10Sstevel@tonic-gate /* 20Sstevel@tonic-gate * CDDL HEADER START 30Sstevel@tonic-gate * 40Sstevel@tonic-gate * The contents of this file are subject to the terms of the 52036Swentaoy * Common Development and Distribution License (the "License"). 62036Swentaoy * You may not use this file except in compliance with the License. 70Sstevel@tonic-gate * 80Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 90Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 100Sstevel@tonic-gate * See the License for the specific language governing permissions 110Sstevel@tonic-gate * and limitations under the License. 120Sstevel@tonic-gate * 130Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 140Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 150Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 160Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 170Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 180Sstevel@tonic-gate * 190Sstevel@tonic-gate * CDDL HEADER END 200Sstevel@tonic-gate */ 210Sstevel@tonic-gate /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 220Sstevel@tonic-gate /* All Rights Reserved */ 230Sstevel@tonic-gate 240Sstevel@tonic-gate /* 258566SMadhavan.Venkataraman@Sun.COM * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 260Sstevel@tonic-gate * Use is subject to license terms. 270Sstevel@tonic-gate */ 280Sstevel@tonic-gate 290Sstevel@tonic-gate #include <sys/param.h> 300Sstevel@tonic-gate #include <sys/t_lock.h> 310Sstevel@tonic-gate #include <sys/types.h> 320Sstevel@tonic-gate #include <sys/tuneable.h> 330Sstevel@tonic-gate #include <sys/sysmacros.h> 340Sstevel@tonic-gate #include <sys/systm.h> 350Sstevel@tonic-gate #include <sys/cpuvar.h> 360Sstevel@tonic-gate #include <sys/lgrp.h> 370Sstevel@tonic-gate #include <sys/user.h> 380Sstevel@tonic-gate #include <sys/proc.h> 390Sstevel@tonic-gate #include <sys/callo.h> 400Sstevel@tonic-gate #include <sys/kmem.h> 410Sstevel@tonic-gate #include <sys/var.h> 420Sstevel@tonic-gate #include <sys/cmn_err.h> 430Sstevel@tonic-gate #include <sys/swap.h> 440Sstevel@tonic-gate #include <sys/vmsystm.h> 450Sstevel@tonic-gate #include <sys/class.h> 460Sstevel@tonic-gate #include <sys/time.h> 470Sstevel@tonic-gate #include <sys/debug.h> 480Sstevel@tonic-gate #include <sys/vtrace.h> 490Sstevel@tonic-gate #include <sys/spl.h> 500Sstevel@tonic-gate #include <sys/atomic.h> 510Sstevel@tonic-gate #include <sys/dumphdr.h> 520Sstevel@tonic-gate #include <sys/archsystm.h> 530Sstevel@tonic-gate #include <sys/fs/swapnode.h> 540Sstevel@tonic-gate #include <sys/panic.h> 550Sstevel@tonic-gate #include <sys/disp.h> 560Sstevel@tonic-gate #include <sys/msacct.h> 570Sstevel@tonic-gate #include <sys/mem_cage.h> 580Sstevel@tonic-gate 590Sstevel@tonic-gate #include <vm/page.h> 600Sstevel@tonic-gate #include <vm/anon.h> 610Sstevel@tonic-gate #include <vm/rm.h> 620Sstevel@tonic-gate #include <sys/cyclic.h> 630Sstevel@tonic-gate #include <sys/cpupart.h> 640Sstevel@tonic-gate #include <sys/rctl.h> 650Sstevel@tonic-gate #include <sys/task.h> 660Sstevel@tonic-gate #include <sys/sdt.h> 675107Seota #include <sys/ddi_timer.h> 6810696SDavid.Hollister@Sun.COM #include <sys/random.h> 6910696SDavid.Hollister@Sun.COM #include <sys/modctl.h> 700Sstevel@tonic-gate 710Sstevel@tonic-gate /* 720Sstevel@tonic-gate * for NTP support 730Sstevel@tonic-gate */ 740Sstevel@tonic-gate #include <sys/timex.h> 750Sstevel@tonic-gate #include <sys/inttypes.h> 760Sstevel@tonic-gate 77*11066Srafael.vanoni@sun.com #include <sys/sunddi.h> 78*11066Srafael.vanoni@sun.com #include <sys/clock_impl.h> 79*11066Srafael.vanoni@sun.com 800Sstevel@tonic-gate /* 813792Sakolb * clock() is called straight from the clock cyclic; see clock_init(). 820Sstevel@tonic-gate * 830Sstevel@tonic-gate * Functions: 840Sstevel@tonic-gate * reprime clock 850Sstevel@tonic-gate * maintain date 860Sstevel@tonic-gate * jab the scheduler 870Sstevel@tonic-gate */ 880Sstevel@tonic-gate 890Sstevel@tonic-gate extern kcondvar_t fsflush_cv; 900Sstevel@tonic-gate extern sysinfo_t sysinfo; 910Sstevel@tonic-gate extern vminfo_t vminfo; 920Sstevel@tonic-gate extern int idleswtch; /* flag set while idle in pswtch() */ 9310696SDavid.Hollister@Sun.COM extern hrtime_t volatile devinfo_freeze; 940Sstevel@tonic-gate 950Sstevel@tonic-gate /* 960Sstevel@tonic-gate * high-precision avenrun values. These are needed to make the 970Sstevel@tonic-gate * regular avenrun values accurate. 980Sstevel@tonic-gate */ 990Sstevel@tonic-gate static uint64_t hp_avenrun[3]; 1000Sstevel@tonic-gate int avenrun[3]; /* FSCALED average run queue lengths */ 1010Sstevel@tonic-gate time_t time; /* time in seconds since 1970 - for compatibility only */ 1020Sstevel@tonic-gate 1030Sstevel@tonic-gate static struct loadavg_s loadavg; 1040Sstevel@tonic-gate /* 1050Sstevel@tonic-gate * Phase/frequency-lock loop (PLL/FLL) definitions 1060Sstevel@tonic-gate * 1070Sstevel@tonic-gate * The following variables are read and set by the ntp_adjtime() system 1080Sstevel@tonic-gate * call. 1090Sstevel@tonic-gate * 1100Sstevel@tonic-gate * time_state shows the state of the system clock, with values defined 1110Sstevel@tonic-gate * in the timex.h header file. 1120Sstevel@tonic-gate * 1130Sstevel@tonic-gate * time_status shows the status of the system clock, with bits defined 1140Sstevel@tonic-gate * in the timex.h header file. 1150Sstevel@tonic-gate * 1160Sstevel@tonic-gate * time_offset is used by the PLL/FLL to adjust the system time in small 1170Sstevel@tonic-gate * increments. 1180Sstevel@tonic-gate * 1190Sstevel@tonic-gate * time_constant determines the bandwidth or "stiffness" of the PLL. 1200Sstevel@tonic-gate * 1210Sstevel@tonic-gate * time_tolerance determines maximum frequency error or tolerance of the 1220Sstevel@tonic-gate * CPU clock oscillator and is a property of the architecture; however, 1230Sstevel@tonic-gate * in principle it could change as result of the presence of external 1240Sstevel@tonic-gate * discipline signals, for instance. 1250Sstevel@tonic-gate * 1260Sstevel@tonic-gate * time_precision is usually equal to the kernel tick variable; however, 1270Sstevel@tonic-gate * in cases where a precision clock counter or external clock is 1280Sstevel@tonic-gate * available, the resolution can be much less than this and depend on 1290Sstevel@tonic-gate * whether the external clock is working or not. 1300Sstevel@tonic-gate * 1310Sstevel@tonic-gate * time_maxerror is initialized by a ntp_adjtime() call and increased by 1320Sstevel@tonic-gate * the kernel once each second to reflect the maximum error bound 1330Sstevel@tonic-gate * growth. 1340Sstevel@tonic-gate * 1350Sstevel@tonic-gate * time_esterror is set and read by the ntp_adjtime() call, but 1360Sstevel@tonic-gate * otherwise not used by the kernel. 1370Sstevel@tonic-gate */ 1380Sstevel@tonic-gate int32_t time_state = TIME_OK; /* clock state */ 1390Sstevel@tonic-gate int32_t time_status = STA_UNSYNC; /* clock status bits */ 1400Sstevel@tonic-gate int32_t time_offset = 0; /* time offset (us) */ 1410Sstevel@tonic-gate int32_t time_constant = 0; /* pll time constant */ 1420Sstevel@tonic-gate int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 1430Sstevel@tonic-gate int32_t time_precision = 1; /* clock precision (us) */ 1440Sstevel@tonic-gate int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 1450Sstevel@tonic-gate int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 1460Sstevel@tonic-gate 1470Sstevel@tonic-gate /* 1480Sstevel@tonic-gate * The following variables establish the state of the PLL/FLL and the 1490Sstevel@tonic-gate * residual time and frequency offset of the local clock. The scale 1500Sstevel@tonic-gate * factors are defined in the timex.h header file. 1510Sstevel@tonic-gate * 1520Sstevel@tonic-gate * time_phase and time_freq are the phase increment and the frequency 1530Sstevel@tonic-gate * increment, respectively, of the kernel time variable. 1540Sstevel@tonic-gate * 1550Sstevel@tonic-gate * time_freq is set via ntp_adjtime() from a value stored in a file when 1560Sstevel@tonic-gate * the synchronization daemon is first started. Its value is retrieved 1570Sstevel@tonic-gate * via ntp_adjtime() and written to the file about once per hour by the 1580Sstevel@tonic-gate * daemon. 1590Sstevel@tonic-gate * 1600Sstevel@tonic-gate * time_adj is the adjustment added to the value of tick at each timer 1610Sstevel@tonic-gate * interrupt and is recomputed from time_phase and time_freq at each 1620Sstevel@tonic-gate * seconds rollover. 1630Sstevel@tonic-gate * 1640Sstevel@tonic-gate * time_reftime is the second's portion of the system time at the last 1650Sstevel@tonic-gate * call to ntp_adjtime(). It is used to adjust the time_freq variable 1660Sstevel@tonic-gate * and to increase the time_maxerror as the time since last update 1670Sstevel@tonic-gate * increases. 1680Sstevel@tonic-gate */ 1690Sstevel@tonic-gate int32_t time_phase = 0; /* phase offset (scaled us) */ 1700Sstevel@tonic-gate int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 1710Sstevel@tonic-gate int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 1720Sstevel@tonic-gate int32_t time_reftime = 0; /* time at last adjustment (s) */ 1730Sstevel@tonic-gate 1740Sstevel@tonic-gate /* 1750Sstevel@tonic-gate * The scale factors of the following variables are defined in the 1760Sstevel@tonic-gate * timex.h header file. 1770Sstevel@tonic-gate * 1780Sstevel@tonic-gate * pps_time contains the time at each calibration interval, as read by 1790Sstevel@tonic-gate * microtime(). pps_count counts the seconds of the calibration 1800Sstevel@tonic-gate * interval, the duration of which is nominally pps_shift in powers of 1810Sstevel@tonic-gate * two. 1820Sstevel@tonic-gate * 1830Sstevel@tonic-gate * pps_offset is the time offset produced by the time median filter 1840Sstevel@tonic-gate * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 1850Sstevel@tonic-gate * this filter. 1860Sstevel@tonic-gate * 1870Sstevel@tonic-gate * pps_freq is the frequency offset produced by the frequency median 1880Sstevel@tonic-gate * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 1890Sstevel@tonic-gate * by this filter. 1900Sstevel@tonic-gate * 1910Sstevel@tonic-gate * pps_usec is latched from a high resolution counter or external clock 1920Sstevel@tonic-gate * at pps_time. Here we want the hardware counter contents only, not the 1930Sstevel@tonic-gate * contents plus the time_tv.usec as usual. 1940Sstevel@tonic-gate * 1950Sstevel@tonic-gate * pps_valid counts the number of seconds since the last PPS update. It 1960Sstevel@tonic-gate * is used as a watchdog timer to disable the PPS discipline should the 1970Sstevel@tonic-gate * PPS signal be lost. 1980Sstevel@tonic-gate * 1990Sstevel@tonic-gate * pps_glitch counts the number of seconds since the beginning of an 2000Sstevel@tonic-gate * offset burst more than tick/2 from current nominal offset. It is used 2010Sstevel@tonic-gate * mainly to suppress error bursts due to priority conflicts between the 2020Sstevel@tonic-gate * PPS interrupt and timer interrupt. 2030Sstevel@tonic-gate * 2040Sstevel@tonic-gate * pps_intcnt counts the calibration intervals for use in the interval- 2050Sstevel@tonic-gate * adaptation algorithm. It's just too complicated for words. 2060Sstevel@tonic-gate */ 2070Sstevel@tonic-gate struct timeval pps_time; /* kernel time at last interval */ 2080Sstevel@tonic-gate int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 2090Sstevel@tonic-gate int32_t pps_offset = 0; /* pps time offset (us) */ 2100Sstevel@tonic-gate int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 2110Sstevel@tonic-gate int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 2120Sstevel@tonic-gate int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 2130Sstevel@tonic-gate int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 2140Sstevel@tonic-gate int32_t pps_usec = 0; /* microsec counter at last interval */ 2150Sstevel@tonic-gate int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 2160Sstevel@tonic-gate int32_t pps_glitch = 0; /* pps signal glitch counter */ 2170Sstevel@tonic-gate int32_t pps_count = 0; /* calibration interval counter (s) */ 2180Sstevel@tonic-gate int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 2190Sstevel@tonic-gate int32_t pps_intcnt = 0; /* intervals at current duration */ 2200Sstevel@tonic-gate 2210Sstevel@tonic-gate /* 2220Sstevel@tonic-gate * PPS signal quality monitors 2230Sstevel@tonic-gate * 2240Sstevel@tonic-gate * pps_jitcnt counts the seconds that have been discarded because the 2250Sstevel@tonic-gate * jitter measured by the time median filter exceeds the limit MAXTIME 2260Sstevel@tonic-gate * (100 us). 2270Sstevel@tonic-gate * 2280Sstevel@tonic-gate * pps_calcnt counts the frequency calibration intervals, which are 2290Sstevel@tonic-gate * variable from 4 s to 256 s. 2300Sstevel@tonic-gate * 2310Sstevel@tonic-gate * pps_errcnt counts the calibration intervals which have been discarded 2320Sstevel@tonic-gate * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 2330Sstevel@tonic-gate * calibration interval jitter exceeds two ticks. 2340Sstevel@tonic-gate * 2350Sstevel@tonic-gate * pps_stbcnt counts the calibration intervals that have been discarded 2360Sstevel@tonic-gate * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 2370Sstevel@tonic-gate */ 2380Sstevel@tonic-gate int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 2390Sstevel@tonic-gate int32_t pps_calcnt = 0; /* calibration intervals */ 2400Sstevel@tonic-gate int32_t pps_errcnt = 0; /* calibration errors */ 2410Sstevel@tonic-gate int32_t pps_stbcnt = 0; /* stability limit exceeded */ 2420Sstevel@tonic-gate 243*11066Srafael.vanoni@sun.com kcondvar_t lbolt_cv; 2440Sstevel@tonic-gate 245*11066Srafael.vanoni@sun.com /* 246*11066Srafael.vanoni@sun.com * Hybrid lbolt implementation: 247*11066Srafael.vanoni@sun.com * 248*11066Srafael.vanoni@sun.com * The service historically provided by the lbolt and lbolt64 variables has 249*11066Srafael.vanoni@sun.com * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 250*11066Srafael.vanoni@sun.com * original symbols removed from the system. The once clock driven variables are 251*11066Srafael.vanoni@sun.com * now implemented in an event driven fashion, backed by gethrtime() coarsed to 252*11066Srafael.vanoni@sun.com * the appropriate clock resolution. The default event driven implementation is 253*11066Srafael.vanoni@sun.com * complemented by a cyclic driven one, active only during periods of intense 254*11066Srafael.vanoni@sun.com * activity around the DDI lbolt routines, when a lbolt specific cyclic is 255*11066Srafael.vanoni@sun.com * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 256*11066Srafael.vanoni@sun.com * rely on the original low cost of consulting a memory position. 257*11066Srafael.vanoni@sun.com * 258*11066Srafael.vanoni@sun.com * The implementation uses the number of calls to these routines and the 259*11066Srafael.vanoni@sun.com * frequency of these to determine when to transition from event to cyclic 260*11066Srafael.vanoni@sun.com * driven and vice-versa. These values are kept on a per CPU basis for 261*11066Srafael.vanoni@sun.com * scalability reasons and to prevent CPUs from constantly invalidating a single 262*11066Srafael.vanoni@sun.com * cache line when modifying a global variable. The transition from event to 263*11066Srafael.vanoni@sun.com * cyclic mode happens once the thresholds are crossed, and activity on any CPU 264*11066Srafael.vanoni@sun.com * can cause such transition. 265*11066Srafael.vanoni@sun.com * 266*11066Srafael.vanoni@sun.com * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 267*11066Srafael.vanoni@sun.com * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 268*11066Srafael.vanoni@sun.com * lbolt_cyclic_driven() according to the current mode. When the thresholds 269*11066Srafael.vanoni@sun.com * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 270*11066Srafael.vanoni@sun.com * fire at a nsec_per_tick interval and increment an internal variable at 271*11066Srafael.vanoni@sun.com * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 272*11066Srafael.vanoni@sun.com * will simply return the value of such variable. lbolt_cyclic() will attempt 273*11066Srafael.vanoni@sun.com * to shut itself off at each threshold interval (sampling period for calls 274*11066Srafael.vanoni@sun.com * to the DDI lbolt routines), and return to the event driven mode, but will 275*11066Srafael.vanoni@sun.com * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 276*11066Srafael.vanoni@sun.com * 277*11066Srafael.vanoni@sun.com * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 278*11066Srafael.vanoni@sun.com * for the cyclic subsystem to be intialized. 279*11066Srafael.vanoni@sun.com * 280*11066Srafael.vanoni@sun.com */ 281*11066Srafael.vanoni@sun.com static int64_t lbolt_bootstrap(void); 282*11066Srafael.vanoni@sun.com int64_t lbolt_event_driven(void); 283*11066Srafael.vanoni@sun.com int64_t lbolt_cyclic_driven(void); 284*11066Srafael.vanoni@sun.com int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 285*11066Srafael.vanoni@sun.com uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 286*11066Srafael.vanoni@sun.com 287*11066Srafael.vanoni@sun.com /* 288*11066Srafael.vanoni@sun.com * lbolt's cyclic, installed by clock_init(). 289*11066Srafael.vanoni@sun.com */ 290*11066Srafael.vanoni@sun.com static void lbolt_cyclic(void); 291*11066Srafael.vanoni@sun.com 292*11066Srafael.vanoni@sun.com /* 293*11066Srafael.vanoni@sun.com * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 294*11066Srafael.vanoni@sun.com * from switching back to event driven, once it reaches cyclic mode. 295*11066Srafael.vanoni@sun.com */ 296*11066Srafael.vanoni@sun.com static boolean_t lbolt_cyc_only = B_FALSE; 297*11066Srafael.vanoni@sun.com 298*11066Srafael.vanoni@sun.com /* 299*11066Srafael.vanoni@sun.com * Cache aligned, per CPU structure with lbolt usage statistics. 300*11066Srafael.vanoni@sun.com */ 301*11066Srafael.vanoni@sun.com static lbolt_cpu_t *lb_cpu; 302*11066Srafael.vanoni@sun.com 303*11066Srafael.vanoni@sun.com /* 304*11066Srafael.vanoni@sun.com * Single, cache aligned, structure with all the information required by 305*11066Srafael.vanoni@sun.com * the lbolt implementation. 306*11066Srafael.vanoni@sun.com */ 307*11066Srafael.vanoni@sun.com lbolt_info_t *lb_info; 308*11066Srafael.vanoni@sun.com 309*11066Srafael.vanoni@sun.com 3100Sstevel@tonic-gate int one_sec = 1; /* turned on once every second */ 3110Sstevel@tonic-gate static int fsflushcnt; /* counter for t_fsflushr */ 3120Sstevel@tonic-gate int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 3130Sstevel@tonic-gate int tod_needsync = 0; /* need to sync tod chip with software time */ 3140Sstevel@tonic-gate static int tod_broken = 0; /* clock chip doesn't work */ 3150Sstevel@tonic-gate time_t boot_time = 0; /* Boot time in seconds since 1970 */ 3160Sstevel@tonic-gate cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 3170Sstevel@tonic-gate cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 3185265Seota cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 3190Sstevel@tonic-gate 3205788Smv143129 extern void clock_tick_schedule(int); 3215788Smv143129 3220Sstevel@tonic-gate static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 3230Sstevel@tonic-gate 3240Sstevel@tonic-gate /* 3250Sstevel@tonic-gate * for tod fault detection 3260Sstevel@tonic-gate */ 3270Sstevel@tonic-gate #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 3280Sstevel@tonic-gate #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 3290Sstevel@tonic-gate #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 3300Sstevel@tonic-gate #define TOD_FILTER_N 4 3310Sstevel@tonic-gate #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 3320Sstevel@tonic-gate static int tod_faulted = TOD_NOFAULT; 3330Sstevel@tonic-gate static int tod_fault_reset_flag = 0; 3340Sstevel@tonic-gate 3350Sstevel@tonic-gate /* patchable via /etc/system */ 3360Sstevel@tonic-gate int tod_validate_enable = 1; 3370Sstevel@tonic-gate 33810696SDavid.Hollister@Sun.COM /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 33910696SDavid.Hollister@Sun.COM int delay_from_interrupt_diagnose = 0; 34010696SDavid.Hollister@Sun.COM volatile uint32_t delay_from_interrupt_msg = 20; 34110696SDavid.Hollister@Sun.COM 3420Sstevel@tonic-gate /* 343950Ssethg * On non-SPARC systems, TOD validation must be deferred until gethrtime 344950Ssethg * returns non-zero values (after mach_clkinit's execution). 345950Ssethg * On SPARC systems, it must be deferred until after hrtime_base 346950Ssethg * and hres_last_tick are set (in the first invocation of hres_tick). 347950Ssethg * Since in both cases the prerequisites occur before the invocation of 348950Ssethg * tod_get() in clock(), the deferment is lifted there. 349950Ssethg */ 350950Ssethg static boolean_t tod_validate_deferred = B_TRUE; 351950Ssethg 352950Ssethg /* 3530Sstevel@tonic-gate * tod_fault_table[] must be aligned with 3540Sstevel@tonic-gate * enum tod_fault_type in systm.h 3550Sstevel@tonic-gate */ 3560Sstevel@tonic-gate static char *tod_fault_table[] = { 3570Sstevel@tonic-gate "Reversed", /* TOD_REVERSED */ 3580Sstevel@tonic-gate "Stalled", /* TOD_STALLED */ 3590Sstevel@tonic-gate "Jumped", /* TOD_JUMPED */ 3605084Sjohnlev "Changed in Clock Rate", /* TOD_RATECHANGED */ 3615084Sjohnlev "Is Read-Only" /* TOD_RDONLY */ 3620Sstevel@tonic-gate /* 3630Sstevel@tonic-gate * no strings needed for TOD_NOFAULT 3640Sstevel@tonic-gate */ 3650Sstevel@tonic-gate }; 3660Sstevel@tonic-gate 3670Sstevel@tonic-gate /* 3680Sstevel@tonic-gate * test hook for tod broken detection in tod_validate 3690Sstevel@tonic-gate */ 3700Sstevel@tonic-gate int tod_unit_test = 0; 3710Sstevel@tonic-gate time_t tod_test_injector; 3720Sstevel@tonic-gate 3730Sstevel@tonic-gate #define CLOCK_ADJ_HIST_SIZE 4 3740Sstevel@tonic-gate 3750Sstevel@tonic-gate static int adj_hist_entry; 3760Sstevel@tonic-gate 3770Sstevel@tonic-gate int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 3780Sstevel@tonic-gate 3790Sstevel@tonic-gate static void calcloadavg(int, uint64_t *); 3800Sstevel@tonic-gate static int genloadavg(struct loadavg_s *); 3810Sstevel@tonic-gate static void loadavg_update(); 3820Sstevel@tonic-gate 3830Sstevel@tonic-gate void (*cmm_clock_callout)() = NULL; 3843792Sakolb void (*cpucaps_clock_callout)() = NULL; 3850Sstevel@tonic-gate 3865788Smv143129 extern clock_t clock_tick_proc_max; 3875788Smv143129 388*11066Srafael.vanoni@sun.com static int64_t deadman_counter = 0; 389*11066Srafael.vanoni@sun.com 3900Sstevel@tonic-gate static void 3910Sstevel@tonic-gate clock(void) 3920Sstevel@tonic-gate { 3930Sstevel@tonic-gate kthread_t *t; 3945788Smv143129 uint_t nrunnable; 3950Sstevel@tonic-gate uint_t w_io; 3960Sstevel@tonic-gate cpu_t *cp; 3970Sstevel@tonic-gate cpupart_t *cpupart; 3980Sstevel@tonic-gate extern void set_anoninfo(); 3990Sstevel@tonic-gate extern void set_freemem(); 4000Sstevel@tonic-gate void (*funcp)(); 4010Sstevel@tonic-gate int32_t ltemp; 4020Sstevel@tonic-gate int64_t lltemp; 4030Sstevel@tonic-gate int s; 4040Sstevel@tonic-gate int do_lgrp_load; 4050Sstevel@tonic-gate int i; 406*11066Srafael.vanoni@sun.com clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 4070Sstevel@tonic-gate 4080Sstevel@tonic-gate if (panicstr) 4090Sstevel@tonic-gate return; 4100Sstevel@tonic-gate 4110Sstevel@tonic-gate set_anoninfo(); 4120Sstevel@tonic-gate /* 4130Sstevel@tonic-gate * Make sure that 'freemem' do not drift too far from the truth 4140Sstevel@tonic-gate */ 4150Sstevel@tonic-gate set_freemem(); 4160Sstevel@tonic-gate 4170Sstevel@tonic-gate 4180Sstevel@tonic-gate /* 4190Sstevel@tonic-gate * Before the section which is repeated is executed, we do 4200Sstevel@tonic-gate * the time delta processing which occurs every clock tick 4210Sstevel@tonic-gate * 4220Sstevel@tonic-gate * There is additional processing which happens every time 4230Sstevel@tonic-gate * the nanosecond counter rolls over which is described 4240Sstevel@tonic-gate * below - see the section which begins with : if (one_sec) 4250Sstevel@tonic-gate * 4260Sstevel@tonic-gate * This section marks the beginning of the precision-kernel 4270Sstevel@tonic-gate * code fragment. 4280Sstevel@tonic-gate * 4290Sstevel@tonic-gate * First, compute the phase adjustment. If the low-order bits 4300Sstevel@tonic-gate * (time_phase) of the update overflow, bump the higher order 4310Sstevel@tonic-gate * bits (time_update). 4320Sstevel@tonic-gate */ 4330Sstevel@tonic-gate time_phase += time_adj; 4340Sstevel@tonic-gate if (time_phase <= -FINEUSEC) { 4350Sstevel@tonic-gate ltemp = -time_phase / SCALE_PHASE; 4360Sstevel@tonic-gate time_phase += ltemp * SCALE_PHASE; 4370Sstevel@tonic-gate s = hr_clock_lock(); 4380Sstevel@tonic-gate timedelta -= ltemp * (NANOSEC/MICROSEC); 4390Sstevel@tonic-gate hr_clock_unlock(s); 4400Sstevel@tonic-gate } else if (time_phase >= FINEUSEC) { 4410Sstevel@tonic-gate ltemp = time_phase / SCALE_PHASE; 4420Sstevel@tonic-gate time_phase -= ltemp * SCALE_PHASE; 4430Sstevel@tonic-gate s = hr_clock_lock(); 4440Sstevel@tonic-gate timedelta += ltemp * (NANOSEC/MICROSEC); 4450Sstevel@tonic-gate hr_clock_unlock(s); 4460Sstevel@tonic-gate } 4470Sstevel@tonic-gate 4480Sstevel@tonic-gate /* 4490Sstevel@tonic-gate * End of precision-kernel code fragment which is processed 4500Sstevel@tonic-gate * every timer interrupt. 4510Sstevel@tonic-gate * 4520Sstevel@tonic-gate * Continue with the interrupt processing as scheduled. 4530Sstevel@tonic-gate */ 4540Sstevel@tonic-gate /* 4550Sstevel@tonic-gate * Count the number of runnable threads and the number waiting 4560Sstevel@tonic-gate * for some form of I/O to complete -- gets added to 4570Sstevel@tonic-gate * sysinfo.waiting. To know the state of the system, must add 4580Sstevel@tonic-gate * wait counts from all CPUs. Also add up the per-partition 4590Sstevel@tonic-gate * statistics. 4600Sstevel@tonic-gate */ 4610Sstevel@tonic-gate w_io = 0; 4620Sstevel@tonic-gate nrunnable = 0; 4630Sstevel@tonic-gate 4640Sstevel@tonic-gate /* 4650Sstevel@tonic-gate * keep track of when to update lgrp/part loads 4660Sstevel@tonic-gate */ 4670Sstevel@tonic-gate 4680Sstevel@tonic-gate do_lgrp_load = 0; 4690Sstevel@tonic-gate if (lgrp_ticks++ >= hz / 10) { 4700Sstevel@tonic-gate lgrp_ticks = 0; 4710Sstevel@tonic-gate do_lgrp_load = 1; 4720Sstevel@tonic-gate } 4730Sstevel@tonic-gate 474*11066Srafael.vanoni@sun.com if (one_sec) { 4750Sstevel@tonic-gate loadavg_update(); 476*11066Srafael.vanoni@sun.com deadman_counter++; 477*11066Srafael.vanoni@sun.com } 4780Sstevel@tonic-gate 4790Sstevel@tonic-gate /* 4800Sstevel@tonic-gate * First count the threads waiting on kpreempt queues in each 4810Sstevel@tonic-gate * CPU partition. 4820Sstevel@tonic-gate */ 4830Sstevel@tonic-gate 4840Sstevel@tonic-gate cpupart = cp_list_head; 4850Sstevel@tonic-gate do { 4860Sstevel@tonic-gate uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 4870Sstevel@tonic-gate 4880Sstevel@tonic-gate cpupart->cp_updates++; 4890Sstevel@tonic-gate nrunnable += cpupart_nrunnable; 4900Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpupart_nrunnable; 4910Sstevel@tonic-gate if (one_sec) { 4920Sstevel@tonic-gate cpupart->cp_nrunning = 0; 4930Sstevel@tonic-gate cpupart->cp_nrunnable = cpupart_nrunnable; 4940Sstevel@tonic-gate } 4950Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 4960Sstevel@tonic-gate 4970Sstevel@tonic-gate 4980Sstevel@tonic-gate /* Now count the per-CPU statistics. */ 4990Sstevel@tonic-gate cp = cpu_list; 5000Sstevel@tonic-gate do { 5010Sstevel@tonic-gate uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 5020Sstevel@tonic-gate 5030Sstevel@tonic-gate nrunnable += cpu_nrunnable; 5040Sstevel@tonic-gate cpupart = cp->cpu_part; 5050Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpu_nrunnable; 5063446Smrj if (one_sec) { 5070Sstevel@tonic-gate cpupart->cp_nrunnable += cpu_nrunnable; 5083446Smrj /* 5095788Smv143129 * Update user, system, and idle cpu times. 5105788Smv143129 */ 5115788Smv143129 cpupart->cp_nrunning++; 5125788Smv143129 /* 5133446Smrj * w_io is used to update sysinfo.waiting during 5143446Smrj * one_second processing below. Only gather w_io 5153446Smrj * information when we walk the list of cpus if we're 5163446Smrj * going to perform one_second processing. 5173446Smrj */ 5183446Smrj w_io += CPU_STATS(cp, sys.iowait); 5195076Smishra } 5203446Smrj 5215076Smishra if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 5225076Smishra int i, load, change; 5235076Smishra hrtime_t intracct, intrused; 5245076Smishra const hrtime_t maxnsec = 1000000000; 5255076Smishra const int precision = 100; 5265076Smishra 5275076Smishra /* 5285076Smishra * Estimate interrupt load on this cpu each second. 5295076Smishra * Computes cpu_intrload as %utilization (0-99). 5305076Smishra */ 5315076Smishra 5325076Smishra /* add up interrupt time from all micro states */ 5335076Smishra for (intracct = 0, i = 0; i < NCMSTATES; i++) 5345076Smishra intracct += cp->cpu_intracct[i]; 5355076Smishra scalehrtime(&intracct); 5365076Smishra 5375076Smishra /* compute nsec used in the past second */ 5385076Smishra intrused = intracct - cp->cpu_intrlast; 5395076Smishra cp->cpu_intrlast = intracct; 5405076Smishra 5415076Smishra /* limit the value for safety (and the first pass) */ 5425076Smishra if (intrused >= maxnsec) 5435076Smishra intrused = maxnsec - 1; 5445076Smishra 5455076Smishra /* calculate %time in interrupt */ 5465076Smishra load = (precision * intrused) / maxnsec; 5475076Smishra ASSERT(load >= 0 && load < precision); 5485076Smishra change = cp->cpu_intrload - load; 5495076Smishra 5505076Smishra /* jump to new max, or decay the old max */ 5515076Smishra if (change < 0) 5525076Smishra cp->cpu_intrload = load; 5535076Smishra else if (change > 0) 5545076Smishra cp->cpu_intrload -= (change + 3) / 4; 5555076Smishra 5565076Smishra DTRACE_PROBE3(cpu_intrload, 5575076Smishra cpu_t *, cp, 5585076Smishra hrtime_t, intracct, 5595076Smishra hrtime_t, intrused); 5603446Smrj } 5615076Smishra 5620Sstevel@tonic-gate if (do_lgrp_load && 5630Sstevel@tonic-gate (cp->cpu_flags & CPU_EXISTS)) { 5640Sstevel@tonic-gate /* 5650Sstevel@tonic-gate * When updating the lgroup's load average, 5660Sstevel@tonic-gate * account for the thread running on the CPU. 5670Sstevel@tonic-gate * If the CPU is the current one, then we need 5680Sstevel@tonic-gate * to account for the underlying thread which 5690Sstevel@tonic-gate * got the clock interrupt not the thread that is 5700Sstevel@tonic-gate * handling the interrupt and caculating the load 5710Sstevel@tonic-gate * average 5720Sstevel@tonic-gate */ 5730Sstevel@tonic-gate t = cp->cpu_thread; 5740Sstevel@tonic-gate if (CPU == cp) 5750Sstevel@tonic-gate t = t->t_intr; 5760Sstevel@tonic-gate 5770Sstevel@tonic-gate /* 5780Sstevel@tonic-gate * Account for the load average for this thread if 5790Sstevel@tonic-gate * it isn't the idle thread or it is on the interrupt 5800Sstevel@tonic-gate * stack and not the current CPU handling the clock 5810Sstevel@tonic-gate * interrupt 5820Sstevel@tonic-gate */ 5830Sstevel@tonic-gate if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 5840Sstevel@tonic-gate CPU_ON_INTR(cp))) { 5850Sstevel@tonic-gate if (t->t_lpl == cp->cpu_lpl) { 5860Sstevel@tonic-gate /* local thread */ 5870Sstevel@tonic-gate cpu_nrunnable++; 5880Sstevel@tonic-gate } else { 5890Sstevel@tonic-gate /* 5900Sstevel@tonic-gate * This is a remote thread, charge it 5910Sstevel@tonic-gate * against its home lgroup. Note that 5920Sstevel@tonic-gate * we notice that a thread is remote 5930Sstevel@tonic-gate * only if it's currently executing. 5940Sstevel@tonic-gate * This is a reasonable approximation, 5950Sstevel@tonic-gate * since queued remote threads are rare. 5960Sstevel@tonic-gate * Note also that if we didn't charge 5970Sstevel@tonic-gate * it to its home lgroup, remote 5980Sstevel@tonic-gate * execution would often make a system 5990Sstevel@tonic-gate * appear balanced even though it was 6000Sstevel@tonic-gate * not, and thread placement/migration 6010Sstevel@tonic-gate * would often not be done correctly. 6020Sstevel@tonic-gate */ 6030Sstevel@tonic-gate lgrp_loadavg(t->t_lpl, 6040Sstevel@tonic-gate LGRP_LOADAVG_IN_THREAD_MAX, 0); 6050Sstevel@tonic-gate } 6060Sstevel@tonic-gate } 6070Sstevel@tonic-gate lgrp_loadavg(cp->cpu_lpl, 6080Sstevel@tonic-gate cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 6090Sstevel@tonic-gate } 6100Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 6110Sstevel@tonic-gate 6125788Smv143129 clock_tick_schedule(one_sec); 6130Sstevel@tonic-gate 6140Sstevel@tonic-gate /* 6150Sstevel@tonic-gate * Check for a callout that needs be called from the clock 6160Sstevel@tonic-gate * thread to support the membership protocol in a clustered 6170Sstevel@tonic-gate * system. Copy the function pointer so that we can reset 6180Sstevel@tonic-gate * this to NULL if needed. 6190Sstevel@tonic-gate */ 6200Sstevel@tonic-gate if ((funcp = cmm_clock_callout) != NULL) 6210Sstevel@tonic-gate (*funcp)(); 6220Sstevel@tonic-gate 6233792Sakolb if ((funcp = cpucaps_clock_callout) != NULL) 6243792Sakolb (*funcp)(); 6253792Sakolb 6260Sstevel@tonic-gate /* 6270Sstevel@tonic-gate * Wakeup the cageout thread waiters once per second. 6280Sstevel@tonic-gate */ 6290Sstevel@tonic-gate if (one_sec) 6300Sstevel@tonic-gate kcage_tick(); 6310Sstevel@tonic-gate 6320Sstevel@tonic-gate if (one_sec) { 6330Sstevel@tonic-gate 6340Sstevel@tonic-gate int drift, absdrift; 6350Sstevel@tonic-gate timestruc_t tod; 6360Sstevel@tonic-gate int s; 6370Sstevel@tonic-gate 6380Sstevel@tonic-gate /* 6390Sstevel@tonic-gate * Beginning of precision-kernel code fragment executed 6400Sstevel@tonic-gate * every second. 6410Sstevel@tonic-gate * 6420Sstevel@tonic-gate * On rollover of the second the phase adjustment to be 6430Sstevel@tonic-gate * used for the next second is calculated. Also, the 6440Sstevel@tonic-gate * maximum error is increased by the tolerance. If the 6450Sstevel@tonic-gate * PPS frequency discipline code is present, the phase is 6460Sstevel@tonic-gate * increased to compensate for the CPU clock oscillator 6470Sstevel@tonic-gate * frequency error. 6480Sstevel@tonic-gate * 6490Sstevel@tonic-gate * On a 32-bit machine and given parameters in the timex.h 6500Sstevel@tonic-gate * header file, the maximum phase adjustment is +-512 ms 6510Sstevel@tonic-gate * and maximum frequency offset is (a tad less than) 6520Sstevel@tonic-gate * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 6530Sstevel@tonic-gate */ 6540Sstevel@tonic-gate time_maxerror += time_tolerance / SCALE_USEC; 6550Sstevel@tonic-gate 6560Sstevel@tonic-gate /* 6570Sstevel@tonic-gate * Leap second processing. If in leap-insert state at 6580Sstevel@tonic-gate * the end of the day, the system clock is set back one 6590Sstevel@tonic-gate * second; if in leap-delete state, the system clock is 6600Sstevel@tonic-gate * set ahead one second. The microtime() routine or 6610Sstevel@tonic-gate * external clock driver will insure that reported time 6620Sstevel@tonic-gate * is always monotonic. The ugly divides should be 6630Sstevel@tonic-gate * replaced. 6640Sstevel@tonic-gate */ 6650Sstevel@tonic-gate switch (time_state) { 6660Sstevel@tonic-gate 6670Sstevel@tonic-gate case TIME_OK: 6680Sstevel@tonic-gate if (time_status & STA_INS) 6690Sstevel@tonic-gate time_state = TIME_INS; 6700Sstevel@tonic-gate else if (time_status & STA_DEL) 6710Sstevel@tonic-gate time_state = TIME_DEL; 6720Sstevel@tonic-gate break; 6730Sstevel@tonic-gate 6740Sstevel@tonic-gate case TIME_INS: 6750Sstevel@tonic-gate if (hrestime.tv_sec % 86400 == 0) { 6760Sstevel@tonic-gate s = hr_clock_lock(); 6770Sstevel@tonic-gate hrestime.tv_sec--; 6780Sstevel@tonic-gate hr_clock_unlock(s); 6790Sstevel@tonic-gate time_state = TIME_OOP; 6800Sstevel@tonic-gate } 6810Sstevel@tonic-gate break; 6820Sstevel@tonic-gate 6830Sstevel@tonic-gate case TIME_DEL: 6840Sstevel@tonic-gate if ((hrestime.tv_sec + 1) % 86400 == 0) { 6850Sstevel@tonic-gate s = hr_clock_lock(); 6860Sstevel@tonic-gate hrestime.tv_sec++; 6870Sstevel@tonic-gate hr_clock_unlock(s); 6880Sstevel@tonic-gate time_state = TIME_WAIT; 6890Sstevel@tonic-gate } 6900Sstevel@tonic-gate break; 6910Sstevel@tonic-gate 6920Sstevel@tonic-gate case TIME_OOP: 6930Sstevel@tonic-gate time_state = TIME_WAIT; 6940Sstevel@tonic-gate break; 6950Sstevel@tonic-gate 6960Sstevel@tonic-gate case TIME_WAIT: 6970Sstevel@tonic-gate if (!(time_status & (STA_INS | STA_DEL))) 6980Sstevel@tonic-gate time_state = TIME_OK; 6990Sstevel@tonic-gate default: 7000Sstevel@tonic-gate break; 7010Sstevel@tonic-gate } 7020Sstevel@tonic-gate 7030Sstevel@tonic-gate /* 7040Sstevel@tonic-gate * Compute the phase adjustment for the next second. In 7050Sstevel@tonic-gate * PLL mode, the offset is reduced by a fixed factor 7060Sstevel@tonic-gate * times the time constant. In FLL mode the offset is 7070Sstevel@tonic-gate * used directly. In either mode, the maximum phase 7080Sstevel@tonic-gate * adjustment for each second is clamped so as to spread 7090Sstevel@tonic-gate * the adjustment over not more than the number of 7100Sstevel@tonic-gate * seconds between updates. 7110Sstevel@tonic-gate */ 7120Sstevel@tonic-gate if (time_offset == 0) 7130Sstevel@tonic-gate time_adj = 0; 7140Sstevel@tonic-gate else if (time_offset < 0) { 7150Sstevel@tonic-gate lltemp = -time_offset; 7160Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 7170Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 7180Sstevel@tonic-gate lltemp *= (1 << time_constant) / 7190Sstevel@tonic-gate SCALE_KG; 7200Sstevel@tonic-gate else 7210Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 7220Sstevel@tonic-gate time_constant; 7230Sstevel@tonic-gate } 7240Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 7250Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 7260Sstevel@tonic-gate time_offset += lltemp; 7270Sstevel@tonic-gate time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 7280Sstevel@tonic-gate } else { 7290Sstevel@tonic-gate lltemp = time_offset; 7300Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 7310Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 7320Sstevel@tonic-gate lltemp *= (1 << time_constant) / 7330Sstevel@tonic-gate SCALE_KG; 7340Sstevel@tonic-gate else 7350Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 7360Sstevel@tonic-gate time_constant; 7370Sstevel@tonic-gate } 7380Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 7390Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 7400Sstevel@tonic-gate time_offset -= lltemp; 7410Sstevel@tonic-gate time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 7420Sstevel@tonic-gate } 7430Sstevel@tonic-gate 7440Sstevel@tonic-gate /* 7450Sstevel@tonic-gate * Compute the frequency estimate and additional phase 7460Sstevel@tonic-gate * adjustment due to frequency error for the next 7470Sstevel@tonic-gate * second. When the PPS signal is engaged, gnaw on the 7480Sstevel@tonic-gate * watchdog counter and update the frequency computed by 7490Sstevel@tonic-gate * the pll and the PPS signal. 7500Sstevel@tonic-gate */ 7510Sstevel@tonic-gate pps_valid++; 7520Sstevel@tonic-gate if (pps_valid == PPS_VALID) { 7530Sstevel@tonic-gate pps_jitter = MAXTIME; 7540Sstevel@tonic-gate pps_stabil = MAXFREQ; 7550Sstevel@tonic-gate time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 7560Sstevel@tonic-gate STA_PPSWANDER | STA_PPSERROR); 7570Sstevel@tonic-gate } 7580Sstevel@tonic-gate lltemp = time_freq + pps_freq; 7590Sstevel@tonic-gate 7600Sstevel@tonic-gate if (lltemp) 7610Sstevel@tonic-gate time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 7620Sstevel@tonic-gate 7630Sstevel@tonic-gate /* 7640Sstevel@tonic-gate * End of precision kernel-code fragment 7650Sstevel@tonic-gate * 7660Sstevel@tonic-gate * The section below should be modified if we are planning 7670Sstevel@tonic-gate * to use NTP for synchronization. 7680Sstevel@tonic-gate * 7690Sstevel@tonic-gate * Note: the clock synchronization code now assumes 7700Sstevel@tonic-gate * the following: 7710Sstevel@tonic-gate * - if dosynctodr is 1, then compute the drift between 7720Sstevel@tonic-gate * the tod chip and software time and adjust one or 7730Sstevel@tonic-gate * the other depending on the circumstances 7740Sstevel@tonic-gate * 7750Sstevel@tonic-gate * - if dosynctodr is 0, then the tod chip is independent 7760Sstevel@tonic-gate * of the software clock and should not be adjusted, 7770Sstevel@tonic-gate * but allowed to free run. this allows NTP to sync. 7780Sstevel@tonic-gate * hrestime without any interference from the tod chip. 7790Sstevel@tonic-gate */ 7800Sstevel@tonic-gate 781950Ssethg tod_validate_deferred = B_FALSE; 7820Sstevel@tonic-gate mutex_enter(&tod_lock); 7830Sstevel@tonic-gate tod = tod_get(); 7840Sstevel@tonic-gate drift = tod.tv_sec - hrestime.tv_sec; 7850Sstevel@tonic-gate absdrift = (drift >= 0) ? drift : -drift; 7860Sstevel@tonic-gate if (tod_needsync || absdrift > 1) { 7870Sstevel@tonic-gate int s; 7880Sstevel@tonic-gate if (absdrift > 2) { 7890Sstevel@tonic-gate if (!tod_broken && tod_faulted == TOD_NOFAULT) { 7900Sstevel@tonic-gate s = hr_clock_lock(); 7910Sstevel@tonic-gate hrestime = tod; 7920Sstevel@tonic-gate membar_enter(); /* hrestime visible */ 7930Sstevel@tonic-gate timedelta = 0; 7944123Sdm120769 timechanged++; 7950Sstevel@tonic-gate tod_needsync = 0; 7960Sstevel@tonic-gate hr_clock_unlock(s); 7978048SMadhavan.Venkataraman@Sun.COM callout_hrestime(); 7988048SMadhavan.Venkataraman@Sun.COM 7990Sstevel@tonic-gate } 8000Sstevel@tonic-gate } else { 8010Sstevel@tonic-gate if (tod_needsync || !dosynctodr) { 8020Sstevel@tonic-gate gethrestime(&tod); 8030Sstevel@tonic-gate tod_set(tod); 8040Sstevel@tonic-gate s = hr_clock_lock(); 8050Sstevel@tonic-gate if (timedelta == 0) 8060Sstevel@tonic-gate tod_needsync = 0; 8070Sstevel@tonic-gate hr_clock_unlock(s); 8080Sstevel@tonic-gate } else { 8090Sstevel@tonic-gate /* 8100Sstevel@tonic-gate * If the drift is 2 seconds on the 8110Sstevel@tonic-gate * money, then the TOD is adjusting 8120Sstevel@tonic-gate * the clock; record that. 8130Sstevel@tonic-gate */ 8140Sstevel@tonic-gate clock_adj_hist[adj_hist_entry++ % 815*11066Srafael.vanoni@sun.com CLOCK_ADJ_HIST_SIZE] = now; 8160Sstevel@tonic-gate s = hr_clock_lock(); 8170Sstevel@tonic-gate timedelta = (int64_t)drift*NANOSEC; 8180Sstevel@tonic-gate hr_clock_unlock(s); 8190Sstevel@tonic-gate } 8200Sstevel@tonic-gate } 8210Sstevel@tonic-gate } 8220Sstevel@tonic-gate one_sec = 0; 8230Sstevel@tonic-gate time = gethrestime_sec(); /* for crusty old kmem readers */ 8240Sstevel@tonic-gate mutex_exit(&tod_lock); 8250Sstevel@tonic-gate 8260Sstevel@tonic-gate /* 8270Sstevel@tonic-gate * Some drivers still depend on this... XXX 8280Sstevel@tonic-gate */ 8290Sstevel@tonic-gate cv_broadcast(&lbolt_cv); 8300Sstevel@tonic-gate 8310Sstevel@tonic-gate sysinfo.updates++; 8320Sstevel@tonic-gate vminfo.freemem += freemem; 8330Sstevel@tonic-gate { 8340Sstevel@tonic-gate pgcnt_t maxswap, resv, free; 8350Sstevel@tonic-gate pgcnt_t avail = 8360Sstevel@tonic-gate MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 8370Sstevel@tonic-gate 8385076Smishra maxswap = k_anoninfo.ani_mem_resv + 8395076Smishra k_anoninfo.ani_max +avail; 8400Sstevel@tonic-gate free = k_anoninfo.ani_free + avail; 8410Sstevel@tonic-gate resv = k_anoninfo.ani_phys_resv + 8420Sstevel@tonic-gate k_anoninfo.ani_mem_resv; 8430Sstevel@tonic-gate 8440Sstevel@tonic-gate vminfo.swap_resv += resv; 8450Sstevel@tonic-gate /* number of reserved and allocated pages */ 8460Sstevel@tonic-gate #ifdef DEBUG 8470Sstevel@tonic-gate if (maxswap < free) 8480Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < free"); 8490Sstevel@tonic-gate if (maxswap < resv) 8500Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < resv"); 8510Sstevel@tonic-gate #endif 8520Sstevel@tonic-gate vminfo.swap_alloc += maxswap - free; 8530Sstevel@tonic-gate vminfo.swap_avail += maxswap - resv; 8540Sstevel@tonic-gate vminfo.swap_free += free; 8550Sstevel@tonic-gate } 8560Sstevel@tonic-gate if (nrunnable) { 8570Sstevel@tonic-gate sysinfo.runque += nrunnable; 8580Sstevel@tonic-gate sysinfo.runocc++; 8590Sstevel@tonic-gate } 8600Sstevel@tonic-gate if (nswapped) { 8610Sstevel@tonic-gate sysinfo.swpque += nswapped; 8620Sstevel@tonic-gate sysinfo.swpocc++; 8630Sstevel@tonic-gate } 8640Sstevel@tonic-gate sysinfo.waiting += w_io; 8650Sstevel@tonic-gate 8660Sstevel@tonic-gate /* 8670Sstevel@tonic-gate * Wake up fsflush to write out DELWRI 8680Sstevel@tonic-gate * buffers, dirty pages and other cached 8690Sstevel@tonic-gate * administrative data, e.g. inodes. 8700Sstevel@tonic-gate */ 8710Sstevel@tonic-gate if (--fsflushcnt <= 0) { 8720Sstevel@tonic-gate fsflushcnt = tune.t_fsflushr; 8730Sstevel@tonic-gate cv_signal(&fsflush_cv); 8740Sstevel@tonic-gate } 8750Sstevel@tonic-gate 8760Sstevel@tonic-gate vmmeter(); 8770Sstevel@tonic-gate calcloadavg(genloadavg(&loadavg), hp_avenrun); 8780Sstevel@tonic-gate for (i = 0; i < 3; i++) 8790Sstevel@tonic-gate /* 8800Sstevel@tonic-gate * At the moment avenrun[] can only hold 31 8810Sstevel@tonic-gate * bits of load average as it is a signed 8820Sstevel@tonic-gate * int in the API. We need to ensure that 8830Sstevel@tonic-gate * hp_avenrun[i] >> (16 - FSHIFT) will not be 8840Sstevel@tonic-gate * too large. If it is, we put the largest value 8850Sstevel@tonic-gate * that we can use into avenrun[i]. This is 8860Sstevel@tonic-gate * kludgey, but about all we can do until we 8870Sstevel@tonic-gate * avenrun[] is declared as an array of uint64[] 8880Sstevel@tonic-gate */ 8890Sstevel@tonic-gate if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 8900Sstevel@tonic-gate avenrun[i] = (int32_t)(hp_avenrun[i] >> 8910Sstevel@tonic-gate (16 - FSHIFT)); 8920Sstevel@tonic-gate else 8930Sstevel@tonic-gate avenrun[i] = 0x7fffffff; 8940Sstevel@tonic-gate 8950Sstevel@tonic-gate cpupart = cp_list_head; 8960Sstevel@tonic-gate do { 8970Sstevel@tonic-gate calcloadavg(genloadavg(&cpupart->cp_loadavg), 8980Sstevel@tonic-gate cpupart->cp_hp_avenrun); 8990Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 9000Sstevel@tonic-gate 9010Sstevel@tonic-gate /* 9020Sstevel@tonic-gate * Wake up the swapper thread if necessary. 9030Sstevel@tonic-gate */ 9040Sstevel@tonic-gate if (runin || 9050Sstevel@tonic-gate (runout && (avefree < desfree || wake_sched_sec))) { 9060Sstevel@tonic-gate t = &t0; 9070Sstevel@tonic-gate thread_lock(t); 9080Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 9090Sstevel@tonic-gate runin = runout = 0; 9100Sstevel@tonic-gate wake_sched_sec = 0; 9110Sstevel@tonic-gate t->t_whystop = 0; 9120Sstevel@tonic-gate t->t_whatstop = 0; 9130Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 9140Sstevel@tonic-gate THREAD_TRANSITION(t); 9150Sstevel@tonic-gate setfrontdq(t); 9160Sstevel@tonic-gate } 9170Sstevel@tonic-gate thread_unlock(t); 9180Sstevel@tonic-gate } 9190Sstevel@tonic-gate } 9200Sstevel@tonic-gate 9210Sstevel@tonic-gate /* 9220Sstevel@tonic-gate * Wake up the swapper if any high priority swapped-out threads 9230Sstevel@tonic-gate * became runable during the last tick. 9240Sstevel@tonic-gate */ 9250Sstevel@tonic-gate if (wake_sched) { 9260Sstevel@tonic-gate t = &t0; 9270Sstevel@tonic-gate thread_lock(t); 9280Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 9290Sstevel@tonic-gate runin = runout = 0; 9300Sstevel@tonic-gate wake_sched = 0; 9310Sstevel@tonic-gate t->t_whystop = 0; 9320Sstevel@tonic-gate t->t_whatstop = 0; 9330Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 9340Sstevel@tonic-gate THREAD_TRANSITION(t); 9350Sstevel@tonic-gate setfrontdq(t); 9360Sstevel@tonic-gate } 9370Sstevel@tonic-gate thread_unlock(t); 9380Sstevel@tonic-gate } 9390Sstevel@tonic-gate } 9400Sstevel@tonic-gate 9410Sstevel@tonic-gate void 9420Sstevel@tonic-gate clock_init(void) 9430Sstevel@tonic-gate { 944*11066Srafael.vanoni@sun.com cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr; 945*11066Srafael.vanoni@sun.com cyc_time_t clk_when, lbolt_when; 946*11066Srafael.vanoni@sun.com int i, sz; 947*11066Srafael.vanoni@sun.com intptr_t buf; 9480Sstevel@tonic-gate 949*11066Srafael.vanoni@sun.com /* 950*11066Srafael.vanoni@sun.com * Setup handler and timer for the clock cyclic. 951*11066Srafael.vanoni@sun.com */ 952*11066Srafael.vanoni@sun.com clk_hdlr.cyh_func = (cyc_func_t)clock; 953*11066Srafael.vanoni@sun.com clk_hdlr.cyh_level = CY_LOCK_LEVEL; 954*11066Srafael.vanoni@sun.com clk_hdlr.cyh_arg = NULL; 9550Sstevel@tonic-gate 956*11066Srafael.vanoni@sun.com clk_when.cyt_when = 0; 957*11066Srafael.vanoni@sun.com clk_when.cyt_interval = nsec_per_tick; 9585107Seota 9595107Seota /* 9605107Seota * cyclic_timer is dedicated to the ddi interface, which 9615107Seota * uses the same clock resolution as the system one. 9625107Seota */ 963*11066Srafael.vanoni@sun.com timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer; 964*11066Srafael.vanoni@sun.com timer_hdlr.cyh_level = CY_LOCK_LEVEL; 965*11066Srafael.vanoni@sun.com timer_hdlr.cyh_arg = NULL; 966*11066Srafael.vanoni@sun.com 967*11066Srafael.vanoni@sun.com /* 968*11066Srafael.vanoni@sun.com * Setup the necessary structures for the lbolt cyclic and add the 969*11066Srafael.vanoni@sun.com * soft interrupt which will switch from event to cyclic mode when 970*11066Srafael.vanoni@sun.com * under high pil. 971*11066Srafael.vanoni@sun.com */ 972*11066Srafael.vanoni@sun.com lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 973*11066Srafael.vanoni@sun.com lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 974*11066Srafael.vanoni@sun.com lbolt_hdlr.cyh_arg = NULL; 975*11066Srafael.vanoni@sun.com 976*11066Srafael.vanoni@sun.com lbolt_when.cyt_interval = nsec_per_tick; 977*11066Srafael.vanoni@sun.com 978*11066Srafael.vanoni@sun.com if (lbolt_cyc_only) { 979*11066Srafael.vanoni@sun.com lbolt_when.cyt_when = 0; 980*11066Srafael.vanoni@sun.com lbolt_hybrid = lbolt_cyclic_driven; 981*11066Srafael.vanoni@sun.com } else { 982*11066Srafael.vanoni@sun.com lbolt_when.cyt_when = CY_INFINITY; 983*11066Srafael.vanoni@sun.com lbolt_hybrid = lbolt_event_driven; 984*11066Srafael.vanoni@sun.com } 9855107Seota 986*11066Srafael.vanoni@sun.com /* 987*11066Srafael.vanoni@sun.com * Allocate cache line aligned space for the per CPU lbolt data and 988*11066Srafael.vanoni@sun.com * lb_info structure. We also initialize these structures with their 989*11066Srafael.vanoni@sun.com * default values and install the softint to change from event to 990*11066Srafael.vanoni@sun.com * cyclic driven mode. 991*11066Srafael.vanoni@sun.com */ 992*11066Srafael.vanoni@sun.com sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 993*11066Srafael.vanoni@sun.com buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 994*11066Srafael.vanoni@sun.com lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 995*11066Srafael.vanoni@sun.com 996*11066Srafael.vanoni@sun.com if (hz != HZ_DEFAULT) 997*11066Srafael.vanoni@sun.com lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 998*11066Srafael.vanoni@sun.com hz/HZ_DEFAULT; 999*11066Srafael.vanoni@sun.com else 1000*11066Srafael.vanoni@sun.com lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 1001*11066Srafael.vanoni@sun.com 1002*11066Srafael.vanoni@sun.com lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 1003*11066Srafael.vanoni@sun.com 1004*11066Srafael.vanoni@sun.com sz = (sizeof (lbolt_info_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 1005*11066Srafael.vanoni@sun.com buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 1006*11066Srafael.vanoni@sun.com lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 1007*11066Srafael.vanoni@sun.com 1008*11066Srafael.vanoni@sun.com for (i = 0; i < max_ncpus; i++) 1009*11066Srafael.vanoni@sun.com lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 1010*11066Srafael.vanoni@sun.com 1011*11066Srafael.vanoni@sun.com lbolt_softint_add(); 1012*11066Srafael.vanoni@sun.com 1013*11066Srafael.vanoni@sun.com /* 1014*11066Srafael.vanoni@sun.com * Grab cpu_lock and install all three cyclics. 1015*11066Srafael.vanoni@sun.com */ 10165107Seota mutex_enter(&cpu_lock); 1017*11066Srafael.vanoni@sun.com 1018*11066Srafael.vanoni@sun.com clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1019*11066Srafael.vanoni@sun.com ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when); 1020*11066Srafael.vanoni@sun.com lb_info->lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1021*11066Srafael.vanoni@sun.com 10225107Seota mutex_exit(&cpu_lock); 10230Sstevel@tonic-gate } 10240Sstevel@tonic-gate 10250Sstevel@tonic-gate /* 10260Sstevel@tonic-gate * Called before calcloadavg to get 10-sec moving loadavg together 10270Sstevel@tonic-gate */ 10280Sstevel@tonic-gate 10290Sstevel@tonic-gate static int 10300Sstevel@tonic-gate genloadavg(struct loadavg_s *avgs) 10310Sstevel@tonic-gate { 10320Sstevel@tonic-gate int avg; 10330Sstevel@tonic-gate int spos; /* starting position */ 10340Sstevel@tonic-gate int cpos; /* moving current position */ 10350Sstevel@tonic-gate int i; 10360Sstevel@tonic-gate int slen; 10370Sstevel@tonic-gate hrtime_t hr_avg; 10380Sstevel@tonic-gate 10390Sstevel@tonic-gate /* 10-second snapshot, calculate first positon */ 10400Sstevel@tonic-gate if (avgs->lg_len == 0) { 10410Sstevel@tonic-gate return (0); 10420Sstevel@tonic-gate } 10430Sstevel@tonic-gate slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 10440Sstevel@tonic-gate 10450Sstevel@tonic-gate spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 10460Sstevel@tonic-gate S_LOADAVG_SZ + (avgs->lg_cur - 1); 10470Sstevel@tonic-gate for (i = hr_avg = 0; i < slen; i++) { 10480Sstevel@tonic-gate cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 10490Sstevel@tonic-gate hr_avg += avgs->lg_loads[cpos]; 10500Sstevel@tonic-gate } 10510Sstevel@tonic-gate 10520Sstevel@tonic-gate hr_avg = hr_avg / slen; 10530Sstevel@tonic-gate avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 10540Sstevel@tonic-gate 10550Sstevel@tonic-gate return (avg); 10560Sstevel@tonic-gate } 10570Sstevel@tonic-gate 10580Sstevel@tonic-gate /* 10590Sstevel@tonic-gate * Run every second from clock () to update the loadavg count available to the 10600Sstevel@tonic-gate * system and cpu-partitions. 10610Sstevel@tonic-gate * 10620Sstevel@tonic-gate * This works by sampling the previous usr, sys, wait time elapsed, 10630Sstevel@tonic-gate * computing a delta, and adding that delta to the elapsed usr, sys, 10640Sstevel@tonic-gate * wait increase. 10650Sstevel@tonic-gate */ 10660Sstevel@tonic-gate 10670Sstevel@tonic-gate static void 10680Sstevel@tonic-gate loadavg_update() 10690Sstevel@tonic-gate { 10700Sstevel@tonic-gate cpu_t *cp; 10710Sstevel@tonic-gate cpupart_t *cpupart; 10720Sstevel@tonic-gate hrtime_t cpu_total; 10730Sstevel@tonic-gate int prev; 10740Sstevel@tonic-gate 10750Sstevel@tonic-gate cp = cpu_list; 10760Sstevel@tonic-gate loadavg.lg_total = 0; 10770Sstevel@tonic-gate 10780Sstevel@tonic-gate /* 10790Sstevel@tonic-gate * first pass totals up per-cpu statistics for system and cpu 10800Sstevel@tonic-gate * partitions 10810Sstevel@tonic-gate */ 10820Sstevel@tonic-gate 10830Sstevel@tonic-gate do { 10840Sstevel@tonic-gate struct loadavg_s *lavg; 10850Sstevel@tonic-gate 10860Sstevel@tonic-gate lavg = &cp->cpu_loadavg; 10870Sstevel@tonic-gate 10880Sstevel@tonic-gate cpu_total = cp->cpu_acct[CMS_USER] + 10890Sstevel@tonic-gate cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 10900Sstevel@tonic-gate /* compute delta against last total */ 10910Sstevel@tonic-gate scalehrtime(&cpu_total); 10920Sstevel@tonic-gate prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 10930Sstevel@tonic-gate S_LOADAVG_SZ + (lavg->lg_cur - 1); 10940Sstevel@tonic-gate if (lavg->lg_loads[prev] <= 0) { 10950Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 10960Sstevel@tonic-gate cpu_total = 0; 10970Sstevel@tonic-gate } else { 10980Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 10990Sstevel@tonic-gate cpu_total = cpu_total - lavg->lg_loads[prev]; 11000Sstevel@tonic-gate if (cpu_total < 0) 11010Sstevel@tonic-gate cpu_total = 0; 11020Sstevel@tonic-gate } 11030Sstevel@tonic-gate 11040Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 11050Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 11060Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 11070Sstevel@tonic-gate 11080Sstevel@tonic-gate loadavg.lg_total += cpu_total; 11090Sstevel@tonic-gate cp->cpu_part->cp_loadavg.lg_total += cpu_total; 11100Sstevel@tonic-gate 11110Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 11120Sstevel@tonic-gate 11130Sstevel@tonic-gate loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 11140Sstevel@tonic-gate loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 11150Sstevel@tonic-gate loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 11160Sstevel@tonic-gate loadavg.lg_len + 1 : S_LOADAVG_SZ; 11170Sstevel@tonic-gate /* 11180Sstevel@tonic-gate * Second pass updates counts 11190Sstevel@tonic-gate */ 11200Sstevel@tonic-gate cpupart = cp_list_head; 11210Sstevel@tonic-gate 11220Sstevel@tonic-gate do { 11230Sstevel@tonic-gate struct loadavg_s *lavg; 11240Sstevel@tonic-gate 11250Sstevel@tonic-gate lavg = &cpupart->cp_loadavg; 11260Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 11270Sstevel@tonic-gate lavg->lg_total = 0; 11280Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 11290Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 11300Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 11310Sstevel@tonic-gate 11320Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 11330Sstevel@tonic-gate 11340Sstevel@tonic-gate } 11350Sstevel@tonic-gate 11360Sstevel@tonic-gate /* 11370Sstevel@tonic-gate * clock_update() - local clock update 11380Sstevel@tonic-gate * 11390Sstevel@tonic-gate * This routine is called by ntp_adjtime() to update the local clock 11400Sstevel@tonic-gate * phase and frequency. The implementation is of an 11410Sstevel@tonic-gate * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 11420Sstevel@tonic-gate * routine computes new time and frequency offset estimates for each 11430Sstevel@tonic-gate * call. The PPS signal itself determines the new time offset, 11440Sstevel@tonic-gate * instead of the calling argument. Presumably, calls to 11450Sstevel@tonic-gate * ntp_adjtime() occur only when the caller believes the local clock 11460Sstevel@tonic-gate * is valid within some bound (+-128 ms with NTP). If the caller's 11470Sstevel@tonic-gate * time is far different than the PPS time, an argument will ensue, 11480Sstevel@tonic-gate * and it's not clear who will lose. 11490Sstevel@tonic-gate * 11500Sstevel@tonic-gate * For uncompensated quartz crystal oscillatores and nominal update 11510Sstevel@tonic-gate * intervals less than 1024 s, operation should be in phase-lock mode 11520Sstevel@tonic-gate * (STA_FLL = 0), where the loop is disciplined to phase. For update 11530Sstevel@tonic-gate * intervals greater than this, operation should be in frequency-lock 11540Sstevel@tonic-gate * mode (STA_FLL = 1), where the loop is disciplined to frequency. 11550Sstevel@tonic-gate * 11560Sstevel@tonic-gate * Note: mutex(&tod_lock) is in effect. 11570Sstevel@tonic-gate */ 11580Sstevel@tonic-gate void 11590Sstevel@tonic-gate clock_update(int offset) 11600Sstevel@tonic-gate { 11610Sstevel@tonic-gate int ltemp, mtemp, s; 11620Sstevel@tonic-gate 11630Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 11640Sstevel@tonic-gate 11650Sstevel@tonic-gate if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 11660Sstevel@tonic-gate return; 11670Sstevel@tonic-gate ltemp = offset; 11680Sstevel@tonic-gate if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 11690Sstevel@tonic-gate ltemp = pps_offset; 11700Sstevel@tonic-gate 11710Sstevel@tonic-gate /* 11720Sstevel@tonic-gate * Scale the phase adjustment and clamp to the operating range. 11730Sstevel@tonic-gate */ 11740Sstevel@tonic-gate if (ltemp > MAXPHASE) 11750Sstevel@tonic-gate time_offset = MAXPHASE * SCALE_UPDATE; 11760Sstevel@tonic-gate else if (ltemp < -MAXPHASE) 11770Sstevel@tonic-gate time_offset = -(MAXPHASE * SCALE_UPDATE); 11780Sstevel@tonic-gate else 11790Sstevel@tonic-gate time_offset = ltemp * SCALE_UPDATE; 11800Sstevel@tonic-gate 11810Sstevel@tonic-gate /* 11820Sstevel@tonic-gate * Select whether the frequency is to be controlled and in which 11830Sstevel@tonic-gate * mode (PLL or FLL). Clamp to the operating range. Ugly 11840Sstevel@tonic-gate * multiply/divide should be replaced someday. 11850Sstevel@tonic-gate */ 11860Sstevel@tonic-gate if (time_status & STA_FREQHOLD || time_reftime == 0) 11870Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 11880Sstevel@tonic-gate 11890Sstevel@tonic-gate mtemp = hrestime.tv_sec - time_reftime; 11900Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 11910Sstevel@tonic-gate 11920Sstevel@tonic-gate if (time_status & STA_FLL) { 11930Sstevel@tonic-gate if (mtemp >= MINSEC) { 11940Sstevel@tonic-gate ltemp = ((time_offset / mtemp) * (SCALE_USEC / 11950Sstevel@tonic-gate SCALE_UPDATE)); 11960Sstevel@tonic-gate if (ltemp) 11970Sstevel@tonic-gate time_freq += ltemp / SCALE_KH; 11980Sstevel@tonic-gate } 11990Sstevel@tonic-gate } else { 12000Sstevel@tonic-gate if (mtemp < MAXSEC) { 12010Sstevel@tonic-gate ltemp *= mtemp; 12020Sstevel@tonic-gate if (ltemp) 12030Sstevel@tonic-gate time_freq += (int)(((int64_t)ltemp * 12040Sstevel@tonic-gate SCALE_USEC) / SCALE_KF) 12050Sstevel@tonic-gate / (1 << (time_constant * 2)); 12060Sstevel@tonic-gate } 12070Sstevel@tonic-gate } 12080Sstevel@tonic-gate if (time_freq > time_tolerance) 12090Sstevel@tonic-gate time_freq = time_tolerance; 12100Sstevel@tonic-gate else if (time_freq < -time_tolerance) 12110Sstevel@tonic-gate time_freq = -time_tolerance; 12120Sstevel@tonic-gate 12130Sstevel@tonic-gate s = hr_clock_lock(); 12140Sstevel@tonic-gate tod_needsync = 1; 12150Sstevel@tonic-gate hr_clock_unlock(s); 12160Sstevel@tonic-gate } 12170Sstevel@tonic-gate 12180Sstevel@tonic-gate /* 12190Sstevel@tonic-gate * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 12200Sstevel@tonic-gate * 12210Sstevel@tonic-gate * This routine is called at each PPS interrupt in order to discipline 12220Sstevel@tonic-gate * the CPU clock oscillator to the PPS signal. It measures the PPS phase 12230Sstevel@tonic-gate * and leaves it in a handy spot for the clock() routine. It 12240Sstevel@tonic-gate * integrates successive PPS phase differences and calculates the 12250Sstevel@tonic-gate * frequency offset. This is used in clock() to discipline the CPU 12260Sstevel@tonic-gate * clock oscillator so that intrinsic frequency error is cancelled out. 12270Sstevel@tonic-gate * The code requires the caller to capture the time and hardware counter 12280Sstevel@tonic-gate * value at the on-time PPS signal transition. 12290Sstevel@tonic-gate * 12300Sstevel@tonic-gate * Note that, on some Unix systems, this routine runs at an interrupt 12310Sstevel@tonic-gate * priority level higher than the timer interrupt routine clock(). 12320Sstevel@tonic-gate * Therefore, the variables used are distinct from the clock() 12330Sstevel@tonic-gate * variables, except for certain exceptions: The PPS frequency pps_freq 12340Sstevel@tonic-gate * and phase pps_offset variables are determined by this routine and 12350Sstevel@tonic-gate * updated atomically. The time_tolerance variable can be considered a 12360Sstevel@tonic-gate * constant, since it is infrequently changed, and then only when the 12370Sstevel@tonic-gate * PPS signal is disabled. The watchdog counter pps_valid is updated 12380Sstevel@tonic-gate * once per second by clock() and is atomically cleared in this 12390Sstevel@tonic-gate * routine. 12400Sstevel@tonic-gate * 12410Sstevel@tonic-gate * tvp is the time of the last tick; usec is a microsecond count since the 12420Sstevel@tonic-gate * last tick. 12430Sstevel@tonic-gate * 12440Sstevel@tonic-gate * Note: In Solaris systems, the tick value is actually given by 12450Sstevel@tonic-gate * usec_per_tick. This is called from the serial driver cdintr(), 12460Sstevel@tonic-gate * or equivalent, at a high PIL. Because the kernel keeps a 12470Sstevel@tonic-gate * highresolution time, the following code can accept either 12480Sstevel@tonic-gate * the traditional argument pair, or the current highres timestamp 12490Sstevel@tonic-gate * in tvp and zero in usec. 12500Sstevel@tonic-gate */ 12510Sstevel@tonic-gate void 12520Sstevel@tonic-gate ddi_hardpps(struct timeval *tvp, int usec) 12530Sstevel@tonic-gate { 12540Sstevel@tonic-gate int u_usec, v_usec, bigtick; 12550Sstevel@tonic-gate time_t cal_sec; 12560Sstevel@tonic-gate int cal_usec; 12570Sstevel@tonic-gate 12580Sstevel@tonic-gate /* 12590Sstevel@tonic-gate * An occasional glitch can be produced when the PPS interrupt 12600Sstevel@tonic-gate * occurs in the clock() routine before the time variable is 12610Sstevel@tonic-gate * updated. Here the offset is discarded when the difference 12620Sstevel@tonic-gate * between it and the last one is greater than tick/2, but not 12630Sstevel@tonic-gate * if the interval since the first discard exceeds 30 s. 12640Sstevel@tonic-gate */ 12650Sstevel@tonic-gate time_status |= STA_PPSSIGNAL; 12660Sstevel@tonic-gate time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 12670Sstevel@tonic-gate pps_valid = 0; 12680Sstevel@tonic-gate u_usec = -tvp->tv_usec; 12690Sstevel@tonic-gate if (u_usec < -(MICROSEC/2)) 12700Sstevel@tonic-gate u_usec += MICROSEC; 12710Sstevel@tonic-gate v_usec = pps_offset - u_usec; 12720Sstevel@tonic-gate if (v_usec < 0) 12730Sstevel@tonic-gate v_usec = -v_usec; 12740Sstevel@tonic-gate if (v_usec > (usec_per_tick >> 1)) { 12750Sstevel@tonic-gate if (pps_glitch > MAXGLITCH) { 12760Sstevel@tonic-gate pps_glitch = 0; 12770Sstevel@tonic-gate pps_tf[2] = u_usec; 12780Sstevel@tonic-gate pps_tf[1] = u_usec; 12790Sstevel@tonic-gate } else { 12800Sstevel@tonic-gate pps_glitch++; 12810Sstevel@tonic-gate u_usec = pps_offset; 12820Sstevel@tonic-gate } 12830Sstevel@tonic-gate } else 12840Sstevel@tonic-gate pps_glitch = 0; 12850Sstevel@tonic-gate 12860Sstevel@tonic-gate /* 12870Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 12880Sstevel@tonic-gate * time. The median sample becomes the time offset estimate; the 12890Sstevel@tonic-gate * difference between the other two samples becomes the time 12900Sstevel@tonic-gate * dispersion (jitter) estimate. 12910Sstevel@tonic-gate */ 12920Sstevel@tonic-gate pps_tf[2] = pps_tf[1]; 12930Sstevel@tonic-gate pps_tf[1] = pps_tf[0]; 12940Sstevel@tonic-gate pps_tf[0] = u_usec; 12950Sstevel@tonic-gate if (pps_tf[0] > pps_tf[1]) { 12960Sstevel@tonic-gate if (pps_tf[1] > pps_tf[2]) { 12970Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 0 1 2 */ 12980Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[2]; 12990Sstevel@tonic-gate } else if (pps_tf[2] > pps_tf[0]) { 13000Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 2 0 1 */ 13010Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[1]; 13020Sstevel@tonic-gate } else { 13030Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 0 2 1 */ 13040Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[1]; 13050Sstevel@tonic-gate } 13060Sstevel@tonic-gate } else { 13070Sstevel@tonic-gate if (pps_tf[1] < pps_tf[2]) { 13080Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 2 1 0 */ 13090Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[0]; 13100Sstevel@tonic-gate } else if (pps_tf[2] < pps_tf[0]) { 13110Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 1 0 2 */ 13120Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[2]; 13130Sstevel@tonic-gate } else { 13140Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 1 2 0 */ 13150Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[0]; 13160Sstevel@tonic-gate } 13170Sstevel@tonic-gate } 13180Sstevel@tonic-gate if (v_usec > MAXTIME) 13190Sstevel@tonic-gate pps_jitcnt++; 13200Sstevel@tonic-gate v_usec = (v_usec << PPS_AVG) - pps_jitter; 13210Sstevel@tonic-gate pps_jitter += v_usec / (1 << PPS_AVG); 13220Sstevel@tonic-gate if (pps_jitter > (MAXTIME >> 1)) 13230Sstevel@tonic-gate time_status |= STA_PPSJITTER; 13240Sstevel@tonic-gate 13250Sstevel@tonic-gate /* 13260Sstevel@tonic-gate * During the calibration interval adjust the starting time when 13270Sstevel@tonic-gate * the tick overflows. At the end of the interval compute the 13280Sstevel@tonic-gate * duration of the interval and the difference of the hardware 13290Sstevel@tonic-gate * counters at the beginning and end of the interval. This code 13300Sstevel@tonic-gate * is deliciously complicated by the fact valid differences may 13310Sstevel@tonic-gate * exceed the value of tick when using long calibration 13320Sstevel@tonic-gate * intervals and small ticks. Note that the counter can be 13330Sstevel@tonic-gate * greater than tick if caught at just the wrong instant, but 13340Sstevel@tonic-gate * the values returned and used here are correct. 13350Sstevel@tonic-gate */ 13360Sstevel@tonic-gate bigtick = (int)usec_per_tick * SCALE_USEC; 13370Sstevel@tonic-gate pps_usec -= pps_freq; 13380Sstevel@tonic-gate if (pps_usec >= bigtick) 13390Sstevel@tonic-gate pps_usec -= bigtick; 13400Sstevel@tonic-gate if (pps_usec < 0) 13410Sstevel@tonic-gate pps_usec += bigtick; 13420Sstevel@tonic-gate pps_time.tv_sec++; 13430Sstevel@tonic-gate pps_count++; 13440Sstevel@tonic-gate if (pps_count < (1 << pps_shift)) 13450Sstevel@tonic-gate return; 13460Sstevel@tonic-gate pps_count = 0; 13470Sstevel@tonic-gate pps_calcnt++; 13480Sstevel@tonic-gate u_usec = usec * SCALE_USEC; 13490Sstevel@tonic-gate v_usec = pps_usec - u_usec; 13500Sstevel@tonic-gate if (v_usec >= bigtick >> 1) 13510Sstevel@tonic-gate v_usec -= bigtick; 13520Sstevel@tonic-gate if (v_usec < -(bigtick >> 1)) 13530Sstevel@tonic-gate v_usec += bigtick; 13540Sstevel@tonic-gate if (v_usec < 0) 13550Sstevel@tonic-gate v_usec = -(-v_usec >> pps_shift); 13560Sstevel@tonic-gate else 13570Sstevel@tonic-gate v_usec = v_usec >> pps_shift; 13580Sstevel@tonic-gate pps_usec = u_usec; 13590Sstevel@tonic-gate cal_sec = tvp->tv_sec; 13600Sstevel@tonic-gate cal_usec = tvp->tv_usec; 13610Sstevel@tonic-gate cal_sec -= pps_time.tv_sec; 13620Sstevel@tonic-gate cal_usec -= pps_time.tv_usec; 13630Sstevel@tonic-gate if (cal_usec < 0) { 13640Sstevel@tonic-gate cal_usec += MICROSEC; 13650Sstevel@tonic-gate cal_sec--; 13660Sstevel@tonic-gate } 13670Sstevel@tonic-gate pps_time = *tvp; 13680Sstevel@tonic-gate 13690Sstevel@tonic-gate /* 13700Sstevel@tonic-gate * Check for lost interrupts, noise, excessive jitter and 13710Sstevel@tonic-gate * excessive frequency error. The number of timer ticks during 13720Sstevel@tonic-gate * the interval may vary +-1 tick. Add to this a margin of one 13730Sstevel@tonic-gate * tick for the PPS signal jitter and maximum frequency 13740Sstevel@tonic-gate * deviation. If the limits are exceeded, the calibration 13750Sstevel@tonic-gate * interval is reset to the minimum and we start over. 13760Sstevel@tonic-gate */ 13770Sstevel@tonic-gate u_usec = (int)usec_per_tick << 1; 13780Sstevel@tonic-gate if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 13790Sstevel@tonic-gate (cal_sec == 0 && cal_usec < u_usec)) || 13800Sstevel@tonic-gate v_usec > time_tolerance || v_usec < -time_tolerance) { 13810Sstevel@tonic-gate pps_errcnt++; 13820Sstevel@tonic-gate pps_shift = PPS_SHIFT; 13830Sstevel@tonic-gate pps_intcnt = 0; 13840Sstevel@tonic-gate time_status |= STA_PPSERROR; 13850Sstevel@tonic-gate return; 13860Sstevel@tonic-gate } 13870Sstevel@tonic-gate 13880Sstevel@tonic-gate /* 13890Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 13900Sstevel@tonic-gate * frequency. The median sample becomes the frequency offset 13910Sstevel@tonic-gate * estimate; the difference between the other two samples 13920Sstevel@tonic-gate * becomes the frequency dispersion (stability) estimate. 13930Sstevel@tonic-gate */ 13940Sstevel@tonic-gate pps_ff[2] = pps_ff[1]; 13950Sstevel@tonic-gate pps_ff[1] = pps_ff[0]; 13960Sstevel@tonic-gate pps_ff[0] = v_usec; 13970Sstevel@tonic-gate if (pps_ff[0] > pps_ff[1]) { 13980Sstevel@tonic-gate if (pps_ff[1] > pps_ff[2]) { 13990Sstevel@tonic-gate u_usec = pps_ff[1]; /* 0 1 2 */ 14000Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[2]; 14010Sstevel@tonic-gate } else if (pps_ff[2] > pps_ff[0]) { 14020Sstevel@tonic-gate u_usec = pps_ff[0]; /* 2 0 1 */ 14030Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[1]; 14040Sstevel@tonic-gate } else { 14050Sstevel@tonic-gate u_usec = pps_ff[2]; /* 0 2 1 */ 14060Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[1]; 14070Sstevel@tonic-gate } 14080Sstevel@tonic-gate } else { 14090Sstevel@tonic-gate if (pps_ff[1] < pps_ff[2]) { 14100Sstevel@tonic-gate u_usec = pps_ff[1]; /* 2 1 0 */ 14110Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[0]; 14120Sstevel@tonic-gate } else if (pps_ff[2] < pps_ff[0]) { 14130Sstevel@tonic-gate u_usec = pps_ff[0]; /* 1 0 2 */ 14140Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[2]; 14150Sstevel@tonic-gate } else { 14160Sstevel@tonic-gate u_usec = pps_ff[2]; /* 1 2 0 */ 14170Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[0]; 14180Sstevel@tonic-gate } 14190Sstevel@tonic-gate } 14200Sstevel@tonic-gate 14210Sstevel@tonic-gate /* 14220Sstevel@tonic-gate * Here the frequency dispersion (stability) is updated. If it 14230Sstevel@tonic-gate * is less than one-fourth the maximum (MAXFREQ), the frequency 14240Sstevel@tonic-gate * offset is updated as well, but clamped to the tolerance. It 14250Sstevel@tonic-gate * will be processed later by the clock() routine. 14260Sstevel@tonic-gate */ 14270Sstevel@tonic-gate v_usec = (v_usec >> 1) - pps_stabil; 14280Sstevel@tonic-gate if (v_usec < 0) 14290Sstevel@tonic-gate pps_stabil -= -v_usec >> PPS_AVG; 14300Sstevel@tonic-gate else 14310Sstevel@tonic-gate pps_stabil += v_usec >> PPS_AVG; 14320Sstevel@tonic-gate if (pps_stabil > MAXFREQ >> 2) { 14330Sstevel@tonic-gate pps_stbcnt++; 14340Sstevel@tonic-gate time_status |= STA_PPSWANDER; 14350Sstevel@tonic-gate return; 14360Sstevel@tonic-gate } 14370Sstevel@tonic-gate if (time_status & STA_PPSFREQ) { 14380Sstevel@tonic-gate if (u_usec < 0) { 14390Sstevel@tonic-gate pps_freq -= -u_usec >> PPS_AVG; 14400Sstevel@tonic-gate if (pps_freq < -time_tolerance) 14410Sstevel@tonic-gate pps_freq = -time_tolerance; 14420Sstevel@tonic-gate u_usec = -u_usec; 14430Sstevel@tonic-gate } else { 14440Sstevel@tonic-gate pps_freq += u_usec >> PPS_AVG; 14450Sstevel@tonic-gate if (pps_freq > time_tolerance) 14460Sstevel@tonic-gate pps_freq = time_tolerance; 14470Sstevel@tonic-gate } 14480Sstevel@tonic-gate } 14490Sstevel@tonic-gate 14500Sstevel@tonic-gate /* 14510Sstevel@tonic-gate * Here the calibration interval is adjusted. If the maximum 14520Sstevel@tonic-gate * time difference is greater than tick / 4, reduce the interval 14530Sstevel@tonic-gate * by half. If this is not the case for four consecutive 14540Sstevel@tonic-gate * intervals, double the interval. 14550Sstevel@tonic-gate */ 14560Sstevel@tonic-gate if (u_usec << pps_shift > bigtick >> 2) { 14570Sstevel@tonic-gate pps_intcnt = 0; 14580Sstevel@tonic-gate if (pps_shift > PPS_SHIFT) 14590Sstevel@tonic-gate pps_shift--; 14600Sstevel@tonic-gate } else if (pps_intcnt >= 4) { 14610Sstevel@tonic-gate pps_intcnt = 0; 14620Sstevel@tonic-gate if (pps_shift < PPS_SHIFTMAX) 14630Sstevel@tonic-gate pps_shift++; 14640Sstevel@tonic-gate } else 14650Sstevel@tonic-gate pps_intcnt++; 14660Sstevel@tonic-gate 14670Sstevel@tonic-gate /* 14680Sstevel@tonic-gate * If recovering from kmdb, then make sure the tod chip gets resynced. 14690Sstevel@tonic-gate * If we took an early exit above, then we don't yet have a stable 14700Sstevel@tonic-gate * calibration signal to lock onto, so don't mark the tod for sync 14710Sstevel@tonic-gate * until we get all the way here. 14720Sstevel@tonic-gate */ 14730Sstevel@tonic-gate { 14740Sstevel@tonic-gate int s = hr_clock_lock(); 14750Sstevel@tonic-gate 14760Sstevel@tonic-gate tod_needsync = 1; 14770Sstevel@tonic-gate hr_clock_unlock(s); 14780Sstevel@tonic-gate } 14790Sstevel@tonic-gate } 14800Sstevel@tonic-gate 14810Sstevel@tonic-gate /* 14820Sstevel@tonic-gate * Handle clock tick processing for a thread. 14830Sstevel@tonic-gate * Check for timer action, enforce CPU rlimit, do profiling etc. 14840Sstevel@tonic-gate */ 14850Sstevel@tonic-gate void 14865788Smv143129 clock_tick(kthread_t *t, int pending) 14870Sstevel@tonic-gate { 14880Sstevel@tonic-gate struct proc *pp; 14890Sstevel@tonic-gate klwp_id_t lwp; 14900Sstevel@tonic-gate struct as *as; 14915788Smv143129 clock_t ticks; 14920Sstevel@tonic-gate int poke = 0; /* notify another CPU */ 14930Sstevel@tonic-gate int user_mode; 14940Sstevel@tonic-gate size_t rss; 14955788Smv143129 int i, total_usec, usec; 14965788Smv143129 rctl_qty_t secs; 14975788Smv143129 14985788Smv143129 ASSERT(pending > 0); 14990Sstevel@tonic-gate 15000Sstevel@tonic-gate /* Must be operating on a lwp/thread */ 15010Sstevel@tonic-gate if ((lwp = ttolwp(t)) == NULL) { 15020Sstevel@tonic-gate panic("clock_tick: no lwp"); 15030Sstevel@tonic-gate /*NOTREACHED*/ 15040Sstevel@tonic-gate } 15050Sstevel@tonic-gate 15065788Smv143129 for (i = 0; i < pending; i++) { 15075788Smv143129 CL_TICK(t); /* Class specific tick processing */ 15085788Smv143129 DTRACE_SCHED1(tick, kthread_t *, t); 15095788Smv143129 } 15100Sstevel@tonic-gate 15110Sstevel@tonic-gate pp = ttoproc(t); 15120Sstevel@tonic-gate 15130Sstevel@tonic-gate /* pp->p_lock makes sure that the thread does not exit */ 15140Sstevel@tonic-gate ASSERT(MUTEX_HELD(&pp->p_lock)); 15150Sstevel@tonic-gate 15160Sstevel@tonic-gate user_mode = (lwp->lwp_state == LWP_USER); 15170Sstevel@tonic-gate 15185788Smv143129 ticks = (pp->p_utime + pp->p_stime) % hz; 15190Sstevel@tonic-gate /* 15200Sstevel@tonic-gate * Update process times. Should use high res clock and state 15210Sstevel@tonic-gate * changes instead of statistical sampling method. XXX 15220Sstevel@tonic-gate */ 15230Sstevel@tonic-gate if (user_mode) { 15245788Smv143129 pp->p_utime += pending; 15250Sstevel@tonic-gate } else { 15265788Smv143129 pp->p_stime += pending; 15270Sstevel@tonic-gate } 15285788Smv143129 15295788Smv143129 pp->p_ttime += pending; 15300Sstevel@tonic-gate as = pp->p_as; 15310Sstevel@tonic-gate 15320Sstevel@tonic-gate /* 15330Sstevel@tonic-gate * Update user profiling statistics. Get the pc from the 15340Sstevel@tonic-gate * lwp when the AST happens. 15350Sstevel@tonic-gate */ 15360Sstevel@tonic-gate if (pp->p_prof.pr_scale) { 15375788Smv143129 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 15380Sstevel@tonic-gate if (user_mode) { 15390Sstevel@tonic-gate poke = 1; 15400Sstevel@tonic-gate aston(t); 15410Sstevel@tonic-gate } 15420Sstevel@tonic-gate } 15430Sstevel@tonic-gate 15445788Smv143129 /* 15455788Smv143129 * If CPU was in user state, process lwp-virtual time 15465788Smv143129 * interval timer. The value passed to itimerdecr() has to be 15475788Smv143129 * in microseconds and has to be less than one second. Hence 15485788Smv143129 * this loop. 15495788Smv143129 */ 15505788Smv143129 total_usec = usec_per_tick * pending; 15515788Smv143129 while (total_usec > 0) { 15525788Smv143129 usec = MIN(total_usec, (MICROSEC - 1)); 15535788Smv143129 if (user_mode && 15545788Smv143129 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 15555788Smv143129 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 15565788Smv143129 poke = 1; 15575788Smv143129 sigtoproc(pp, t, SIGVTALRM); 15585788Smv143129 } 15595788Smv143129 total_usec -= usec; 15605788Smv143129 } 15610Sstevel@tonic-gate 15620Sstevel@tonic-gate /* 15635788Smv143129 * If CPU was in user state, process lwp-profile 15640Sstevel@tonic-gate * interval timer. 15650Sstevel@tonic-gate */ 15665788Smv143129 total_usec = usec_per_tick * pending; 15675788Smv143129 while (total_usec > 0) { 15685788Smv143129 usec = MIN(total_usec, (MICROSEC - 1)); 15695788Smv143129 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 15705788Smv143129 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 15715788Smv143129 poke = 1; 15725788Smv143129 sigtoproc(pp, t, SIGPROF); 15735788Smv143129 } 15745788Smv143129 total_usec -= usec; 15750Sstevel@tonic-gate } 15760Sstevel@tonic-gate 15770Sstevel@tonic-gate /* 15780Sstevel@tonic-gate * Enforce CPU resource controls: 15790Sstevel@tonic-gate * (a) process.max-cpu-time resource control 15805788Smv143129 * 15815788Smv143129 * Perform the check only if we have accumulated more a second. 15820Sstevel@tonic-gate */ 15835788Smv143129 if ((ticks + pending) >= hz) { 15845788Smv143129 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 15855788Smv143129 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 15865788Smv143129 } 15870Sstevel@tonic-gate 15880Sstevel@tonic-gate /* 15890Sstevel@tonic-gate * (b) task.max-cpu-time resource control 15905788Smv143129 * 15915788Smv143129 * If we have accumulated enough ticks, increment the task CPU 15925788Smv143129 * time usage and test for the resource limit. This minimizes the 15935788Smv143129 * number of calls to the rct_test(). The task CPU time mutex 15945788Smv143129 * is highly contentious as many processes can be sharing a task. 15950Sstevel@tonic-gate */ 15965788Smv143129 if (pp->p_ttime >= clock_tick_proc_max) { 15975788Smv143129 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 15985788Smv143129 pp->p_ttime = 0; 15995788Smv143129 if (secs) { 16005788Smv143129 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 16015788Smv143129 pp, secs, RCA_UNSAFE_SIGINFO); 16025788Smv143129 } 16035788Smv143129 } 16040Sstevel@tonic-gate 16050Sstevel@tonic-gate /* 16060Sstevel@tonic-gate * Update memory usage for the currently running process. 16070Sstevel@tonic-gate */ 16080Sstevel@tonic-gate rss = rm_asrss(as); 16090Sstevel@tonic-gate PTOU(pp)->u_mem += rss; 16100Sstevel@tonic-gate if (rss > PTOU(pp)->u_mem_max) 16110Sstevel@tonic-gate PTOU(pp)->u_mem_max = rss; 16120Sstevel@tonic-gate 16130Sstevel@tonic-gate /* 16140Sstevel@tonic-gate * Notify the CPU the thread is running on. 16150Sstevel@tonic-gate */ 16160Sstevel@tonic-gate if (poke && t->t_cpu != CPU) 16170Sstevel@tonic-gate poke_cpu(t->t_cpu->cpu_id); 16180Sstevel@tonic-gate } 16190Sstevel@tonic-gate 16200Sstevel@tonic-gate void 16210Sstevel@tonic-gate profil_tick(uintptr_t upc) 16220Sstevel@tonic-gate { 16230Sstevel@tonic-gate int ticks; 16240Sstevel@tonic-gate proc_t *p = ttoproc(curthread); 16250Sstevel@tonic-gate klwp_t *lwp = ttolwp(curthread); 16260Sstevel@tonic-gate struct prof *pr = &p->p_prof; 16270Sstevel@tonic-gate 16280Sstevel@tonic-gate do { 16290Sstevel@tonic-gate ticks = lwp->lwp_oweupc; 16300Sstevel@tonic-gate } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 16310Sstevel@tonic-gate 16320Sstevel@tonic-gate mutex_enter(&p->p_pflock); 16330Sstevel@tonic-gate if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 16340Sstevel@tonic-gate /* 16350Sstevel@tonic-gate * Old-style profiling 16360Sstevel@tonic-gate */ 16370Sstevel@tonic-gate uint16_t *slot = pr->pr_base; 16380Sstevel@tonic-gate uint16_t old, new; 16390Sstevel@tonic-gate if (pr->pr_scale != 2) { 16400Sstevel@tonic-gate uintptr_t delta = upc - pr->pr_off; 16410Sstevel@tonic-gate uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 16420Sstevel@tonic-gate (((delta & 0xffff) * pr->pr_scale) >> 16); 16430Sstevel@tonic-gate if (byteoff >= (uintptr_t)pr->pr_size) { 16440Sstevel@tonic-gate mutex_exit(&p->p_pflock); 16450Sstevel@tonic-gate return; 16460Sstevel@tonic-gate } 16470Sstevel@tonic-gate slot += byteoff / sizeof (uint16_t); 16480Sstevel@tonic-gate } 16490Sstevel@tonic-gate if (fuword16(slot, &old) < 0 || 16500Sstevel@tonic-gate (new = old + ticks) > SHRT_MAX || 16510Sstevel@tonic-gate suword16(slot, new) < 0) { 16520Sstevel@tonic-gate pr->pr_scale = 0; 16530Sstevel@tonic-gate } 16540Sstevel@tonic-gate } else if (pr->pr_scale == 1) { 16550Sstevel@tonic-gate /* 16560Sstevel@tonic-gate * PC Sampling 16570Sstevel@tonic-gate */ 16580Sstevel@tonic-gate model_t model = lwp_getdatamodel(lwp); 16590Sstevel@tonic-gate int result; 16600Sstevel@tonic-gate #ifdef __lint 16610Sstevel@tonic-gate model = model; 16620Sstevel@tonic-gate #endif 16630Sstevel@tonic-gate while (ticks-- > 0) { 16640Sstevel@tonic-gate if (pr->pr_samples == pr->pr_size) { 16650Sstevel@tonic-gate /* buffer full, turn off sampling */ 16660Sstevel@tonic-gate pr->pr_scale = 0; 16670Sstevel@tonic-gate break; 16680Sstevel@tonic-gate } 16690Sstevel@tonic-gate switch (SIZEOF_PTR(model)) { 16700Sstevel@tonic-gate case sizeof (uint32_t): 16710Sstevel@tonic-gate result = suword32(pr->pr_base, (uint32_t)upc); 16720Sstevel@tonic-gate break; 16730Sstevel@tonic-gate #ifdef _LP64 16740Sstevel@tonic-gate case sizeof (uint64_t): 16750Sstevel@tonic-gate result = suword64(pr->pr_base, (uint64_t)upc); 16760Sstevel@tonic-gate break; 16770Sstevel@tonic-gate #endif 16780Sstevel@tonic-gate default: 16790Sstevel@tonic-gate cmn_err(CE_WARN, "profil_tick: unexpected " 16800Sstevel@tonic-gate "data model"); 16810Sstevel@tonic-gate result = -1; 16820Sstevel@tonic-gate break; 16830Sstevel@tonic-gate } 16840Sstevel@tonic-gate if (result != 0) { 16850Sstevel@tonic-gate pr->pr_scale = 0; 16860Sstevel@tonic-gate break; 16870Sstevel@tonic-gate } 16880Sstevel@tonic-gate pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 16890Sstevel@tonic-gate pr->pr_samples++; 16900Sstevel@tonic-gate } 16910Sstevel@tonic-gate } 16920Sstevel@tonic-gate mutex_exit(&p->p_pflock); 16930Sstevel@tonic-gate } 16940Sstevel@tonic-gate 16950Sstevel@tonic-gate static void 16960Sstevel@tonic-gate delay_wakeup(void *arg) 16970Sstevel@tonic-gate { 169810696SDavid.Hollister@Sun.COM kthread_t *t = arg; 16990Sstevel@tonic-gate 17000Sstevel@tonic-gate mutex_enter(&t->t_delay_lock); 17010Sstevel@tonic-gate cv_signal(&t->t_delay_cv); 17020Sstevel@tonic-gate mutex_exit(&t->t_delay_lock); 17030Sstevel@tonic-gate } 17040Sstevel@tonic-gate 170510696SDavid.Hollister@Sun.COM /* 170610696SDavid.Hollister@Sun.COM * The delay(9F) man page indicates that it can only be called from user or 170710696SDavid.Hollister@Sun.COM * kernel context - detect and diagnose bad calls. The following macro will 170810696SDavid.Hollister@Sun.COM * produce a limited number of messages identifying bad callers. This is done 170910696SDavid.Hollister@Sun.COM * in a macro so that caller() is meaningful. When a bad caller is identified, 171010696SDavid.Hollister@Sun.COM * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 171110696SDavid.Hollister@Sun.COM */ 171210696SDavid.Hollister@Sun.COM #define DELAY_CONTEXT_CHECK() { \ 171310696SDavid.Hollister@Sun.COM uint32_t m; \ 171410696SDavid.Hollister@Sun.COM char *f; \ 171510696SDavid.Hollister@Sun.COM ulong_t off; \ 171610696SDavid.Hollister@Sun.COM \ 171710696SDavid.Hollister@Sun.COM m = delay_from_interrupt_msg; \ 171810696SDavid.Hollister@Sun.COM if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 171910696SDavid.Hollister@Sun.COM !panicstr && !devinfo_freeze && \ 172010696SDavid.Hollister@Sun.COM atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 172110696SDavid.Hollister@Sun.COM f = modgetsymname((uintptr_t)caller(), &off); \ 172210696SDavid.Hollister@Sun.COM cmn_err(CE_WARN, "delay(9F) called from " \ 172310696SDavid.Hollister@Sun.COM "interrupt context: %s`%s", \ 172410696SDavid.Hollister@Sun.COM mod_containing_pc(caller()), f ? f : "..."); \ 172510696SDavid.Hollister@Sun.COM } \ 172610696SDavid.Hollister@Sun.COM } 172710696SDavid.Hollister@Sun.COM 172810696SDavid.Hollister@Sun.COM /* 172910696SDavid.Hollister@Sun.COM * delay_common: common delay code. 173010696SDavid.Hollister@Sun.COM */ 173110696SDavid.Hollister@Sun.COM static void 173210696SDavid.Hollister@Sun.COM delay_common(clock_t ticks) 173310696SDavid.Hollister@Sun.COM { 173410696SDavid.Hollister@Sun.COM kthread_t *t = curthread; 173510696SDavid.Hollister@Sun.COM clock_t deadline; 173610696SDavid.Hollister@Sun.COM clock_t timeleft; 173710696SDavid.Hollister@Sun.COM callout_id_t id; 173810696SDavid.Hollister@Sun.COM 173910696SDavid.Hollister@Sun.COM /* If timeouts aren't running all we can do is spin. */ 174010696SDavid.Hollister@Sun.COM if (panicstr || devinfo_freeze) { 174110696SDavid.Hollister@Sun.COM /* Convert delay(9F) call into drv_usecwait(9F) call. */ 174210696SDavid.Hollister@Sun.COM if (ticks > 0) 174310696SDavid.Hollister@Sun.COM drv_usecwait(TICK_TO_USEC(ticks)); 174410696SDavid.Hollister@Sun.COM return; 174510696SDavid.Hollister@Sun.COM } 174610696SDavid.Hollister@Sun.COM 1747*11066Srafael.vanoni@sun.com deadline = ddi_get_lbolt() + ticks; 1748*11066Srafael.vanoni@sun.com while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 174910696SDavid.Hollister@Sun.COM mutex_enter(&t->t_delay_lock); 175010696SDavid.Hollister@Sun.COM id = timeout_default(delay_wakeup, t, timeleft); 175110696SDavid.Hollister@Sun.COM cv_wait(&t->t_delay_cv, &t->t_delay_lock); 175210696SDavid.Hollister@Sun.COM mutex_exit(&t->t_delay_lock); 175310696SDavid.Hollister@Sun.COM (void) untimeout_default(id, 0); 175410696SDavid.Hollister@Sun.COM } 175510696SDavid.Hollister@Sun.COM } 175610696SDavid.Hollister@Sun.COM 175710696SDavid.Hollister@Sun.COM /* 175810696SDavid.Hollister@Sun.COM * Delay specified number of clock ticks. 175910696SDavid.Hollister@Sun.COM */ 17600Sstevel@tonic-gate void 17610Sstevel@tonic-gate delay(clock_t ticks) 17620Sstevel@tonic-gate { 176310696SDavid.Hollister@Sun.COM DELAY_CONTEXT_CHECK(); 176410696SDavid.Hollister@Sun.COM 176510696SDavid.Hollister@Sun.COM delay_common(ticks); 176610696SDavid.Hollister@Sun.COM } 17670Sstevel@tonic-gate 176810696SDavid.Hollister@Sun.COM /* 176910696SDavid.Hollister@Sun.COM * Delay a random number of clock ticks between 1 and ticks. 177010696SDavid.Hollister@Sun.COM */ 177110696SDavid.Hollister@Sun.COM void 177210696SDavid.Hollister@Sun.COM delay_random(clock_t ticks) 177310696SDavid.Hollister@Sun.COM { 177410696SDavid.Hollister@Sun.COM int r; 17750Sstevel@tonic-gate 177610696SDavid.Hollister@Sun.COM DELAY_CONTEXT_CHECK(); 177710696SDavid.Hollister@Sun.COM 177810696SDavid.Hollister@Sun.COM (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 177910696SDavid.Hollister@Sun.COM if (ticks == 0) 178010696SDavid.Hollister@Sun.COM ticks = 1; 178110696SDavid.Hollister@Sun.COM ticks = (r % ticks) + 1; 178210696SDavid.Hollister@Sun.COM delay_common(ticks); 17830Sstevel@tonic-gate } 17840Sstevel@tonic-gate 17850Sstevel@tonic-gate /* 17860Sstevel@tonic-gate * Like delay, but interruptible by a signal. 17870Sstevel@tonic-gate */ 17880Sstevel@tonic-gate int 17890Sstevel@tonic-gate delay_sig(clock_t ticks) 17900Sstevel@tonic-gate { 179110696SDavid.Hollister@Sun.COM kthread_t *t = curthread; 179210696SDavid.Hollister@Sun.COM clock_t deadline; 179310696SDavid.Hollister@Sun.COM clock_t rc; 17940Sstevel@tonic-gate 179510696SDavid.Hollister@Sun.COM /* If timeouts aren't running all we can do is spin. */ 179610696SDavid.Hollister@Sun.COM if (panicstr || devinfo_freeze) { 179710696SDavid.Hollister@Sun.COM if (ticks > 0) 179810696SDavid.Hollister@Sun.COM drv_usecwait(TICK_TO_USEC(ticks)); 179910696SDavid.Hollister@Sun.COM return (0); 180010696SDavid.Hollister@Sun.COM } 180110696SDavid.Hollister@Sun.COM 1802*11066Srafael.vanoni@sun.com deadline = ddi_get_lbolt() + ticks; 180310696SDavid.Hollister@Sun.COM mutex_enter(&t->t_delay_lock); 18040Sstevel@tonic-gate do { 180510696SDavid.Hollister@Sun.COM rc = cv_timedwait_sig(&t->t_delay_cv, 180610696SDavid.Hollister@Sun.COM &t->t_delay_lock, deadline); 180710696SDavid.Hollister@Sun.COM /* loop until past deadline or signaled */ 18080Sstevel@tonic-gate } while (rc > 0); 180910696SDavid.Hollister@Sun.COM mutex_exit(&t->t_delay_lock); 18100Sstevel@tonic-gate if (rc == 0) 18110Sstevel@tonic-gate return (EINTR); 18120Sstevel@tonic-gate return (0); 18130Sstevel@tonic-gate } 18140Sstevel@tonic-gate 181510696SDavid.Hollister@Sun.COM 18160Sstevel@tonic-gate #define SECONDS_PER_DAY 86400 18170Sstevel@tonic-gate 18180Sstevel@tonic-gate /* 18190Sstevel@tonic-gate * Initialize the system time based on the TOD chip. approx is used as 18200Sstevel@tonic-gate * an approximation of time (e.g. from the filesystem) in the event that 18210Sstevel@tonic-gate * the TOD chip has been cleared or is unresponsive. An approx of -1 18220Sstevel@tonic-gate * means the filesystem doesn't keep time. 18230Sstevel@tonic-gate */ 18240Sstevel@tonic-gate void 18250Sstevel@tonic-gate clkset(time_t approx) 18260Sstevel@tonic-gate { 18270Sstevel@tonic-gate timestruc_t ts; 18280Sstevel@tonic-gate int spl; 18290Sstevel@tonic-gate int set_clock = 0; 18300Sstevel@tonic-gate 18310Sstevel@tonic-gate mutex_enter(&tod_lock); 18320Sstevel@tonic-gate ts = tod_get(); 18330Sstevel@tonic-gate 18340Sstevel@tonic-gate if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 18350Sstevel@tonic-gate /* 18360Sstevel@tonic-gate * If the TOD chip is reporting some time after 1971, 18370Sstevel@tonic-gate * then it probably didn't lose power or become otherwise 18380Sstevel@tonic-gate * cleared in the recent past; check to assure that 18390Sstevel@tonic-gate * the time coming from the filesystem isn't in the future 18400Sstevel@tonic-gate * according to the TOD chip. 18410Sstevel@tonic-gate */ 18420Sstevel@tonic-gate if (approx != -1 && approx > ts.tv_sec) { 18430Sstevel@tonic-gate cmn_err(CE_WARN, "Last shutdown is later " 18440Sstevel@tonic-gate "than time on time-of-day chip; check date."); 18450Sstevel@tonic-gate } 18460Sstevel@tonic-gate } else { 18470Sstevel@tonic-gate /* 18489158SKrishnendu.Sadhukhan@Sun.COM * If the TOD chip isn't giving correct time, set it to the 18499158SKrishnendu.Sadhukhan@Sun.COM * greater of i) approx and ii) 1987. That way if approx 18509158SKrishnendu.Sadhukhan@Sun.COM * is negative or is earlier than 1987, we set the clock 18519158SKrishnendu.Sadhukhan@Sun.COM * back to a time when Oliver North, ALF and Dire Straits 18529158SKrishnendu.Sadhukhan@Sun.COM * were all on the collective brain: 1987. 18530Sstevel@tonic-gate */ 18540Sstevel@tonic-gate timestruc_t tmp; 18559158SKrishnendu.Sadhukhan@Sun.COM time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 18569158SKrishnendu.Sadhukhan@Sun.COM ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 18570Sstevel@tonic-gate ts.tv_nsec = 0; 18580Sstevel@tonic-gate 18590Sstevel@tonic-gate /* 18600Sstevel@tonic-gate * Attempt to write the new time to the TOD chip. Set spl high 18610Sstevel@tonic-gate * to avoid getting preempted between the tod_set and tod_get. 18620Sstevel@tonic-gate */ 18630Sstevel@tonic-gate spl = splhi(); 18640Sstevel@tonic-gate tod_set(ts); 18650Sstevel@tonic-gate tmp = tod_get(); 18660Sstevel@tonic-gate splx(spl); 18670Sstevel@tonic-gate 18680Sstevel@tonic-gate if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 18690Sstevel@tonic-gate tod_broken = 1; 18700Sstevel@tonic-gate dosynctodr = 0; 18719158SKrishnendu.Sadhukhan@Sun.COM cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 18720Sstevel@tonic-gate } else { 18730Sstevel@tonic-gate cmn_err(CE_WARN, "Time-of-day chip had " 18740Sstevel@tonic-gate "incorrect date; check and reset."); 18750Sstevel@tonic-gate } 18760Sstevel@tonic-gate set_clock = 1; 18770Sstevel@tonic-gate } 18780Sstevel@tonic-gate 18790Sstevel@tonic-gate if (!boot_time) { 18800Sstevel@tonic-gate boot_time = ts.tv_sec; 18810Sstevel@tonic-gate set_clock = 1; 18820Sstevel@tonic-gate } 18830Sstevel@tonic-gate 18840Sstevel@tonic-gate if (set_clock) 18850Sstevel@tonic-gate set_hrestime(&ts); 18860Sstevel@tonic-gate 18870Sstevel@tonic-gate mutex_exit(&tod_lock); 18880Sstevel@tonic-gate } 18890Sstevel@tonic-gate 18904123Sdm120769 int timechanged; /* for testing if the system time has been reset */ 18910Sstevel@tonic-gate 18920Sstevel@tonic-gate void 18930Sstevel@tonic-gate set_hrestime(timestruc_t *ts) 18940Sstevel@tonic-gate { 18950Sstevel@tonic-gate int spl = hr_clock_lock(); 18960Sstevel@tonic-gate hrestime = *ts; 18974123Sdm120769 membar_enter(); /* hrestime must be visible before timechanged++ */ 18980Sstevel@tonic-gate timedelta = 0; 18994123Sdm120769 timechanged++; 19000Sstevel@tonic-gate hr_clock_unlock(spl); 19018048SMadhavan.Venkataraman@Sun.COM callout_hrestime(); 19020Sstevel@tonic-gate } 19030Sstevel@tonic-gate 19040Sstevel@tonic-gate static uint_t deadman_seconds; 19050Sstevel@tonic-gate static uint32_t deadman_panics; 19060Sstevel@tonic-gate static int deadman_enabled = 0; 19070Sstevel@tonic-gate static int deadman_panic_timers = 1; 19080Sstevel@tonic-gate 19090Sstevel@tonic-gate static void 19100Sstevel@tonic-gate deadman(void) 19110Sstevel@tonic-gate { 19120Sstevel@tonic-gate if (panicstr) { 19130Sstevel@tonic-gate /* 19140Sstevel@tonic-gate * During panic, other CPUs besides the panic 19150Sstevel@tonic-gate * master continue to handle cyclics and some other 19160Sstevel@tonic-gate * interrupts. The code below is intended to be 19170Sstevel@tonic-gate * single threaded, so any CPU other than the master 19180Sstevel@tonic-gate * must keep out. 19190Sstevel@tonic-gate */ 19200Sstevel@tonic-gate if (CPU->cpu_id != panic_cpu.cpu_id) 19210Sstevel@tonic-gate return; 19220Sstevel@tonic-gate 19230Sstevel@tonic-gate if (!deadman_panic_timers) 19240Sstevel@tonic-gate return; /* allow all timers to be manually disabled */ 19250Sstevel@tonic-gate 19260Sstevel@tonic-gate /* 19270Sstevel@tonic-gate * If we are generating a crash dump or syncing filesystems and 19280Sstevel@tonic-gate * the corresponding timer is set, decrement it and re-enter 19290Sstevel@tonic-gate * the panic code to abort it and advance to the next state. 19300Sstevel@tonic-gate * The panic states and triggers are explained in panic.c. 19310Sstevel@tonic-gate */ 19320Sstevel@tonic-gate if (panic_dump) { 19330Sstevel@tonic-gate if (dump_timeleft && (--dump_timeleft == 0)) { 19340Sstevel@tonic-gate panic("panic dump timeout"); 19350Sstevel@tonic-gate /*NOTREACHED*/ 19360Sstevel@tonic-gate } 19370Sstevel@tonic-gate } else if (panic_sync) { 19380Sstevel@tonic-gate if (sync_timeleft && (--sync_timeleft == 0)) { 19390Sstevel@tonic-gate panic("panic sync timeout"); 19400Sstevel@tonic-gate /*NOTREACHED*/ 19410Sstevel@tonic-gate } 19420Sstevel@tonic-gate } 19430Sstevel@tonic-gate 19440Sstevel@tonic-gate return; 19450Sstevel@tonic-gate } 19460Sstevel@tonic-gate 1947*11066Srafael.vanoni@sun.com if (deadman_counter != CPU->cpu_deadman_counter) { 1948*11066Srafael.vanoni@sun.com CPU->cpu_deadman_counter = deadman_counter; 19490Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 19500Sstevel@tonic-gate return; 19510Sstevel@tonic-gate } 19520Sstevel@tonic-gate 19536054Svb160487 if (--CPU->cpu_deadman_countdown > 0) 19540Sstevel@tonic-gate return; 19550Sstevel@tonic-gate 19560Sstevel@tonic-gate /* 19570Sstevel@tonic-gate * Regardless of whether or not we actually bring the system down, 19580Sstevel@tonic-gate * bump the deadman_panics variable. 19590Sstevel@tonic-gate * 19600Sstevel@tonic-gate * N.B. deadman_panics is incremented once for each CPU that 19610Sstevel@tonic-gate * passes through here. It's expected that all the CPUs will 19620Sstevel@tonic-gate * detect this condition within one second of each other, so 19630Sstevel@tonic-gate * when deadman_enabled is off, deadman_panics will 19640Sstevel@tonic-gate * typically be a multiple of the total number of CPUs in 19650Sstevel@tonic-gate * the system. 19660Sstevel@tonic-gate */ 19670Sstevel@tonic-gate atomic_add_32(&deadman_panics, 1); 19680Sstevel@tonic-gate 19690Sstevel@tonic-gate if (!deadman_enabled) { 19700Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 19710Sstevel@tonic-gate return; 19720Sstevel@tonic-gate } 19730Sstevel@tonic-gate 19740Sstevel@tonic-gate /* 19750Sstevel@tonic-gate * If we're here, we want to bring the system down. 19760Sstevel@tonic-gate */ 19770Sstevel@tonic-gate panic("deadman: timed out after %d seconds of clock " 19780Sstevel@tonic-gate "inactivity", deadman_seconds); 19790Sstevel@tonic-gate /*NOTREACHED*/ 19800Sstevel@tonic-gate } 19810Sstevel@tonic-gate 19820Sstevel@tonic-gate /*ARGSUSED*/ 19830Sstevel@tonic-gate static void 19840Sstevel@tonic-gate deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 19850Sstevel@tonic-gate { 1986*11066Srafael.vanoni@sun.com cpu->cpu_deadman_counter = 0; 19870Sstevel@tonic-gate cpu->cpu_deadman_countdown = deadman_seconds; 19880Sstevel@tonic-gate 19890Sstevel@tonic-gate hdlr->cyh_func = (cyc_func_t)deadman; 19900Sstevel@tonic-gate hdlr->cyh_level = CY_HIGH_LEVEL; 19910Sstevel@tonic-gate hdlr->cyh_arg = NULL; 19920Sstevel@tonic-gate 19930Sstevel@tonic-gate /* 19940Sstevel@tonic-gate * Stagger the CPUs so that they don't all run deadman() at 19950Sstevel@tonic-gate * the same time. Simplest reason to do this is to make it 19960Sstevel@tonic-gate * more likely that only one CPU will panic in case of a 19970Sstevel@tonic-gate * timeout. This is (strictly speaking) an aesthetic, not a 19980Sstevel@tonic-gate * technical consideration. 19990Sstevel@tonic-gate */ 20000Sstevel@tonic-gate when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 20010Sstevel@tonic-gate when->cyt_interval = NANOSEC; 20020Sstevel@tonic-gate } 20030Sstevel@tonic-gate 20040Sstevel@tonic-gate 20050Sstevel@tonic-gate void 20060Sstevel@tonic-gate deadman_init(void) 20070Sstevel@tonic-gate { 20080Sstevel@tonic-gate cyc_omni_handler_t hdlr; 20090Sstevel@tonic-gate 20100Sstevel@tonic-gate if (deadman_seconds == 0) 20110Sstevel@tonic-gate deadman_seconds = snoop_interval / MICROSEC; 20120Sstevel@tonic-gate 20130Sstevel@tonic-gate if (snooping) 20140Sstevel@tonic-gate deadman_enabled = 1; 20150Sstevel@tonic-gate 20160Sstevel@tonic-gate hdlr.cyo_online = deadman_online; 20170Sstevel@tonic-gate hdlr.cyo_offline = NULL; 20180Sstevel@tonic-gate hdlr.cyo_arg = NULL; 20190Sstevel@tonic-gate 20200Sstevel@tonic-gate mutex_enter(&cpu_lock); 20210Sstevel@tonic-gate deadman_cyclic = cyclic_add_omni(&hdlr); 20220Sstevel@tonic-gate mutex_exit(&cpu_lock); 20230Sstevel@tonic-gate } 20240Sstevel@tonic-gate 20250Sstevel@tonic-gate /* 20260Sstevel@tonic-gate * tod_fault() is for updating tod validate mechanism state: 20270Sstevel@tonic-gate * (1) TOD_NOFAULT: for resetting the state to 'normal'. 20280Sstevel@tonic-gate * currently used for debugging only 20290Sstevel@tonic-gate * (2) The following four cases detected by tod validate mechanism: 20300Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous value. 20310Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 20320Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 20330Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 20340Sstevel@tonic-gate * average tick delta has changed. 20355084Sjohnlev * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 20365084Sjohnlev * a virtual TOD provided by a hypervisor. 20370Sstevel@tonic-gate */ 20380Sstevel@tonic-gate enum tod_fault_type 20390Sstevel@tonic-gate tod_fault(enum tod_fault_type ftype, int off) 20400Sstevel@tonic-gate { 20410Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 20420Sstevel@tonic-gate 20430Sstevel@tonic-gate if (tod_faulted != ftype) { 20440Sstevel@tonic-gate switch (ftype) { 20450Sstevel@tonic-gate case TOD_NOFAULT: 204678Sae112802 plat_tod_fault(TOD_NOFAULT); 20470Sstevel@tonic-gate cmn_err(CE_NOTE, "Restarted tracking " 20485076Smishra "Time of Day clock."); 20490Sstevel@tonic-gate tod_faulted = ftype; 20500Sstevel@tonic-gate break; 20510Sstevel@tonic-gate case TOD_REVERSED: 20520Sstevel@tonic-gate case TOD_JUMPED: 20530Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 205478Sae112802 plat_tod_fault(ftype); 20550Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 20560Sstevel@tonic-gate "reason [%s by 0x%x]. -- " 20570Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 20580Sstevel@tonic-gate tod_fault_table[ftype], off); 20590Sstevel@tonic-gate tod_faulted = ftype; 20600Sstevel@tonic-gate } 20610Sstevel@tonic-gate break; 20620Sstevel@tonic-gate case TOD_STALLED: 20630Sstevel@tonic-gate case TOD_RATECHANGED: 20640Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 206578Sae112802 plat_tod_fault(ftype); 20660Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 20670Sstevel@tonic-gate "reason [%s]. -- " 20680Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 20690Sstevel@tonic-gate tod_fault_table[ftype]); 20700Sstevel@tonic-gate tod_faulted = ftype; 20710Sstevel@tonic-gate } 20720Sstevel@tonic-gate break; 20735084Sjohnlev case TOD_RDONLY: 20745084Sjohnlev if (tod_faulted == TOD_NOFAULT) { 20755084Sjohnlev plat_tod_fault(ftype); 20765084Sjohnlev cmn_err(CE_NOTE, "!Time of Day clock is " 20775084Sjohnlev "Read-Only; set of Date/Time will not " 20785084Sjohnlev "persist across reboot."); 20795084Sjohnlev tod_faulted = ftype; 20805084Sjohnlev } 20815084Sjohnlev break; 20820Sstevel@tonic-gate default: 20830Sstevel@tonic-gate break; 20840Sstevel@tonic-gate } 20850Sstevel@tonic-gate } 20860Sstevel@tonic-gate return (tod_faulted); 20870Sstevel@tonic-gate } 20880Sstevel@tonic-gate 20890Sstevel@tonic-gate void 20900Sstevel@tonic-gate tod_fault_reset() 20910Sstevel@tonic-gate { 20920Sstevel@tonic-gate tod_fault_reset_flag = 1; 20930Sstevel@tonic-gate } 20940Sstevel@tonic-gate 20950Sstevel@tonic-gate 20960Sstevel@tonic-gate /* 20970Sstevel@tonic-gate * tod_validate() is used for checking values returned by tod_get(). 20980Sstevel@tonic-gate * Four error cases can be detected by this routine: 20990Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous. 21000Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 21010Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 21020Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 21030Sstevel@tonic-gate * average tick delta has changed. 21040Sstevel@tonic-gate */ 21050Sstevel@tonic-gate time_t 21060Sstevel@tonic-gate tod_validate(time_t tod) 21070Sstevel@tonic-gate { 21080Sstevel@tonic-gate time_t diff_tod; 21090Sstevel@tonic-gate hrtime_t diff_tick; 21100Sstevel@tonic-gate 21110Sstevel@tonic-gate long dtick; 21120Sstevel@tonic-gate int dtick_delta; 21130Sstevel@tonic-gate 21140Sstevel@tonic-gate int off = 0; 21150Sstevel@tonic-gate enum tod_fault_type tod_bad = TOD_NOFAULT; 21160Sstevel@tonic-gate 21170Sstevel@tonic-gate static int firsttime = 1; 21180Sstevel@tonic-gate 21190Sstevel@tonic-gate static time_t prev_tod = 0; 21200Sstevel@tonic-gate static hrtime_t prev_tick = 0; 21210Sstevel@tonic-gate static long dtick_avg = TOD_REF_FREQ; 21220Sstevel@tonic-gate 21230Sstevel@tonic-gate hrtime_t tick = gethrtime(); 21240Sstevel@tonic-gate 21250Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 21260Sstevel@tonic-gate 21270Sstevel@tonic-gate /* 21280Sstevel@tonic-gate * tod_validate_enable is patchable via /etc/system. 2129950Ssethg * If TOD is already faulted, or if TOD validation is deferred, 2130950Ssethg * there is nothing to do. 21310Sstevel@tonic-gate */ 2132950Ssethg if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2133950Ssethg tod_validate_deferred) { 21340Sstevel@tonic-gate return (tod); 21350Sstevel@tonic-gate } 21360Sstevel@tonic-gate 21370Sstevel@tonic-gate /* 21380Sstevel@tonic-gate * Update prev_tod and prev_tick values for first run 21390Sstevel@tonic-gate */ 21400Sstevel@tonic-gate if (firsttime) { 21410Sstevel@tonic-gate firsttime = 0; 21420Sstevel@tonic-gate prev_tod = tod; 21430Sstevel@tonic-gate prev_tick = tick; 21440Sstevel@tonic-gate return (tod); 21450Sstevel@tonic-gate } 21460Sstevel@tonic-gate 21470Sstevel@tonic-gate /* 21480Sstevel@tonic-gate * For either of these conditions, we need to reset ourself 21490Sstevel@tonic-gate * and start validation from zero since each condition 21500Sstevel@tonic-gate * indicates that the TOD will be updated with new value 21510Sstevel@tonic-gate * Also, note that tod_needsync will be reset in clock() 21520Sstevel@tonic-gate */ 21530Sstevel@tonic-gate if (tod_needsync || tod_fault_reset_flag) { 21540Sstevel@tonic-gate firsttime = 1; 21550Sstevel@tonic-gate prev_tod = 0; 21560Sstevel@tonic-gate prev_tick = 0; 21570Sstevel@tonic-gate dtick_avg = TOD_REF_FREQ; 21580Sstevel@tonic-gate 21590Sstevel@tonic-gate if (tod_fault_reset_flag) 21600Sstevel@tonic-gate tod_fault_reset_flag = 0; 21610Sstevel@tonic-gate 21620Sstevel@tonic-gate return (tod); 21630Sstevel@tonic-gate } 21640Sstevel@tonic-gate 21650Sstevel@tonic-gate /* test hook */ 21660Sstevel@tonic-gate switch (tod_unit_test) { 21670Sstevel@tonic-gate case 1: /* for testing jumping tod */ 21680Sstevel@tonic-gate tod += tod_test_injector; 21690Sstevel@tonic-gate tod_unit_test = 0; 21700Sstevel@tonic-gate break; 21710Sstevel@tonic-gate case 2: /* for testing stuck tod bit */ 21720Sstevel@tonic-gate tod |= 1 << tod_test_injector; 21730Sstevel@tonic-gate tod_unit_test = 0; 21740Sstevel@tonic-gate break; 21750Sstevel@tonic-gate case 3: /* for testing stalled tod */ 21760Sstevel@tonic-gate tod = prev_tod; 21770Sstevel@tonic-gate tod_unit_test = 0; 21780Sstevel@tonic-gate break; 21790Sstevel@tonic-gate case 4: /* reset tod fault status */ 21800Sstevel@tonic-gate (void) tod_fault(TOD_NOFAULT, 0); 21810Sstevel@tonic-gate tod_unit_test = 0; 21820Sstevel@tonic-gate break; 21830Sstevel@tonic-gate default: 21840Sstevel@tonic-gate break; 21850Sstevel@tonic-gate } 21860Sstevel@tonic-gate 21870Sstevel@tonic-gate diff_tod = tod - prev_tod; 21880Sstevel@tonic-gate diff_tick = tick - prev_tick; 21890Sstevel@tonic-gate 21900Sstevel@tonic-gate ASSERT(diff_tick >= 0); 21910Sstevel@tonic-gate 21920Sstevel@tonic-gate if (diff_tod < 0) { 21930Sstevel@tonic-gate /* ERROR - tod reversed */ 21940Sstevel@tonic-gate tod_bad = TOD_REVERSED; 21950Sstevel@tonic-gate off = (int)(prev_tod - tod); 21960Sstevel@tonic-gate } else if (diff_tod == 0) { 21970Sstevel@tonic-gate /* tod did not advance */ 21980Sstevel@tonic-gate if (diff_tick > TOD_STALL_THRESHOLD) { 21990Sstevel@tonic-gate /* ERROR - tod stalled */ 22000Sstevel@tonic-gate tod_bad = TOD_STALLED; 22010Sstevel@tonic-gate } else { 22020Sstevel@tonic-gate /* 22030Sstevel@tonic-gate * Make sure we don't update prev_tick 22040Sstevel@tonic-gate * so that diff_tick is calculated since 22050Sstevel@tonic-gate * the first diff_tod == 0 22060Sstevel@tonic-gate */ 22070Sstevel@tonic-gate return (tod); 22080Sstevel@tonic-gate } 22090Sstevel@tonic-gate } else { 22100Sstevel@tonic-gate /* calculate dtick */ 22110Sstevel@tonic-gate dtick = diff_tick / diff_tod; 22120Sstevel@tonic-gate 22130Sstevel@tonic-gate /* update dtick averages */ 22140Sstevel@tonic-gate dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 22150Sstevel@tonic-gate 22160Sstevel@tonic-gate /* 22170Sstevel@tonic-gate * Calculate dtick_delta as 22180Sstevel@tonic-gate * variation from reference freq in quartiles 22190Sstevel@tonic-gate */ 22200Sstevel@tonic-gate dtick_delta = (dtick_avg - TOD_REF_FREQ) / 22215076Smishra (TOD_REF_FREQ >> 2); 22220Sstevel@tonic-gate 22230Sstevel@tonic-gate /* 22240Sstevel@tonic-gate * Even with a perfectly functioning TOD device, 22250Sstevel@tonic-gate * when the number of elapsed seconds is low the 22260Sstevel@tonic-gate * algorithm can calculate a rate that is beyond 22270Sstevel@tonic-gate * tolerance, causing an error. The algorithm is 22280Sstevel@tonic-gate * inaccurate when elapsed time is low (less than 22290Sstevel@tonic-gate * 5 seconds). 22300Sstevel@tonic-gate */ 22310Sstevel@tonic-gate if (diff_tod > 4) { 22320Sstevel@tonic-gate if (dtick < TOD_JUMP_THRESHOLD) { 22330Sstevel@tonic-gate /* ERROR - tod jumped */ 22340Sstevel@tonic-gate tod_bad = TOD_JUMPED; 22350Sstevel@tonic-gate off = (int)diff_tod; 22360Sstevel@tonic-gate } else if (dtick_delta) { 22370Sstevel@tonic-gate /* ERROR - change in clock rate */ 22380Sstevel@tonic-gate tod_bad = TOD_RATECHANGED; 22390Sstevel@tonic-gate } 22400Sstevel@tonic-gate } 22410Sstevel@tonic-gate } 22420Sstevel@tonic-gate 22430Sstevel@tonic-gate if (tod_bad != TOD_NOFAULT) { 22440Sstevel@tonic-gate (void) tod_fault(tod_bad, off); 22450Sstevel@tonic-gate 22460Sstevel@tonic-gate /* 22470Sstevel@tonic-gate * Disable dosynctodr since we are going to fault 22480Sstevel@tonic-gate * the TOD chip anyway here 22490Sstevel@tonic-gate */ 22500Sstevel@tonic-gate dosynctodr = 0; 22510Sstevel@tonic-gate 22520Sstevel@tonic-gate /* 22530Sstevel@tonic-gate * Set tod to the correct value from hrestime 22540Sstevel@tonic-gate */ 22550Sstevel@tonic-gate tod = hrestime.tv_sec; 22560Sstevel@tonic-gate } 22570Sstevel@tonic-gate 22580Sstevel@tonic-gate prev_tod = tod; 22590Sstevel@tonic-gate prev_tick = tick; 22600Sstevel@tonic-gate return (tod); 22610Sstevel@tonic-gate } 22620Sstevel@tonic-gate 22630Sstevel@tonic-gate static void 22640Sstevel@tonic-gate calcloadavg(int nrun, uint64_t *hp_ave) 22650Sstevel@tonic-gate { 22660Sstevel@tonic-gate static int64_t f[3] = { 135, 27, 9 }; 22670Sstevel@tonic-gate uint_t i; 22680Sstevel@tonic-gate int64_t q, r; 22690Sstevel@tonic-gate 22700Sstevel@tonic-gate /* 22710Sstevel@tonic-gate * Compute load average over the last 1, 5, and 15 minutes 22720Sstevel@tonic-gate * (60, 300, and 900 seconds). The constants in f[3] are for 22730Sstevel@tonic-gate * exponential decay: 22740Sstevel@tonic-gate * (1 - exp(-1/60)) << 13 = 135, 22750Sstevel@tonic-gate * (1 - exp(-1/300)) << 13 = 27, 22760Sstevel@tonic-gate * (1 - exp(-1/900)) << 13 = 9. 22770Sstevel@tonic-gate */ 22780Sstevel@tonic-gate 22790Sstevel@tonic-gate /* 22800Sstevel@tonic-gate * a little hoop-jumping to avoid integer overflow 22810Sstevel@tonic-gate */ 22820Sstevel@tonic-gate for (i = 0; i < 3; i++) { 22830Sstevel@tonic-gate q = (hp_ave[i] >> 16) << 7; 22840Sstevel@tonic-gate r = (hp_ave[i] & 0xffff) << 7; 22850Sstevel@tonic-gate hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 22860Sstevel@tonic-gate } 22870Sstevel@tonic-gate } 2288*11066Srafael.vanoni@sun.com 2289*11066Srafael.vanoni@sun.com /* 2290*11066Srafael.vanoni@sun.com * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2291*11066Srafael.vanoni@sun.com * calculate the value of lbolt according to the current mode. In the event 2292*11066Srafael.vanoni@sun.com * driven mode (the default), lbolt is calculated by dividing the current hires 2293*11066Srafael.vanoni@sun.com * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2294*11066Srafael.vanoni@sun.com * an internal variable is incremented at each firing of the lbolt cyclic 2295*11066Srafael.vanoni@sun.com * and returned by lbolt_cyclic_driven(). 2296*11066Srafael.vanoni@sun.com * 2297*11066Srafael.vanoni@sun.com * The system will transition from event to cyclic driven mode when the number 2298*11066Srafael.vanoni@sun.com * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2299*11066Srafael.vanoni@sun.com * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2300*11066Srafael.vanoni@sun.com * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2301*11066Srafael.vanoni@sun.com * causing enough activity to cross the thresholds. 2302*11066Srafael.vanoni@sun.com */ 2303*11066Srafael.vanoni@sun.com static int64_t 2304*11066Srafael.vanoni@sun.com lbolt_bootstrap(void) 2305*11066Srafael.vanoni@sun.com { 2306*11066Srafael.vanoni@sun.com return (0); 2307*11066Srafael.vanoni@sun.com } 2308*11066Srafael.vanoni@sun.com 2309*11066Srafael.vanoni@sun.com /* ARGSUSED */ 2310*11066Srafael.vanoni@sun.com uint_t 2311*11066Srafael.vanoni@sun.com lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2312*11066Srafael.vanoni@sun.com { 2313*11066Srafael.vanoni@sun.com hrtime_t ts, exp; 2314*11066Srafael.vanoni@sun.com int ret; 2315*11066Srafael.vanoni@sun.com 2316*11066Srafael.vanoni@sun.com ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2317*11066Srafael.vanoni@sun.com 2318*11066Srafael.vanoni@sun.com kpreempt_disable(); 2319*11066Srafael.vanoni@sun.com 2320*11066Srafael.vanoni@sun.com ts = gethrtime(); 2321*11066Srafael.vanoni@sun.com lb_info->lbi_internal = (ts/nsec_per_tick); 2322*11066Srafael.vanoni@sun.com 2323*11066Srafael.vanoni@sun.com /* 2324*11066Srafael.vanoni@sun.com * Align the next expiration to a clock tick boundary. 2325*11066Srafael.vanoni@sun.com */ 2326*11066Srafael.vanoni@sun.com exp = ts + nsec_per_tick - 1; 2327*11066Srafael.vanoni@sun.com exp = (exp/nsec_per_tick) * nsec_per_tick; 2328*11066Srafael.vanoni@sun.com 2329*11066Srafael.vanoni@sun.com ret = cyclic_reprogram(lb_info->lbi_cyclic_id, exp); 2330*11066Srafael.vanoni@sun.com ASSERT(ret); 2331*11066Srafael.vanoni@sun.com 2332*11066Srafael.vanoni@sun.com lbolt_hybrid = lbolt_cyclic_driven; 2333*11066Srafael.vanoni@sun.com lb_info->lbi_cyc_deactivate = B_FALSE; 2334*11066Srafael.vanoni@sun.com lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2335*11066Srafael.vanoni@sun.com 2336*11066Srafael.vanoni@sun.com kpreempt_enable(); 2337*11066Srafael.vanoni@sun.com 2338*11066Srafael.vanoni@sun.com ret = atomic_dec_32_nv(&lb_info->lbi_token); 2339*11066Srafael.vanoni@sun.com ASSERT(ret == 0); 2340*11066Srafael.vanoni@sun.com 2341*11066Srafael.vanoni@sun.com return (1); 2342*11066Srafael.vanoni@sun.com } 2343*11066Srafael.vanoni@sun.com 2344*11066Srafael.vanoni@sun.com int64_t 2345*11066Srafael.vanoni@sun.com lbolt_event_driven(void) 2346*11066Srafael.vanoni@sun.com { 2347*11066Srafael.vanoni@sun.com hrtime_t ts; 2348*11066Srafael.vanoni@sun.com int64_t lb; 2349*11066Srafael.vanoni@sun.com int ret, cpu = CPU->cpu_seqid; 2350*11066Srafael.vanoni@sun.com 2351*11066Srafael.vanoni@sun.com ts = gethrtime(); 2352*11066Srafael.vanoni@sun.com ASSERT(ts > 0); 2353*11066Srafael.vanoni@sun.com 2354*11066Srafael.vanoni@sun.com ASSERT(nsec_per_tick > 0); 2355*11066Srafael.vanoni@sun.com lb = (ts/nsec_per_tick); 2356*11066Srafael.vanoni@sun.com 2357*11066Srafael.vanoni@sun.com /* 2358*11066Srafael.vanoni@sun.com * Switch to cyclic mode if the number of calls to this routine 2359*11066Srafael.vanoni@sun.com * has reached the threshold within the interval. 2360*11066Srafael.vanoni@sun.com */ 2361*11066Srafael.vanoni@sun.com if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2362*11066Srafael.vanoni@sun.com 2363*11066Srafael.vanoni@sun.com if (--lb_cpu[cpu].lbc_counter == 0) { 2364*11066Srafael.vanoni@sun.com /* 2365*11066Srafael.vanoni@sun.com * Reached the threshold within the interval, reset 2366*11066Srafael.vanoni@sun.com * the usage statistics. 2367*11066Srafael.vanoni@sun.com */ 2368*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2369*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_cnt_start = lb; 2370*11066Srafael.vanoni@sun.com 2371*11066Srafael.vanoni@sun.com /* 2372*11066Srafael.vanoni@sun.com * Make sure only one thread reprograms the 2373*11066Srafael.vanoni@sun.com * lbolt cyclic and changes the mode. 2374*11066Srafael.vanoni@sun.com */ 2375*11066Srafael.vanoni@sun.com if (panicstr == NULL && 2376*11066Srafael.vanoni@sun.com atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2377*11066Srafael.vanoni@sun.com 2378*11066Srafael.vanoni@sun.com if (lbolt_hybrid == lbolt_cyclic_driven) { 2379*11066Srafael.vanoni@sun.com ret = atomic_dec_32_nv( 2380*11066Srafael.vanoni@sun.com &lb_info->lbi_token); 2381*11066Srafael.vanoni@sun.com ASSERT(ret == 0); 2382*11066Srafael.vanoni@sun.com return (lb); 2383*11066Srafael.vanoni@sun.com } 2384*11066Srafael.vanoni@sun.com 2385*11066Srafael.vanoni@sun.com lbolt_softint_post(); 2386*11066Srafael.vanoni@sun.com } 2387*11066Srafael.vanoni@sun.com } 2388*11066Srafael.vanoni@sun.com } else { 2389*11066Srafael.vanoni@sun.com /* 2390*11066Srafael.vanoni@sun.com * Exceeded the interval, reset the usage statistics. 2391*11066Srafael.vanoni@sun.com */ 2392*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2393*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_cnt_start = lb; 2394*11066Srafael.vanoni@sun.com } 2395*11066Srafael.vanoni@sun.com 2396*11066Srafael.vanoni@sun.com ASSERT(lb >= lb_info->lbi_debug_time); 2397*11066Srafael.vanoni@sun.com 2398*11066Srafael.vanoni@sun.com return (lb - lb_info->lbi_debug_time); 2399*11066Srafael.vanoni@sun.com } 2400*11066Srafael.vanoni@sun.com 2401*11066Srafael.vanoni@sun.com int64_t 2402*11066Srafael.vanoni@sun.com lbolt_cyclic_driven(void) 2403*11066Srafael.vanoni@sun.com { 2404*11066Srafael.vanoni@sun.com int64_t lb = lb_info->lbi_internal; 2405*11066Srafael.vanoni@sun.com int cpu = CPU->cpu_seqid; 2406*11066Srafael.vanoni@sun.com 2407*11066Srafael.vanoni@sun.com if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2408*11066Srafael.vanoni@sun.com 2409*11066Srafael.vanoni@sun.com if (lb_cpu[cpu].lbc_counter == 0) 2410*11066Srafael.vanoni@sun.com /* 2411*11066Srafael.vanoni@sun.com * Reached the threshold within the interval, 2412*11066Srafael.vanoni@sun.com * prevent the lbolt cyclic from turning itself 2413*11066Srafael.vanoni@sun.com * off. 2414*11066Srafael.vanoni@sun.com */ 2415*11066Srafael.vanoni@sun.com lb_info->lbi_cyc_deactivate = B_FALSE; 2416*11066Srafael.vanoni@sun.com else 2417*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_counter--; 2418*11066Srafael.vanoni@sun.com } else { 2419*11066Srafael.vanoni@sun.com /* 2420*11066Srafael.vanoni@sun.com * Only reset the usage statistics when the interval has 2421*11066Srafael.vanoni@sun.com * exceeded. 2422*11066Srafael.vanoni@sun.com */ 2423*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2424*11066Srafael.vanoni@sun.com lb_cpu[cpu].lbc_cnt_start = lb; 2425*11066Srafael.vanoni@sun.com } 2426*11066Srafael.vanoni@sun.com 2427*11066Srafael.vanoni@sun.com ASSERT(lb >= lb_info->lbi_debug_time); 2428*11066Srafael.vanoni@sun.com 2429*11066Srafael.vanoni@sun.com return (lb - lb_info->lbi_debug_time); 2430*11066Srafael.vanoni@sun.com } 2431*11066Srafael.vanoni@sun.com 2432*11066Srafael.vanoni@sun.com /* 2433*11066Srafael.vanoni@sun.com * The lbolt_cyclic() routine will fire at a nsec_per_tick rate to satisfy 2434*11066Srafael.vanoni@sun.com * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2435*11066Srafael.vanoni@sun.com * It is inactive by default, and will be activated when switching from event 2436*11066Srafael.vanoni@sun.com * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2437*11066Srafael.vanoni@sun.com * by lbolt_cyclic_driven(). 2438*11066Srafael.vanoni@sun.com */ 2439*11066Srafael.vanoni@sun.com static void 2440*11066Srafael.vanoni@sun.com lbolt_cyclic(void) 2441*11066Srafael.vanoni@sun.com { 2442*11066Srafael.vanoni@sun.com int ret; 2443*11066Srafael.vanoni@sun.com 2444*11066Srafael.vanoni@sun.com lb_info->lbi_internal++; 2445*11066Srafael.vanoni@sun.com 2446*11066Srafael.vanoni@sun.com if (!lbolt_cyc_only) { 2447*11066Srafael.vanoni@sun.com 2448*11066Srafael.vanoni@sun.com if (lb_info->lbi_cyc_deactivate) { 2449*11066Srafael.vanoni@sun.com /* 2450*11066Srafael.vanoni@sun.com * Switching from cyclic to event driven mode. 2451*11066Srafael.vanoni@sun.com */ 2452*11066Srafael.vanoni@sun.com if (atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2453*11066Srafael.vanoni@sun.com 2454*11066Srafael.vanoni@sun.com if (lbolt_hybrid == lbolt_event_driven) { 2455*11066Srafael.vanoni@sun.com ret = atomic_dec_32_nv( 2456*11066Srafael.vanoni@sun.com &lb_info->lbi_token); 2457*11066Srafael.vanoni@sun.com ASSERT(ret == 0); 2458*11066Srafael.vanoni@sun.com return; 2459*11066Srafael.vanoni@sun.com } 2460*11066Srafael.vanoni@sun.com 2461*11066Srafael.vanoni@sun.com kpreempt_disable(); 2462*11066Srafael.vanoni@sun.com 2463*11066Srafael.vanoni@sun.com lbolt_hybrid = lbolt_event_driven; 2464*11066Srafael.vanoni@sun.com ret = cyclic_reprogram(lb_info->lbi_cyclic_id, 2465*11066Srafael.vanoni@sun.com CY_INFINITY); 2466*11066Srafael.vanoni@sun.com ASSERT(ret); 2467*11066Srafael.vanoni@sun.com 2468*11066Srafael.vanoni@sun.com kpreempt_enable(); 2469*11066Srafael.vanoni@sun.com 2470*11066Srafael.vanoni@sun.com ret = atomic_dec_32_nv(&lb_info->lbi_token); 2471*11066Srafael.vanoni@sun.com ASSERT(ret == 0); 2472*11066Srafael.vanoni@sun.com } 2473*11066Srafael.vanoni@sun.com } 2474*11066Srafael.vanoni@sun.com 2475*11066Srafael.vanoni@sun.com /* 2476*11066Srafael.vanoni@sun.com * The lbolt cyclic should not try to deactivate itself before 2477*11066Srafael.vanoni@sun.com * the sampling period has elapsed. 2478*11066Srafael.vanoni@sun.com */ 2479*11066Srafael.vanoni@sun.com if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2480*11066Srafael.vanoni@sun.com lb_info->lbi_thresh_interval) { 2481*11066Srafael.vanoni@sun.com lb_info->lbi_cyc_deactivate = B_TRUE; 2482*11066Srafael.vanoni@sun.com lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2483*11066Srafael.vanoni@sun.com } 2484*11066Srafael.vanoni@sun.com } 2485*11066Srafael.vanoni@sun.com } 2486*11066Srafael.vanoni@sun.com 2487*11066Srafael.vanoni@sun.com /* 2488*11066Srafael.vanoni@sun.com * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2489*11066Srafael.vanoni@sun.com * when the system drops into the kernel debugger. lbolt_debug_entry() is 2490*11066Srafael.vanoni@sun.com * called by the KDI system claim callbacks to record a hires timestamp at 2491*11066Srafael.vanoni@sun.com * debug enter time. lbolt_debug_return() is called by the sistem release 2492*11066Srafael.vanoni@sun.com * callbacks to account for the time spent in the debugger. The value is then 2493*11066Srafael.vanoni@sun.com * accumulated in the lb_info structure and used by lbolt_event_driven() and 2494*11066Srafael.vanoni@sun.com * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2495*11066Srafael.vanoni@sun.com */ 2496*11066Srafael.vanoni@sun.com void 2497*11066Srafael.vanoni@sun.com lbolt_debug_entry(void) 2498*11066Srafael.vanoni@sun.com { 2499*11066Srafael.vanoni@sun.com lb_info->lbi_debug_ts = gethrtime(); 2500*11066Srafael.vanoni@sun.com } 2501*11066Srafael.vanoni@sun.com 2502*11066Srafael.vanoni@sun.com void 2503*11066Srafael.vanoni@sun.com lbolt_debug_return(void) 2504*11066Srafael.vanoni@sun.com { 2505*11066Srafael.vanoni@sun.com if (nsec_per_tick > 0) 2506*11066Srafael.vanoni@sun.com lb_info->lbi_debug_time += 2507*11066Srafael.vanoni@sun.com ((gethrtime() - lb_info->lbi_debug_ts)/nsec_per_tick); 2508*11066Srafael.vanoni@sun.com 2509*11066Srafael.vanoni@sun.com lb_info->lbi_debug_ts = 0; 2510*11066Srafael.vanoni@sun.com } 2511