xref: /onnv-gate/usr/src/uts/common/os/clock.c (revision 10696:cd0f390dd9e2)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
52036Swentaoy  * Common Development and Distribution License (the "License").
62036Swentaoy  * You may not use this file except in compliance with the License.
70Sstevel@tonic-gate  *
80Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
90Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
100Sstevel@tonic-gate  * See the License for the specific language governing permissions
110Sstevel@tonic-gate  * and limitations under the License.
120Sstevel@tonic-gate  *
130Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
140Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
150Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
160Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
170Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
180Sstevel@tonic-gate  *
190Sstevel@tonic-gate  * CDDL HEADER END
200Sstevel@tonic-gate  */
210Sstevel@tonic-gate /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
220Sstevel@tonic-gate /*	  All Rights Reserved	*/
230Sstevel@tonic-gate 
240Sstevel@tonic-gate 
250Sstevel@tonic-gate /*
268566SMadhavan.Venkataraman@Sun.COM  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
270Sstevel@tonic-gate  * Use is subject to license terms.
280Sstevel@tonic-gate  */
290Sstevel@tonic-gate 
300Sstevel@tonic-gate 
310Sstevel@tonic-gate #include <sys/param.h>
320Sstevel@tonic-gate #include <sys/t_lock.h>
330Sstevel@tonic-gate #include <sys/types.h>
340Sstevel@tonic-gate #include <sys/tuneable.h>
350Sstevel@tonic-gate #include <sys/sysmacros.h>
360Sstevel@tonic-gate #include <sys/systm.h>
370Sstevel@tonic-gate #include <sys/cpuvar.h>
380Sstevel@tonic-gate #include <sys/lgrp.h>
390Sstevel@tonic-gate #include <sys/user.h>
400Sstevel@tonic-gate #include <sys/proc.h>
410Sstevel@tonic-gate #include <sys/callo.h>
420Sstevel@tonic-gate #include <sys/kmem.h>
430Sstevel@tonic-gate #include <sys/var.h>
440Sstevel@tonic-gate #include <sys/cmn_err.h>
450Sstevel@tonic-gate #include <sys/swap.h>
460Sstevel@tonic-gate #include <sys/vmsystm.h>
470Sstevel@tonic-gate #include <sys/class.h>
480Sstevel@tonic-gate #include <sys/time.h>
490Sstevel@tonic-gate #include <sys/debug.h>
500Sstevel@tonic-gate #include <sys/vtrace.h>
510Sstevel@tonic-gate #include <sys/spl.h>
520Sstevel@tonic-gate #include <sys/atomic.h>
530Sstevel@tonic-gate #include <sys/dumphdr.h>
540Sstevel@tonic-gate #include <sys/archsystm.h>
550Sstevel@tonic-gate #include <sys/fs/swapnode.h>
560Sstevel@tonic-gate #include <sys/panic.h>
570Sstevel@tonic-gate #include <sys/disp.h>
580Sstevel@tonic-gate #include <sys/msacct.h>
590Sstevel@tonic-gate #include <sys/mem_cage.h>
600Sstevel@tonic-gate 
610Sstevel@tonic-gate #include <vm/page.h>
620Sstevel@tonic-gate #include <vm/anon.h>
630Sstevel@tonic-gate #include <vm/rm.h>
640Sstevel@tonic-gate #include <sys/cyclic.h>
650Sstevel@tonic-gate #include <sys/cpupart.h>
660Sstevel@tonic-gate #include <sys/rctl.h>
670Sstevel@tonic-gate #include <sys/task.h>
680Sstevel@tonic-gate #include <sys/sdt.h>
695107Seota #include <sys/ddi_timer.h>
70*10696SDavid.Hollister@Sun.COM #include <sys/random.h>
71*10696SDavid.Hollister@Sun.COM #include <sys/modctl.h>
720Sstevel@tonic-gate 
730Sstevel@tonic-gate /*
740Sstevel@tonic-gate  * for NTP support
750Sstevel@tonic-gate  */
760Sstevel@tonic-gate #include <sys/timex.h>
770Sstevel@tonic-gate #include <sys/inttypes.h>
780Sstevel@tonic-gate 
790Sstevel@tonic-gate /*
803792Sakolb  * clock() is called straight from the clock cyclic; see clock_init().
810Sstevel@tonic-gate  *
820Sstevel@tonic-gate  * Functions:
830Sstevel@tonic-gate  *	reprime clock
840Sstevel@tonic-gate  *	maintain date
850Sstevel@tonic-gate  *	jab the scheduler
860Sstevel@tonic-gate  */
870Sstevel@tonic-gate 
880Sstevel@tonic-gate extern kcondvar_t	fsflush_cv;
890Sstevel@tonic-gate extern sysinfo_t	sysinfo;
900Sstevel@tonic-gate extern vminfo_t	vminfo;
910Sstevel@tonic-gate extern int	idleswtch;	/* flag set while idle in pswtch() */
92*10696SDavid.Hollister@Sun.COM extern hrtime_t volatile devinfo_freeze;
930Sstevel@tonic-gate 
940Sstevel@tonic-gate /*
950Sstevel@tonic-gate  * high-precision avenrun values.  These are needed to make the
960Sstevel@tonic-gate  * regular avenrun values accurate.
970Sstevel@tonic-gate  */
980Sstevel@tonic-gate static uint64_t hp_avenrun[3];
990Sstevel@tonic-gate int	avenrun[3];		/* FSCALED average run queue lengths */
1000Sstevel@tonic-gate time_t	time;	/* time in seconds since 1970 - for compatibility only */
1010Sstevel@tonic-gate 
1020Sstevel@tonic-gate static struct loadavg_s loadavg;
1030Sstevel@tonic-gate /*
1040Sstevel@tonic-gate  * Phase/frequency-lock loop (PLL/FLL) definitions
1050Sstevel@tonic-gate  *
1060Sstevel@tonic-gate  * The following variables are read and set by the ntp_adjtime() system
1070Sstevel@tonic-gate  * call.
1080Sstevel@tonic-gate  *
1090Sstevel@tonic-gate  * time_state shows the state of the system clock, with values defined
1100Sstevel@tonic-gate  * in the timex.h header file.
1110Sstevel@tonic-gate  *
1120Sstevel@tonic-gate  * time_status shows the status of the system clock, with bits defined
1130Sstevel@tonic-gate  * in the timex.h header file.
1140Sstevel@tonic-gate  *
1150Sstevel@tonic-gate  * time_offset is used by the PLL/FLL to adjust the system time in small
1160Sstevel@tonic-gate  * increments.
1170Sstevel@tonic-gate  *
1180Sstevel@tonic-gate  * time_constant determines the bandwidth or "stiffness" of the PLL.
1190Sstevel@tonic-gate  *
1200Sstevel@tonic-gate  * time_tolerance determines maximum frequency error or tolerance of the
1210Sstevel@tonic-gate  * CPU clock oscillator and is a property of the architecture; however,
1220Sstevel@tonic-gate  * in principle it could change as result of the presence of external
1230Sstevel@tonic-gate  * discipline signals, for instance.
1240Sstevel@tonic-gate  *
1250Sstevel@tonic-gate  * time_precision is usually equal to the kernel tick variable; however,
1260Sstevel@tonic-gate  * in cases where a precision clock counter or external clock is
1270Sstevel@tonic-gate  * available, the resolution can be much less than this and depend on
1280Sstevel@tonic-gate  * whether the external clock is working or not.
1290Sstevel@tonic-gate  *
1300Sstevel@tonic-gate  * time_maxerror is initialized by a ntp_adjtime() call and increased by
1310Sstevel@tonic-gate  * the kernel once each second to reflect the maximum error bound
1320Sstevel@tonic-gate  * growth.
1330Sstevel@tonic-gate  *
1340Sstevel@tonic-gate  * time_esterror is set and read by the ntp_adjtime() call, but
1350Sstevel@tonic-gate  * otherwise not used by the kernel.
1360Sstevel@tonic-gate  */
1370Sstevel@tonic-gate int32_t time_state = TIME_OK;	/* clock state */
1380Sstevel@tonic-gate int32_t time_status = STA_UNSYNC;	/* clock status bits */
1390Sstevel@tonic-gate int32_t time_offset = 0;		/* time offset (us) */
1400Sstevel@tonic-gate int32_t time_constant = 0;		/* pll time constant */
1410Sstevel@tonic-gate int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
1420Sstevel@tonic-gate int32_t time_precision = 1;	/* clock precision (us) */
1430Sstevel@tonic-gate int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
1440Sstevel@tonic-gate int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
1450Sstevel@tonic-gate 
1460Sstevel@tonic-gate /*
1470Sstevel@tonic-gate  * The following variables establish the state of the PLL/FLL and the
1480Sstevel@tonic-gate  * residual time and frequency offset of the local clock. The scale
1490Sstevel@tonic-gate  * factors are defined in the timex.h header file.
1500Sstevel@tonic-gate  *
1510Sstevel@tonic-gate  * time_phase and time_freq are the phase increment and the frequency
1520Sstevel@tonic-gate  * increment, respectively, of the kernel time variable.
1530Sstevel@tonic-gate  *
1540Sstevel@tonic-gate  * time_freq is set via ntp_adjtime() from a value stored in a file when
1550Sstevel@tonic-gate  * the synchronization daemon is first started. Its value is retrieved
1560Sstevel@tonic-gate  * via ntp_adjtime() and written to the file about once per hour by the
1570Sstevel@tonic-gate  * daemon.
1580Sstevel@tonic-gate  *
1590Sstevel@tonic-gate  * time_adj is the adjustment added to the value of tick at each timer
1600Sstevel@tonic-gate  * interrupt and is recomputed from time_phase and time_freq at each
1610Sstevel@tonic-gate  * seconds rollover.
1620Sstevel@tonic-gate  *
1630Sstevel@tonic-gate  * time_reftime is the second's portion of the system time at the last
1640Sstevel@tonic-gate  * call to ntp_adjtime(). It is used to adjust the time_freq variable
1650Sstevel@tonic-gate  * and to increase the time_maxerror as the time since last update
1660Sstevel@tonic-gate  * increases.
1670Sstevel@tonic-gate  */
1680Sstevel@tonic-gate int32_t time_phase = 0;		/* phase offset (scaled us) */
1690Sstevel@tonic-gate int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
1700Sstevel@tonic-gate int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
1710Sstevel@tonic-gate int32_t time_reftime = 0;		/* time at last adjustment (s) */
1720Sstevel@tonic-gate 
1730Sstevel@tonic-gate /*
1740Sstevel@tonic-gate  * The scale factors of the following variables are defined in the
1750Sstevel@tonic-gate  * timex.h header file.
1760Sstevel@tonic-gate  *
1770Sstevel@tonic-gate  * pps_time contains the time at each calibration interval, as read by
1780Sstevel@tonic-gate  * microtime(). pps_count counts the seconds of the calibration
1790Sstevel@tonic-gate  * interval, the duration of which is nominally pps_shift in powers of
1800Sstevel@tonic-gate  * two.
1810Sstevel@tonic-gate  *
1820Sstevel@tonic-gate  * pps_offset is the time offset produced by the time median filter
1830Sstevel@tonic-gate  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
1840Sstevel@tonic-gate  * this filter.
1850Sstevel@tonic-gate  *
1860Sstevel@tonic-gate  * pps_freq is the frequency offset produced by the frequency median
1870Sstevel@tonic-gate  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
1880Sstevel@tonic-gate  * by this filter.
1890Sstevel@tonic-gate  *
1900Sstevel@tonic-gate  * pps_usec is latched from a high resolution counter or external clock
1910Sstevel@tonic-gate  * at pps_time. Here we want the hardware counter contents only, not the
1920Sstevel@tonic-gate  * contents plus the time_tv.usec as usual.
1930Sstevel@tonic-gate  *
1940Sstevel@tonic-gate  * pps_valid counts the number of seconds since the last PPS update. It
1950Sstevel@tonic-gate  * is used as a watchdog timer to disable the PPS discipline should the
1960Sstevel@tonic-gate  * PPS signal be lost.
1970Sstevel@tonic-gate  *
1980Sstevel@tonic-gate  * pps_glitch counts the number of seconds since the beginning of an
1990Sstevel@tonic-gate  * offset burst more than tick/2 from current nominal offset. It is used
2000Sstevel@tonic-gate  * mainly to suppress error bursts due to priority conflicts between the
2010Sstevel@tonic-gate  * PPS interrupt and timer interrupt.
2020Sstevel@tonic-gate  *
2030Sstevel@tonic-gate  * pps_intcnt counts the calibration intervals for use in the interval-
2040Sstevel@tonic-gate  * adaptation algorithm. It's just too complicated for words.
2050Sstevel@tonic-gate  */
2060Sstevel@tonic-gate struct timeval pps_time;	/* kernel time at last interval */
2070Sstevel@tonic-gate int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
2080Sstevel@tonic-gate int32_t pps_offset = 0;		/* pps time offset (us) */
2090Sstevel@tonic-gate int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
2100Sstevel@tonic-gate int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
2110Sstevel@tonic-gate int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
2120Sstevel@tonic-gate int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
2130Sstevel@tonic-gate int32_t pps_usec = 0;		/* microsec counter at last interval */
2140Sstevel@tonic-gate int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
2150Sstevel@tonic-gate int32_t pps_glitch = 0;		/* pps signal glitch counter */
2160Sstevel@tonic-gate int32_t pps_count = 0;		/* calibration interval counter (s) */
2170Sstevel@tonic-gate int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
2180Sstevel@tonic-gate int32_t pps_intcnt = 0;		/* intervals at current duration */
2190Sstevel@tonic-gate 
2200Sstevel@tonic-gate /*
2210Sstevel@tonic-gate  * PPS signal quality monitors
2220Sstevel@tonic-gate  *
2230Sstevel@tonic-gate  * pps_jitcnt counts the seconds that have been discarded because the
2240Sstevel@tonic-gate  * jitter measured by the time median filter exceeds the limit MAXTIME
2250Sstevel@tonic-gate  * (100 us).
2260Sstevel@tonic-gate  *
2270Sstevel@tonic-gate  * pps_calcnt counts the frequency calibration intervals, which are
2280Sstevel@tonic-gate  * variable from 4 s to 256 s.
2290Sstevel@tonic-gate  *
2300Sstevel@tonic-gate  * pps_errcnt counts the calibration intervals which have been discarded
2310Sstevel@tonic-gate  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
2320Sstevel@tonic-gate  * calibration interval jitter exceeds two ticks.
2330Sstevel@tonic-gate  *
2340Sstevel@tonic-gate  * pps_stbcnt counts the calibration intervals that have been discarded
2350Sstevel@tonic-gate  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
2360Sstevel@tonic-gate  */
2370Sstevel@tonic-gate int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
2380Sstevel@tonic-gate int32_t pps_calcnt = 0;		/* calibration intervals */
2390Sstevel@tonic-gate int32_t pps_errcnt = 0;		/* calibration errors */
2400Sstevel@tonic-gate int32_t pps_stbcnt = 0;		/* stability limit exceeded */
2410Sstevel@tonic-gate 
2420Sstevel@tonic-gate /* The following variables require no explicit locking */
2430Sstevel@tonic-gate volatile clock_t lbolt;		/* time in Hz since last boot */
2440Sstevel@tonic-gate volatile int64_t lbolt64;	/* lbolt64 won't wrap for 2.9 billion yrs */
2450Sstevel@tonic-gate 
2460Sstevel@tonic-gate kcondvar_t lbolt_cv;
2470Sstevel@tonic-gate int one_sec = 1; /* turned on once every second */
2480Sstevel@tonic-gate static int fsflushcnt;	/* counter for t_fsflushr */
2490Sstevel@tonic-gate int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
2500Sstevel@tonic-gate int	tod_needsync = 0;	/* need to sync tod chip with software time */
2510Sstevel@tonic-gate static int tod_broken = 0;	/* clock chip doesn't work */
2520Sstevel@tonic-gate time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
2530Sstevel@tonic-gate cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
2540Sstevel@tonic-gate cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
2555265Seota cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
2560Sstevel@tonic-gate 
2575788Smv143129 extern void	clock_tick_schedule(int);
2585788Smv143129 
2590Sstevel@tonic-gate static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
2600Sstevel@tonic-gate 
2610Sstevel@tonic-gate /*
2620Sstevel@tonic-gate  * for tod fault detection
2630Sstevel@tonic-gate  */
2640Sstevel@tonic-gate #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
2650Sstevel@tonic-gate #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
2660Sstevel@tonic-gate #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
2670Sstevel@tonic-gate #define	TOD_FILTER_N		4
2680Sstevel@tonic-gate #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
2690Sstevel@tonic-gate static int tod_faulted = TOD_NOFAULT;
2700Sstevel@tonic-gate static int tod_fault_reset_flag = 0;
2710Sstevel@tonic-gate 
2720Sstevel@tonic-gate /* patchable via /etc/system */
2730Sstevel@tonic-gate int tod_validate_enable = 1;
2740Sstevel@tonic-gate 
275*10696SDavid.Hollister@Sun.COM /* Diagnose/Limit messages about delay(9F) called from interrupt context */
276*10696SDavid.Hollister@Sun.COM int			delay_from_interrupt_diagnose = 0;
277*10696SDavid.Hollister@Sun.COM volatile uint32_t	delay_from_interrupt_msg = 20;
278*10696SDavid.Hollister@Sun.COM 
2790Sstevel@tonic-gate /*
280950Ssethg  * On non-SPARC systems, TOD validation must be deferred until gethrtime
281950Ssethg  * returns non-zero values (after mach_clkinit's execution).
282950Ssethg  * On SPARC systems, it must be deferred until after hrtime_base
283950Ssethg  * and hres_last_tick are set (in the first invocation of hres_tick).
284950Ssethg  * Since in both cases the prerequisites occur before the invocation of
285950Ssethg  * tod_get() in clock(), the deferment is lifted there.
286950Ssethg  */
287950Ssethg static boolean_t tod_validate_deferred = B_TRUE;
288950Ssethg 
289950Ssethg /*
2900Sstevel@tonic-gate  * tod_fault_table[] must be aligned with
2910Sstevel@tonic-gate  * enum tod_fault_type in systm.h
2920Sstevel@tonic-gate  */
2930Sstevel@tonic-gate static char *tod_fault_table[] = {
2940Sstevel@tonic-gate 	"Reversed",			/* TOD_REVERSED */
2950Sstevel@tonic-gate 	"Stalled",			/* TOD_STALLED */
2960Sstevel@tonic-gate 	"Jumped",			/* TOD_JUMPED */
2975084Sjohnlev 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
2985084Sjohnlev 	"Is Read-Only"			/* TOD_RDONLY */
2990Sstevel@tonic-gate 	/*
3000Sstevel@tonic-gate 	 * no strings needed for TOD_NOFAULT
3010Sstevel@tonic-gate 	 */
3020Sstevel@tonic-gate };
3030Sstevel@tonic-gate 
3040Sstevel@tonic-gate /*
3050Sstevel@tonic-gate  * test hook for tod broken detection in tod_validate
3060Sstevel@tonic-gate  */
3070Sstevel@tonic-gate int tod_unit_test = 0;
3080Sstevel@tonic-gate time_t tod_test_injector;
3090Sstevel@tonic-gate 
3100Sstevel@tonic-gate #define	CLOCK_ADJ_HIST_SIZE	4
3110Sstevel@tonic-gate 
3120Sstevel@tonic-gate static int	adj_hist_entry;
3130Sstevel@tonic-gate 
3140Sstevel@tonic-gate int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
3150Sstevel@tonic-gate 
3160Sstevel@tonic-gate static void calcloadavg(int, uint64_t *);
3170Sstevel@tonic-gate static int genloadavg(struct loadavg_s *);
3180Sstevel@tonic-gate static void loadavg_update();
3190Sstevel@tonic-gate 
3200Sstevel@tonic-gate void (*cmm_clock_callout)() = NULL;
3213792Sakolb void (*cpucaps_clock_callout)() = NULL;
3220Sstevel@tonic-gate 
3235788Smv143129 extern clock_t clock_tick_proc_max;
3245788Smv143129 
3250Sstevel@tonic-gate static void
3260Sstevel@tonic-gate clock(void)
3270Sstevel@tonic-gate {
3280Sstevel@tonic-gate 	kthread_t	*t;
3295788Smv143129 	uint_t	nrunnable;
3300Sstevel@tonic-gate 	uint_t	w_io;
3310Sstevel@tonic-gate 	cpu_t	*cp;
3320Sstevel@tonic-gate 	cpupart_t *cpupart;
3330Sstevel@tonic-gate 	extern void set_anoninfo();
3340Sstevel@tonic-gate 	extern	void	set_freemem();
3350Sstevel@tonic-gate 	void	(*funcp)();
3360Sstevel@tonic-gate 	int32_t ltemp;
3370Sstevel@tonic-gate 	int64_t lltemp;
3380Sstevel@tonic-gate 	int s;
3390Sstevel@tonic-gate 	int do_lgrp_load;
3400Sstevel@tonic-gate 	int i;
3410Sstevel@tonic-gate 
3420Sstevel@tonic-gate 	if (panicstr)
3430Sstevel@tonic-gate 		return;
3440Sstevel@tonic-gate 
3450Sstevel@tonic-gate 	set_anoninfo();
3460Sstevel@tonic-gate 	/*
3470Sstevel@tonic-gate 	 * Make sure that 'freemem' do not drift too far from the truth
3480Sstevel@tonic-gate 	 */
3490Sstevel@tonic-gate 	set_freemem();
3500Sstevel@tonic-gate 
3510Sstevel@tonic-gate 
3520Sstevel@tonic-gate 	/*
3530Sstevel@tonic-gate 	 * Before the section which is repeated is executed, we do
3540Sstevel@tonic-gate 	 * the time delta processing which occurs every clock tick
3550Sstevel@tonic-gate 	 *
3560Sstevel@tonic-gate 	 * There is additional processing which happens every time
3570Sstevel@tonic-gate 	 * the nanosecond counter rolls over which is described
3580Sstevel@tonic-gate 	 * below - see the section which begins with : if (one_sec)
3590Sstevel@tonic-gate 	 *
3600Sstevel@tonic-gate 	 * This section marks the beginning of the precision-kernel
3610Sstevel@tonic-gate 	 * code fragment.
3620Sstevel@tonic-gate 	 *
3630Sstevel@tonic-gate 	 * First, compute the phase adjustment. If the low-order bits
3640Sstevel@tonic-gate 	 * (time_phase) of the update overflow, bump the higher order
3650Sstevel@tonic-gate 	 * bits (time_update).
3660Sstevel@tonic-gate 	 */
3670Sstevel@tonic-gate 	time_phase += time_adj;
3680Sstevel@tonic-gate 	if (time_phase <= -FINEUSEC) {
3690Sstevel@tonic-gate 		ltemp = -time_phase / SCALE_PHASE;
3700Sstevel@tonic-gate 		time_phase += ltemp * SCALE_PHASE;
3710Sstevel@tonic-gate 		s = hr_clock_lock();
3720Sstevel@tonic-gate 		timedelta -= ltemp * (NANOSEC/MICROSEC);
3730Sstevel@tonic-gate 		hr_clock_unlock(s);
3740Sstevel@tonic-gate 	} else if (time_phase >= FINEUSEC) {
3750Sstevel@tonic-gate 		ltemp = time_phase / SCALE_PHASE;
3760Sstevel@tonic-gate 		time_phase -= ltemp * SCALE_PHASE;
3770Sstevel@tonic-gate 		s = hr_clock_lock();
3780Sstevel@tonic-gate 		timedelta += ltemp * (NANOSEC/MICROSEC);
3790Sstevel@tonic-gate 		hr_clock_unlock(s);
3800Sstevel@tonic-gate 	}
3810Sstevel@tonic-gate 
3820Sstevel@tonic-gate 	/*
3830Sstevel@tonic-gate 	 * End of precision-kernel code fragment which is processed
3840Sstevel@tonic-gate 	 * every timer interrupt.
3850Sstevel@tonic-gate 	 *
3860Sstevel@tonic-gate 	 * Continue with the interrupt processing as scheduled.
3870Sstevel@tonic-gate 	 */
3880Sstevel@tonic-gate 	/*
3890Sstevel@tonic-gate 	 * Count the number of runnable threads and the number waiting
3900Sstevel@tonic-gate 	 * for some form of I/O to complete -- gets added to
3910Sstevel@tonic-gate 	 * sysinfo.waiting.  To know the state of the system, must add
3920Sstevel@tonic-gate 	 * wait counts from all CPUs.  Also add up the per-partition
3930Sstevel@tonic-gate 	 * statistics.
3940Sstevel@tonic-gate 	 */
3950Sstevel@tonic-gate 	w_io = 0;
3960Sstevel@tonic-gate 	nrunnable = 0;
3970Sstevel@tonic-gate 
3980Sstevel@tonic-gate 	/*
3990Sstevel@tonic-gate 	 * keep track of when to update lgrp/part loads
4000Sstevel@tonic-gate 	 */
4010Sstevel@tonic-gate 
4020Sstevel@tonic-gate 	do_lgrp_load = 0;
4030Sstevel@tonic-gate 	if (lgrp_ticks++ >= hz / 10) {
4040Sstevel@tonic-gate 		lgrp_ticks = 0;
4050Sstevel@tonic-gate 		do_lgrp_load = 1;
4060Sstevel@tonic-gate 	}
4070Sstevel@tonic-gate 
4080Sstevel@tonic-gate 	if (one_sec)
4090Sstevel@tonic-gate 		loadavg_update();
4100Sstevel@tonic-gate 
4110Sstevel@tonic-gate 	/*
4120Sstevel@tonic-gate 	 * First count the threads waiting on kpreempt queues in each
4130Sstevel@tonic-gate 	 * CPU partition.
4140Sstevel@tonic-gate 	 */
4150Sstevel@tonic-gate 
4160Sstevel@tonic-gate 	cpupart = cp_list_head;
4170Sstevel@tonic-gate 	do {
4180Sstevel@tonic-gate 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
4190Sstevel@tonic-gate 
4200Sstevel@tonic-gate 		cpupart->cp_updates++;
4210Sstevel@tonic-gate 		nrunnable += cpupart_nrunnable;
4220Sstevel@tonic-gate 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
4230Sstevel@tonic-gate 		if (one_sec) {
4240Sstevel@tonic-gate 			cpupart->cp_nrunning = 0;
4250Sstevel@tonic-gate 			cpupart->cp_nrunnable = cpupart_nrunnable;
4260Sstevel@tonic-gate 		}
4270Sstevel@tonic-gate 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
4280Sstevel@tonic-gate 
4290Sstevel@tonic-gate 
4300Sstevel@tonic-gate 	/* Now count the per-CPU statistics. */
4310Sstevel@tonic-gate 	cp = cpu_list;
4320Sstevel@tonic-gate 	do {
4330Sstevel@tonic-gate 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
4340Sstevel@tonic-gate 
4350Sstevel@tonic-gate 		nrunnable += cpu_nrunnable;
4360Sstevel@tonic-gate 		cpupart = cp->cpu_part;
4370Sstevel@tonic-gate 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
4383446Smrj 		if (one_sec) {
4390Sstevel@tonic-gate 			cpupart->cp_nrunnable += cpu_nrunnable;
4403446Smrj 			/*
4415788Smv143129 			 * Update user, system, and idle cpu times.
4425788Smv143129 			 */
4435788Smv143129 			cpupart->cp_nrunning++;
4445788Smv143129 			/*
4453446Smrj 			 * w_io is used to update sysinfo.waiting during
4463446Smrj 			 * one_second processing below.  Only gather w_io
4473446Smrj 			 * information when we walk the list of cpus if we're
4483446Smrj 			 * going to perform one_second processing.
4493446Smrj 			 */
4503446Smrj 			w_io += CPU_STATS(cp, sys.iowait);
4515076Smishra 		}
4523446Smrj 
4535076Smishra 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
4545076Smishra 			int i, load, change;
4555076Smishra 			hrtime_t intracct, intrused;
4565076Smishra 			const hrtime_t maxnsec = 1000000000;
4575076Smishra 			const int precision = 100;
4585076Smishra 
4595076Smishra 			/*
4605076Smishra 			 * Estimate interrupt load on this cpu each second.
4615076Smishra 			 * Computes cpu_intrload as %utilization (0-99).
4625076Smishra 			 */
4635076Smishra 
4645076Smishra 			/* add up interrupt time from all micro states */
4655076Smishra 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
4665076Smishra 				intracct += cp->cpu_intracct[i];
4675076Smishra 			scalehrtime(&intracct);
4685076Smishra 
4695076Smishra 			/* compute nsec used in the past second */
4705076Smishra 			intrused = intracct - cp->cpu_intrlast;
4715076Smishra 			cp->cpu_intrlast = intracct;
4725076Smishra 
4735076Smishra 			/* limit the value for safety (and the first pass) */
4745076Smishra 			if (intrused >= maxnsec)
4755076Smishra 				intrused = maxnsec - 1;
4765076Smishra 
4775076Smishra 			/* calculate %time in interrupt */
4785076Smishra 			load = (precision * intrused) / maxnsec;
4795076Smishra 			ASSERT(load >= 0 && load < precision);
4805076Smishra 			change = cp->cpu_intrload - load;
4815076Smishra 
4825076Smishra 			/* jump to new max, or decay the old max */
4835076Smishra 			if (change < 0)
4845076Smishra 				cp->cpu_intrload = load;
4855076Smishra 			else if (change > 0)
4865076Smishra 				cp->cpu_intrload -= (change + 3) / 4;
4875076Smishra 
4885076Smishra 			DTRACE_PROBE3(cpu_intrload,
4895076Smishra 			    cpu_t *, cp,
4905076Smishra 			    hrtime_t, intracct,
4915076Smishra 			    hrtime_t, intrused);
4923446Smrj 		}
4935076Smishra 
4940Sstevel@tonic-gate 		if (do_lgrp_load &&
4950Sstevel@tonic-gate 		    (cp->cpu_flags & CPU_EXISTS)) {
4960Sstevel@tonic-gate 			/*
4970Sstevel@tonic-gate 			 * When updating the lgroup's load average,
4980Sstevel@tonic-gate 			 * account for the thread running on the CPU.
4990Sstevel@tonic-gate 			 * If the CPU is the current one, then we need
5000Sstevel@tonic-gate 			 * to account for the underlying thread which
5010Sstevel@tonic-gate 			 * got the clock interrupt not the thread that is
5020Sstevel@tonic-gate 			 * handling the interrupt and caculating the load
5030Sstevel@tonic-gate 			 * average
5040Sstevel@tonic-gate 			 */
5050Sstevel@tonic-gate 			t = cp->cpu_thread;
5060Sstevel@tonic-gate 			if (CPU == cp)
5070Sstevel@tonic-gate 				t = t->t_intr;
5080Sstevel@tonic-gate 
5090Sstevel@tonic-gate 			/*
5100Sstevel@tonic-gate 			 * Account for the load average for this thread if
5110Sstevel@tonic-gate 			 * it isn't the idle thread or it is on the interrupt
5120Sstevel@tonic-gate 			 * stack and not the current CPU handling the clock
5130Sstevel@tonic-gate 			 * interrupt
5140Sstevel@tonic-gate 			 */
5150Sstevel@tonic-gate 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
5160Sstevel@tonic-gate 			    CPU_ON_INTR(cp))) {
5170Sstevel@tonic-gate 				if (t->t_lpl == cp->cpu_lpl) {
5180Sstevel@tonic-gate 					/* local thread */
5190Sstevel@tonic-gate 					cpu_nrunnable++;
5200Sstevel@tonic-gate 				} else {
5210Sstevel@tonic-gate 					/*
5220Sstevel@tonic-gate 					 * This is a remote thread, charge it
5230Sstevel@tonic-gate 					 * against its home lgroup.  Note that
5240Sstevel@tonic-gate 					 * we notice that a thread is remote
5250Sstevel@tonic-gate 					 * only if it's currently executing.
5260Sstevel@tonic-gate 					 * This is a reasonable approximation,
5270Sstevel@tonic-gate 					 * since queued remote threads are rare.
5280Sstevel@tonic-gate 					 * Note also that if we didn't charge
5290Sstevel@tonic-gate 					 * it to its home lgroup, remote
5300Sstevel@tonic-gate 					 * execution would often make a system
5310Sstevel@tonic-gate 					 * appear balanced even though it was
5320Sstevel@tonic-gate 					 * not, and thread placement/migration
5330Sstevel@tonic-gate 					 * would often not be done correctly.
5340Sstevel@tonic-gate 					 */
5350Sstevel@tonic-gate 					lgrp_loadavg(t->t_lpl,
5360Sstevel@tonic-gate 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
5370Sstevel@tonic-gate 				}
5380Sstevel@tonic-gate 			}
5390Sstevel@tonic-gate 			lgrp_loadavg(cp->cpu_lpl,
5400Sstevel@tonic-gate 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
5410Sstevel@tonic-gate 		}
5420Sstevel@tonic-gate 	} while ((cp = cp->cpu_next) != cpu_list);
5430Sstevel@tonic-gate 
5445788Smv143129 	clock_tick_schedule(one_sec);
5450Sstevel@tonic-gate 
5460Sstevel@tonic-gate 	/*
5470Sstevel@tonic-gate 	 * bump time in ticks
5480Sstevel@tonic-gate 	 *
5490Sstevel@tonic-gate 	 * We rely on there being only one clock thread and hence
5500Sstevel@tonic-gate 	 * don't need a lock to protect lbolt.
5510Sstevel@tonic-gate 	 */
5520Sstevel@tonic-gate 	lbolt++;
5530Sstevel@tonic-gate 	atomic_add_64((uint64_t *)&lbolt64, (int64_t)1);
5540Sstevel@tonic-gate 
5550Sstevel@tonic-gate 	/*
5560Sstevel@tonic-gate 	 * Check for a callout that needs be called from the clock
5570Sstevel@tonic-gate 	 * thread to support the membership protocol in a clustered
5580Sstevel@tonic-gate 	 * system.  Copy the function pointer so that we can reset
5590Sstevel@tonic-gate 	 * this to NULL if needed.
5600Sstevel@tonic-gate 	 */
5610Sstevel@tonic-gate 	if ((funcp = cmm_clock_callout) != NULL)
5620Sstevel@tonic-gate 		(*funcp)();
5630Sstevel@tonic-gate 
5643792Sakolb 	if ((funcp = cpucaps_clock_callout) != NULL)
5653792Sakolb 		(*funcp)();
5663792Sakolb 
5670Sstevel@tonic-gate 	/*
5680Sstevel@tonic-gate 	 * Wakeup the cageout thread waiters once per second.
5690Sstevel@tonic-gate 	 */
5700Sstevel@tonic-gate 	if (one_sec)
5710Sstevel@tonic-gate 		kcage_tick();
5720Sstevel@tonic-gate 
5730Sstevel@tonic-gate 	if (one_sec) {
5740Sstevel@tonic-gate 
5750Sstevel@tonic-gate 		int drift, absdrift;
5760Sstevel@tonic-gate 		timestruc_t tod;
5770Sstevel@tonic-gate 		int s;
5780Sstevel@tonic-gate 
5790Sstevel@tonic-gate 		/*
5800Sstevel@tonic-gate 		 * Beginning of precision-kernel code fragment executed
5810Sstevel@tonic-gate 		 * every second.
5820Sstevel@tonic-gate 		 *
5830Sstevel@tonic-gate 		 * On rollover of the second the phase adjustment to be
5840Sstevel@tonic-gate 		 * used for the next second is calculated.  Also, the
5850Sstevel@tonic-gate 		 * maximum error is increased by the tolerance.  If the
5860Sstevel@tonic-gate 		 * PPS frequency discipline code is present, the phase is
5870Sstevel@tonic-gate 		 * increased to compensate for the CPU clock oscillator
5880Sstevel@tonic-gate 		 * frequency error.
5890Sstevel@tonic-gate 		 *
5900Sstevel@tonic-gate 		 * On a 32-bit machine and given parameters in the timex.h
5910Sstevel@tonic-gate 		 * header file, the maximum phase adjustment is +-512 ms
5920Sstevel@tonic-gate 		 * and maximum frequency offset is (a tad less than)
5930Sstevel@tonic-gate 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
5940Sstevel@tonic-gate 		 */
5950Sstevel@tonic-gate 		time_maxerror += time_tolerance / SCALE_USEC;
5960Sstevel@tonic-gate 
5970Sstevel@tonic-gate 		/*
5980Sstevel@tonic-gate 		 * Leap second processing. If in leap-insert state at
5990Sstevel@tonic-gate 		 * the end of the day, the system clock is set back one
6000Sstevel@tonic-gate 		 * second; if in leap-delete state, the system clock is
6010Sstevel@tonic-gate 		 * set ahead one second. The microtime() routine or
6020Sstevel@tonic-gate 		 * external clock driver will insure that reported time
6030Sstevel@tonic-gate 		 * is always monotonic. The ugly divides should be
6040Sstevel@tonic-gate 		 * replaced.
6050Sstevel@tonic-gate 		 */
6060Sstevel@tonic-gate 		switch (time_state) {
6070Sstevel@tonic-gate 
6080Sstevel@tonic-gate 		case TIME_OK:
6090Sstevel@tonic-gate 			if (time_status & STA_INS)
6100Sstevel@tonic-gate 				time_state = TIME_INS;
6110Sstevel@tonic-gate 			else if (time_status & STA_DEL)
6120Sstevel@tonic-gate 				time_state = TIME_DEL;
6130Sstevel@tonic-gate 			break;
6140Sstevel@tonic-gate 
6150Sstevel@tonic-gate 		case TIME_INS:
6160Sstevel@tonic-gate 			if (hrestime.tv_sec % 86400 == 0) {
6170Sstevel@tonic-gate 				s = hr_clock_lock();
6180Sstevel@tonic-gate 				hrestime.tv_sec--;
6190Sstevel@tonic-gate 				hr_clock_unlock(s);
6200Sstevel@tonic-gate 				time_state = TIME_OOP;
6210Sstevel@tonic-gate 			}
6220Sstevel@tonic-gate 			break;
6230Sstevel@tonic-gate 
6240Sstevel@tonic-gate 		case TIME_DEL:
6250Sstevel@tonic-gate 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
6260Sstevel@tonic-gate 				s = hr_clock_lock();
6270Sstevel@tonic-gate 				hrestime.tv_sec++;
6280Sstevel@tonic-gate 				hr_clock_unlock(s);
6290Sstevel@tonic-gate 				time_state = TIME_WAIT;
6300Sstevel@tonic-gate 			}
6310Sstevel@tonic-gate 			break;
6320Sstevel@tonic-gate 
6330Sstevel@tonic-gate 		case TIME_OOP:
6340Sstevel@tonic-gate 			time_state = TIME_WAIT;
6350Sstevel@tonic-gate 			break;
6360Sstevel@tonic-gate 
6370Sstevel@tonic-gate 		case TIME_WAIT:
6380Sstevel@tonic-gate 			if (!(time_status & (STA_INS | STA_DEL)))
6390Sstevel@tonic-gate 				time_state = TIME_OK;
6400Sstevel@tonic-gate 		default:
6410Sstevel@tonic-gate 			break;
6420Sstevel@tonic-gate 		}
6430Sstevel@tonic-gate 
6440Sstevel@tonic-gate 		/*
6450Sstevel@tonic-gate 		 * Compute the phase adjustment for the next second. In
6460Sstevel@tonic-gate 		 * PLL mode, the offset is reduced by a fixed factor
6470Sstevel@tonic-gate 		 * times the time constant. In FLL mode the offset is
6480Sstevel@tonic-gate 		 * used directly. In either mode, the maximum phase
6490Sstevel@tonic-gate 		 * adjustment for each second is clamped so as to spread
6500Sstevel@tonic-gate 		 * the adjustment over not more than the number of
6510Sstevel@tonic-gate 		 * seconds between updates.
6520Sstevel@tonic-gate 		 */
6530Sstevel@tonic-gate 		if (time_offset == 0)
6540Sstevel@tonic-gate 			time_adj = 0;
6550Sstevel@tonic-gate 		else if (time_offset < 0) {
6560Sstevel@tonic-gate 			lltemp = -time_offset;
6570Sstevel@tonic-gate 			if (!(time_status & STA_FLL)) {
6580Sstevel@tonic-gate 				if ((1 << time_constant) >= SCALE_KG)
6590Sstevel@tonic-gate 					lltemp *= (1 << time_constant) /
6600Sstevel@tonic-gate 					    SCALE_KG;
6610Sstevel@tonic-gate 				else
6620Sstevel@tonic-gate 					lltemp = (lltemp / SCALE_KG) >>
6630Sstevel@tonic-gate 					    time_constant;
6640Sstevel@tonic-gate 			}
6650Sstevel@tonic-gate 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
6660Sstevel@tonic-gate 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
6670Sstevel@tonic-gate 			time_offset += lltemp;
6680Sstevel@tonic-gate 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
6690Sstevel@tonic-gate 		} else {
6700Sstevel@tonic-gate 			lltemp = time_offset;
6710Sstevel@tonic-gate 			if (!(time_status & STA_FLL)) {
6720Sstevel@tonic-gate 				if ((1 << time_constant) >= SCALE_KG)
6730Sstevel@tonic-gate 					lltemp *= (1 << time_constant) /
6740Sstevel@tonic-gate 					    SCALE_KG;
6750Sstevel@tonic-gate 				else
6760Sstevel@tonic-gate 					lltemp = (lltemp / SCALE_KG) >>
6770Sstevel@tonic-gate 					    time_constant;
6780Sstevel@tonic-gate 			}
6790Sstevel@tonic-gate 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
6800Sstevel@tonic-gate 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
6810Sstevel@tonic-gate 			time_offset -= lltemp;
6820Sstevel@tonic-gate 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
6830Sstevel@tonic-gate 		}
6840Sstevel@tonic-gate 
6850Sstevel@tonic-gate 		/*
6860Sstevel@tonic-gate 		 * Compute the frequency estimate and additional phase
6870Sstevel@tonic-gate 		 * adjustment due to frequency error for the next
6880Sstevel@tonic-gate 		 * second. When the PPS signal is engaged, gnaw on the
6890Sstevel@tonic-gate 		 * watchdog counter and update the frequency computed by
6900Sstevel@tonic-gate 		 * the pll and the PPS signal.
6910Sstevel@tonic-gate 		 */
6920Sstevel@tonic-gate 		pps_valid++;
6930Sstevel@tonic-gate 		if (pps_valid == PPS_VALID) {
6940Sstevel@tonic-gate 			pps_jitter = MAXTIME;
6950Sstevel@tonic-gate 			pps_stabil = MAXFREQ;
6960Sstevel@tonic-gate 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
6970Sstevel@tonic-gate 			    STA_PPSWANDER | STA_PPSERROR);
6980Sstevel@tonic-gate 		}
6990Sstevel@tonic-gate 		lltemp = time_freq + pps_freq;
7000Sstevel@tonic-gate 
7010Sstevel@tonic-gate 		if (lltemp)
7020Sstevel@tonic-gate 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
7030Sstevel@tonic-gate 
7040Sstevel@tonic-gate 		/*
7050Sstevel@tonic-gate 		 * End of precision kernel-code fragment
7060Sstevel@tonic-gate 		 *
7070Sstevel@tonic-gate 		 * The section below should be modified if we are planning
7080Sstevel@tonic-gate 		 * to use NTP for synchronization.
7090Sstevel@tonic-gate 		 *
7100Sstevel@tonic-gate 		 * Note: the clock synchronization code now assumes
7110Sstevel@tonic-gate 		 * the following:
7120Sstevel@tonic-gate 		 *   - if dosynctodr is 1, then compute the drift between
7130Sstevel@tonic-gate 		 *	the tod chip and software time and adjust one or
7140Sstevel@tonic-gate 		 *	the other depending on the circumstances
7150Sstevel@tonic-gate 		 *
7160Sstevel@tonic-gate 		 *   - if dosynctodr is 0, then the tod chip is independent
7170Sstevel@tonic-gate 		 *	of the software clock and should not be adjusted,
7180Sstevel@tonic-gate 		 *	but allowed to free run.  this allows NTP to sync.
7190Sstevel@tonic-gate 		 *	hrestime without any interference from the tod chip.
7200Sstevel@tonic-gate 		 */
7210Sstevel@tonic-gate 
722950Ssethg 		tod_validate_deferred = B_FALSE;
7230Sstevel@tonic-gate 		mutex_enter(&tod_lock);
7240Sstevel@tonic-gate 		tod = tod_get();
7250Sstevel@tonic-gate 		drift = tod.tv_sec - hrestime.tv_sec;
7260Sstevel@tonic-gate 		absdrift = (drift >= 0) ? drift : -drift;
7270Sstevel@tonic-gate 		if (tod_needsync || absdrift > 1) {
7280Sstevel@tonic-gate 			int s;
7290Sstevel@tonic-gate 			if (absdrift > 2) {
7300Sstevel@tonic-gate 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
7310Sstevel@tonic-gate 					s = hr_clock_lock();
7320Sstevel@tonic-gate 					hrestime = tod;
7330Sstevel@tonic-gate 					membar_enter();	/* hrestime visible */
7340Sstevel@tonic-gate 					timedelta = 0;
7354123Sdm120769 					timechanged++;
7360Sstevel@tonic-gate 					tod_needsync = 0;
7370Sstevel@tonic-gate 					hr_clock_unlock(s);
7388048SMadhavan.Venkataraman@Sun.COM 					callout_hrestime();
7398048SMadhavan.Venkataraman@Sun.COM 
7400Sstevel@tonic-gate 				}
7410Sstevel@tonic-gate 			} else {
7420Sstevel@tonic-gate 				if (tod_needsync || !dosynctodr) {
7430Sstevel@tonic-gate 					gethrestime(&tod);
7440Sstevel@tonic-gate 					tod_set(tod);
7450Sstevel@tonic-gate 					s = hr_clock_lock();
7460Sstevel@tonic-gate 					if (timedelta == 0)
7470Sstevel@tonic-gate 						tod_needsync = 0;
7480Sstevel@tonic-gate 					hr_clock_unlock(s);
7490Sstevel@tonic-gate 				} else {
7500Sstevel@tonic-gate 					/*
7510Sstevel@tonic-gate 					 * If the drift is 2 seconds on the
7520Sstevel@tonic-gate 					 * money, then the TOD is adjusting
7530Sstevel@tonic-gate 					 * the clock;  record that.
7540Sstevel@tonic-gate 					 */
7550Sstevel@tonic-gate 					clock_adj_hist[adj_hist_entry++ %
7560Sstevel@tonic-gate 					    CLOCK_ADJ_HIST_SIZE] = lbolt64;
7570Sstevel@tonic-gate 					s = hr_clock_lock();
7580Sstevel@tonic-gate 					timedelta = (int64_t)drift*NANOSEC;
7590Sstevel@tonic-gate 					hr_clock_unlock(s);
7600Sstevel@tonic-gate 				}
7610Sstevel@tonic-gate 			}
7620Sstevel@tonic-gate 		}
7630Sstevel@tonic-gate 		one_sec = 0;
7640Sstevel@tonic-gate 		time = gethrestime_sec();  /* for crusty old kmem readers */
7650Sstevel@tonic-gate 		mutex_exit(&tod_lock);
7660Sstevel@tonic-gate 
7670Sstevel@tonic-gate 		/*
7680Sstevel@tonic-gate 		 * Some drivers still depend on this... XXX
7690Sstevel@tonic-gate 		 */
7700Sstevel@tonic-gate 		cv_broadcast(&lbolt_cv);
7710Sstevel@tonic-gate 
7720Sstevel@tonic-gate 		sysinfo.updates++;
7730Sstevel@tonic-gate 		vminfo.freemem += freemem;
7740Sstevel@tonic-gate 		{
7750Sstevel@tonic-gate 			pgcnt_t maxswap, resv, free;
7760Sstevel@tonic-gate 			pgcnt_t avail =
7770Sstevel@tonic-gate 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
7780Sstevel@tonic-gate 
7795076Smishra 			maxswap = k_anoninfo.ani_mem_resv +
7805076Smishra 			    k_anoninfo.ani_max +avail;
7810Sstevel@tonic-gate 			free = k_anoninfo.ani_free + avail;
7820Sstevel@tonic-gate 			resv = k_anoninfo.ani_phys_resv +
7830Sstevel@tonic-gate 			    k_anoninfo.ani_mem_resv;
7840Sstevel@tonic-gate 
7850Sstevel@tonic-gate 			vminfo.swap_resv += resv;
7860Sstevel@tonic-gate 			/* number of reserved and allocated pages */
7870Sstevel@tonic-gate #ifdef	DEBUG
7880Sstevel@tonic-gate 			if (maxswap < free)
7890Sstevel@tonic-gate 				cmn_err(CE_WARN, "clock: maxswap < free");
7900Sstevel@tonic-gate 			if (maxswap < resv)
7910Sstevel@tonic-gate 				cmn_err(CE_WARN, "clock: maxswap < resv");
7920Sstevel@tonic-gate #endif
7930Sstevel@tonic-gate 			vminfo.swap_alloc += maxswap - free;
7940Sstevel@tonic-gate 			vminfo.swap_avail += maxswap - resv;
7950Sstevel@tonic-gate 			vminfo.swap_free += free;
7960Sstevel@tonic-gate 		}
7970Sstevel@tonic-gate 		if (nrunnable) {
7980Sstevel@tonic-gate 			sysinfo.runque += nrunnable;
7990Sstevel@tonic-gate 			sysinfo.runocc++;
8000Sstevel@tonic-gate 		}
8010Sstevel@tonic-gate 		if (nswapped) {
8020Sstevel@tonic-gate 			sysinfo.swpque += nswapped;
8030Sstevel@tonic-gate 			sysinfo.swpocc++;
8040Sstevel@tonic-gate 		}
8050Sstevel@tonic-gate 		sysinfo.waiting += w_io;
8060Sstevel@tonic-gate 
8070Sstevel@tonic-gate 		/*
8080Sstevel@tonic-gate 		 * Wake up fsflush to write out DELWRI
8090Sstevel@tonic-gate 		 * buffers, dirty pages and other cached
8100Sstevel@tonic-gate 		 * administrative data, e.g. inodes.
8110Sstevel@tonic-gate 		 */
8120Sstevel@tonic-gate 		if (--fsflushcnt <= 0) {
8130Sstevel@tonic-gate 			fsflushcnt = tune.t_fsflushr;
8140Sstevel@tonic-gate 			cv_signal(&fsflush_cv);
8150Sstevel@tonic-gate 		}
8160Sstevel@tonic-gate 
8170Sstevel@tonic-gate 		vmmeter();
8180Sstevel@tonic-gate 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
8190Sstevel@tonic-gate 		for (i = 0; i < 3; i++)
8200Sstevel@tonic-gate 			/*
8210Sstevel@tonic-gate 			 * At the moment avenrun[] can only hold 31
8220Sstevel@tonic-gate 			 * bits of load average as it is a signed
8230Sstevel@tonic-gate 			 * int in the API. We need to ensure that
8240Sstevel@tonic-gate 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
8250Sstevel@tonic-gate 			 * too large. If it is, we put the largest value
8260Sstevel@tonic-gate 			 * that we can use into avenrun[i]. This is
8270Sstevel@tonic-gate 			 * kludgey, but about all we can do until we
8280Sstevel@tonic-gate 			 * avenrun[] is declared as an array of uint64[]
8290Sstevel@tonic-gate 			 */
8300Sstevel@tonic-gate 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
8310Sstevel@tonic-gate 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
8320Sstevel@tonic-gate 				    (16 - FSHIFT));
8330Sstevel@tonic-gate 			else
8340Sstevel@tonic-gate 				avenrun[i] = 0x7fffffff;
8350Sstevel@tonic-gate 
8360Sstevel@tonic-gate 		cpupart = cp_list_head;
8370Sstevel@tonic-gate 		do {
8380Sstevel@tonic-gate 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
8390Sstevel@tonic-gate 			    cpupart->cp_hp_avenrun);
8400Sstevel@tonic-gate 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
8410Sstevel@tonic-gate 
8420Sstevel@tonic-gate 		/*
8430Sstevel@tonic-gate 		 * Wake up the swapper thread if necessary.
8440Sstevel@tonic-gate 		 */
8450Sstevel@tonic-gate 		if (runin ||
8460Sstevel@tonic-gate 		    (runout && (avefree < desfree || wake_sched_sec))) {
8470Sstevel@tonic-gate 			t = &t0;
8480Sstevel@tonic-gate 			thread_lock(t);
8490Sstevel@tonic-gate 			if (t->t_state == TS_STOPPED) {
8500Sstevel@tonic-gate 				runin = runout = 0;
8510Sstevel@tonic-gate 				wake_sched_sec = 0;
8520Sstevel@tonic-gate 				t->t_whystop = 0;
8530Sstevel@tonic-gate 				t->t_whatstop = 0;
8540Sstevel@tonic-gate 				t->t_schedflag &= ~TS_ALLSTART;
8550Sstevel@tonic-gate 				THREAD_TRANSITION(t);
8560Sstevel@tonic-gate 				setfrontdq(t);
8570Sstevel@tonic-gate 			}
8580Sstevel@tonic-gate 			thread_unlock(t);
8590Sstevel@tonic-gate 		}
8600Sstevel@tonic-gate 	}
8610Sstevel@tonic-gate 
8620Sstevel@tonic-gate 	/*
8630Sstevel@tonic-gate 	 * Wake up the swapper if any high priority swapped-out threads
8640Sstevel@tonic-gate 	 * became runable during the last tick.
8650Sstevel@tonic-gate 	 */
8660Sstevel@tonic-gate 	if (wake_sched) {
8670Sstevel@tonic-gate 		t = &t0;
8680Sstevel@tonic-gate 		thread_lock(t);
8690Sstevel@tonic-gate 		if (t->t_state == TS_STOPPED) {
8700Sstevel@tonic-gate 			runin = runout = 0;
8710Sstevel@tonic-gate 			wake_sched = 0;
8720Sstevel@tonic-gate 			t->t_whystop = 0;
8730Sstevel@tonic-gate 			t->t_whatstop = 0;
8740Sstevel@tonic-gate 			t->t_schedflag &= ~TS_ALLSTART;
8750Sstevel@tonic-gate 			THREAD_TRANSITION(t);
8760Sstevel@tonic-gate 			setfrontdq(t);
8770Sstevel@tonic-gate 		}
8780Sstevel@tonic-gate 		thread_unlock(t);
8790Sstevel@tonic-gate 	}
8800Sstevel@tonic-gate }
8810Sstevel@tonic-gate 
8820Sstevel@tonic-gate void
8830Sstevel@tonic-gate clock_init(void)
8840Sstevel@tonic-gate {
8850Sstevel@tonic-gate 	cyc_handler_t hdlr;
8860Sstevel@tonic-gate 	cyc_time_t when;
8870Sstevel@tonic-gate 
8880Sstevel@tonic-gate 	hdlr.cyh_func = (cyc_func_t)clock;
8890Sstevel@tonic-gate 	hdlr.cyh_level = CY_LOCK_LEVEL;
8900Sstevel@tonic-gate 	hdlr.cyh_arg = NULL;
8910Sstevel@tonic-gate 
8920Sstevel@tonic-gate 	when.cyt_when = 0;
8930Sstevel@tonic-gate 	when.cyt_interval = nsec_per_tick;
8940Sstevel@tonic-gate 
8950Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
8960Sstevel@tonic-gate 	clock_cyclic = cyclic_add(&hdlr, &when);
8970Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
8985107Seota 
8995107Seota 	/*
9005107Seota 	 * cyclic_timer is dedicated to the ddi interface, which
9015107Seota 	 * uses the same clock resolution as the system one.
9025107Seota 	 */
9035107Seota 	hdlr.cyh_func = (cyc_func_t)cyclic_timer;
9045107Seota 	hdlr.cyh_level = CY_LOCK_LEVEL;
9055107Seota 	hdlr.cyh_arg = NULL;
9065107Seota 
9075107Seota 	mutex_enter(&cpu_lock);
9085265Seota 	ddi_timer_cyclic = cyclic_add(&hdlr, &when);
9095107Seota 	mutex_exit(&cpu_lock);
9100Sstevel@tonic-gate }
9110Sstevel@tonic-gate 
9120Sstevel@tonic-gate /*
9130Sstevel@tonic-gate  * Called before calcloadavg to get 10-sec moving loadavg together
9140Sstevel@tonic-gate  */
9150Sstevel@tonic-gate 
9160Sstevel@tonic-gate static int
9170Sstevel@tonic-gate genloadavg(struct loadavg_s *avgs)
9180Sstevel@tonic-gate {
9190Sstevel@tonic-gate 	int avg;
9200Sstevel@tonic-gate 	int spos; /* starting position */
9210Sstevel@tonic-gate 	int cpos; /* moving current position */
9220Sstevel@tonic-gate 	int i;
9230Sstevel@tonic-gate 	int slen;
9240Sstevel@tonic-gate 	hrtime_t hr_avg;
9250Sstevel@tonic-gate 
9260Sstevel@tonic-gate 	/* 10-second snapshot, calculate first positon */
9270Sstevel@tonic-gate 	if (avgs->lg_len == 0) {
9280Sstevel@tonic-gate 		return (0);
9290Sstevel@tonic-gate 	}
9300Sstevel@tonic-gate 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
9310Sstevel@tonic-gate 
9320Sstevel@tonic-gate 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
9330Sstevel@tonic-gate 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
9340Sstevel@tonic-gate 	for (i = hr_avg = 0; i < slen; i++) {
9350Sstevel@tonic-gate 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
9360Sstevel@tonic-gate 		hr_avg += avgs->lg_loads[cpos];
9370Sstevel@tonic-gate 	}
9380Sstevel@tonic-gate 
9390Sstevel@tonic-gate 	hr_avg = hr_avg / slen;
9400Sstevel@tonic-gate 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
9410Sstevel@tonic-gate 
9420Sstevel@tonic-gate 	return (avg);
9430Sstevel@tonic-gate }
9440Sstevel@tonic-gate 
9450Sstevel@tonic-gate /*
9460Sstevel@tonic-gate  * Run every second from clock () to update the loadavg count available to the
9470Sstevel@tonic-gate  * system and cpu-partitions.
9480Sstevel@tonic-gate  *
9490Sstevel@tonic-gate  * This works by sampling the previous usr, sys, wait time elapsed,
9500Sstevel@tonic-gate  * computing a delta, and adding that delta to the elapsed usr, sys,
9510Sstevel@tonic-gate  * wait increase.
9520Sstevel@tonic-gate  */
9530Sstevel@tonic-gate 
9540Sstevel@tonic-gate static void
9550Sstevel@tonic-gate loadavg_update()
9560Sstevel@tonic-gate {
9570Sstevel@tonic-gate 	cpu_t *cp;
9580Sstevel@tonic-gate 	cpupart_t *cpupart;
9590Sstevel@tonic-gate 	hrtime_t cpu_total;
9600Sstevel@tonic-gate 	int prev;
9610Sstevel@tonic-gate 
9620Sstevel@tonic-gate 	cp = cpu_list;
9630Sstevel@tonic-gate 	loadavg.lg_total = 0;
9640Sstevel@tonic-gate 
9650Sstevel@tonic-gate 	/*
9660Sstevel@tonic-gate 	 * first pass totals up per-cpu statistics for system and cpu
9670Sstevel@tonic-gate 	 * partitions
9680Sstevel@tonic-gate 	 */
9690Sstevel@tonic-gate 
9700Sstevel@tonic-gate 	do {
9710Sstevel@tonic-gate 		struct loadavg_s *lavg;
9720Sstevel@tonic-gate 
9730Sstevel@tonic-gate 		lavg = &cp->cpu_loadavg;
9740Sstevel@tonic-gate 
9750Sstevel@tonic-gate 		cpu_total = cp->cpu_acct[CMS_USER] +
9760Sstevel@tonic-gate 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
9770Sstevel@tonic-gate 		/* compute delta against last total */
9780Sstevel@tonic-gate 		scalehrtime(&cpu_total);
9790Sstevel@tonic-gate 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
9800Sstevel@tonic-gate 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
9810Sstevel@tonic-gate 		if (lavg->lg_loads[prev] <= 0) {
9820Sstevel@tonic-gate 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
9830Sstevel@tonic-gate 			cpu_total = 0;
9840Sstevel@tonic-gate 		} else {
9850Sstevel@tonic-gate 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
9860Sstevel@tonic-gate 			cpu_total = cpu_total - lavg->lg_loads[prev];
9870Sstevel@tonic-gate 			if (cpu_total < 0)
9880Sstevel@tonic-gate 				cpu_total = 0;
9890Sstevel@tonic-gate 		}
9900Sstevel@tonic-gate 
9910Sstevel@tonic-gate 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
9920Sstevel@tonic-gate 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
9930Sstevel@tonic-gate 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
9940Sstevel@tonic-gate 
9950Sstevel@tonic-gate 		loadavg.lg_total += cpu_total;
9960Sstevel@tonic-gate 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
9970Sstevel@tonic-gate 
9980Sstevel@tonic-gate 	} while ((cp = cp->cpu_next) != cpu_list);
9990Sstevel@tonic-gate 
10000Sstevel@tonic-gate 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
10010Sstevel@tonic-gate 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
10020Sstevel@tonic-gate 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
10030Sstevel@tonic-gate 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
10040Sstevel@tonic-gate 	/*
10050Sstevel@tonic-gate 	 * Second pass updates counts
10060Sstevel@tonic-gate 	 */
10070Sstevel@tonic-gate 	cpupart = cp_list_head;
10080Sstevel@tonic-gate 
10090Sstevel@tonic-gate 	do {
10100Sstevel@tonic-gate 		struct loadavg_s *lavg;
10110Sstevel@tonic-gate 
10120Sstevel@tonic-gate 		lavg = &cpupart->cp_loadavg;
10130Sstevel@tonic-gate 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
10140Sstevel@tonic-gate 		lavg->lg_total = 0;
10150Sstevel@tonic-gate 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
10160Sstevel@tonic-gate 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
10170Sstevel@tonic-gate 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
10180Sstevel@tonic-gate 
10190Sstevel@tonic-gate 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
10200Sstevel@tonic-gate 
10210Sstevel@tonic-gate }
10220Sstevel@tonic-gate 
10230Sstevel@tonic-gate /*
10240Sstevel@tonic-gate  * clock_update() - local clock update
10250Sstevel@tonic-gate  *
10260Sstevel@tonic-gate  * This routine is called by ntp_adjtime() to update the local clock
10270Sstevel@tonic-gate  * phase and frequency. The implementation is of an
10280Sstevel@tonic-gate  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
10290Sstevel@tonic-gate  * routine computes new time and frequency offset estimates for each
10300Sstevel@tonic-gate  * call.  The PPS signal itself determines the new time offset,
10310Sstevel@tonic-gate  * instead of the calling argument.  Presumably, calls to
10320Sstevel@tonic-gate  * ntp_adjtime() occur only when the caller believes the local clock
10330Sstevel@tonic-gate  * is valid within some bound (+-128 ms with NTP). If the caller's
10340Sstevel@tonic-gate  * time is far different than the PPS time, an argument will ensue,
10350Sstevel@tonic-gate  * and it's not clear who will lose.
10360Sstevel@tonic-gate  *
10370Sstevel@tonic-gate  * For uncompensated quartz crystal oscillatores and nominal update
10380Sstevel@tonic-gate  * intervals less than 1024 s, operation should be in phase-lock mode
10390Sstevel@tonic-gate  * (STA_FLL = 0), where the loop is disciplined to phase. For update
10400Sstevel@tonic-gate  * intervals greater than this, operation should be in frequency-lock
10410Sstevel@tonic-gate  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
10420Sstevel@tonic-gate  *
10430Sstevel@tonic-gate  * Note: mutex(&tod_lock) is in effect.
10440Sstevel@tonic-gate  */
10450Sstevel@tonic-gate void
10460Sstevel@tonic-gate clock_update(int offset)
10470Sstevel@tonic-gate {
10480Sstevel@tonic-gate 	int ltemp, mtemp, s;
10490Sstevel@tonic-gate 
10500Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&tod_lock));
10510Sstevel@tonic-gate 
10520Sstevel@tonic-gate 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
10530Sstevel@tonic-gate 		return;
10540Sstevel@tonic-gate 	ltemp = offset;
10550Sstevel@tonic-gate 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
10560Sstevel@tonic-gate 		ltemp = pps_offset;
10570Sstevel@tonic-gate 
10580Sstevel@tonic-gate 	/*
10590Sstevel@tonic-gate 	 * Scale the phase adjustment and clamp to the operating range.
10600Sstevel@tonic-gate 	 */
10610Sstevel@tonic-gate 	if (ltemp > MAXPHASE)
10620Sstevel@tonic-gate 		time_offset = MAXPHASE * SCALE_UPDATE;
10630Sstevel@tonic-gate 	else if (ltemp < -MAXPHASE)
10640Sstevel@tonic-gate 		time_offset = -(MAXPHASE * SCALE_UPDATE);
10650Sstevel@tonic-gate 	else
10660Sstevel@tonic-gate 		time_offset = ltemp * SCALE_UPDATE;
10670Sstevel@tonic-gate 
10680Sstevel@tonic-gate 	/*
10690Sstevel@tonic-gate 	 * Select whether the frequency is to be controlled and in which
10700Sstevel@tonic-gate 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
10710Sstevel@tonic-gate 	 * multiply/divide should be replaced someday.
10720Sstevel@tonic-gate 	 */
10730Sstevel@tonic-gate 	if (time_status & STA_FREQHOLD || time_reftime == 0)
10740Sstevel@tonic-gate 		time_reftime = hrestime.tv_sec;
10750Sstevel@tonic-gate 
10760Sstevel@tonic-gate 	mtemp = hrestime.tv_sec - time_reftime;
10770Sstevel@tonic-gate 	time_reftime = hrestime.tv_sec;
10780Sstevel@tonic-gate 
10790Sstevel@tonic-gate 	if (time_status & STA_FLL) {
10800Sstevel@tonic-gate 		if (mtemp >= MINSEC) {
10810Sstevel@tonic-gate 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
10820Sstevel@tonic-gate 			    SCALE_UPDATE));
10830Sstevel@tonic-gate 			if (ltemp)
10840Sstevel@tonic-gate 				time_freq += ltemp / SCALE_KH;
10850Sstevel@tonic-gate 		}
10860Sstevel@tonic-gate 	} else {
10870Sstevel@tonic-gate 		if (mtemp < MAXSEC) {
10880Sstevel@tonic-gate 			ltemp *= mtemp;
10890Sstevel@tonic-gate 			if (ltemp)
10900Sstevel@tonic-gate 				time_freq += (int)(((int64_t)ltemp *
10910Sstevel@tonic-gate 				    SCALE_USEC) / SCALE_KF)
10920Sstevel@tonic-gate 				    / (1 << (time_constant * 2));
10930Sstevel@tonic-gate 		}
10940Sstevel@tonic-gate 	}
10950Sstevel@tonic-gate 	if (time_freq > time_tolerance)
10960Sstevel@tonic-gate 		time_freq = time_tolerance;
10970Sstevel@tonic-gate 	else if (time_freq < -time_tolerance)
10980Sstevel@tonic-gate 		time_freq = -time_tolerance;
10990Sstevel@tonic-gate 
11000Sstevel@tonic-gate 	s = hr_clock_lock();
11010Sstevel@tonic-gate 	tod_needsync = 1;
11020Sstevel@tonic-gate 	hr_clock_unlock(s);
11030Sstevel@tonic-gate }
11040Sstevel@tonic-gate 
11050Sstevel@tonic-gate /*
11060Sstevel@tonic-gate  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
11070Sstevel@tonic-gate  *
11080Sstevel@tonic-gate  * This routine is called at each PPS interrupt in order to discipline
11090Sstevel@tonic-gate  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
11100Sstevel@tonic-gate  * and leaves it in a handy spot for the clock() routine. It
11110Sstevel@tonic-gate  * integrates successive PPS phase differences and calculates the
11120Sstevel@tonic-gate  * frequency offset. This is used in clock() to discipline the CPU
11130Sstevel@tonic-gate  * clock oscillator so that intrinsic frequency error is cancelled out.
11140Sstevel@tonic-gate  * The code requires the caller to capture the time and hardware counter
11150Sstevel@tonic-gate  * value at the on-time PPS signal transition.
11160Sstevel@tonic-gate  *
11170Sstevel@tonic-gate  * Note that, on some Unix systems, this routine runs at an interrupt
11180Sstevel@tonic-gate  * priority level higher than the timer interrupt routine clock().
11190Sstevel@tonic-gate  * Therefore, the variables used are distinct from the clock()
11200Sstevel@tonic-gate  * variables, except for certain exceptions: The PPS frequency pps_freq
11210Sstevel@tonic-gate  * and phase pps_offset variables are determined by this routine and
11220Sstevel@tonic-gate  * updated atomically. The time_tolerance variable can be considered a
11230Sstevel@tonic-gate  * constant, since it is infrequently changed, and then only when the
11240Sstevel@tonic-gate  * PPS signal is disabled. The watchdog counter pps_valid is updated
11250Sstevel@tonic-gate  * once per second by clock() and is atomically cleared in this
11260Sstevel@tonic-gate  * routine.
11270Sstevel@tonic-gate  *
11280Sstevel@tonic-gate  * tvp is the time of the last tick; usec is a microsecond count since the
11290Sstevel@tonic-gate  * last tick.
11300Sstevel@tonic-gate  *
11310Sstevel@tonic-gate  * Note: In Solaris systems, the tick value is actually given by
11320Sstevel@tonic-gate  *       usec_per_tick.  This is called from the serial driver cdintr(),
11330Sstevel@tonic-gate  *	 or equivalent, at a high PIL.  Because the kernel keeps a
11340Sstevel@tonic-gate  *	 highresolution time, the following code can accept either
11350Sstevel@tonic-gate  *	 the traditional argument pair, or the current highres timestamp
11360Sstevel@tonic-gate  *       in tvp and zero in usec.
11370Sstevel@tonic-gate  */
11380Sstevel@tonic-gate void
11390Sstevel@tonic-gate ddi_hardpps(struct timeval *tvp, int usec)
11400Sstevel@tonic-gate {
11410Sstevel@tonic-gate 	int u_usec, v_usec, bigtick;
11420Sstevel@tonic-gate 	time_t cal_sec;
11430Sstevel@tonic-gate 	int cal_usec;
11440Sstevel@tonic-gate 
11450Sstevel@tonic-gate 	/*
11460Sstevel@tonic-gate 	 * An occasional glitch can be produced when the PPS interrupt
11470Sstevel@tonic-gate 	 * occurs in the clock() routine before the time variable is
11480Sstevel@tonic-gate 	 * updated. Here the offset is discarded when the difference
11490Sstevel@tonic-gate 	 * between it and the last one is greater than tick/2, but not
11500Sstevel@tonic-gate 	 * if the interval since the first discard exceeds 30 s.
11510Sstevel@tonic-gate 	 */
11520Sstevel@tonic-gate 	time_status |= STA_PPSSIGNAL;
11530Sstevel@tonic-gate 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
11540Sstevel@tonic-gate 	pps_valid = 0;
11550Sstevel@tonic-gate 	u_usec = -tvp->tv_usec;
11560Sstevel@tonic-gate 	if (u_usec < -(MICROSEC/2))
11570Sstevel@tonic-gate 		u_usec += MICROSEC;
11580Sstevel@tonic-gate 	v_usec = pps_offset - u_usec;
11590Sstevel@tonic-gate 	if (v_usec < 0)
11600Sstevel@tonic-gate 		v_usec = -v_usec;
11610Sstevel@tonic-gate 	if (v_usec > (usec_per_tick >> 1)) {
11620Sstevel@tonic-gate 		if (pps_glitch > MAXGLITCH) {
11630Sstevel@tonic-gate 			pps_glitch = 0;
11640Sstevel@tonic-gate 			pps_tf[2] = u_usec;
11650Sstevel@tonic-gate 			pps_tf[1] = u_usec;
11660Sstevel@tonic-gate 		} else {
11670Sstevel@tonic-gate 			pps_glitch++;
11680Sstevel@tonic-gate 			u_usec = pps_offset;
11690Sstevel@tonic-gate 		}
11700Sstevel@tonic-gate 	} else
11710Sstevel@tonic-gate 		pps_glitch = 0;
11720Sstevel@tonic-gate 
11730Sstevel@tonic-gate 	/*
11740Sstevel@tonic-gate 	 * A three-stage median filter is used to help deglitch the pps
11750Sstevel@tonic-gate 	 * time. The median sample becomes the time offset estimate; the
11760Sstevel@tonic-gate 	 * difference between the other two samples becomes the time
11770Sstevel@tonic-gate 	 * dispersion (jitter) estimate.
11780Sstevel@tonic-gate 	 */
11790Sstevel@tonic-gate 	pps_tf[2] = pps_tf[1];
11800Sstevel@tonic-gate 	pps_tf[1] = pps_tf[0];
11810Sstevel@tonic-gate 	pps_tf[0] = u_usec;
11820Sstevel@tonic-gate 	if (pps_tf[0] > pps_tf[1]) {
11830Sstevel@tonic-gate 		if (pps_tf[1] > pps_tf[2]) {
11840Sstevel@tonic-gate 			pps_offset = pps_tf[1];		/* 0 1 2 */
11850Sstevel@tonic-gate 			v_usec = pps_tf[0] - pps_tf[2];
11860Sstevel@tonic-gate 		} else if (pps_tf[2] > pps_tf[0]) {
11870Sstevel@tonic-gate 			pps_offset = pps_tf[0];		/* 2 0 1 */
11880Sstevel@tonic-gate 			v_usec = pps_tf[2] - pps_tf[1];
11890Sstevel@tonic-gate 		} else {
11900Sstevel@tonic-gate 			pps_offset = pps_tf[2];		/* 0 2 1 */
11910Sstevel@tonic-gate 			v_usec = pps_tf[0] - pps_tf[1];
11920Sstevel@tonic-gate 		}
11930Sstevel@tonic-gate 	} else {
11940Sstevel@tonic-gate 		if (pps_tf[1] < pps_tf[2]) {
11950Sstevel@tonic-gate 			pps_offset = pps_tf[1];		/* 2 1 0 */
11960Sstevel@tonic-gate 			v_usec = pps_tf[2] - pps_tf[0];
11970Sstevel@tonic-gate 		} else  if (pps_tf[2] < pps_tf[0]) {
11980Sstevel@tonic-gate 			pps_offset = pps_tf[0];		/* 1 0 2 */
11990Sstevel@tonic-gate 			v_usec = pps_tf[1] - pps_tf[2];
12000Sstevel@tonic-gate 		} else {
12010Sstevel@tonic-gate 			pps_offset = pps_tf[2];		/* 1 2 0 */
12020Sstevel@tonic-gate 			v_usec = pps_tf[1] - pps_tf[0];
12030Sstevel@tonic-gate 		}
12040Sstevel@tonic-gate 	}
12050Sstevel@tonic-gate 	if (v_usec > MAXTIME)
12060Sstevel@tonic-gate 		pps_jitcnt++;
12070Sstevel@tonic-gate 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
12080Sstevel@tonic-gate 	pps_jitter += v_usec / (1 << PPS_AVG);
12090Sstevel@tonic-gate 	if (pps_jitter > (MAXTIME >> 1))
12100Sstevel@tonic-gate 		time_status |= STA_PPSJITTER;
12110Sstevel@tonic-gate 
12120Sstevel@tonic-gate 	/*
12130Sstevel@tonic-gate 	 * During the calibration interval adjust the starting time when
12140Sstevel@tonic-gate 	 * the tick overflows. At the end of the interval compute the
12150Sstevel@tonic-gate 	 * duration of the interval and the difference of the hardware
12160Sstevel@tonic-gate 	 * counters at the beginning and end of the interval. This code
12170Sstevel@tonic-gate 	 * is deliciously complicated by the fact valid differences may
12180Sstevel@tonic-gate 	 * exceed the value of tick when using long calibration
12190Sstevel@tonic-gate 	 * intervals and small ticks. Note that the counter can be
12200Sstevel@tonic-gate 	 * greater than tick if caught at just the wrong instant, but
12210Sstevel@tonic-gate 	 * the values returned and used here are correct.
12220Sstevel@tonic-gate 	 */
12230Sstevel@tonic-gate 	bigtick = (int)usec_per_tick * SCALE_USEC;
12240Sstevel@tonic-gate 	pps_usec -= pps_freq;
12250Sstevel@tonic-gate 	if (pps_usec >= bigtick)
12260Sstevel@tonic-gate 		pps_usec -= bigtick;
12270Sstevel@tonic-gate 	if (pps_usec < 0)
12280Sstevel@tonic-gate 		pps_usec += bigtick;
12290Sstevel@tonic-gate 	pps_time.tv_sec++;
12300Sstevel@tonic-gate 	pps_count++;
12310Sstevel@tonic-gate 	if (pps_count < (1 << pps_shift))
12320Sstevel@tonic-gate 		return;
12330Sstevel@tonic-gate 	pps_count = 0;
12340Sstevel@tonic-gate 	pps_calcnt++;
12350Sstevel@tonic-gate 	u_usec = usec * SCALE_USEC;
12360Sstevel@tonic-gate 	v_usec = pps_usec - u_usec;
12370Sstevel@tonic-gate 	if (v_usec >= bigtick >> 1)
12380Sstevel@tonic-gate 		v_usec -= bigtick;
12390Sstevel@tonic-gate 	if (v_usec < -(bigtick >> 1))
12400Sstevel@tonic-gate 		v_usec += bigtick;
12410Sstevel@tonic-gate 	if (v_usec < 0)
12420Sstevel@tonic-gate 		v_usec = -(-v_usec >> pps_shift);
12430Sstevel@tonic-gate 	else
12440Sstevel@tonic-gate 		v_usec = v_usec >> pps_shift;
12450Sstevel@tonic-gate 	pps_usec = u_usec;
12460Sstevel@tonic-gate 	cal_sec = tvp->tv_sec;
12470Sstevel@tonic-gate 	cal_usec = tvp->tv_usec;
12480Sstevel@tonic-gate 	cal_sec -= pps_time.tv_sec;
12490Sstevel@tonic-gate 	cal_usec -= pps_time.tv_usec;
12500Sstevel@tonic-gate 	if (cal_usec < 0) {
12510Sstevel@tonic-gate 		cal_usec += MICROSEC;
12520Sstevel@tonic-gate 		cal_sec--;
12530Sstevel@tonic-gate 	}
12540Sstevel@tonic-gate 	pps_time = *tvp;
12550Sstevel@tonic-gate 
12560Sstevel@tonic-gate 	/*
12570Sstevel@tonic-gate 	 * Check for lost interrupts, noise, excessive jitter and
12580Sstevel@tonic-gate 	 * excessive frequency error. The number of timer ticks during
12590Sstevel@tonic-gate 	 * the interval may vary +-1 tick. Add to this a margin of one
12600Sstevel@tonic-gate 	 * tick for the PPS signal jitter and maximum frequency
12610Sstevel@tonic-gate 	 * deviation. If the limits are exceeded, the calibration
12620Sstevel@tonic-gate 	 * interval is reset to the minimum and we start over.
12630Sstevel@tonic-gate 	 */
12640Sstevel@tonic-gate 	u_usec = (int)usec_per_tick << 1;
12650Sstevel@tonic-gate 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
12660Sstevel@tonic-gate 	    (cal_sec == 0 && cal_usec < u_usec)) ||
12670Sstevel@tonic-gate 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
12680Sstevel@tonic-gate 		pps_errcnt++;
12690Sstevel@tonic-gate 		pps_shift = PPS_SHIFT;
12700Sstevel@tonic-gate 		pps_intcnt = 0;
12710Sstevel@tonic-gate 		time_status |= STA_PPSERROR;
12720Sstevel@tonic-gate 		return;
12730Sstevel@tonic-gate 	}
12740Sstevel@tonic-gate 
12750Sstevel@tonic-gate 	/*
12760Sstevel@tonic-gate 	 * A three-stage median filter is used to help deglitch the pps
12770Sstevel@tonic-gate 	 * frequency. The median sample becomes the frequency offset
12780Sstevel@tonic-gate 	 * estimate; the difference between the other two samples
12790Sstevel@tonic-gate 	 * becomes the frequency dispersion (stability) estimate.
12800Sstevel@tonic-gate 	 */
12810Sstevel@tonic-gate 	pps_ff[2] = pps_ff[1];
12820Sstevel@tonic-gate 	pps_ff[1] = pps_ff[0];
12830Sstevel@tonic-gate 	pps_ff[0] = v_usec;
12840Sstevel@tonic-gate 	if (pps_ff[0] > pps_ff[1]) {
12850Sstevel@tonic-gate 		if (pps_ff[1] > pps_ff[2]) {
12860Sstevel@tonic-gate 			u_usec = pps_ff[1];		/* 0 1 2 */
12870Sstevel@tonic-gate 			v_usec = pps_ff[0] - pps_ff[2];
12880Sstevel@tonic-gate 		} else if (pps_ff[2] > pps_ff[0]) {
12890Sstevel@tonic-gate 			u_usec = pps_ff[0];		/* 2 0 1 */
12900Sstevel@tonic-gate 			v_usec = pps_ff[2] - pps_ff[1];
12910Sstevel@tonic-gate 		} else {
12920Sstevel@tonic-gate 			u_usec = pps_ff[2];		/* 0 2 1 */
12930Sstevel@tonic-gate 			v_usec = pps_ff[0] - pps_ff[1];
12940Sstevel@tonic-gate 		}
12950Sstevel@tonic-gate 	} else {
12960Sstevel@tonic-gate 		if (pps_ff[1] < pps_ff[2]) {
12970Sstevel@tonic-gate 			u_usec = pps_ff[1];		/* 2 1 0 */
12980Sstevel@tonic-gate 			v_usec = pps_ff[2] - pps_ff[0];
12990Sstevel@tonic-gate 		} else  if (pps_ff[2] < pps_ff[0]) {
13000Sstevel@tonic-gate 			u_usec = pps_ff[0];		/* 1 0 2 */
13010Sstevel@tonic-gate 			v_usec = pps_ff[1] - pps_ff[2];
13020Sstevel@tonic-gate 		} else {
13030Sstevel@tonic-gate 			u_usec = pps_ff[2];		/* 1 2 0 */
13040Sstevel@tonic-gate 			v_usec = pps_ff[1] - pps_ff[0];
13050Sstevel@tonic-gate 		}
13060Sstevel@tonic-gate 	}
13070Sstevel@tonic-gate 
13080Sstevel@tonic-gate 	/*
13090Sstevel@tonic-gate 	 * Here the frequency dispersion (stability) is updated. If it
13100Sstevel@tonic-gate 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
13110Sstevel@tonic-gate 	 * offset is updated as well, but clamped to the tolerance. It
13120Sstevel@tonic-gate 	 * will be processed later by the clock() routine.
13130Sstevel@tonic-gate 	 */
13140Sstevel@tonic-gate 	v_usec = (v_usec >> 1) - pps_stabil;
13150Sstevel@tonic-gate 	if (v_usec < 0)
13160Sstevel@tonic-gate 		pps_stabil -= -v_usec >> PPS_AVG;
13170Sstevel@tonic-gate 	else
13180Sstevel@tonic-gate 		pps_stabil += v_usec >> PPS_AVG;
13190Sstevel@tonic-gate 	if (pps_stabil > MAXFREQ >> 2) {
13200Sstevel@tonic-gate 		pps_stbcnt++;
13210Sstevel@tonic-gate 		time_status |= STA_PPSWANDER;
13220Sstevel@tonic-gate 		return;
13230Sstevel@tonic-gate 	}
13240Sstevel@tonic-gate 	if (time_status & STA_PPSFREQ) {
13250Sstevel@tonic-gate 		if (u_usec < 0) {
13260Sstevel@tonic-gate 			pps_freq -= -u_usec >> PPS_AVG;
13270Sstevel@tonic-gate 			if (pps_freq < -time_tolerance)
13280Sstevel@tonic-gate 				pps_freq = -time_tolerance;
13290Sstevel@tonic-gate 			u_usec = -u_usec;
13300Sstevel@tonic-gate 		} else {
13310Sstevel@tonic-gate 			pps_freq += u_usec >> PPS_AVG;
13320Sstevel@tonic-gate 			if (pps_freq > time_tolerance)
13330Sstevel@tonic-gate 				pps_freq = time_tolerance;
13340Sstevel@tonic-gate 		}
13350Sstevel@tonic-gate 	}
13360Sstevel@tonic-gate 
13370Sstevel@tonic-gate 	/*
13380Sstevel@tonic-gate 	 * Here the calibration interval is adjusted. If the maximum
13390Sstevel@tonic-gate 	 * time difference is greater than tick / 4, reduce the interval
13400Sstevel@tonic-gate 	 * by half. If this is not the case for four consecutive
13410Sstevel@tonic-gate 	 * intervals, double the interval.
13420Sstevel@tonic-gate 	 */
13430Sstevel@tonic-gate 	if (u_usec << pps_shift > bigtick >> 2) {
13440Sstevel@tonic-gate 		pps_intcnt = 0;
13450Sstevel@tonic-gate 		if (pps_shift > PPS_SHIFT)
13460Sstevel@tonic-gate 			pps_shift--;
13470Sstevel@tonic-gate 	} else if (pps_intcnt >= 4) {
13480Sstevel@tonic-gate 		pps_intcnt = 0;
13490Sstevel@tonic-gate 		if (pps_shift < PPS_SHIFTMAX)
13500Sstevel@tonic-gate 			pps_shift++;
13510Sstevel@tonic-gate 	} else
13520Sstevel@tonic-gate 		pps_intcnt++;
13530Sstevel@tonic-gate 
13540Sstevel@tonic-gate 	/*
13550Sstevel@tonic-gate 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
13560Sstevel@tonic-gate 	 * If we took an early exit above, then we don't yet have a stable
13570Sstevel@tonic-gate 	 * calibration signal to lock onto, so don't mark the tod for sync
13580Sstevel@tonic-gate 	 * until we get all the way here.
13590Sstevel@tonic-gate 	 */
13600Sstevel@tonic-gate 	{
13610Sstevel@tonic-gate 		int s = hr_clock_lock();
13620Sstevel@tonic-gate 
13630Sstevel@tonic-gate 		tod_needsync = 1;
13640Sstevel@tonic-gate 		hr_clock_unlock(s);
13650Sstevel@tonic-gate 	}
13660Sstevel@tonic-gate }
13670Sstevel@tonic-gate 
13680Sstevel@tonic-gate /*
13690Sstevel@tonic-gate  * Handle clock tick processing for a thread.
13700Sstevel@tonic-gate  * Check for timer action, enforce CPU rlimit, do profiling etc.
13710Sstevel@tonic-gate  */
13720Sstevel@tonic-gate void
13735788Smv143129 clock_tick(kthread_t *t, int pending)
13740Sstevel@tonic-gate {
13750Sstevel@tonic-gate 	struct proc *pp;
13760Sstevel@tonic-gate 	klwp_id_t    lwp;
13770Sstevel@tonic-gate 	struct as *as;
13785788Smv143129 	clock_t	ticks;
13790Sstevel@tonic-gate 	int	poke = 0;		/* notify another CPU */
13800Sstevel@tonic-gate 	int	user_mode;
13810Sstevel@tonic-gate 	size_t	 rss;
13825788Smv143129 	int i, total_usec, usec;
13835788Smv143129 	rctl_qty_t secs;
13845788Smv143129 
13855788Smv143129 	ASSERT(pending > 0);
13860Sstevel@tonic-gate 
13870Sstevel@tonic-gate 	/* Must be operating on a lwp/thread */
13880Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL) {
13890Sstevel@tonic-gate 		panic("clock_tick: no lwp");
13900Sstevel@tonic-gate 		/*NOTREACHED*/
13910Sstevel@tonic-gate 	}
13920Sstevel@tonic-gate 
13935788Smv143129 	for (i = 0; i < pending; i++) {
13945788Smv143129 		CL_TICK(t);	/* Class specific tick processing */
13955788Smv143129 		DTRACE_SCHED1(tick, kthread_t *, t);
13965788Smv143129 	}
13970Sstevel@tonic-gate 
13980Sstevel@tonic-gate 	pp = ttoproc(t);
13990Sstevel@tonic-gate 
14000Sstevel@tonic-gate 	/* pp->p_lock makes sure that the thread does not exit */
14010Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&pp->p_lock));
14020Sstevel@tonic-gate 
14030Sstevel@tonic-gate 	user_mode = (lwp->lwp_state == LWP_USER);
14040Sstevel@tonic-gate 
14055788Smv143129 	ticks = (pp->p_utime + pp->p_stime) % hz;
14060Sstevel@tonic-gate 	/*
14070Sstevel@tonic-gate 	 * Update process times. Should use high res clock and state
14080Sstevel@tonic-gate 	 * changes instead of statistical sampling method. XXX
14090Sstevel@tonic-gate 	 */
14100Sstevel@tonic-gate 	if (user_mode) {
14115788Smv143129 		pp->p_utime += pending;
14120Sstevel@tonic-gate 	} else {
14135788Smv143129 		pp->p_stime += pending;
14140Sstevel@tonic-gate 	}
14155788Smv143129 
14165788Smv143129 	pp->p_ttime += pending;
14170Sstevel@tonic-gate 	as = pp->p_as;
14180Sstevel@tonic-gate 
14190Sstevel@tonic-gate 	/*
14200Sstevel@tonic-gate 	 * Update user profiling statistics. Get the pc from the
14210Sstevel@tonic-gate 	 * lwp when the AST happens.
14220Sstevel@tonic-gate 	 */
14230Sstevel@tonic-gate 	if (pp->p_prof.pr_scale) {
14245788Smv143129 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
14250Sstevel@tonic-gate 		if (user_mode) {
14260Sstevel@tonic-gate 			poke = 1;
14270Sstevel@tonic-gate 			aston(t);
14280Sstevel@tonic-gate 		}
14290Sstevel@tonic-gate 	}
14300Sstevel@tonic-gate 
14315788Smv143129 	/*
14325788Smv143129 	 * If CPU was in user state, process lwp-virtual time
14335788Smv143129 	 * interval timer. The value passed to itimerdecr() has to be
14345788Smv143129 	 * in microseconds and has to be less than one second. Hence
14355788Smv143129 	 * this loop.
14365788Smv143129 	 */
14375788Smv143129 	total_usec = usec_per_tick * pending;
14385788Smv143129 	while (total_usec > 0) {
14395788Smv143129 		usec = MIN(total_usec, (MICROSEC - 1));
14405788Smv143129 		if (user_mode &&
14415788Smv143129 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
14425788Smv143129 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
14435788Smv143129 			poke = 1;
14445788Smv143129 			sigtoproc(pp, t, SIGVTALRM);
14455788Smv143129 		}
14465788Smv143129 		total_usec -= usec;
14475788Smv143129 	}
14480Sstevel@tonic-gate 
14490Sstevel@tonic-gate 	/*
14505788Smv143129 	 * If CPU was in user state, process lwp-profile
14510Sstevel@tonic-gate 	 * interval timer.
14520Sstevel@tonic-gate 	 */
14535788Smv143129 	total_usec = usec_per_tick * pending;
14545788Smv143129 	while (total_usec > 0) {
14555788Smv143129 		usec = MIN(total_usec, (MICROSEC - 1));
14565788Smv143129 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
14575788Smv143129 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
14585788Smv143129 			poke = 1;
14595788Smv143129 			sigtoproc(pp, t, SIGPROF);
14605788Smv143129 		}
14615788Smv143129 		total_usec -= usec;
14620Sstevel@tonic-gate 	}
14630Sstevel@tonic-gate 
14640Sstevel@tonic-gate 	/*
14650Sstevel@tonic-gate 	 * Enforce CPU resource controls:
14660Sstevel@tonic-gate 	 *   (a) process.max-cpu-time resource control
14675788Smv143129 	 *
14685788Smv143129 	 * Perform the check only if we have accumulated more a second.
14690Sstevel@tonic-gate 	 */
14705788Smv143129 	if ((ticks + pending) >= hz) {
14715788Smv143129 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
14725788Smv143129 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
14735788Smv143129 	}
14740Sstevel@tonic-gate 
14750Sstevel@tonic-gate 	/*
14760Sstevel@tonic-gate 	 *   (b) task.max-cpu-time resource control
14775788Smv143129 	 *
14785788Smv143129 	 * If we have accumulated enough ticks, increment the task CPU
14795788Smv143129 	 * time usage and test for the resource limit. This minimizes the
14805788Smv143129 	 * number of calls to the rct_test(). The task CPU time mutex
14815788Smv143129 	 * is highly contentious as many processes can be sharing a task.
14820Sstevel@tonic-gate 	 */
14835788Smv143129 	if (pp->p_ttime >= clock_tick_proc_max) {
14845788Smv143129 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
14855788Smv143129 		pp->p_ttime = 0;
14865788Smv143129 		if (secs) {
14875788Smv143129 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
14885788Smv143129 			    pp, secs, RCA_UNSAFE_SIGINFO);
14895788Smv143129 		}
14905788Smv143129 	}
14910Sstevel@tonic-gate 
14920Sstevel@tonic-gate 	/*
14930Sstevel@tonic-gate 	 * Update memory usage for the currently running process.
14940Sstevel@tonic-gate 	 */
14950Sstevel@tonic-gate 	rss = rm_asrss(as);
14960Sstevel@tonic-gate 	PTOU(pp)->u_mem += rss;
14970Sstevel@tonic-gate 	if (rss > PTOU(pp)->u_mem_max)
14980Sstevel@tonic-gate 		PTOU(pp)->u_mem_max = rss;
14990Sstevel@tonic-gate 
15000Sstevel@tonic-gate 	/*
15010Sstevel@tonic-gate 	 * Notify the CPU the thread is running on.
15020Sstevel@tonic-gate 	 */
15030Sstevel@tonic-gate 	if (poke && t->t_cpu != CPU)
15040Sstevel@tonic-gate 		poke_cpu(t->t_cpu->cpu_id);
15050Sstevel@tonic-gate }
15060Sstevel@tonic-gate 
15070Sstevel@tonic-gate void
15080Sstevel@tonic-gate profil_tick(uintptr_t upc)
15090Sstevel@tonic-gate {
15100Sstevel@tonic-gate 	int ticks;
15110Sstevel@tonic-gate 	proc_t *p = ttoproc(curthread);
15120Sstevel@tonic-gate 	klwp_t *lwp = ttolwp(curthread);
15130Sstevel@tonic-gate 	struct prof *pr = &p->p_prof;
15140Sstevel@tonic-gate 
15150Sstevel@tonic-gate 	do {
15160Sstevel@tonic-gate 		ticks = lwp->lwp_oweupc;
15170Sstevel@tonic-gate 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
15180Sstevel@tonic-gate 
15190Sstevel@tonic-gate 	mutex_enter(&p->p_pflock);
15200Sstevel@tonic-gate 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
15210Sstevel@tonic-gate 		/*
15220Sstevel@tonic-gate 		 * Old-style profiling
15230Sstevel@tonic-gate 		 */
15240Sstevel@tonic-gate 		uint16_t *slot = pr->pr_base;
15250Sstevel@tonic-gate 		uint16_t old, new;
15260Sstevel@tonic-gate 		if (pr->pr_scale != 2) {
15270Sstevel@tonic-gate 			uintptr_t delta = upc - pr->pr_off;
15280Sstevel@tonic-gate 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
15290Sstevel@tonic-gate 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
15300Sstevel@tonic-gate 			if (byteoff >= (uintptr_t)pr->pr_size) {
15310Sstevel@tonic-gate 				mutex_exit(&p->p_pflock);
15320Sstevel@tonic-gate 				return;
15330Sstevel@tonic-gate 			}
15340Sstevel@tonic-gate 			slot += byteoff / sizeof (uint16_t);
15350Sstevel@tonic-gate 		}
15360Sstevel@tonic-gate 		if (fuword16(slot, &old) < 0 ||
15370Sstevel@tonic-gate 		    (new = old + ticks) > SHRT_MAX ||
15380Sstevel@tonic-gate 		    suword16(slot, new) < 0) {
15390Sstevel@tonic-gate 			pr->pr_scale = 0;
15400Sstevel@tonic-gate 		}
15410Sstevel@tonic-gate 	} else if (pr->pr_scale == 1) {
15420Sstevel@tonic-gate 		/*
15430Sstevel@tonic-gate 		 * PC Sampling
15440Sstevel@tonic-gate 		 */
15450Sstevel@tonic-gate 		model_t model = lwp_getdatamodel(lwp);
15460Sstevel@tonic-gate 		int result;
15470Sstevel@tonic-gate #ifdef __lint
15480Sstevel@tonic-gate 		model = model;
15490Sstevel@tonic-gate #endif
15500Sstevel@tonic-gate 		while (ticks-- > 0) {
15510Sstevel@tonic-gate 			if (pr->pr_samples == pr->pr_size) {
15520Sstevel@tonic-gate 				/* buffer full, turn off sampling */
15530Sstevel@tonic-gate 				pr->pr_scale = 0;
15540Sstevel@tonic-gate 				break;
15550Sstevel@tonic-gate 			}
15560Sstevel@tonic-gate 			switch (SIZEOF_PTR(model)) {
15570Sstevel@tonic-gate 			case sizeof (uint32_t):
15580Sstevel@tonic-gate 				result = suword32(pr->pr_base, (uint32_t)upc);
15590Sstevel@tonic-gate 				break;
15600Sstevel@tonic-gate #ifdef _LP64
15610Sstevel@tonic-gate 			case sizeof (uint64_t):
15620Sstevel@tonic-gate 				result = suword64(pr->pr_base, (uint64_t)upc);
15630Sstevel@tonic-gate 				break;
15640Sstevel@tonic-gate #endif
15650Sstevel@tonic-gate 			default:
15660Sstevel@tonic-gate 				cmn_err(CE_WARN, "profil_tick: unexpected "
15670Sstevel@tonic-gate 				    "data model");
15680Sstevel@tonic-gate 				result = -1;
15690Sstevel@tonic-gate 				break;
15700Sstevel@tonic-gate 			}
15710Sstevel@tonic-gate 			if (result != 0) {
15720Sstevel@tonic-gate 				pr->pr_scale = 0;
15730Sstevel@tonic-gate 				break;
15740Sstevel@tonic-gate 			}
15750Sstevel@tonic-gate 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
15760Sstevel@tonic-gate 			pr->pr_samples++;
15770Sstevel@tonic-gate 		}
15780Sstevel@tonic-gate 	}
15790Sstevel@tonic-gate 	mutex_exit(&p->p_pflock);
15800Sstevel@tonic-gate }
15810Sstevel@tonic-gate 
15820Sstevel@tonic-gate static void
15830Sstevel@tonic-gate delay_wakeup(void *arg)
15840Sstevel@tonic-gate {
1585*10696SDavid.Hollister@Sun.COM 	kthread_t	*t = arg;
15860Sstevel@tonic-gate 
15870Sstevel@tonic-gate 	mutex_enter(&t->t_delay_lock);
15880Sstevel@tonic-gate 	cv_signal(&t->t_delay_cv);
15890Sstevel@tonic-gate 	mutex_exit(&t->t_delay_lock);
15900Sstevel@tonic-gate }
15910Sstevel@tonic-gate 
1592*10696SDavid.Hollister@Sun.COM /*
1593*10696SDavid.Hollister@Sun.COM  * The delay(9F) man page indicates that it can only be called from user or
1594*10696SDavid.Hollister@Sun.COM  * kernel context - detect and diagnose bad calls. The following macro will
1595*10696SDavid.Hollister@Sun.COM  * produce a limited number of messages identifying bad callers.  This is done
1596*10696SDavid.Hollister@Sun.COM  * in a macro so that caller() is meaningful. When a bad caller is identified,
1597*10696SDavid.Hollister@Sun.COM  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1598*10696SDavid.Hollister@Sun.COM  */
1599*10696SDavid.Hollister@Sun.COM #define	DELAY_CONTEXT_CHECK()	{					\
1600*10696SDavid.Hollister@Sun.COM 	uint32_t	m;						\
1601*10696SDavid.Hollister@Sun.COM 	char		*f;						\
1602*10696SDavid.Hollister@Sun.COM 	ulong_t		off;						\
1603*10696SDavid.Hollister@Sun.COM 									\
1604*10696SDavid.Hollister@Sun.COM 	m = delay_from_interrupt_msg;					\
1605*10696SDavid.Hollister@Sun.COM 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1606*10696SDavid.Hollister@Sun.COM 	    !panicstr && !devinfo_freeze &&				\
1607*10696SDavid.Hollister@Sun.COM 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1608*10696SDavid.Hollister@Sun.COM 		f = modgetsymname((uintptr_t)caller(), &off);		\
1609*10696SDavid.Hollister@Sun.COM 		cmn_err(CE_WARN, "delay(9F) called from "		\
1610*10696SDavid.Hollister@Sun.COM 		    "interrupt context: %s`%s",				\
1611*10696SDavid.Hollister@Sun.COM 		    mod_containing_pc(caller()), f ? f : "...");	\
1612*10696SDavid.Hollister@Sun.COM 	}								\
1613*10696SDavid.Hollister@Sun.COM }
1614*10696SDavid.Hollister@Sun.COM 
1615*10696SDavid.Hollister@Sun.COM /*
1616*10696SDavid.Hollister@Sun.COM  * delay_common: common delay code.
1617*10696SDavid.Hollister@Sun.COM  */
1618*10696SDavid.Hollister@Sun.COM static void
1619*10696SDavid.Hollister@Sun.COM delay_common(clock_t ticks)
1620*10696SDavid.Hollister@Sun.COM {
1621*10696SDavid.Hollister@Sun.COM 	kthread_t	*t = curthread;
1622*10696SDavid.Hollister@Sun.COM 	clock_t		deadline;
1623*10696SDavid.Hollister@Sun.COM 	clock_t		timeleft;
1624*10696SDavid.Hollister@Sun.COM 	callout_id_t	id;
1625*10696SDavid.Hollister@Sun.COM 
1626*10696SDavid.Hollister@Sun.COM 	/* If timeouts aren't running all we can do is spin. */
1627*10696SDavid.Hollister@Sun.COM 	if (panicstr || devinfo_freeze) {
1628*10696SDavid.Hollister@Sun.COM 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1629*10696SDavid.Hollister@Sun.COM 		if (ticks > 0)
1630*10696SDavid.Hollister@Sun.COM 			drv_usecwait(TICK_TO_USEC(ticks));
1631*10696SDavid.Hollister@Sun.COM 		return;
1632*10696SDavid.Hollister@Sun.COM 	}
1633*10696SDavid.Hollister@Sun.COM 
1634*10696SDavid.Hollister@Sun.COM 	deadline = lbolt + ticks;
1635*10696SDavid.Hollister@Sun.COM 	while ((timeleft = deadline - lbolt) > 0) {
1636*10696SDavid.Hollister@Sun.COM 		mutex_enter(&t->t_delay_lock);
1637*10696SDavid.Hollister@Sun.COM 		id = timeout_default(delay_wakeup, t, timeleft);
1638*10696SDavid.Hollister@Sun.COM 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1639*10696SDavid.Hollister@Sun.COM 		mutex_exit(&t->t_delay_lock);
1640*10696SDavid.Hollister@Sun.COM 		(void) untimeout_default(id, 0);
1641*10696SDavid.Hollister@Sun.COM 	}
1642*10696SDavid.Hollister@Sun.COM }
1643*10696SDavid.Hollister@Sun.COM 
1644*10696SDavid.Hollister@Sun.COM /*
1645*10696SDavid.Hollister@Sun.COM  * Delay specified number of clock ticks.
1646*10696SDavid.Hollister@Sun.COM  */
16470Sstevel@tonic-gate void
16480Sstevel@tonic-gate delay(clock_t ticks)
16490Sstevel@tonic-gate {
1650*10696SDavid.Hollister@Sun.COM 	DELAY_CONTEXT_CHECK();
1651*10696SDavid.Hollister@Sun.COM 
1652*10696SDavid.Hollister@Sun.COM 	delay_common(ticks);
1653*10696SDavid.Hollister@Sun.COM }
16540Sstevel@tonic-gate 
1655*10696SDavid.Hollister@Sun.COM /*
1656*10696SDavid.Hollister@Sun.COM  * Delay a random number of clock ticks between 1 and ticks.
1657*10696SDavid.Hollister@Sun.COM  */
1658*10696SDavid.Hollister@Sun.COM void
1659*10696SDavid.Hollister@Sun.COM delay_random(clock_t ticks)
1660*10696SDavid.Hollister@Sun.COM {
1661*10696SDavid.Hollister@Sun.COM 	int	r;
16620Sstevel@tonic-gate 
1663*10696SDavid.Hollister@Sun.COM 	DELAY_CONTEXT_CHECK();
1664*10696SDavid.Hollister@Sun.COM 
1665*10696SDavid.Hollister@Sun.COM 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1666*10696SDavid.Hollister@Sun.COM 	if (ticks == 0)
1667*10696SDavid.Hollister@Sun.COM 		ticks = 1;
1668*10696SDavid.Hollister@Sun.COM 	ticks = (r % ticks) + 1;
1669*10696SDavid.Hollister@Sun.COM 	delay_common(ticks);
16700Sstevel@tonic-gate }
16710Sstevel@tonic-gate 
16720Sstevel@tonic-gate /*
16730Sstevel@tonic-gate  * Like delay, but interruptible by a signal.
16740Sstevel@tonic-gate  */
16750Sstevel@tonic-gate int
16760Sstevel@tonic-gate delay_sig(clock_t ticks)
16770Sstevel@tonic-gate {
1678*10696SDavid.Hollister@Sun.COM 	kthread_t	*t = curthread;
1679*10696SDavid.Hollister@Sun.COM 	clock_t		deadline;
1680*10696SDavid.Hollister@Sun.COM 	clock_t		rc;
16810Sstevel@tonic-gate 
1682*10696SDavid.Hollister@Sun.COM 	/* If timeouts aren't running all we can do is spin. */
1683*10696SDavid.Hollister@Sun.COM 	if (panicstr || devinfo_freeze) {
1684*10696SDavid.Hollister@Sun.COM 		if (ticks > 0)
1685*10696SDavid.Hollister@Sun.COM 			drv_usecwait(TICK_TO_USEC(ticks));
1686*10696SDavid.Hollister@Sun.COM 		return (0);
1687*10696SDavid.Hollister@Sun.COM 	}
1688*10696SDavid.Hollister@Sun.COM 
1689*10696SDavid.Hollister@Sun.COM 	deadline = lbolt + ticks;
1690*10696SDavid.Hollister@Sun.COM 	mutex_enter(&t->t_delay_lock);
16910Sstevel@tonic-gate 	do {
1692*10696SDavid.Hollister@Sun.COM 		rc = cv_timedwait_sig(&t->t_delay_cv,
1693*10696SDavid.Hollister@Sun.COM 		    &t->t_delay_lock, deadline);
1694*10696SDavid.Hollister@Sun.COM 		/* loop until past deadline or signaled */
16950Sstevel@tonic-gate 	} while (rc > 0);
1696*10696SDavid.Hollister@Sun.COM 	mutex_exit(&t->t_delay_lock);
16970Sstevel@tonic-gate 	if (rc == 0)
16980Sstevel@tonic-gate 		return (EINTR);
16990Sstevel@tonic-gate 	return (0);
17000Sstevel@tonic-gate }
17010Sstevel@tonic-gate 
1702*10696SDavid.Hollister@Sun.COM 
17030Sstevel@tonic-gate #define	SECONDS_PER_DAY 86400
17040Sstevel@tonic-gate 
17050Sstevel@tonic-gate /*
17060Sstevel@tonic-gate  * Initialize the system time based on the TOD chip.  approx is used as
17070Sstevel@tonic-gate  * an approximation of time (e.g. from the filesystem) in the event that
17080Sstevel@tonic-gate  * the TOD chip has been cleared or is unresponsive.  An approx of -1
17090Sstevel@tonic-gate  * means the filesystem doesn't keep time.
17100Sstevel@tonic-gate  */
17110Sstevel@tonic-gate void
17120Sstevel@tonic-gate clkset(time_t approx)
17130Sstevel@tonic-gate {
17140Sstevel@tonic-gate 	timestruc_t ts;
17150Sstevel@tonic-gate 	int spl;
17160Sstevel@tonic-gate 	int set_clock = 0;
17170Sstevel@tonic-gate 
17180Sstevel@tonic-gate 	mutex_enter(&tod_lock);
17190Sstevel@tonic-gate 	ts = tod_get();
17200Sstevel@tonic-gate 
17210Sstevel@tonic-gate 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
17220Sstevel@tonic-gate 		/*
17230Sstevel@tonic-gate 		 * If the TOD chip is reporting some time after 1971,
17240Sstevel@tonic-gate 		 * then it probably didn't lose power or become otherwise
17250Sstevel@tonic-gate 		 * cleared in the recent past;  check to assure that
17260Sstevel@tonic-gate 		 * the time coming from the filesystem isn't in the future
17270Sstevel@tonic-gate 		 * according to the TOD chip.
17280Sstevel@tonic-gate 		 */
17290Sstevel@tonic-gate 		if (approx != -1 && approx > ts.tv_sec) {
17300Sstevel@tonic-gate 			cmn_err(CE_WARN, "Last shutdown is later "
17310Sstevel@tonic-gate 			    "than time on time-of-day chip; check date.");
17320Sstevel@tonic-gate 		}
17330Sstevel@tonic-gate 	} else {
17340Sstevel@tonic-gate 		/*
17359158SKrishnendu.Sadhukhan@Sun.COM 		 * If the TOD chip isn't giving correct time, set it to the
17369158SKrishnendu.Sadhukhan@Sun.COM 		 * greater of i) approx and ii) 1987. That way if approx
17379158SKrishnendu.Sadhukhan@Sun.COM 		 * is negative or is earlier than 1987, we set the clock
17389158SKrishnendu.Sadhukhan@Sun.COM 		 * back to a time when Oliver North, ALF and Dire Straits
17399158SKrishnendu.Sadhukhan@Sun.COM 		 * were all on the collective brain:  1987.
17400Sstevel@tonic-gate 		 */
17410Sstevel@tonic-gate 		timestruc_t tmp;
17429158SKrishnendu.Sadhukhan@Sun.COM 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
17439158SKrishnendu.Sadhukhan@Sun.COM 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
17440Sstevel@tonic-gate 		ts.tv_nsec = 0;
17450Sstevel@tonic-gate 
17460Sstevel@tonic-gate 		/*
17470Sstevel@tonic-gate 		 * Attempt to write the new time to the TOD chip.  Set spl high
17480Sstevel@tonic-gate 		 * to avoid getting preempted between the tod_set and tod_get.
17490Sstevel@tonic-gate 		 */
17500Sstevel@tonic-gate 		spl = splhi();
17510Sstevel@tonic-gate 		tod_set(ts);
17520Sstevel@tonic-gate 		tmp = tod_get();
17530Sstevel@tonic-gate 		splx(spl);
17540Sstevel@tonic-gate 
17550Sstevel@tonic-gate 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
17560Sstevel@tonic-gate 			tod_broken = 1;
17570Sstevel@tonic-gate 			dosynctodr = 0;
17589158SKrishnendu.Sadhukhan@Sun.COM 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
17590Sstevel@tonic-gate 		} else {
17600Sstevel@tonic-gate 			cmn_err(CE_WARN, "Time-of-day chip had "
17610Sstevel@tonic-gate 			    "incorrect date; check and reset.");
17620Sstevel@tonic-gate 		}
17630Sstevel@tonic-gate 		set_clock = 1;
17640Sstevel@tonic-gate 	}
17650Sstevel@tonic-gate 
17660Sstevel@tonic-gate 	if (!boot_time) {
17670Sstevel@tonic-gate 		boot_time = ts.tv_sec;
17680Sstevel@tonic-gate 		set_clock = 1;
17690Sstevel@tonic-gate 	}
17700Sstevel@tonic-gate 
17710Sstevel@tonic-gate 	if (set_clock)
17720Sstevel@tonic-gate 		set_hrestime(&ts);
17730Sstevel@tonic-gate 
17740Sstevel@tonic-gate 	mutex_exit(&tod_lock);
17750Sstevel@tonic-gate }
17760Sstevel@tonic-gate 
17774123Sdm120769 int	timechanged;	/* for testing if the system time has been reset */
17780Sstevel@tonic-gate 
17790Sstevel@tonic-gate void
17800Sstevel@tonic-gate set_hrestime(timestruc_t *ts)
17810Sstevel@tonic-gate {
17820Sstevel@tonic-gate 	int spl = hr_clock_lock();
17830Sstevel@tonic-gate 	hrestime = *ts;
17844123Sdm120769 	membar_enter();	/* hrestime must be visible before timechanged++ */
17850Sstevel@tonic-gate 	timedelta = 0;
17864123Sdm120769 	timechanged++;
17870Sstevel@tonic-gate 	hr_clock_unlock(spl);
17888048SMadhavan.Venkataraman@Sun.COM 	callout_hrestime();
17890Sstevel@tonic-gate }
17900Sstevel@tonic-gate 
17910Sstevel@tonic-gate static uint_t deadman_seconds;
17920Sstevel@tonic-gate static uint32_t deadman_panics;
17930Sstevel@tonic-gate static int deadman_enabled = 0;
17940Sstevel@tonic-gate static int deadman_panic_timers = 1;
17950Sstevel@tonic-gate 
17960Sstevel@tonic-gate static void
17970Sstevel@tonic-gate deadman(void)
17980Sstevel@tonic-gate {
17990Sstevel@tonic-gate 	if (panicstr) {
18000Sstevel@tonic-gate 		/*
18010Sstevel@tonic-gate 		 * During panic, other CPUs besides the panic
18020Sstevel@tonic-gate 		 * master continue to handle cyclics and some other
18030Sstevel@tonic-gate 		 * interrupts.  The code below is intended to be
18040Sstevel@tonic-gate 		 * single threaded, so any CPU other than the master
18050Sstevel@tonic-gate 		 * must keep out.
18060Sstevel@tonic-gate 		 */
18070Sstevel@tonic-gate 		if (CPU->cpu_id != panic_cpu.cpu_id)
18080Sstevel@tonic-gate 			return;
18090Sstevel@tonic-gate 
18100Sstevel@tonic-gate 		/*
18110Sstevel@tonic-gate 		 * If we're panicking, the deadman cyclic continues to increase
18120Sstevel@tonic-gate 		 * lbolt in case the dump device driver relies on this for
18130Sstevel@tonic-gate 		 * timeouts.  Note that we rely on deadman() being invoked once
18140Sstevel@tonic-gate 		 * per second, and credit lbolt and lbolt64 with hz ticks each.
18150Sstevel@tonic-gate 		 */
18160Sstevel@tonic-gate 		lbolt += hz;
18170Sstevel@tonic-gate 		lbolt64 += hz;
18180Sstevel@tonic-gate 
18190Sstevel@tonic-gate 		if (!deadman_panic_timers)
18200Sstevel@tonic-gate 			return; /* allow all timers to be manually disabled */
18210Sstevel@tonic-gate 
18220Sstevel@tonic-gate 		/*
18230Sstevel@tonic-gate 		 * If we are generating a crash dump or syncing filesystems and
18240Sstevel@tonic-gate 		 * the corresponding timer is set, decrement it and re-enter
18250Sstevel@tonic-gate 		 * the panic code to abort it and advance to the next state.
18260Sstevel@tonic-gate 		 * The panic states and triggers are explained in panic.c.
18270Sstevel@tonic-gate 		 */
18280Sstevel@tonic-gate 		if (panic_dump) {
18290Sstevel@tonic-gate 			if (dump_timeleft && (--dump_timeleft == 0)) {
18300Sstevel@tonic-gate 				panic("panic dump timeout");
18310Sstevel@tonic-gate 				/*NOTREACHED*/
18320Sstevel@tonic-gate 			}
18330Sstevel@tonic-gate 		} else if (panic_sync) {
18340Sstevel@tonic-gate 			if (sync_timeleft && (--sync_timeleft == 0)) {
18350Sstevel@tonic-gate 				panic("panic sync timeout");
18360Sstevel@tonic-gate 				/*NOTREACHED*/
18370Sstevel@tonic-gate 			}
18380Sstevel@tonic-gate 		}
18390Sstevel@tonic-gate 
18400Sstevel@tonic-gate 		return;
18410Sstevel@tonic-gate 	}
18420Sstevel@tonic-gate 
18430Sstevel@tonic-gate 	if (lbolt != CPU->cpu_deadman_lbolt) {
18440Sstevel@tonic-gate 		CPU->cpu_deadman_lbolt = lbolt;
18450Sstevel@tonic-gate 		CPU->cpu_deadman_countdown = deadman_seconds;
18460Sstevel@tonic-gate 		return;
18470Sstevel@tonic-gate 	}
18480Sstevel@tonic-gate 
18496054Svb160487 	if (--CPU->cpu_deadman_countdown > 0)
18500Sstevel@tonic-gate 		return;
18510Sstevel@tonic-gate 
18520Sstevel@tonic-gate 	/*
18530Sstevel@tonic-gate 	 * Regardless of whether or not we actually bring the system down,
18540Sstevel@tonic-gate 	 * bump the deadman_panics variable.
18550Sstevel@tonic-gate 	 *
18560Sstevel@tonic-gate 	 * N.B. deadman_panics is incremented once for each CPU that
18570Sstevel@tonic-gate 	 * passes through here.  It's expected that all the CPUs will
18580Sstevel@tonic-gate 	 * detect this condition within one second of each other, so
18590Sstevel@tonic-gate 	 * when deadman_enabled is off, deadman_panics will
18600Sstevel@tonic-gate 	 * typically be a multiple of the total number of CPUs in
18610Sstevel@tonic-gate 	 * the system.
18620Sstevel@tonic-gate 	 */
18630Sstevel@tonic-gate 	atomic_add_32(&deadman_panics, 1);
18640Sstevel@tonic-gate 
18650Sstevel@tonic-gate 	if (!deadman_enabled) {
18660Sstevel@tonic-gate 		CPU->cpu_deadman_countdown = deadman_seconds;
18670Sstevel@tonic-gate 		return;
18680Sstevel@tonic-gate 	}
18690Sstevel@tonic-gate 
18700Sstevel@tonic-gate 	/*
18710Sstevel@tonic-gate 	 * If we're here, we want to bring the system down.
18720Sstevel@tonic-gate 	 */
18730Sstevel@tonic-gate 	panic("deadman: timed out after %d seconds of clock "
18740Sstevel@tonic-gate 	    "inactivity", deadman_seconds);
18750Sstevel@tonic-gate 	/*NOTREACHED*/
18760Sstevel@tonic-gate }
18770Sstevel@tonic-gate 
18780Sstevel@tonic-gate /*ARGSUSED*/
18790Sstevel@tonic-gate static void
18800Sstevel@tonic-gate deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
18810Sstevel@tonic-gate {
18820Sstevel@tonic-gate 	cpu->cpu_deadman_lbolt = 0;
18830Sstevel@tonic-gate 	cpu->cpu_deadman_countdown = deadman_seconds;
18840Sstevel@tonic-gate 
18850Sstevel@tonic-gate 	hdlr->cyh_func = (cyc_func_t)deadman;
18860Sstevel@tonic-gate 	hdlr->cyh_level = CY_HIGH_LEVEL;
18870Sstevel@tonic-gate 	hdlr->cyh_arg = NULL;
18880Sstevel@tonic-gate 
18890Sstevel@tonic-gate 	/*
18900Sstevel@tonic-gate 	 * Stagger the CPUs so that they don't all run deadman() at
18910Sstevel@tonic-gate 	 * the same time.  Simplest reason to do this is to make it
18920Sstevel@tonic-gate 	 * more likely that only one CPU will panic in case of a
18930Sstevel@tonic-gate 	 * timeout.  This is (strictly speaking) an aesthetic, not a
18940Sstevel@tonic-gate 	 * technical consideration.
18950Sstevel@tonic-gate 	 *
18960Sstevel@tonic-gate 	 * The interval must be one second in accordance with the
18970Sstevel@tonic-gate 	 * code in deadman() above to increase lbolt during panic.
18980Sstevel@tonic-gate 	 */
18990Sstevel@tonic-gate 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
19000Sstevel@tonic-gate 	when->cyt_interval = NANOSEC;
19010Sstevel@tonic-gate }
19020Sstevel@tonic-gate 
19030Sstevel@tonic-gate 
19040Sstevel@tonic-gate void
19050Sstevel@tonic-gate deadman_init(void)
19060Sstevel@tonic-gate {
19070Sstevel@tonic-gate 	cyc_omni_handler_t hdlr;
19080Sstevel@tonic-gate 
19090Sstevel@tonic-gate 	if (deadman_seconds == 0)
19100Sstevel@tonic-gate 		deadman_seconds = snoop_interval / MICROSEC;
19110Sstevel@tonic-gate 
19120Sstevel@tonic-gate 	if (snooping)
19130Sstevel@tonic-gate 		deadman_enabled = 1;
19140Sstevel@tonic-gate 
19150Sstevel@tonic-gate 	hdlr.cyo_online = deadman_online;
19160Sstevel@tonic-gate 	hdlr.cyo_offline = NULL;
19170Sstevel@tonic-gate 	hdlr.cyo_arg = NULL;
19180Sstevel@tonic-gate 
19190Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
19200Sstevel@tonic-gate 	deadman_cyclic = cyclic_add_omni(&hdlr);
19210Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
19220Sstevel@tonic-gate }
19230Sstevel@tonic-gate 
19240Sstevel@tonic-gate /*
19250Sstevel@tonic-gate  * tod_fault() is for updating tod validate mechanism state:
19260Sstevel@tonic-gate  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
19270Sstevel@tonic-gate  *     currently used for debugging only
19280Sstevel@tonic-gate  * (2) The following four cases detected by tod validate mechanism:
19290Sstevel@tonic-gate  *       TOD_REVERSED: current tod value is less than previous value.
19300Sstevel@tonic-gate  *       TOD_STALLED: current tod value hasn't advanced.
19310Sstevel@tonic-gate  *       TOD_JUMPED: current tod value advanced too far from previous value.
19320Sstevel@tonic-gate  *       TOD_RATECHANGED: the ratio between average tod delta and
19330Sstevel@tonic-gate  *       average tick delta has changed.
19345084Sjohnlev  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
19355084Sjohnlev  *     a virtual TOD provided by a hypervisor.
19360Sstevel@tonic-gate  */
19370Sstevel@tonic-gate enum tod_fault_type
19380Sstevel@tonic-gate tod_fault(enum tod_fault_type ftype, int off)
19390Sstevel@tonic-gate {
19400Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&tod_lock));
19410Sstevel@tonic-gate 
19420Sstevel@tonic-gate 	if (tod_faulted != ftype) {
19430Sstevel@tonic-gate 		switch (ftype) {
19440Sstevel@tonic-gate 		case TOD_NOFAULT:
194578Sae112802 			plat_tod_fault(TOD_NOFAULT);
19460Sstevel@tonic-gate 			cmn_err(CE_NOTE, "Restarted tracking "
19475076Smishra 			    "Time of Day clock.");
19480Sstevel@tonic-gate 			tod_faulted = ftype;
19490Sstevel@tonic-gate 			break;
19500Sstevel@tonic-gate 		case TOD_REVERSED:
19510Sstevel@tonic-gate 		case TOD_JUMPED:
19520Sstevel@tonic-gate 			if (tod_faulted == TOD_NOFAULT) {
195378Sae112802 				plat_tod_fault(ftype);
19540Sstevel@tonic-gate 				cmn_err(CE_WARN, "Time of Day clock error: "
19550Sstevel@tonic-gate 				    "reason [%s by 0x%x]. -- "
19560Sstevel@tonic-gate 				    " Stopped tracking Time Of Day clock.",
19570Sstevel@tonic-gate 				    tod_fault_table[ftype], off);
19580Sstevel@tonic-gate 				tod_faulted = ftype;
19590Sstevel@tonic-gate 			}
19600Sstevel@tonic-gate 			break;
19610Sstevel@tonic-gate 		case TOD_STALLED:
19620Sstevel@tonic-gate 		case TOD_RATECHANGED:
19630Sstevel@tonic-gate 			if (tod_faulted == TOD_NOFAULT) {
196478Sae112802 				plat_tod_fault(ftype);
19650Sstevel@tonic-gate 				cmn_err(CE_WARN, "Time of Day clock error: "
19660Sstevel@tonic-gate 				    "reason [%s]. -- "
19670Sstevel@tonic-gate 				    " Stopped tracking Time Of Day clock.",
19680Sstevel@tonic-gate 				    tod_fault_table[ftype]);
19690Sstevel@tonic-gate 				tod_faulted = ftype;
19700Sstevel@tonic-gate 			}
19710Sstevel@tonic-gate 			break;
19725084Sjohnlev 		case TOD_RDONLY:
19735084Sjohnlev 			if (tod_faulted == TOD_NOFAULT) {
19745084Sjohnlev 				plat_tod_fault(ftype);
19755084Sjohnlev 				cmn_err(CE_NOTE, "!Time of Day clock is "
19765084Sjohnlev 				    "Read-Only; set of Date/Time will not "
19775084Sjohnlev 				    "persist across reboot.");
19785084Sjohnlev 				tod_faulted = ftype;
19795084Sjohnlev 			}
19805084Sjohnlev 			break;
19810Sstevel@tonic-gate 		default:
19820Sstevel@tonic-gate 			break;
19830Sstevel@tonic-gate 		}
19840Sstevel@tonic-gate 	}
19850Sstevel@tonic-gate 	return (tod_faulted);
19860Sstevel@tonic-gate }
19870Sstevel@tonic-gate 
19880Sstevel@tonic-gate void
19890Sstevel@tonic-gate tod_fault_reset()
19900Sstevel@tonic-gate {
19910Sstevel@tonic-gate 	tod_fault_reset_flag = 1;
19920Sstevel@tonic-gate }
19930Sstevel@tonic-gate 
19940Sstevel@tonic-gate 
19950Sstevel@tonic-gate /*
19960Sstevel@tonic-gate  * tod_validate() is used for checking values returned by tod_get().
19970Sstevel@tonic-gate  * Four error cases can be detected by this routine:
19980Sstevel@tonic-gate  *   TOD_REVERSED: current tod value is less than previous.
19990Sstevel@tonic-gate  *   TOD_STALLED: current tod value hasn't advanced.
20000Sstevel@tonic-gate  *   TOD_JUMPED: current tod value advanced too far from previous value.
20010Sstevel@tonic-gate  *   TOD_RATECHANGED: the ratio between average tod delta and
20020Sstevel@tonic-gate  *   average tick delta has changed.
20030Sstevel@tonic-gate  */
20040Sstevel@tonic-gate time_t
20050Sstevel@tonic-gate tod_validate(time_t tod)
20060Sstevel@tonic-gate {
20070Sstevel@tonic-gate 	time_t diff_tod;
20080Sstevel@tonic-gate 	hrtime_t diff_tick;
20090Sstevel@tonic-gate 
20100Sstevel@tonic-gate 	long dtick;
20110Sstevel@tonic-gate 	int dtick_delta;
20120Sstevel@tonic-gate 
20130Sstevel@tonic-gate 	int off = 0;
20140Sstevel@tonic-gate 	enum tod_fault_type tod_bad = TOD_NOFAULT;
20150Sstevel@tonic-gate 
20160Sstevel@tonic-gate 	static int firsttime = 1;
20170Sstevel@tonic-gate 
20180Sstevel@tonic-gate 	static time_t prev_tod = 0;
20190Sstevel@tonic-gate 	static hrtime_t prev_tick = 0;
20200Sstevel@tonic-gate 	static long dtick_avg = TOD_REF_FREQ;
20210Sstevel@tonic-gate 
20220Sstevel@tonic-gate 	hrtime_t tick = gethrtime();
20230Sstevel@tonic-gate 
20240Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&tod_lock));
20250Sstevel@tonic-gate 
20260Sstevel@tonic-gate 	/*
20270Sstevel@tonic-gate 	 * tod_validate_enable is patchable via /etc/system.
2028950Ssethg 	 * If TOD is already faulted, or if TOD validation is deferred,
2029950Ssethg 	 * there is nothing to do.
20300Sstevel@tonic-gate 	 */
2031950Ssethg 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2032950Ssethg 	    tod_validate_deferred) {
20330Sstevel@tonic-gate 		return (tod);
20340Sstevel@tonic-gate 	}
20350Sstevel@tonic-gate 
20360Sstevel@tonic-gate 	/*
20370Sstevel@tonic-gate 	 * Update prev_tod and prev_tick values for first run
20380Sstevel@tonic-gate 	 */
20390Sstevel@tonic-gate 	if (firsttime) {
20400Sstevel@tonic-gate 		firsttime = 0;
20410Sstevel@tonic-gate 		prev_tod = tod;
20420Sstevel@tonic-gate 		prev_tick = tick;
20430Sstevel@tonic-gate 		return (tod);
20440Sstevel@tonic-gate 	}
20450Sstevel@tonic-gate 
20460Sstevel@tonic-gate 	/*
20470Sstevel@tonic-gate 	 * For either of these conditions, we need to reset ourself
20480Sstevel@tonic-gate 	 * and start validation from zero since each condition
20490Sstevel@tonic-gate 	 * indicates that the TOD will be updated with new value
20500Sstevel@tonic-gate 	 * Also, note that tod_needsync will be reset in clock()
20510Sstevel@tonic-gate 	 */
20520Sstevel@tonic-gate 	if (tod_needsync || tod_fault_reset_flag) {
20530Sstevel@tonic-gate 		firsttime = 1;
20540Sstevel@tonic-gate 		prev_tod = 0;
20550Sstevel@tonic-gate 		prev_tick = 0;
20560Sstevel@tonic-gate 		dtick_avg = TOD_REF_FREQ;
20570Sstevel@tonic-gate 
20580Sstevel@tonic-gate 		if (tod_fault_reset_flag)
20590Sstevel@tonic-gate 			tod_fault_reset_flag = 0;
20600Sstevel@tonic-gate 
20610Sstevel@tonic-gate 		return (tod);
20620Sstevel@tonic-gate 	}
20630Sstevel@tonic-gate 
20640Sstevel@tonic-gate 	/* test hook */
20650Sstevel@tonic-gate 	switch (tod_unit_test) {
20660Sstevel@tonic-gate 	case 1: /* for testing jumping tod */
20670Sstevel@tonic-gate 		tod += tod_test_injector;
20680Sstevel@tonic-gate 		tod_unit_test = 0;
20690Sstevel@tonic-gate 		break;
20700Sstevel@tonic-gate 	case 2:	/* for testing stuck tod bit */
20710Sstevel@tonic-gate 		tod |= 1 << tod_test_injector;
20720Sstevel@tonic-gate 		tod_unit_test = 0;
20730Sstevel@tonic-gate 		break;
20740Sstevel@tonic-gate 	case 3:	/* for testing stalled tod */
20750Sstevel@tonic-gate 		tod = prev_tod;
20760Sstevel@tonic-gate 		tod_unit_test = 0;
20770Sstevel@tonic-gate 		break;
20780Sstevel@tonic-gate 	case 4:	/* reset tod fault status */
20790Sstevel@tonic-gate 		(void) tod_fault(TOD_NOFAULT, 0);
20800Sstevel@tonic-gate 		tod_unit_test = 0;
20810Sstevel@tonic-gate 		break;
20820Sstevel@tonic-gate 	default:
20830Sstevel@tonic-gate 		break;
20840Sstevel@tonic-gate 	}
20850Sstevel@tonic-gate 
20860Sstevel@tonic-gate 	diff_tod = tod - prev_tod;
20870Sstevel@tonic-gate 	diff_tick = tick - prev_tick;
20880Sstevel@tonic-gate 
20890Sstevel@tonic-gate 	ASSERT(diff_tick >= 0);
20900Sstevel@tonic-gate 
20910Sstevel@tonic-gate 	if (diff_tod < 0) {
20920Sstevel@tonic-gate 		/* ERROR - tod reversed */
20930Sstevel@tonic-gate 		tod_bad = TOD_REVERSED;
20940Sstevel@tonic-gate 		off = (int)(prev_tod - tod);
20950Sstevel@tonic-gate 	} else if (diff_tod == 0) {
20960Sstevel@tonic-gate 		/* tod did not advance */
20970Sstevel@tonic-gate 		if (diff_tick > TOD_STALL_THRESHOLD) {
20980Sstevel@tonic-gate 			/* ERROR - tod stalled */
20990Sstevel@tonic-gate 			tod_bad = TOD_STALLED;
21000Sstevel@tonic-gate 		} else {
21010Sstevel@tonic-gate 			/*
21020Sstevel@tonic-gate 			 * Make sure we don't update prev_tick
21030Sstevel@tonic-gate 			 * so that diff_tick is calculated since
21040Sstevel@tonic-gate 			 * the first diff_tod == 0
21050Sstevel@tonic-gate 			 */
21060Sstevel@tonic-gate 			return (tod);
21070Sstevel@tonic-gate 		}
21080Sstevel@tonic-gate 	} else {
21090Sstevel@tonic-gate 		/* calculate dtick */
21100Sstevel@tonic-gate 		dtick = diff_tick / diff_tod;
21110Sstevel@tonic-gate 
21120Sstevel@tonic-gate 		/* update dtick averages */
21130Sstevel@tonic-gate 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
21140Sstevel@tonic-gate 
21150Sstevel@tonic-gate 		/*
21160Sstevel@tonic-gate 		 * Calculate dtick_delta as
21170Sstevel@tonic-gate 		 * variation from reference freq in quartiles
21180Sstevel@tonic-gate 		 */
21190Sstevel@tonic-gate 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
21205076Smishra 		    (TOD_REF_FREQ >> 2);
21210Sstevel@tonic-gate 
21220Sstevel@tonic-gate 		/*
21230Sstevel@tonic-gate 		 * Even with a perfectly functioning TOD device,
21240Sstevel@tonic-gate 		 * when the number of elapsed seconds is low the
21250Sstevel@tonic-gate 		 * algorithm can calculate a rate that is beyond
21260Sstevel@tonic-gate 		 * tolerance, causing an error.  The algorithm is
21270Sstevel@tonic-gate 		 * inaccurate when elapsed time is low (less than
21280Sstevel@tonic-gate 		 * 5 seconds).
21290Sstevel@tonic-gate 		 */
21300Sstevel@tonic-gate 		if (diff_tod > 4) {
21310Sstevel@tonic-gate 			if (dtick < TOD_JUMP_THRESHOLD) {
21320Sstevel@tonic-gate 				/* ERROR - tod jumped */
21330Sstevel@tonic-gate 				tod_bad = TOD_JUMPED;
21340Sstevel@tonic-gate 				off = (int)diff_tod;
21350Sstevel@tonic-gate 			} else if (dtick_delta) {
21360Sstevel@tonic-gate 				/* ERROR - change in clock rate */
21370Sstevel@tonic-gate 				tod_bad = TOD_RATECHANGED;
21380Sstevel@tonic-gate 			}
21390Sstevel@tonic-gate 		}
21400Sstevel@tonic-gate 	}
21410Sstevel@tonic-gate 
21420Sstevel@tonic-gate 	if (tod_bad != TOD_NOFAULT) {
21430Sstevel@tonic-gate 		(void) tod_fault(tod_bad, off);
21440Sstevel@tonic-gate 
21450Sstevel@tonic-gate 		/*
21460Sstevel@tonic-gate 		 * Disable dosynctodr since we are going to fault
21470Sstevel@tonic-gate 		 * the TOD chip anyway here
21480Sstevel@tonic-gate 		 */
21490Sstevel@tonic-gate 		dosynctodr = 0;
21500Sstevel@tonic-gate 
21510Sstevel@tonic-gate 		/*
21520Sstevel@tonic-gate 		 * Set tod to the correct value from hrestime
21530Sstevel@tonic-gate 		 */
21540Sstevel@tonic-gate 		tod = hrestime.tv_sec;
21550Sstevel@tonic-gate 	}
21560Sstevel@tonic-gate 
21570Sstevel@tonic-gate 	prev_tod = tod;
21580Sstevel@tonic-gate 	prev_tick = tick;
21590Sstevel@tonic-gate 	return (tod);
21600Sstevel@tonic-gate }
21610Sstevel@tonic-gate 
21620Sstevel@tonic-gate static void
21630Sstevel@tonic-gate calcloadavg(int nrun, uint64_t *hp_ave)
21640Sstevel@tonic-gate {
21650Sstevel@tonic-gate 	static int64_t f[3] = { 135, 27, 9 };
21660Sstevel@tonic-gate 	uint_t i;
21670Sstevel@tonic-gate 	int64_t q, r;
21680Sstevel@tonic-gate 
21690Sstevel@tonic-gate 	/*
21700Sstevel@tonic-gate 	 * Compute load average over the last 1, 5, and 15 minutes
21710Sstevel@tonic-gate 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
21720Sstevel@tonic-gate 	 * exponential decay:
21730Sstevel@tonic-gate 	 * (1 - exp(-1/60)) << 13 = 135,
21740Sstevel@tonic-gate 	 * (1 - exp(-1/300)) << 13 = 27,
21750Sstevel@tonic-gate 	 * (1 - exp(-1/900)) << 13 = 9.
21760Sstevel@tonic-gate 	 */
21770Sstevel@tonic-gate 
21780Sstevel@tonic-gate 	/*
21790Sstevel@tonic-gate 	 * a little hoop-jumping to avoid integer overflow
21800Sstevel@tonic-gate 	 */
21810Sstevel@tonic-gate 	for (i = 0; i < 3; i++) {
21820Sstevel@tonic-gate 		q = (hp_ave[i]  >> 16) << 7;
21830Sstevel@tonic-gate 		r = (hp_ave[i]  & 0xffff) << 7;
21840Sstevel@tonic-gate 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
21850Sstevel@tonic-gate 	}
21860Sstevel@tonic-gate }
2187