a delta, and adding that delta to the elapsed usr, sys, 10730Sstevel@tonic-gate * wait increase. 10740Sstevel@tonic-gate */ 10750Sstevel@tonic-gate 10760Sstevel@tonic-gate static void 10770Sstevel@tonic-gate loadavg_update() 10780Sstevel@tonic-gate { 10790Sstevel@tonic-gate cpu_t *cp; 10800Sstevel@tonic-gate cpupart_t *cpupart; 10810Sstevel@tonic-gate hrtime_t cpu_total; 10820Sstevel@tonic-gate int prev; 10830Sstevel@tonic-gate 10840Sstevel@tonic-gate cp = cpu_list; 10850Sstevel@tonic-gate loadavg.lg_total = 0; 10860Sstevel@tonic-gate 10870Sstevel@tonic-gate /* 10880Sstevel@tonic-gate * first pass totals up per-cpu statistics for system and cpu 10890Sstevel@tonic-gate * partitions 10900Sstevel@tonic-gate */ 10910Sstevel@tonic-gate 10920Sstevel@tonic-gate do { 10930Sstevel@tonic-gate struct loadavg_s *lavg; 10940Sstevel@tonic-gate 10950Sstevel@tonic-gate lavg = &cp->cpu_loadavg; 10960Sstevel@tonic-gate 10970Sstevel@tonic-gate cpu_total = cp->cpu_acct[CMS_USER] + 10980Sstevel@tonic-gate cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 10990Sstevel@tonic-gate /* compute delta against last total */ 11000Sstevel@tonic-gate scalehrtime(&cpu_total); 11010Sstevel@tonic-gate prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 11020Sstevel@tonic-gate S_LOADAVG_SZ + (lavg->lg_cur - 1); 11030Sstevel@tonic-gate if (lavg->lg_loads[prev] <= 0) { 11040Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 11050Sstevel@tonic-gate cpu_total = 0; 11060Sstevel@tonic-gate } else { 11070Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 11080Sstevel@tonic-gate cpu_total = cpu_total - lavg->lg_loads[prev]; 11090Sstevel@tonic-gate if (cpu_total < 0) 11100Sstevel@tonic-gate cpu_total = 0; 11110Sstevel@tonic-gate } 11120Sstevel@tonic-gate 11130Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 11140Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 11150Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 11160Sstevel@tonic-gate 11170Sstevel@tonic-gate loadavg.lg_total += cpu_total; 11180Sstevel@tonic-gate cp->cpu_part->cp_loadavg.lg_total += cpu_total; 11190Sstevel@tonic-gate 11200Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 11210Sstevel@tonic-gate 11220Sstevel@tonic-gate loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 11230Sstevel@tonic-gate loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 11240Sstevel@tonic-gate loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 11250Sstevel@tonic-gate loadavg.lg_len + 1 : S_LOADAVG_SZ; 11260Sstevel@tonic-gate /* 11270Sstevel@tonic-gate * Second pass updates counts 11280Sstevel@tonic-gate */ 11290Sstevel@tonic-gate cpupart = cp_list_head; 11300Sstevel@tonic-gate 11310Sstevel@tonic-gate do { 11320Sstevel@tonic-gate struct loadavg_s *lavg; 11330Sstevel@tonic-gate 11340Sstevel@tonic-gate lavg = &cpupart->cp_loadavg; 11350Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 11360Sstevel@tonic-gate lavg->lg_total = 0; 11370Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 11380Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 11390Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 11400Sstevel@tonic-gate 11410Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 11420Sstevel@tonic-gate 11430Sstevel@tonic-gate } 11440Sstevel@tonic-gate 11450Sstevel@tonic-gate /* 11460Sstevel@tonic-gate * clock_update() - local clock update 11470Sstevel@tonic-gate * 11480Sstevel@tonic-gate * This routine is called by ntp_adjtime() to update the local clock 11490Sstevel@tonic-gate * phase and frequency. The implementation is of an 11500Sstevel@tonic-gate * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 11510Sstevel@tonic-gate * routine computes new time and frequency offset estimates for each 11520Sstevel@tonic-gate * call. The PPS signal itself determines the new time offset, 11530Sstevel@tonic-gate * instead of the calling argument. Presumably, calls to 11540Sstevel@tonic-gate * ntp_adjtime() occur only when the caller believes the local clock 11550Sstevel@tonic-gate * is valid within some bound (+-128 ms with NTP). If the caller's 11560Sstevel@tonic-gate * time is far different than the PPS time, an argument will ensue, 11570Sstevel@tonic-gate * and it's not clear who will lose. 11580Sstevel@tonic-gate * 11590Sstevel@tonic-gate * For uncompensated quartz crystal oscillatores and nominal update 11600Sstevel@tonic-gate * intervals less than 1024 s, operation should be in phase-lock mode 11610Sstevel@tonic-gate * (STA_FLL = 0), where the loop is disciplined to phase. For update 11620Sstevel@tonic-gate * intervals greater than this, operation should be in frequency-lock 11630Sstevel@tonic-gate * mode (STA_FLL = 1), where the loop is disciplined to frequency. 11640Sstevel@tonic-gate * 11650Sstevel@tonic-gate * Note: mutex(&tod_lock) is in effect. 11660Sstevel@tonic-gate */ 11670Sstevel@tonic-gate void 11680Sstevel@tonic-gate clock_update(int offset) 11690Sstevel@tonic-gate { 11700Sstevel@tonic-gate int ltemp, mtemp, s; 11710Sstevel@tonic-gate 11720Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 11730Sstevel@tonic-gate 11740Sstevel@tonic-gate if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 11750Sstevel@tonic-gate return; 11760Sstevel@tonic-gate ltemp = offset; 11770Sstevel@tonic-gate if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 11780Sstevel@tonic-gate ltemp = pps_offset; 11790Sstevel@tonic-gate 11800Sstevel@tonic-gate /* 11810Sstevel@tonic-gate * Scale the phase adjustment and clamp to the operating range. 11820Sstevel@tonic-gate */ 11830Sstevel@tonic-gate if (ltemp > MAXPHASE) 11840Sstevel@tonic-gate time_offset = MAXPHASE * SCALE_UPDATE; 11850Sstevel@tonic-gate else if (ltemp < -MAXPHASE) 11860Sstevel@tonic-gate time_offset = -(MAXPHASE * SCALE_UPDATE); 11870Sstevel@tonic-gate else 11880Sstevel@tonic-gate time_offset = ltemp * SCALE_UPDATE; 11890Sstevel@tonic-gate 11900Sstevel@tonic-gate /* 11910Sstevel@tonic-gate * Select whether the frequency is to be controlled and in which 11920Sstevel@tonic-gate * mode (PLL or FLL). Clamp to the operating range. Ugly 11930Sstevel@tonic-gate * multiply/divide should be replaced someday. 11940Sstevel@tonic-gate */ 11950Sstevel@tonic-gate if (time_status & STA_FREQHOLD || time_reftime == 0) 11960Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 11970Sstevel@tonic-gate 11980Sstevel@tonic-gate mtemp = hrestime.tv_sec - time_reftime; 11990Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 12000Sstevel@tonic-gate 12010Sstevel@tonic-gate if (time_status & STA_FLL) { 12020Sstevel@tonic-gate if (mtemp >= MINSEC) { 12030Sstevel@tonic-gate ltemp = ((time_offset / mtemp) * (SCALE_USEC / 12040Sstevel@tonic-gate SCALE_UPDATE)); 12050Sstevel@tonic-gate if (ltemp) 12060Sstevel@tonic-gate time_freq += ltemp / SCALE_KH; 12070Sstevel@tonic-gate } 12080Sstevel@tonic-gate } else { 12090Sstevel@tonic-gate if (mtemp < MAXSEC) { 12100Sstevel@tonic-gate ltemp *= mtemp; 12110Sstevel@tonic-gate if (ltemp) 12120Sstevel@tonic-gate time_freq += (int)(((int64_t)ltemp * 12130Sstevel@tonic-gate SCALE_USEC) / SCALE_KF) 12140Sstevel@tonic-gate / (1 << (time_constant * 2)); 12150Sstevel@tonic-gate } 12160Sstevel@tonic-gate } 12170Sstevel@tonic-gate if (time_freq > time_tolerance) 12180Sstevel@tonic-gate time_freq = time_tolerance; 12190Sstevel@tonic-gate else if (time_freq < -time_tolerance) 12200Sstevel@tonic-gate time_freq = -time_tolerance; 12210Sstevel@tonic-gate 12220Sstevel@tonic-gate s = hr_clock_lock(); 12230Sstevel@tonic-gate tod_needsync = 1; 12240Sstevel@tonic-gate hr_clock_unlock(s); 12250Sstevel@tonic-gate } 12260Sstevel@tonic-gate 12270Sstevel@tonic-gate /* 12280Sstevel@tonic-gate * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 12290Sstevel@tonic-gate * 12300Sstevel@tonic-gate * This routine is called at each PPS interrupt in order to discipline 12310Sstevel@tonic-gate * the CPU clock oscillator to the PPS signal. It measures the PPS phase 12320Sstevel@tonic-gate * and leaves it in a handy spot for the clock() routine. It 12330Sstevel@tonic-gate * integrates successive PPS phase differences and calculates the 12340Sstevel@tonic-gate * frequency offset. This is used in clock() to discipline the CPU 12350Sstevel@tonic-gate * clock oscillator so that intrinsic frequency error is cancelled out. 12360Sstevel@tonic-gate * The code requires the caller to capture the time and hardware counter 12370Sstevel@tonic-gate * value at the on-time PPS signal transition. 12380Sstevel@tonic-gate * 12390Sstevel@tonic-gate * Note that, on some Unix systems, this routine runs at an interrupt 12400Sstevel@tonic-gate * priority level higher than the timer interrupt routine clock(). 12410Sstevel@tonic-gate * Therefore, the variables used are distinct from the clock() 12420Sstevel@tonic-gate * variables, except for certain exceptions: The PPS frequency pps_freq 12430Sstevel@tonic-gate * and phase pps_offset variables are determined by this routine and 12440Sstevel@tonic-gate * updated atomically. The time_tolerance variable can be considered a 12450Sstevel@tonic-gate * constant, since it is infrequently changed, and then only when the 12460Sstevel@tonic-gate * PPS signal is disabled. The watchdog counter pps_valid is updated 12470Sstevel@tonic-gate * once per second by clock() and is atomically cleared in this 12480Sstevel@tonic-gate * routine. 12490Sstevel@tonic-gate * 12500Sstevel@tonic-gate * tvp is the time of the last tick; usec is a microsecond count since the 12510Sstevel@tonic-gate * last tick. 12520Sstevel@tonic-gate * 12530Sstevel@tonic-gate * Note: In Solaris systems, the tick value is actually given by 12540Sstevel@tonic-gate * usec_per_tick. This is called from the serial driver cdintr(), 12550Sstevel@tonic-gate * or equivalent, at a high PIL. Because the kernel keeps a 12560Sstevel@tonic-gate * highresolution time, the following code can accept either 12570Sstevel@tonic-gate * the traditional argument pair, or the current highres timestamp 12580Sstevel@tonic-gate * in tvp and zero in usec. 12590Sstevel@tonic-gate */ 12600Sstevel@tonic-gate void 12610Sstevel@tonic-gate ddi_hardpps(struct timeval *tvp, int usec) 12620Sstevel@tonic-gate { 12630Sstevel@tonic-gate int u_usec, v_usec, bigtick; 12640Sstevel@tonic-gate time_t cal_sec; 12650Sstevel@tonic-gate int cal_usec; 12660Sstevel@tonic-gate 12670Sstevel@tonic-gate /* 12680Sstevel@tonic-gate * An occasional glitch can be produced when the PPS interrupt 12690Sstevel@tonic-gate * occurs in the clock() routine before the time variable is 12700Sstevel@tonic-gate * updated. Here the offset is discarded when the difference 12710Sstevel@tonic-gate * between it and the last one is greater than tick/2, but not 12720Sstevel@tonic-gate * if the interval since the first discard exceeds 30 s. 12730Sstevel@tonic-gate */ 12740Sstevel@tonic-gate time_status |= STA_PPSSIGNAL; 12750Sstevel@tonic-gate time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 12760Sstevel@tonic-gate pps_valid = 0; 12770Sstevel@tonic-gate u_usec = -tvp->tv_usec; 12780Sstevel@tonic-gate if (u_usec < -(MICROSEC/2)) 12790Sstevel@tonic-gate u_usec += MICROSEC; 12800Sstevel@tonic-gate v_usec = pps_offset - u_usec; 12810Sstevel@tonic-gate if (v_usec < 0) 12820Sstevel@tonic-gate v_usec = -v_usec; 12830Sstevel@tonic-gate if (v_usec > (usec_per_tick >> 1)) { 12840Sstevel@tonic-gate if (pps_glitch > MAXGLITCH) { 12850Sstevel@tonic-gate pps_glitch = 0; 12860Sstevel@tonic-gate pps_tf[2] = u_usec; 12870Sstevel@tonic-gate pps_tf[1] = u_usec; 12880Sstevel@tonic-gate } else { 12890Sstevel@tonic-gate pps_glitch++; 12900Sstevel@tonic-gate u_usec = pps_offset; 12910Sstevel@tonic-gate } 12920Sstevel@tonic-gate } else 12930Sstevel@tonic-gate pps_glitch = 0; 12940Sstevel@tonic-gate 12950Sstevel@tonic-gate /* 12960Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 12970Sstevel@tonic-gate * time. The median sample becomes the time offset estimate; the 12980Sstevel@tonic-gate * difference between the other two samples becomes the time 12990Sstevel@tonic-gate * dispersion (jitter) estimate. 13000Sstevel@tonic-gate */ 13010Sstevel@tonic-gate pps_tf[2] = pps_tf[1]; 13020Sstevel@tonic-gate pps_tf[1] = pps_tf[0]; 13030Sstevel@tonic-gate pps_tf[0] = u_usec; 13040Sstevel@tonic-gate if (pps_tf[0] > pps_tf[1]) { 13050Sstevel@tonic-gate if (pps_tf[1] > pps_tf[2]) { 13060Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 0 1 2 */ 13070Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[2]; 13080Sstevel@tonic-gate } else if (pps_tf[2] > pps_tf[0]) { 13090Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 2 0 1 */ 13100Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[1]; 13110Sstevel@tonic-gate } else { 13120Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 0 2 1 */ 13130Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[1]; 13140Sstevel@tonic-gate } 13150Sstevel@tonic-gate } else { 13160Sstevel@tonic-gate if (pps_tf[1] < pps_tf[2]) { 13170Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 2 1 0 */ 13180Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[0]; 13190Sstevel@tonic-gate } else if (pps_tf[2] < pps_tf[0]) { 13200Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 1 0 2 */ 13210Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[2]; 13220Sstevel@tonic-gate } else { 13230Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 1 2 0 */ 13240Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[0]; 13250Sstevel@tonic-gate } 13260Sstevel@tonic-gate } 13270Sstevel@tonic-gate if (v_usec > MAXTIME) 13280Sstevel@tonic-gate pps_jitcnt++; 13290Sstevel@tonic-gate v_usec = (v_usec << PPS_AVG) - pps_jitter; 13300Sstevel@tonic-gate pps_jitter += v_usec / (1 << PPS_AVG); 13310Sstevel@tonic-gate if (pps_jitter > (MAXTIME >> 1)) 13320Sstevel@tonic-gate time_status |= STA_PPSJITTER; 13330Sstevel@tonic-gate 13340Sstevel@tonic-gate /* 13350Sstevel@tonic-gate * During the calibration interval adjust the starting time when 13360Sstevel@tonic-gate * the tick overflows. At the end of the interval compute the 13370Sstevel@tonic-gate * duration of the interval and the difference of the hardware 13380Sstevel@tonic-gate * counters at the beginning and end of the interval. This code 13390Sstevel@tonic-gate * is deliciously complicated by the fact valid differences may 13400Sstevel@tonic-gate * exceed the value of tick when using long calibration 13410Sstevel@tonic-gate * intervals and small ticks. Note that the counter can be 13420Sstevel@tonic-gate * greater than tick if caught at just the wrong instant, but 13430Sstevel@tonic-gate * the values returned and used here are correct. 13440Sstevel@tonic-gate */ 13450Sstevel@tonic-gate bigtick = (int)usec_per_tick * SCALE_USEC; 13460Sstevel@tonic-gate pps_usec -= pps_freq; 13470Sstevel@tonic-gate if (pps_usec >= bigtick) 13480Sstevel@tonic-gate pps_usec -= bigtick; 13490Sstevel@tonic-gate if (pps_usec < 0) 13500Sstevel@tonic-gate pps_usec += bigtick; 13510Sstevel@tonic-gate pps_time.tv_sec++; 13520Sstevel@tonic-gate pps_count++; 13530Sstevel@tonic-gate if (pps_count < (1 << pps_shift)) 13540Sstevel@tonic-gate return; 13550Sstevel@tonic-gate pps_count = 0; 13560Sstevel@tonic-gate pps_calcnt++; 13570Sstevel@tonic-gate u_usec = usec * SCALE_USEC; 13580Sstevel@tonic-gate v_usec = pps_usec - u_usec; 13590Sstevel@tonic-gate if (v_usec >= bigtick >> 1) 13600Sstevel@tonic-gate v_usec -= bigtick; 13610Sstevel@tonic-gate if (v_usec < -(bigtick >> 1)) 13620Sstevel@tonic-gate v_usec += bigtick; 13630Sstevel@tonic-gate if (v_usec < 0) 13640Sstevel@tonic-gate v_usec = -(-v_usec >> pps_shift); 13650Sstevel@tonic-gate else 13660Sstevel@tonic-gate v_usec = v_usec >> pps_shift; 13670Sstevel@tonic-gate pps_usec = u_usec; 13680Sstevel@tonic-gate cal_sec = tvp->tv_sec; 13690Sstevel@tonic-gate cal_usec = tvp->tv_usec; 13700Sstevel@tonic-gate cal_sec -= pps_time.tv_sec; 13710Sstevel@tonic-gate cal_usec -= pps_time.tv_usec; 13720Sstevel@tonic-gate if (cal_usec < 0) { 13730Sstevel@tonic-gate cal_usec += MICROSEC; 13740Sstevel@tonic-gate cal_sec--; 13750Sstevel@tonic-gate } 13760Sstevel@tonic-gate pps_time = *tvp; 13770Sstevel@tonic-gate 13780Sstevel@tonic-gate /* 13790Sstevel@tonic-gate * Check for lost interrupts, noise, excessive jitter and 13800Sstevel@tonic-gate * excessive frequency error. The number of timer ticks during 13810Sstevel@tonic-gate * the interval may vary +-1 tick. Add to this a margin of one 13820Sstevel@tonic-gate * tick for the PPS signal jitter and maximum frequency 13830Sstevel@tonic-gate * deviation. If the limits are exceeded, the calibration 13840Sstevel@tonic-gate * interval is reset to the minimum and we start over. 13850Sstevel@tonic-gate */ 13860Sstevel@tonic-gate u_usec = (int)usec_per_tick << 1; 13870Sstevel@tonic-gate if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 13880Sstevel@tonic-gate (cal_sec == 0 && cal_usec < u_usec)) || 13890Sstevel@tonic-gate v_usec > time_tolerance || v_usec < -time_tolerance) { 13900Sstevel@tonic-gate pps_errcnt++; 13910Sstevel@tonic-gate pps_shift = PPS_SHIFT; 13920Sstevel@tonic-gate pps_intcnt = 0; 13930Sstevel@tonic-gate time_status |= STA_PPSERROR; 13940Sstevel@tonic-gate return; 13950Sstevel@tonic-gate } 13960Sstevel@tonic-gate 13970Sstevel@tonic-gate /* 13980Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 13990Sstevel@tonic-gate * frequency. The median sample becomes the frequency offset 14000Sstevel@tonic-gate * estimate; the difference between the other two samples 14010Sstevel@tonic-gate * becomes the frequency dispersion (stability) estimate. 14020Sstevel@tonic-gate */ 14030Sstevel@tonic-gate pps_ff[2] = pps_ff[1]; 14040Sstevel@tonic-gate pps_ff[1] = pps_ff[0]; 14050Sstevel@tonic-gate pps_ff[0] = v_usec; 14060Sstevel@tonic-gate if (pps_ff[0] > pps_ff[1]) { 14070Sstevel@tonic-gate if (pps_ff[1] > pps_ff[2]) { 14080Sstevel@tonic-gate u_usec = pps_ff[1]; /* 0 1 2 */ 14090Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[2]; 14100Sstevel@tonic-gate } else if (pps_ff[2] > pps_ff[0]) { 14110Sstevel@tonic-gate u_usec = pps_ff[0]; /* 2 0 1 */ 14120Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[1]; 14130Sstevel@tonic-gate } else { 14140Sstevel@tonic-gate u_usec = pps_ff[2]; /* 0 2 1 */ 14150Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[1]; 14160Sstevel@tonic-gate } 14170Sstevel@tonic-gate } else { 14180Sstevel@tonic-gate if (pps_ff[1] < pps_ff[2]) { 14190Sstevel@tonic-gate u_usec = pps_ff[1]; /* 2 1 0 */ 14200Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[0]; 14210Sstevel@tonic-gate } else if (pps_ff[2] < pps_ff[0]) { 14220Sstevel@tonic-gate u_usec = pps_ff[0]; /* 1 0 2 */ 14230Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[2]; 14240Sstevel@tonic-gate } else { 14250Sstevel@tonic-gate u_usec = pps_ff[2]; /* 1 2 0 */ 14260Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[0]; 14270Sstevel@tonic-gate } 14280Sstevel@tonic-gate } 14290Sstevel@tonic-gate 14300Sstevel@tonic-gate /* 14310Sstevel@tonic-gate * Here the frequency dispersion (stability) is updated. If it 14320Sstevel@tonic-gate * is less than one-fourth the maximum (MAXFREQ), the frequency 14330Sstevel@tonic-gate * offset is updated as well, but clamped to the tolerance. It 14340Sstevel@tonic-gate * will be processed later by the clock() routine. 14350Sstevel@tonic-gate */ 14360Sstevel@tonic-gate v_usec = (v_usec >> 1) - pps_stabil; 14370Sstevel@tonic-gate if (v_usec < 0) 14380Sstevel@tonic-gate pps_stabil -= -v_usec >> PPS_AVG; 14390Sstevel@tonic-gate else 14400Sstevel@tonic-gate pps_stabil += v_usec >> PPS_AVG; 14410Sstevel@tonic-gate if (pps_stabil > MAXFREQ >> 2) { 14420Sstevel@tonic-gate pps_stbcnt++; 14430Sstevel@tonic-gate time_status |= STA_PPSWANDER; 14440Sstevel@tonic-gate return; 14450Sstevel@tonic-gate } 14460Sstevel@tonic-gate if (time_status & STA_PPSFREQ) { 14470Sstevel@tonic-gate if (u_usec < 0) { 14480Sstevel@tonic-gate pps_freq -= -u_usec >> PPS_AVG; 14490Sstevel@tonic-gate if (pps_freq < -time_tolerance) 14500Sstevel@tonic-gate pps_freq = -time_tolerance; 14510Sstevel@tonic-gate u_usec = -u_usec; 14520Sstevel@tonic-gate } else { 14530Sstevel@tonic-gate pps_freq += u_usec >> PPS_AVG; 14540Sstevel@tonic-gate if (pps_freq > time_tolerance) 14550Sstevel@tonic-gate pps_freq = time_tolerance; 14560Sstevel@tonic-gate } 14570Sstevel@tonic-gate } 14580Sstevel@tonic-gate 14590Sstevel@tonic-gate /* 14600Sstevel@tonic-gate * Here the calibration interval is adjusted. If the maximum 14610Sstevel@tonic-gate * time difference is greater than tick / 4, reduce the interval 14620Sstevel@tonic-gate * by half. If this is not the case for four consecutive 14630Sstevel@tonic-gate * intervals, double the interval. 14640Sstevel@tonic-gate */ 14650Sstevel@tonic-gate if (u_usec << pps_shift > bigtick >> 2) { 14660Sstevel@tonic-gate pps_intcnt = 0; 14670Sstevel@tonic-gate if (pps_shift > PPS_SHIFT) 14680Sstevel@tonic-gate pps_shift--; 14690Sstevel@tonic-gate } else if (pps_intcnt >= 4) { 14700Sstevel@tonic-gate pps_intcnt = 0; 14710Sstevel@tonic-gate if (pps_shift < PPS_SHIFTMAX) 14720Sstevel@tonic-gate pps_shift++; 14730Sstevel@tonic-gate } else 14740Sstevel@tonic-gate pps_intcnt++; 14750Sstevel@tonic-gate 14760Sstevel@tonic-gate /* 14770Sstevel@tonic-gate * If recovering from kmdb, then make sure the tod chip gets resynced. 14780Sstevel@tonic-gate * If we took an early exit above, then we don't yet have a stable 14790Sstevel@tonic-gate * calibration signal to lock onto, so don't mark the tod for sync 14800Sstevel@tonic-gate * until we get all the way here. 14810Sstevel@tonic-gate */ 14820Sstevel@tonic-gate { 14830Sstevel@tonic-gate int s = hr_clock_lock(); 14840Sstevel@tonic-gate 14850Sstevel@tonic-gate tod_needsync = 1; 14860Sstevel@tonic-gate hr_clock_unlock(s); 14870Sstevel@tonic-gate } 14880Sstevel@tonic-gate } 14890Sstevel@tonic-gate 14900Sstevel@tonic-gate /* 14910Sstevel@tonic-gate * Handle clock tick processing for a thread. 14920Sstevel@tonic-gate * Check for timer action, enforce CPU rlimit, do profiling etc. 14930Sstevel@tonic-gate */ 14940Sstevel@tonic-gate void 14950Sstevel@tonic-gate clock_tick(kthread_t *t) 14960Sstevel@tonic-gate { 14970Sstevel@tonic-gate struct proc *pp; 14980Sstevel@tonic-gate klwp_id_t lwp; 14990Sstevel@tonic-gate struct as *as; 15000Sstevel@tonic-gate clock_t utime; 15010Sstevel@tonic-gate clock_t stime; 15020Sstevel@tonic-gate int poke = 0; /* notify another CPU */ 15030Sstevel@tonic-gate int user_mode; 15040Sstevel@tonic-gate size_t rss; 15050Sstevel@tonic-gate 15060Sstevel@tonic-gate /* Must be operating on a lwp/thread */ 15070Sstevel@tonic-gate if ((lwp = ttolwp(t)) == NULL) { 15080Sstevel@tonic-gate panic("clock_tick: no lwp"); 15090Sstevel@tonic-gate /*NOTREACHED*/ 15100Sstevel@tonic-gate } 15110Sstevel@tonic-gate 15120Sstevel@tonic-gate CL_TICK(t); /* Class specific tick processing */ 15130Sstevel@tonic-gate DTRACE_SCHED1(tick, kthread_t *, t); 15140Sstevel@tonic-gate 15150Sstevel@tonic-gate pp = ttoproc(t); 15160Sstevel@tonic-gate 15170Sstevel@tonic-gate /* pp->p_lock makes sure that the thread does not exit */ 15180Sstevel@tonic-gate ASSERT(MUTEX_HELD(&pp->p_lock)); 15190Sstevel@tonic-gate 15200Sstevel@tonic-gate user_mode = (lwp->lwp_state == LWP_USER); 15210Sstevel@tonic-gate 15220Sstevel@tonic-gate /* 15230Sstevel@tonic-gate * Update process times. Should use high res clock and state 15240Sstevel@tonic-gate * changes instead of statistical sampling method. XXX 15250Sstevel@tonic-gate */ 15260Sstevel@tonic-gate if (user_mode) { 15270Sstevel@tonic-gate pp->p_utime++; 15280Sstevel@tonic-gate pp->p_task->tk_cpu_time++; 15290Sstevel@tonic-gate } else { 15300Sstevel@tonic-gate pp->p_stime++; 15310Sstevel@tonic-gate pp->p_task->tk_cpu_time++; 15320Sstevel@tonic-gate } 15330Sstevel@tonic-gate as = pp->p_as; 15340Sstevel@tonic-gate 15350Sstevel@tonic-gate /* 15360Sstevel@tonic-gate * Update user profiling statistics. Get the pc from the 15370Sstevel@tonic-gate * lwp when the AST happens. 15380Sstevel@tonic-gate */ 15390Sstevel@tonic-gate if (pp->p_prof.pr_scale) { 15400Sstevel@tonic-gate atomic_add_32(&lwp->lwp_oweupc, 1); 15410Sstevel@tonic-gate if (user_mode) { 15420Sstevel@tonic-gate poke = 1; 15430Sstevel@tonic-gate aston(t); 15440Sstevel@tonic-gate } 15450Sstevel@tonic-gate } 15460Sstevel@tonic-gate 15470Sstevel@tonic-gate utime = pp->p_utime; 15480Sstevel@tonic-gate stime = pp->p_stime; 15490Sstevel@tonic-gate 15500Sstevel@tonic-gate /* 15510Sstevel@tonic-gate * If CPU was in user state, process lwp-virtual time 15520Sstevel@tonic-gate * interval timer. 15530Sstevel@tonic-gate */ 15540Sstevel@tonic-gate if (user_mode && 15550Sstevel@tonic-gate timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 15560Sstevel@tonic-gate itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 15570Sstevel@tonic-gate poke = 1; 15580Sstevel@tonic-gate sigtoproc(pp, t, SIGVTALRM); 15590Sstevel@tonic-gate } 15600Sstevel@tonic-gate 15610Sstevel@tonic-gate if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 15620Sstevel@tonic-gate itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 15630Sstevel@tonic-gate poke = 1; 15640Sstevel@tonic-gate sigtoproc(pp, t, SIGPROF); 15650Sstevel@tonic-gate } 15660Sstevel@tonic-gate 15670Sstevel@tonic-gate /* 15680Sstevel@tonic-gate * Enforce CPU resource controls: 15690Sstevel@tonic-gate * (a) process.max-cpu-time resource control 15700Sstevel@tonic-gate */ 15710Sstevel@tonic-gate (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 15720Sstevel@tonic-gate (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 15730Sstevel@tonic-gate 15740Sstevel@tonic-gate /* 15750Sstevel@tonic-gate * (b) task.max-cpu-time resource control 15760Sstevel@tonic-gate */ 15770Sstevel@tonic-gate (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 15780Sstevel@tonic-gate RCA_UNSAFE_SIGINFO); 15790Sstevel@tonic-gate 15800Sstevel@tonic-gate /* 15810Sstevel@tonic-gate * Update memory usage for the currently running process. 15820Sstevel@tonic-gate */ 15830Sstevel@tonic-gate rss = rm_asrss(as); 15840Sstevel@tonic-gate PTOU(pp)->u_mem += rss; 15850Sstevel@tonic-gate if (rss > PTOU(pp)->u_mem_max) 15860Sstevel@tonic-gate PTOU(pp)->u_mem_max = rss; 15870Sstevel@tonic-gate 15880Sstevel@tonic-gate /* 15890Sstevel@tonic-gate * Notify the CPU the thread is running on. 15900Sstevel@tonic-gate */ 15910Sstevel@tonic-gate if (poke && t->t_cpu != CPU) 15920Sstevel@tonic-gate poke_cpu(t->t_cpu->cpu_id); 15930Sstevel@tonic-gate } 15940Sstevel@tonic-gate 15950Sstevel@tonic-gate void 15960Sstevel@tonic-gate profil_tick(uintptr_t upc) 15970Sstevel@tonic-gate { 15980Sstevel@tonic-gate int ticks; 15990Sstevel@tonic-gate proc_t *p = ttoproc(curthread); 16000Sstevel@tonic-gate klwp_t *lwp = ttolwp(curthread); 16010Sstevel@tonic-gate struct prof *pr = &p->p_prof; 16020Sstevel@tonic-gate 16030Sstevel@tonic-gate do { 16040Sstevel@tonic-gate ticks = lwp->lwp_oweupc; 16050Sstevel@tonic-gate } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 16060Sstevel@tonic-gate 16070Sstevel@tonic-gate mutex_enter(&p->p_pflock); 16080Sstevel@tonic-gate if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 16090Sstevel@tonic-gate /* 16100Sstevel@tonic-gate * Old-style profiling 16110Sstevel@tonic-gate */ 16120Sstevel@tonic-gate uint16_t *slot = pr->pr_base; 16130Sstevel@tonic-gate uint16_t old, new; 16140Sstevel@tonic-gate if (pr->pr_scale != 2) { 16150Sstevel@tonic-gate uintptr_t delta = upc - pr->pr_off; 16160Sstevel@tonic-gate uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 16170Sstevel@tonic-gate (((delta & 0xffff) * pr->pr_scale) >> 16); 16180Sstevel@tonic-gate if (byteoff >= (uintptr_t)pr->pr_size) { 16190Sstevel@tonic-gate mutex_exit(&p->p_pflock); 16200Sstevel@tonic-gate return; 16210Sstevel@tonic-gate } 16220Sstevel@tonic-gate slot += byteoff / sizeof (uint16_t); 16230Sstevel@tonic-gate } 16240Sstevel@tonic-gate if (fuword16(slot, &old) < 0 || 16250Sstevel@tonic-gate (new = old + ticks) > SHRT_MAX || 16260Sstevel@tonic-gate suword16(slot, new) < 0) { 16270Sstevel@tonic-gate pr->pr_scale = 0; 16280Sstevel@tonic-gate } 16290Sstevel@tonic-gate } else if (pr->pr_scale == 1) { 16300Sstevel@tonic-gate /* 16310Sstevel@tonic-gate * PC Sampling 16320Sstevel@tonic-gate */ 16330Sstevel@tonic-gate model_t model = lwp_getdatamodel(lwp); 16340Sstevel@tonic-gate int result; 16350Sstevel@tonic-gate #ifdef __lint 16360Sstevel@tonic-gate model = model; 16370Sstevel@tonic-gate #endif 16380Sstevel@tonic-gate while (ticks-- > 0) { 16390Sstevel@tonic-gate if (pr->pr_samples == pr->pr_size) { 16400Sstevel@tonic-gate /* buffer full, turn off sampling */ 16410Sstevel@tonic-gate pr->pr_scale = 0; 16420Sstevel@tonic-gate break; 16430Sstevel@tonic-gate } 16440Sstevel@tonic-gate switch (SIZEOF_PTR(model)) { 16450Sstevel@tonic-gate case sizeof (uint32_t): 16460Sstevel@tonic-gate result = suword32(pr->pr_base, (uint32_t)upc); 16470Sstevel@tonic-gate break; 16480Sstevel@tonic-gate #ifdef _LP64 16490Sstevel@tonic-gate case sizeof (uint64_t): 16500Sstevel@tonic-gate result = suword64(pr->pr_base, (uint64_t)upc); 16510Sstevel@tonic-gate break; 16520Sstevel@tonic-gate #endif 16530Sstevel@tonic-gate default: 16540Sstevel@tonic-gate cmn_err(CE_WARN, "profil_tick: unexpected " 16550Sstevel@tonic-gate "data model"); 16560Sstevel@tonic-gate result = -1; 16570Sstevel@tonic-gate break; 16580Sstevel@tonic-gate } 16590Sstevel@tonic-gate if (result != 0) { 16600Sstevel@tonic-gate pr->pr_scale = 0; 16610Sstevel@tonic-gate break; 16620Sstevel@tonic-gate } 16630Sstevel@tonic-gate pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 16640Sstevel@tonic-gate pr->pr_samples++; 16650Sstevel@tonic-gate } 16660Sstevel@tonic-gate } 16670Sstevel@tonic-gate mutex_exit(&p->p_pflock); 16680Sstevel@tonic-gate } 16690Sstevel@tonic-gate 16700Sstevel@tonic-gate static void 16710Sstevel@tonic-gate delay_wakeup(void *arg) 16720Sstevel@tonic-gate { 16730Sstevel@tonic-gate kthread_t *t = arg; 16740Sstevel@tonic-gate 16750Sstevel@tonic-gate mutex_enter(&t->t_delay_lock); 16760Sstevel@tonic-gate cv_signal(&t->t_delay_cv); 16770Sstevel@tonic-gate mutex_exit(&t->t_delay_lock); 16780Sstevel@tonic-gate } 16790Sstevel@tonic-gate 16800Sstevel@tonic-gate void 16810Sstevel@tonic-gate delay(clock_t ticks) 16820Sstevel@tonic-gate { 16830Sstevel@tonic-gate kthread_t *t = curthread; 16840Sstevel@tonic-gate clock_t deadline = lbolt + ticks; 16850Sstevel@tonic-gate clock_t timeleft; 16860Sstevel@tonic-gate timeout_id_t id; 16870Sstevel@tonic-gate 16880Sstevel@tonic-gate if (panicstr && ticks > 0) { 16890Sstevel@tonic-gate /* 16900Sstevel@tonic-gate * Timeouts aren't running, so all we can do is spin. 16910Sstevel@tonic-gate */ 16920Sstevel@tonic-gate drv_usecwait(TICK_TO_USEC(ticks)); 16930Sstevel@tonic-gate return; 16940Sstevel@tonic-gate } 16950Sstevel@tonic-gate 16960Sstevel@tonic-gate while ((timeleft = deadline - lbolt) > 0) { 16970Sstevel@tonic-gate mutex_enter(&t->t_delay_lock); 16980Sstevel@tonic-gate id = timeout(delay_wakeup, t, timeleft); 16990Sstevel@tonic-gate cv_wait(&t->t_delay_cv, &t->t_delay_lock); 17000Sstevel@tonic-gate mutex_exit(&t->t_delay_lock); 17010Sstevel@tonic-gate (void) untimeout(id); 17020Sstevel@tonic-gate } 17030Sstevel@tonic-gate } 17040Sstevel@tonic-gate 17050Sstevel@tonic-gate /* 17060Sstevel@tonic-gate * Like delay, but interruptible by a signal. 17070Sstevel@tonic-gate */ 17080Sstevel@tonic-gate int 17090Sstevel@tonic-gate delay_sig(clock_t ticks) 17100Sstevel@tonic-gate { 17110Sstevel@tonic-gate clock_t deadline = lbolt + ticks; 17120Sstevel@tonic-gate clock_t rc; 17130Sstevel@tonic-gate 17140Sstevel@tonic-gate mutex_enter(&curthread->t_delay_lock); 17150Sstevel@tonic-gate do { 17160Sstevel@tonic-gate rc = cv_timedwait_sig(&curthread->t_delay_cv, 17170Sstevel@tonic-gate &curthread->t_delay_lock, deadline); 17180Sstevel@tonic-gate } while (rc > 0); 17190Sstevel@tonic-gate mutex_exit(&curthread->t_delay_lock); 17200Sstevel@tonic-gate if (rc == 0) 17210Sstevel@tonic-gate return (EINTR); 17220Sstevel@tonic-gate return (0); 17230Sstevel@tonic-gate } 17240Sstevel@tonic-gate 17250Sstevel@tonic-gate #define SECONDS_PER_DAY 86400 17260Sstevel@tonic-gate 17270Sstevel@tonic-gate /* 17280Sstevel@tonic-gate * Initialize the system time based on the TOD chip. approx is used as 17290Sstevel@tonic-gate * an approximation of time (e.g. from the filesystem) in the event that 17300Sstevel@tonic-gate * the TOD chip has been cleared or is unresponsive. An approx of -1 17310Sstevel@tonic-gate * means the filesystem doesn't keep time. 17320Sstevel@tonic-gate */ 17330Sstevel@tonic-gate void 17340Sstevel@tonic-gate clkset(time_t approx) 17350Sstevel@tonic-gate { 17360Sstevel@tonic-gate timestruc_t ts; 17370Sstevel@tonic-gate int spl; 17380Sstevel@tonic-gate int set_clock = 0; 17390Sstevel@tonic-gate 17400Sstevel@tonic-gate mutex_enter(&tod_lock); 17410Sstevel@tonic-gate ts = tod_get(); 17420Sstevel@tonic-gate 17430Sstevel@tonic-gate if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 17440Sstevel@tonic-gate /* 17450Sstevel@tonic-gate * If the TOD chip is reporting some time after 1971, 17460Sstevel@tonic-gate * then it probably didn't lose power or become otherwise 17470Sstevel@tonic-gate * cleared in the recent past; check to assure that 17480Sstevel@tonic-gate * the time coming from the filesystem isn't in the future 17490Sstevel@tonic-gate * according to the TOD chip. 17500Sstevel@tonic-gate */ 17510Sstevel@tonic-gate if (approx != -1 && approx > ts.tv_sec) { 17520Sstevel@tonic-gate cmn_err(CE_WARN, "Last shutdown is later " 17530Sstevel@tonic-gate "than time on time-of-day chip; check date."); 17540Sstevel@tonic-gate } 17550Sstevel@tonic-gate } else { 17560Sstevel@tonic-gate /* 17570Sstevel@tonic-gate * If the TOD chip isn't giving correct time, then set it to 17580Sstevel@tonic-gate * the time that was passed in as a rough estimate. If we 17590Sstevel@tonic-gate * don't have an estimate, then set the clock back to a time 17600Sstevel@tonic-gate * when Oliver North, ALF and Dire Straits were all on the 17610Sstevel@tonic-gate * collective brain: 1987. 17620Sstevel@tonic-gate */ 17630Sstevel@tonic-gate timestruc_t tmp; 17640Sstevel@tonic-gate if (approx == -1) 17650Sstevel@tonic-gate ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 17660Sstevel@tonic-gate else 17670Sstevel@tonic-gate ts.tv_sec = approx; 17680Sstevel@tonic-gate ts.tv_nsec = 0; 17690Sstevel@tonic-gate 17700Sstevel@tonic-gate /* 17710Sstevel@tonic-gate * Attempt to write the new time to the TOD chip. Set spl high 17720Sstevel@tonic-gate * to avoid getting preempted between the tod_set and tod_get. 17730Sstevel@tonic-gate */ 17740Sstevel@tonic-gate spl = splhi(); 17750Sstevel@tonic-gate tod_set(ts); 17760Sstevel@tonic-gate tmp = tod_get(); 17770Sstevel@tonic-gate splx(spl); 17780Sstevel@tonic-gate 17790Sstevel@tonic-gate if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 17800Sstevel@tonic-gate tod_broken = 1; 17810Sstevel@tonic-gate dosynctodr = 0; 17820Sstevel@tonic-gate cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 17830Sstevel@tonic-gate " dead batteries?"); 17840Sstevel@tonic-gate } else { 17850Sstevel@tonic-gate cmn_err(CE_WARN, "Time-of-day chip had " 17860Sstevel@tonic-gate "incorrect date; check and reset."); 17870Sstevel@tonic-gate } 17880Sstevel@tonic-gate set_clock = 1; 17890Sstevel@tonic-gate } 17900Sstevel@tonic-gate 17910Sstevel@tonic-gate if (!boot_time) { 17920Sstevel@tonic-gate boot_time = ts.tv_sec; 17930Sstevel@tonic-gate set_clock = 1; 17940Sstevel@tonic-gate } 17950Sstevel@tonic-gate 17960Sstevel@tonic-gate if (set_clock) 17970Sstevel@tonic-gate set_hrestime(&ts); 17980Sstevel@tonic-gate 17990Sstevel@tonic-gate mutex_exit(&tod_lock); 18000Sstevel@tonic-gate } 18010Sstevel@tonic-gate 18020Sstevel@tonic-gate int timechanged; /* for testing if the system time has been reset */ 18030Sstevel@tonic-gate 18040Sstevel@tonic-gate void 18050Sstevel@tonic-gate set_hrestime(timestruc_t *ts) 18060Sstevel@tonic-gate { 18070Sstevel@tonic-gate int spl = hr_clock_lock(); 18080Sstevel@tonic-gate hrestime = *ts; 18090Sstevel@tonic-gate membar_enter(); /* hrestime must be visible before timechanged++ */ 18100Sstevel@tonic-gate timedelta = 0; 18110Sstevel@tonic-gate timechanged++; 18120Sstevel@tonic-gate hr_clock_unlock(spl); 18130Sstevel@tonic-gate } 18140Sstevel@tonic-gate 18150Sstevel@tonic-gate static uint_t deadman_seconds; 18160Sstevel@tonic-gate static uint32_t deadman_panics; 18170Sstevel@tonic-gate static int deadman_enabled = 0; 18180Sstevel@tonic-gate static int deadman_panic_timers = 1; 18190Sstevel@tonic-gate 18200Sstevel@tonic-gate static void 18210Sstevel@tonic-gate deadman(void) 18220Sstevel@tonic-gate { 18230Sstevel@tonic-gate if (panicstr) { 18240Sstevel@tonic-gate /* 18250Sstevel@tonic-gate * During panic, other CPUs besides the panic 18260Sstevel@tonic-gate * master continue to handle cyclics and some other 18270Sstevel@tonic-gate * interrupts. The code below is intended to be 18280Sstevel@tonic-gate * single threaded, so any CPU other than the master 18290Sstevel@tonic-gate * must keep out. 18300Sstevel@tonic-gate */ 18310Sstevel@tonic-gate if (CPU->cpu_id != panic_cpu.cpu_id) 18320Sstevel@tonic-gate return; 18330Sstevel@tonic-gate 18340Sstevel@tonic-gate /* 18350Sstevel@tonic-gate * If we're panicking, the deadman cyclic continues to increase 18360Sstevel@tonic-gate * lbolt in case the dump device driver relies on this for 18370Sstevel@tonic-gate * timeouts. Note that we rely on deadman() being invoked once 18380Sstevel@tonic-gate * per second, and credit lbolt and lbolt64 with hz ticks each. 18390Sstevel@tonic-gate */ 18400Sstevel@tonic-gate lbolt += hz; 18410Sstevel@tonic-gate lbolt64 += hz; 18420Sstevel@tonic-gate 18430Sstevel@tonic-gate if (!deadman_panic_timers) 18440Sstevel@tonic-gate return; /* allow all timers to be manually disabled */ 18450Sstevel@tonic-gate 18460Sstevel@tonic-gate /* 18470Sstevel@tonic-gate * If we are generating a crash dump or syncing filesystems and 18480Sstevel@tonic-gate * the corresponding timer is set, decrement it and re-enter 18490Sstevel@tonic-gate * the panic code to abort it and advance to the next state. 18500Sstevel@tonic-gate * The panic states and triggers are explained in panic.c. 18510Sstevel@tonic-gate */ 18520Sstevel@tonic-gate if (panic_dump) { 18530Sstevel@tonic-gate if (dump_timeleft && (--dump_timeleft == 0)) { 18540Sstevel@tonic-gate panic("panic dump timeout"); 18550Sstevel@tonic-gate /*NOTREACHED*/ 18560Sstevel@tonic-gate } 18570Sstevel@tonic-gate } else if (panic_sync) { 18580Sstevel@tonic-gate if (sync_timeleft && (--sync_timeleft == 0)) { 18590Sstevel@tonic-gate panic("panic sync timeout"); 18600Sstevel@tonic-gate /*NOTREACHED*/ 18610Sstevel@tonic-gate } 18620Sstevel@tonic-gate } 18630Sstevel@tonic-gate 18640Sstevel@tonic-gate return; 18650Sstevel@tonic-gate } 18660Sstevel@tonic-gate 18670Sstevel@tonic-gate if (lbolt != CPU->cpu_deadman_lbolt) { 18680Sstevel@tonic-gate CPU->cpu_deadman_lbolt = lbolt; 18690Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 18700Sstevel@tonic-gate return; 18710Sstevel@tonic-gate } 18720Sstevel@tonic-gate 18730Sstevel@tonic-gate if (CPU->cpu_deadman_countdown-- > 0) 18740Sstevel@tonic-gate return; 18750Sstevel@tonic-gate 18760Sstevel@tonic-gate /* 18770Sstevel@tonic-gate * Regardless of whether or not we actually bring the system down, 18780Sstevel@tonic-gate * bump the deadman_panics variable. 18790Sstevel@tonic-gate * 18800Sstevel@tonic-gate * N.B. deadman_panics is incremented once for each CPU that 18810Sstevel@tonic-gate * passes through here. It's expected that all the CPUs will 18820Sstevel@tonic-gate * detect this condition within one second of each other, so 18830Sstevel@tonic-gate * when deadman_enabled is off, deadman_panics will 18840Sstevel@tonic-gate * typically be a multiple of the total number of CPUs in 18850Sstevel@tonic-gate * the system. 18860Sstevel@tonic-gate */ 18870Sstevel@tonic-gate atomic_add_32(&deadman_panics, 1); 18880Sstevel@tonic-gate 18890Sstevel@tonic-gate if (!deadman_enabled) { 18900Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 18910Sstevel@tonic-gate return; 18920Sstevel@tonic-gate } 18930Sstevel@tonic-gate 18940Sstevel@tonic-gate /* 18950Sstevel@tonic-gate * If we're here, we want to bring the system down. 18960Sstevel@tonic-gate */ 18970Sstevel@tonic-gate panic("deadman: timed out after %d seconds of clock " 18980Sstevel@tonic-gate "inactivity", deadman_seconds); 18990Sstevel@tonic-gate /*NOTREACHED*/ 19000Sstevel@tonic-gate } 19010Sstevel@tonic-gate 19020Sstevel@tonic-gate /*ARGSUSED*/ 19030Sstevel@tonic-gate static void 19040Sstevel@tonic-gate deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 19050Sstevel@tonic-gate { 19060Sstevel@tonic-gate cpu->cpu_deadman_lbolt = 0; 19070Sstevel@tonic-gate cpu->cpu_deadman_countdown = deadman_seconds; 19080Sstevel@tonic-gate 19090Sstevel@tonic-gate hdlr->cyh_func = (cyc_func_t)deadman; 19100Sstevel@tonic-gate hdlr->cyh_level = CY_HIGH_LEVEL; 19110Sstevel@tonic-gate hdlr->cyh_arg = NULL; 19120Sstevel@tonic-gate 19130Sstevel@tonic-gate /* 19140Sstevel@tonic-gate * Stagger the CPUs so that they don't all run deadman() at 19150Sstevel@tonic-gate * the same time. Simplest reason to do this is to make it 19160Sstevel@tonic-gate * more likely that only one CPU will panic in case of a 19170Sstevel@tonic-gate * timeout. This is (strictly speaking) an aesthetic, not a 19180Sstevel@tonic-gate * technical consideration. 19190Sstevel@tonic-gate * 19200Sstevel@tonic-gate * The interval must be one second in accordance with the 19210Sstevel@tonic-gate * code in deadman() above to increase lbolt during panic. 19220Sstevel@tonic-gate */ 19230Sstevel@tonic-gate when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 19240Sstevel@tonic-gate when->cyt_interval = NANOSEC; 19250Sstevel@tonic-gate } 19260Sstevel@tonic-gate 19270Sstevel@tonic-gate 19280Sstevel@tonic-gate void 19290Sstevel@tonic-gate deadman_init(void) 19300Sstevel@tonic-gate { 19310Sstevel@tonic-gate cyc_omni_handler_t hdlr; 19320Sstevel@tonic-gate 19330Sstevel@tonic-gate if (deadman_seconds == 0) 19340Sstevel@tonic-gate deadman_seconds = snoop_interval / MICROSEC; 19350Sstevel@tonic-gate 19360Sstevel@tonic-gate if (snooping) 19370Sstevel@tonic-gate deadman_enabled = 1; 19380Sstevel@tonic-gate 19390Sstevel@tonic-gate hdlr.cyo_online = deadman_online; 19400Sstevel@tonic-gate hdlr.cyo_offline = NULL; 19410Sstevel@tonic-gate hdlr.cyo_arg = NULL; 19420Sstevel@tonic-gate 19430Sstevel@tonic-gate mutex_enter(&cpu_lock); 19440Sstevel@tonic-gate deadman_cyclic = cyclic_add_omni(&hdlr); 19450Sstevel@tonic-gate mutex_exit(&cpu_lock); 19460Sstevel@tonic-gate } 19470Sstevel@tonic-gate 19480Sstevel@tonic-gate /* 19490Sstevel@tonic-gate * tod_fault() is for updating tod validate mechanism state: 19500Sstevel@tonic-gate * (1) TOD_NOFAULT: for resetting the state to 'normal'. 19510Sstevel@tonic-gate * currently used for debugging only 19520Sstevel@tonic-gate * (2) The following four cases detected by tod validate mechanism: 19530Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous value. 19540Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 19550Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 19560Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 19570Sstevel@tonic-gate * average tick delta has changed. 19580Sstevel@tonic-gate */ 19590Sstevel@tonic-gate enum tod_fault_type 19600Sstevel@tonic-gate tod_fault(enum tod_fault_type ftype, int off) 19610Sstevel@tonic-gate { 19620Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 19630Sstevel@tonic-gate 19640Sstevel@tonic-gate if (tod_faulted != ftype) { 19650Sstevel@tonic-gate switch (ftype) { 19660Sstevel@tonic-gate case TOD_NOFAULT: 1967*78Sae112802 plat_tod_fault(TOD_NOFAULT); 19680Sstevel@tonic-gate cmn_err(CE_NOTE, "Restarted tracking " 19690Sstevel@tonic-gate "Time of Day clock."); 19700Sstevel@tonic-gate tod_faulted = ftype; 19710Sstevel@tonic-gate break; 19720Sstevel@tonic-gate case TOD_REVERSED: 19730Sstevel@tonic-gate case TOD_JUMPED: 19740Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 1975*78Sae112802 plat_tod_fault(ftype); 19760Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 19770Sstevel@tonic-gate "reason [%s by 0x%x]. -- " 19780Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 19790Sstevel@tonic-gate tod_fault_table[ftype], off); 19800Sstevel@tonic-gate tod_faulted = ftype; 19810Sstevel@tonic-gate } 19820Sstevel@tonic-gate break; 19830Sstevel@tonic-gate case TOD_STALLED: 19840Sstevel@tonic-gate case TOD_RATECHANGED: 19850Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 1986*78Sae112802 plat_tod_fault(ftype); 19870Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 19880Sstevel@tonic-gate "reason [%s]. -- " 19890Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 19900Sstevel@tonic-gate tod_fault_table[ftype]); 19910Sstevel@tonic-gate tod_faulted = ftype; 19920Sstevel@tonic-gate } 19930Sstevel@tonic-gate break; 19940Sstevel@tonic-gate default: 19950Sstevel@tonic-gate break; 19960Sstevel@tonic-gate } 19970Sstevel@tonic-gate } 19980Sstevel@tonic-gate return (tod_faulted); 19990Sstevel@tonic-gate } 20000Sstevel@tonic-gate 20010Sstevel@tonic-gate void 20020Sstevel@tonic-gate tod_fault_reset() 20030Sstevel@tonic-gate { 20040Sstevel@tonic-gate tod_fault_reset_flag = 1; 20050Sstevel@tonic-gate } 20060Sstevel@tonic-gate 20070Sstevel@tonic-gate 20080Sstevel@tonic-gate /* 20090Sstevel@tonic-gate * tod_validate() is used for checking values returned by tod_get(). 20100Sstevel@tonic-gate * Four error cases can be detected by this routine: 20110Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous. 20120Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 20130Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 20140Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 20150Sstevel@tonic-gate * average tick delta has changed. 20160Sstevel@tonic-gate */ 20170Sstevel@tonic-gate time_t 20180Sstevel@tonic-gate tod_validate(time_t tod) 20190Sstevel@tonic-gate { 20200Sstevel@tonic-gate time_t diff_tod; 20210Sstevel@tonic-gate hrtime_t diff_tick; 20220Sstevel@tonic-gate 20230Sstevel@tonic-gate long dtick; 20240Sstevel@tonic-gate int dtick_delta; 20250Sstevel@tonic-gate 20260Sstevel@tonic-gate int off = 0; 20270Sstevel@tonic-gate enum tod_fault_type tod_bad = TOD_NOFAULT; 20280Sstevel@tonic-gate 20290Sstevel@tonic-gate static int firsttime = 1; 20300Sstevel@tonic-gate 20310Sstevel@tonic-gate static time_t prev_tod = 0; 20320Sstevel@tonic-gate static hrtime_t prev_tick = 0; 20330Sstevel@tonic-gate static long dtick_avg = TOD_REF_FREQ; 20340Sstevel@tonic-gate 20350Sstevel@tonic-gate hrtime_t tick = gethrtime(); 20360Sstevel@tonic-gate 20370Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 20380Sstevel@tonic-gate 20390Sstevel@tonic-gate /* 20400Sstevel@tonic-gate * tod_validate_enable is patchable via /etc/system. 20410Sstevel@tonic-gate * If TOD is already faulted, there is nothing to do 20420Sstevel@tonic-gate */ 20430Sstevel@tonic-gate if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT)) { 20440Sstevel@tonic-gate return (tod); 20450Sstevel@tonic-gate } 20460Sstevel@tonic-gate 20470Sstevel@tonic-gate /* 20480Sstevel@tonic-gate * Update prev_tod and prev_tick values for first run 20490Sstevel@tonic-gate */ 20500Sstevel@tonic-gate if (firsttime) { 20510Sstevel@tonic-gate firsttime = 0; 20520Sstevel@tonic-gate prev_tod = tod; 20530Sstevel@tonic-gate prev_tick = tick; 20540Sstevel@tonic-gate return (tod); 20550Sstevel@tonic-gate } 20560Sstevel@tonic-gate 20570Sstevel@tonic-gate /* 20580Sstevel@tonic-gate * For either of these conditions, we need to reset ourself 20590Sstevel@tonic-gate * and start validation from zero since each condition 20600Sstevel@tonic-gate * indicates that the TOD will be updated with new value 20610Sstevel@tonic-gate * Also, note that tod_needsync will be reset in clock() 20620Sstevel@tonic-gate */ 20630Sstevel@tonic-gate if (tod_needsync || tod_fault_reset_flag) { 20640Sstevel@tonic-gate firsttime = 1; 20650Sstevel@tonic-gate prev_tod = 0; 20660Sstevel@tonic-gate prev_tick = 0; 20670Sstevel@tonic-gate dtick_avg = TOD_REF_FREQ; 20680Sstevel@tonic-gate 20690Sstevel@tonic-gate if (tod_fault_reset_flag) 20700Sstevel@tonic-gate tod_fault_reset_flag = 0; 20710Sstevel@tonic-gate 20720Sstevel@tonic-gate return (tod); 20730Sstevel@tonic-gate } 20740Sstevel@tonic-gate 20750Sstevel@tonic-gate /* test hook */ 20760Sstevel@tonic-gate switch (tod_unit_test) { 20770Sstevel@tonic-gate case 1: /* for testing jumping tod */ 20780Sstevel@tonic-gate tod += tod_test_injector; 20790Sstevel@tonic-gate tod_unit_test = 0; 20800Sstevel@tonic-gate break; 20810Sstevel@tonic-gate case 2: /* for testing stuck tod bit */ 20820Sstevel@tonic-gate tod |= 1 << tod_test_injector; 20830Sstevel@tonic-gate tod_unit_test = 0; 20840Sstevel@tonic-gate break; 20850Sstevel@tonic-gate case 3: /* for testing stalled tod */ 20860Sstevel@tonic-gate tod = prev_tod; 20870Sstevel@tonic-gate tod_unit_test = 0; 20880Sstevel@tonic-gate break; 20890Sstevel@tonic-gate case 4: /* reset tod fault status */ 20900Sstevel@tonic-gate (void) tod_fault(TOD_NOFAULT, 0); 20910Sstevel@tonic-gate tod_unit_test = 0; 20920Sstevel@tonic-gate break; 20930Sstevel@tonic-gate default: 20940Sstevel@tonic-gate break; 20950Sstevel@tonic-gate } 20960Sstevel@tonic-gate 20970Sstevel@tonic-gate diff_tod = tod - prev_tod; 20980Sstevel@tonic-gate diff_tick = tick - prev_tick; 20990Sstevel@tonic-gate 21000Sstevel@tonic-gate ASSERT(diff_tick >= 0); 21010Sstevel@tonic-gate 21020Sstevel@tonic-gate if (diff_tod < 0) { 21030Sstevel@tonic-gate /* ERROR - tod reversed */ 21040Sstevel@tonic-gate tod_bad = TOD_REVERSED; 21050Sstevel@tonic-gate off = (int)(prev_tod - tod); 21060Sstevel@tonic-gate } else if (diff_tod == 0) { 21070Sstevel@tonic-gate /* tod did not advance */ 21080Sstevel@tonic-gate if (diff_tick > TOD_STALL_THRESHOLD) { 21090Sstevel@tonic-gate /* ERROR - tod stalled */ 21100Sstevel@tonic-gate tod_bad = TOD_STALLED; 21110Sstevel@tonic-gate } else { 21120Sstevel@tonic-gate /* 21130Sstevel@tonic-gate * Make sure we don't update prev_tick 21140Sstevel@tonic-gate * so that diff_tick is calculated since 21150Sstevel@tonic-gate * the first diff_tod == 0 21160Sstevel@tonic-gate */ 21170Sstevel@tonic-gate return (tod); 21180Sstevel@tonic-gate } 21190Sstevel@tonic-gate } else { 21200Sstevel@tonic-gate /* calculate dtick */ 21210Sstevel@tonic-gate dtick = diff_tick / diff_tod; 21220Sstevel@tonic-gate 21230Sstevel@tonic-gate /* update dtick averages */ 21240Sstevel@tonic-gate dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 21250Sstevel@tonic-gate 21260Sstevel@tonic-gate /* 21270Sstevel@tonic-gate * Calculate dtick_delta as 21280Sstevel@tonic-gate * variation from reference freq in quartiles 21290Sstevel@tonic-gate */ 21300Sstevel@tonic-gate dtick_delta = (dtick_avg - TOD_REF_FREQ) / 21310Sstevel@tonic-gate (TOD_REF_FREQ >> 2); 21320Sstevel@tonic-gate 21330Sstevel@tonic-gate /* 21340Sstevel@tonic-gate * Even with a perfectly functioning TOD device, 21350Sstevel@tonic-gate * when the number of elapsed seconds is low the 21360Sstevel@tonic-gate * algorithm can calculate a rate that is beyond 21370Sstevel@tonic-gate * tolerance, causing an error. The algorithm is 21380Sstevel@tonic-gate * inaccurate when elapsed time is low (less than 21390Sstevel@tonic-gate * 5 seconds). 21400Sstevel@tonic-gate */ 21410Sstevel@tonic-gate if (diff_tod > 4) { 21420Sstevel@tonic-gate if (dtick < TOD_JUMP_THRESHOLD) { 21430Sstevel@tonic-gate /* ERROR - tod jumped */ 21440Sstevel@tonic-gate tod_bad = TOD_JUMPED; 21450Sstevel@tonic-gate off = (int)diff_tod; 21460Sstevel@tonic-gate } else if (dtick_delta) { 21470Sstevel@tonic-gate /* ERROR - change in clock rate */ 21480Sstevel@tonic-gate tod_bad = TOD_RATECHANGED; 21490Sstevel@tonic-gate } 21500Sstevel@tonic-gate } 21510Sstevel@tonic-gate } 21520Sstevel@tonic-gate 21530Sstevel@tonic-gate if (tod_bad != TOD_NOFAULT) { 21540Sstevel@tonic-gate (void) tod_fault(tod_bad, off); 21550Sstevel@tonic-gate 21560Sstevel@tonic-gate /* 21570Sstevel@tonic-gate * Disable dosynctodr since we are going to fault 21580Sstevel@tonic-gate * the TOD chip anyway here 21590Sstevel@tonic-gate */ 21600Sstevel@tonic-gate dosynctodr = 0; 21610Sstevel@tonic-gate 21620Sstevel@tonic-gate /* 21630Sstevel@tonic-gate * Set tod to the correct value from hrestime 21640Sstevel@tonic-gate */ 21650Sstevel@tonic-gate tod = hrestime.tv_sec; 21660Sstevel@tonic-gate } 21670Sstevel@tonic-gate 21680Sstevel@tonic-gate prev_tod = tod; 21690Sstevel@tonic-gate prev_tick = tick; 21700Sstevel@tonic-gate return (tod); 21710Sstevel@tonic-gate } 21720Sstevel@tonic-gate 21730Sstevel@tonic-gate static void 21740Sstevel@tonic-gate calcloadavg(int nrun, uint64_t *hp_ave) 21750Sstevel@tonic-gate { 21760Sstevel@tonic-gate static int64_t f[3] = { 135, 27, 9 }; 21770Sstevel@tonic-gate uint_t i; 21780Sstevel@tonic-gate int64_t q, r; 21790Sstevel@tonic-gate 21800Sstevel@tonic-gate /* 21810Sstevel@tonic-gate * Compute load average over the last 1, 5, and 15 minutes 21820Sstevel@tonic-gate * (60, 300, and 900 seconds). The constants in f[3] are for 21830Sstevel@tonic-gate * exponential decay: 21840Sstevel@tonic-gate * (1 - exp(-1/60)) << 13 = 135, 21850Sstevel@tonic-gate * (1 - exp(-1/300)) << 13 = 27, 21860Sstevel@tonic-gate * (1 - exp(-1/900)) << 13 = 9. 21870Sstevel@tonic-gate */ 21880Sstevel@tonic-gate 21890Sstevel@tonic-gate /* 21900Sstevel@tonic-gate * a little hoop-jumping to avoid integer overflow 21910Sstevel@tonic-gate */ 21920Sstevel@tonic-gate for (i = 0; i < 3; i++) { 21930Sstevel@tonic-gate q = (hp_ave[i] >> 16) << 7; 21940Sstevel@tonic-gate r = (hp_ave[i] & 0xffff) << 7; 21950Sstevel@tonic-gate hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 21960Sstevel@tonic-gate } 21970Sstevel@tonic-gate } 2198