1*0Sstevel@tonic-gate /* 2*0Sstevel@tonic-gate * CDDL HEADER START 3*0Sstevel@tonic-gate * 4*0Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5*0Sstevel@tonic-gate * Common Development and Distribution License, Version 1.0 only 6*0Sstevel@tonic-gate * (the "License"). You may not use this file except in compliance 7*0Sstevel@tonic-gate * with the License. 8*0Sstevel@tonic-gate * 9*0Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10*0Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 11*0Sstevel@tonic-gate * See the License for the specific language governing permissions 12*0Sstevel@tonic-gate * and limitations under the License. 13*0Sstevel@tonic-gate * 14*0Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 15*0Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16*0Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 17*0Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 18*0Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 19*0Sstevel@tonic-gate * 20*0Sstevel@tonic-gate * CDDL HEADER END 21*0Sstevel@tonic-gate */ 22*0Sstevel@tonic-gate /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23*0Sstevel@tonic-gate /* All Rights Reserved */ 24*0Sstevel@tonic-gate 25*0Sstevel@tonic-gate 26*0Sstevel@tonic-gate /* 27*0Sstevel@tonic-gate * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28*0Sstevel@tonic-gate * Use is subject to license terms. 29*0Sstevel@tonic-gate */ 30*0Sstevel@tonic-gate 31*0Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 32*0Sstevel@tonic-gate 33*0Sstevel@tonic-gate #include <sys/param.h> 34*0Sstevel@tonic-gate #include <sys/t_lock.h> 35*0Sstevel@tonic-gate #include <sys/types.h> 36*0Sstevel@tonic-gate #include <sys/tuneable.h> 37*0Sstevel@tonic-gate #include <sys/sysmacros.h> 38*0Sstevel@tonic-gate #include <sys/systm.h> 39*0Sstevel@tonic-gate #include <sys/cpuvar.h> 40*0Sstevel@tonic-gate #include <sys/lgrp.h> 41*0Sstevel@tonic-gate #include <sys/user.h> 42*0Sstevel@tonic-gate #include <sys/proc.h> 43*0Sstevel@tonic-gate #include <sys/callo.h> 44*0Sstevel@tonic-gate #include <sys/kmem.h> 45*0Sstevel@tonic-gate #include <sys/var.h> 46*0Sstevel@tonic-gate #include <sys/cmn_err.h> 47*0Sstevel@tonic-gate #include <sys/swap.h> 48*0Sstevel@tonic-gate #include <sys/vmsystm.h> 49*0Sstevel@tonic-gate #include <sys/class.h> 50*0Sstevel@tonic-gate #include <sys/time.h> 51*0Sstevel@tonic-gate #include <sys/debug.h> 52*0Sstevel@tonic-gate #include <sys/vtrace.h> 53*0Sstevel@tonic-gate #include <sys/spl.h> 54*0Sstevel@tonic-gate #include <sys/atomic.h> 55*0Sstevel@tonic-gate #include <sys/dumphdr.h> 56*0Sstevel@tonic-gate #include <sys/archsystm.h> 57*0Sstevel@tonic-gate #include <sys/fs/swapnode.h> 58*0Sstevel@tonic-gate #include <sys/panic.h> 59*0Sstevel@tonic-gate #include <sys/disp.h> 60*0Sstevel@tonic-gate #include <sys/msacct.h> 61*0Sstevel@tonic-gate #include <sys/mem_cage.h> 62*0Sstevel@tonic-gate 63*0Sstevel@tonic-gate #include <vm/page.h> 64*0Sstevel@tonic-gate #include <vm/anon.h> 65*0Sstevel@tonic-gate #include <vm/rm.h> 66*0Sstevel@tonic-gate #include <sys/cyclic.h> 67*0Sstevel@tonic-gate #include <sys/cpupart.h> 68*0Sstevel@tonic-gate #include <sys/rctl.h> 69*0Sstevel@tonic-gate #include <sys/task.h> 70*0Sstevel@tonic-gate #include <sys/chip.h> 71*0Sstevel@tonic-gate #include <sys/sdt.h> 72*0Sstevel@tonic-gate 73*0Sstevel@tonic-gate /* 74*0Sstevel@tonic-gate * for NTP support 75*0Sstevel@tonic-gate */ 76*0Sstevel@tonic-gate #include <sys/timex.h> 77*0Sstevel@tonic-gate #include <sys/inttypes.h> 78*0Sstevel@tonic-gate 79*0Sstevel@tonic-gate /* 80*0Sstevel@tonic-gate * clock is called straight from 81*0Sstevel@tonic-gate * the real time clock interrupt. 82*0Sstevel@tonic-gate * 83*0Sstevel@tonic-gate * Functions: 84*0Sstevel@tonic-gate * reprime clock 85*0Sstevel@tonic-gate * schedule callouts 86*0Sstevel@tonic-gate * maintain date 87*0Sstevel@tonic-gate * jab the scheduler 88*0Sstevel@tonic-gate */ 89*0Sstevel@tonic-gate 90*0Sstevel@tonic-gate extern kcondvar_t fsflush_cv; 91*0Sstevel@tonic-gate extern sysinfo_t sysinfo; 92*0Sstevel@tonic-gate extern vminfo_t vminfo; 93*0Sstevel@tonic-gate extern int idleswtch; /* flag set while idle in pswtch() */ 94*0Sstevel@tonic-gate 95*0Sstevel@tonic-gate /* 96*0Sstevel@tonic-gate * high-precision avenrun values. These are needed to make the 97*0Sstevel@tonic-gate * regular avenrun values accurate. 98*0Sstevel@tonic-gate */ 99*0Sstevel@tonic-gate static uint64_t hp_avenrun[3]; 100*0Sstevel@tonic-gate int avenrun[3]; /* FSCALED average run queue lengths */ 101*0Sstevel@tonic-gate time_t time; /* time in seconds since 1970 - for compatibility only */ 102*0Sstevel@tonic-gate 103*0Sstevel@tonic-gate static struct loadavg_s loadavg; 104*0Sstevel@tonic-gate /* 105*0Sstevel@tonic-gate * Phase/frequency-lock loop (PLL/FLL) definitions 106*0Sstevel@tonic-gate * 107*0Sstevel@tonic-gate * The following variables are read and set by the ntp_adjtime() system 108*0Sstevel@tonic-gate * call. 109*0Sstevel@tonic-gate * 110*0Sstevel@tonic-gate * time_state shows the state of the system clock, with values defined 111*0Sstevel@tonic-gate * in the timex.h header file. 112*0Sstevel@tonic-gate * 113*0Sstevel@tonic-gate * time_status shows the status of the system clock, with bits defined 114*0Sstevel@tonic-gate * in the timex.h header file. 115*0Sstevel@tonic-gate * 116*0Sstevel@tonic-gate * time_offset is used by the PLL/FLL to adjust the system time in small 117*0Sstevel@tonic-gate * increments. 118*0Sstevel@tonic-gate * 119*0Sstevel@tonic-gate * time_constant determines the bandwidth or "stiffness" of the PLL. 120*0Sstevel@tonic-gate * 121*0Sstevel@tonic-gate * time_tolerance determines maximum frequency error or tolerance of the 122*0Sstevel@tonic-gate * CPU clock oscillator and is a property of the architecture; however, 123*0Sstevel@tonic-gate * in principle it could change as result of the presence of external 124*0Sstevel@tonic-gate * discipline signals, for instance. 125*0Sstevel@tonic-gate * 126*0Sstevel@tonic-gate * time_precision is usually equal to the kernel tick variable; however, 127*0Sstevel@tonic-gate * in cases where a precision clock counter or external clock is 128*0Sstevel@tonic-gate * available, the resolution can be much less than this and depend on 129*0Sstevel@tonic-gate * whether the external clock is working or not. 130*0Sstevel@tonic-gate * 131*0Sstevel@tonic-gate * time_maxerror is initialized by a ntp_adjtime() call and increased by 132*0Sstevel@tonic-gate * the kernel once each second to reflect the maximum error bound 133*0Sstevel@tonic-gate * growth. 134*0Sstevel@tonic-gate * 135*0Sstevel@tonic-gate * time_esterror is set and read by the ntp_adjtime() call, but 136*0Sstevel@tonic-gate * otherwise not used by the kernel. 137*0Sstevel@tonic-gate */ 138*0Sstevel@tonic-gate int32_t time_state = TIME_OK; /* clock state */ 139*0Sstevel@tonic-gate int32_t time_status = STA_UNSYNC; /* clock status bits */ 140*0Sstevel@tonic-gate int32_t time_offset = 0; /* time offset (us) */ 141*0Sstevel@tonic-gate int32_t time_constant = 0; /* pll time constant */ 142*0Sstevel@tonic-gate int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 143*0Sstevel@tonic-gate int32_t time_precision = 1; /* clock precision (us) */ 144*0Sstevel@tonic-gate int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 145*0Sstevel@tonic-gate int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 146*0Sstevel@tonic-gate 147*0Sstevel@tonic-gate /* 148*0Sstevel@tonic-gate * The following variables establish the state of the PLL/FLL and the 149*0Sstevel@tonic-gate * residual time and frequency offset of the local clock. The scale 150*0Sstevel@tonic-gate * factors are defined in the timex.h header file. 151*0Sstevel@tonic-gate * 152*0Sstevel@tonic-gate * time_phase and time_freq are the phase increment and the frequency 153*0Sstevel@tonic-gate * increment, respectively, of the kernel time variable. 154*0Sstevel@tonic-gate * 155*0Sstevel@tonic-gate * time_freq is set via ntp_adjtime() from a value stored in a file when 156*0Sstevel@tonic-gate * the synchronization daemon is first started. Its value is retrieved 157*0Sstevel@tonic-gate * via ntp_adjtime() and written to the file about once per hour by the 158*0Sstevel@tonic-gate * daemon. 159*0Sstevel@tonic-gate * 160*0Sstevel@tonic-gate * time_adj is the adjustment added to the value of tick at each timer 161*0Sstevel@tonic-gate * interrupt and is recomputed from time_phase and time_freq at each 162*0Sstevel@tonic-gate * seconds rollover. 163*0Sstevel@tonic-gate * 164*0Sstevel@tonic-gate * time_reftime is the second's portion of the system time at the last 165*0Sstevel@tonic-gate * call to ntp_adjtime(). It is used to adjust the time_freq variable 166*0Sstevel@tonic-gate * and to increase the time_maxerror as the time since last update 167*0Sstevel@tonic-gate * increases. 168*0Sstevel@tonic-gate */ 169*0Sstevel@tonic-gate int32_t time_phase = 0; /* phase offset (scaled us) */ 170*0Sstevel@tonic-gate int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 171*0Sstevel@tonic-gate int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 172*0Sstevel@tonic-gate int32_t time_reftime = 0; /* time at last adjustment (s) */ 173*0Sstevel@tonic-gate 174*0Sstevel@tonic-gate /* 175*0Sstevel@tonic-gate * The scale factors of the following variables are defined in the 176*0Sstevel@tonic-gate * timex.h header file. 177*0Sstevel@tonic-gate * 178*0Sstevel@tonic-gate * pps_time contains the time at each calibration interval, as read by 179*0Sstevel@tonic-gate * microtime(). pps_count counts the seconds of the calibration 180*0Sstevel@tonic-gate * interval, the duration of which is nominally pps_shift in powers of 181*0Sstevel@tonic-gate * two. 182*0Sstevel@tonic-gate * 183*0Sstevel@tonic-gate * pps_offset is the time offset produced by the time median filter 184*0Sstevel@tonic-gate * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 185*0Sstevel@tonic-gate * this filter. 186*0Sstevel@tonic-gate * 187*0Sstevel@tonic-gate * pps_freq is the frequency offset produced by the frequency median 188*0Sstevel@tonic-gate * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 189*0Sstevel@tonic-gate * by this filter. 190*0Sstevel@tonic-gate * 191*0Sstevel@tonic-gate * pps_usec is latched from a high resolution counter or external clock 192*0Sstevel@tonic-gate * at pps_time. Here we want the hardware counter contents only, not the 193*0Sstevel@tonic-gate * contents plus the time_tv.usec as usual. 194*0Sstevel@tonic-gate * 195*0Sstevel@tonic-gate * pps_valid counts the number of seconds since the last PPS update. It 196*0Sstevel@tonic-gate * is used as a watchdog timer to disable the PPS discipline should the 197*0Sstevel@tonic-gate * PPS signal be lost. 198*0Sstevel@tonic-gate * 199*0Sstevel@tonic-gate * pps_glitch counts the number of seconds since the beginning of an 200*0Sstevel@tonic-gate * offset burst more than tick/2 from current nominal offset. It is used 201*0Sstevel@tonic-gate * mainly to suppress error bursts due to priority conflicts between the 202*0Sstevel@tonic-gate * PPS interrupt and timer interrupt. 203*0Sstevel@tonic-gate * 204*0Sstevel@tonic-gate * pps_intcnt counts the calibration intervals for use in the interval- 205*0Sstevel@tonic-gate * adaptation algorithm. It's just too complicated for words. 206*0Sstevel@tonic-gate */ 207*0Sstevel@tonic-gate struct timeval pps_time; /* kernel time at last interval */ 208*0Sstevel@tonic-gate int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 209*0Sstevel@tonic-gate int32_t pps_offset = 0; /* pps time offset (us) */ 210*0Sstevel@tonic-gate int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 211*0Sstevel@tonic-gate int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 212*0Sstevel@tonic-gate int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 213*0Sstevel@tonic-gate int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 214*0Sstevel@tonic-gate int32_t pps_usec = 0; /* microsec counter at last interval */ 215*0Sstevel@tonic-gate int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 216*0Sstevel@tonic-gate int32_t pps_glitch = 0; /* pps signal glitch counter */ 217*0Sstevel@tonic-gate int32_t pps_count = 0; /* calibration interval counter (s) */ 218*0Sstevel@tonic-gate int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 219*0Sstevel@tonic-gate int32_t pps_intcnt = 0; /* intervals at current duration */ 220*0Sstevel@tonic-gate 221*0Sstevel@tonic-gate /* 222*0Sstevel@tonic-gate * PPS signal quality monitors 223*0Sstevel@tonic-gate * 224*0Sstevel@tonic-gate * pps_jitcnt counts the seconds that have been discarded because the 225*0Sstevel@tonic-gate * jitter measured by the time median filter exceeds the limit MAXTIME 226*0Sstevel@tonic-gate * (100 us). 227*0Sstevel@tonic-gate * 228*0Sstevel@tonic-gate * pps_calcnt counts the frequency calibration intervals, which are 229*0Sstevel@tonic-gate * variable from 4 s to 256 s. 230*0Sstevel@tonic-gate * 231*0Sstevel@tonic-gate * pps_errcnt counts the calibration intervals which have been discarded 232*0Sstevel@tonic-gate * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 233*0Sstevel@tonic-gate * calibration interval jitter exceeds two ticks. 234*0Sstevel@tonic-gate * 235*0Sstevel@tonic-gate * pps_stbcnt counts the calibration intervals that have been discarded 236*0Sstevel@tonic-gate * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 237*0Sstevel@tonic-gate */ 238*0Sstevel@tonic-gate int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 239*0Sstevel@tonic-gate int32_t pps_calcnt = 0; /* calibration intervals */ 240*0Sstevel@tonic-gate int32_t pps_errcnt = 0; /* calibration errors */ 241*0Sstevel@tonic-gate int32_t pps_stbcnt = 0; /* stability limit exceeded */ 242*0Sstevel@tonic-gate 243*0Sstevel@tonic-gate /* The following variables require no explicit locking */ 244*0Sstevel@tonic-gate volatile clock_t lbolt; /* time in Hz since last boot */ 245*0Sstevel@tonic-gate volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 246*0Sstevel@tonic-gate 247*0Sstevel@tonic-gate kcondvar_t lbolt_cv; 248*0Sstevel@tonic-gate int one_sec = 1; /* turned on once every second */ 249*0Sstevel@tonic-gate static int fsflushcnt; /* counter for t_fsflushr */ 250*0Sstevel@tonic-gate int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 251*0Sstevel@tonic-gate int tod_needsync = 0; /* need to sync tod chip with software time */ 252*0Sstevel@tonic-gate static int tod_broken = 0; /* clock chip doesn't work */ 253*0Sstevel@tonic-gate time_t boot_time = 0; /* Boot time in seconds since 1970 */ 254*0Sstevel@tonic-gate cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 255*0Sstevel@tonic-gate cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 256*0Sstevel@tonic-gate 257*0Sstevel@tonic-gate static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 258*0Sstevel@tonic-gate 259*0Sstevel@tonic-gate /* 260*0Sstevel@tonic-gate * rechoose_interval_history is used to detect when rechoose_interval's 261*0Sstevel@tonic-gate * value has changed (via hotpatching for example), so that the 262*0Sstevel@tonic-gate * cached values in the cpu structures may be updated. 263*0Sstevel@tonic-gate */ 264*0Sstevel@tonic-gate static int rechoose_interval_history = RECHOOSE_INTERVAL; 265*0Sstevel@tonic-gate 266*0Sstevel@tonic-gate /* 267*0Sstevel@tonic-gate * for tod fault detection 268*0Sstevel@tonic-gate */ 269*0Sstevel@tonic-gate #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 270*0Sstevel@tonic-gate #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 271*0Sstevel@tonic-gate #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 272*0Sstevel@tonic-gate #define TOD_FILTER_N 4 273*0Sstevel@tonic-gate #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 274*0Sstevel@tonic-gate static int tod_faulted = TOD_NOFAULT; 275*0Sstevel@tonic-gate static int tod_fault_reset_flag = 0; 276*0Sstevel@tonic-gate 277*0Sstevel@tonic-gate /* patchable via /etc/system */ 278*0Sstevel@tonic-gate int tod_validate_enable = 1; 279*0Sstevel@tonic-gate 280*0Sstevel@tonic-gate /* 281*0Sstevel@tonic-gate * tod_fault_table[] must be aligned with 282*0Sstevel@tonic-gate * enum tod_fault_type in systm.h 283*0Sstevel@tonic-gate */ 284*0Sstevel@tonic-gate static char *tod_fault_table[] = { 285*0Sstevel@tonic-gate "Reversed", /* TOD_REVERSED */ 286*0Sstevel@tonic-gate "Stalled", /* TOD_STALLED */ 287*0Sstevel@tonic-gate "Jumped", /* TOD_JUMPED */ 288*0Sstevel@tonic-gate "Changed in Clock Rate" /* TOD_RATECHANGED */ 289*0Sstevel@tonic-gate /* 290*0Sstevel@tonic-gate * no strings needed for TOD_NOFAULT 291*0Sstevel@tonic-gate */ 292*0Sstevel@tonic-gate }; 293*0Sstevel@tonic-gate 294*0Sstevel@tonic-gate /* 295*0Sstevel@tonic-gate * test hook for tod broken detection in tod_validate 296*0Sstevel@tonic-gate */ 297*0Sstevel@tonic-gate int tod_unit_test = 0; 298*0Sstevel@tonic-gate time_t tod_test_injector; 299*0Sstevel@tonic-gate 300*0Sstevel@tonic-gate #define CLOCK_ADJ_HIST_SIZE 4 301*0Sstevel@tonic-gate 302*0Sstevel@tonic-gate static int adj_hist_entry; 303*0Sstevel@tonic-gate 304*0Sstevel@tonic-gate int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 305*0Sstevel@tonic-gate 306*0Sstevel@tonic-gate static void clock_tick(kthread_t *); 307*0Sstevel@tonic-gate static void calcloadavg(int, uint64_t *); 308*0Sstevel@tonic-gate static int genloadavg(struct loadavg_s *); 309*0Sstevel@tonic-gate static void loadavg_update(); 310*0Sstevel@tonic-gate 311*0Sstevel@tonic-gate void (*cmm_clock_callout)() = NULL; 312*0Sstevel@tonic-gate 313*0Sstevel@tonic-gate #ifdef KSLICE 314*0Sstevel@tonic-gate int kslice = KSLICE; 315*0Sstevel@tonic-gate #endif 316*0Sstevel@tonic-gate 317*0Sstevel@tonic-gate static void 318*0Sstevel@tonic-gate clock(void) 319*0Sstevel@tonic-gate { 320*0Sstevel@tonic-gate kthread_t *t; 321*0Sstevel@tonic-gate kmutex_t *plockp; /* pointer to thread's process lock */ 322*0Sstevel@tonic-gate int pinned_intr = 0; 323*0Sstevel@tonic-gate uint_t nrunnable, nrunning; 324*0Sstevel@tonic-gate uint_t w_io; 325*0Sstevel@tonic-gate cpu_t *cp; 326*0Sstevel@tonic-gate cpupart_t *cpupart; 327*0Sstevel@tonic-gate int exiting; 328*0Sstevel@tonic-gate extern void set_anoninfo(); 329*0Sstevel@tonic-gate extern void set_freemem(); 330*0Sstevel@tonic-gate void (*funcp)(); 331*0Sstevel@tonic-gate int32_t ltemp; 332*0Sstevel@tonic-gate int64_t lltemp; 333*0Sstevel@tonic-gate int s; 334*0Sstevel@tonic-gate int do_lgrp_load; 335*0Sstevel@tonic-gate int rechoose_update = 0; 336*0Sstevel@tonic-gate int rechoose; 337*0Sstevel@tonic-gate int i; 338*0Sstevel@tonic-gate 339*0Sstevel@tonic-gate if (panicstr) 340*0Sstevel@tonic-gate return; 341*0Sstevel@tonic-gate 342*0Sstevel@tonic-gate set_anoninfo(); 343*0Sstevel@tonic-gate /* 344*0Sstevel@tonic-gate * Make sure that 'freemem' do not drift too far from the truth 345*0Sstevel@tonic-gate */ 346*0Sstevel@tonic-gate set_freemem(); 347*0Sstevel@tonic-gate 348*0Sstevel@tonic-gate 349*0Sstevel@tonic-gate /* 350*0Sstevel@tonic-gate * Before the section which is repeated is executed, we do 351*0Sstevel@tonic-gate * the time delta processing which occurs every clock tick 352*0Sstevel@tonic-gate * 353*0Sstevel@tonic-gate * There is additional processing which happens every time 354*0Sstevel@tonic-gate * the nanosecond counter rolls over which is described 355*0Sstevel@tonic-gate * below - see the section which begins with : if (one_sec) 356*0Sstevel@tonic-gate * 357*0Sstevel@tonic-gate * This section marks the beginning of the precision-kernel 358*0Sstevel@tonic-gate * code fragment. 359*0Sstevel@tonic-gate * 360*0Sstevel@tonic-gate * First, compute the phase adjustment. If the low-order bits 361*0Sstevel@tonic-gate * (time_phase) of the update overflow, bump the higher order 362*0Sstevel@tonic-gate * bits (time_update). 363*0Sstevel@tonic-gate */ 364*0Sstevel@tonic-gate time_phase += time_adj; 365*0Sstevel@tonic-gate if (time_phase <= -FINEUSEC) { 366*0Sstevel@tonic-gate ltemp = -time_phase / SCALE_PHASE; 367*0Sstevel@tonic-gate time_phase += ltemp * SCALE_PHASE; 368*0Sstevel@tonic-gate s = hr_clock_lock(); 369*0Sstevel@tonic-gate timedelta -= ltemp * (NANOSEC/MICROSEC); 370*0Sstevel@tonic-gate hr_clock_unlock(s); 371*0Sstevel@tonic-gate } else if (time_phase >= FINEUSEC) { 372*0Sstevel@tonic-gate ltemp = time_phase / SCALE_PHASE; 373*0Sstevel@tonic-gate time_phase -= ltemp * SCALE_PHASE; 374*0Sstevel@tonic-gate s = hr_clock_lock(); 375*0Sstevel@tonic-gate timedelta += ltemp * (NANOSEC/MICROSEC); 376*0Sstevel@tonic-gate hr_clock_unlock(s); 377*0Sstevel@tonic-gate } 378*0Sstevel@tonic-gate 379*0Sstevel@tonic-gate /* 380*0Sstevel@tonic-gate * End of precision-kernel code fragment which is processed 381*0Sstevel@tonic-gate * every timer interrupt. 382*0Sstevel@tonic-gate * 383*0Sstevel@tonic-gate * Continue with the interrupt processing as scheduled. 384*0Sstevel@tonic-gate * 385*0Sstevel@tonic-gate * Did we pin another interrupt thread? Need to check this before 386*0Sstevel@tonic-gate * grabbing any adaptive locks, since if we block on a lock the 387*0Sstevel@tonic-gate * pinned thread could escape. Note that this is just a heuristic; 388*0Sstevel@tonic-gate * if we take multiple laps though clock() without returning from 389*0Sstevel@tonic-gate * the interrupt because we have another clock tick pending, then 390*0Sstevel@tonic-gate * the pinned interrupt could be released by one of the previous 391*0Sstevel@tonic-gate * laps. The only consequence is that the CPU will be counted as 392*0Sstevel@tonic-gate * in idle (or wait) state once the pinned interrupt is released. 393*0Sstevel@tonic-gate * Since this accounting is inaccurate by nature, this isn't a big 394*0Sstevel@tonic-gate * deal --- but we should try to get it right in the common case 395*0Sstevel@tonic-gate * where we only call clock() once per interrupt. 396*0Sstevel@tonic-gate */ 397*0Sstevel@tonic-gate if (curthread->t_intr != NULL) 398*0Sstevel@tonic-gate pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 399*0Sstevel@tonic-gate 400*0Sstevel@tonic-gate /* 401*0Sstevel@tonic-gate * Count the number of runnable threads and the number waiting 402*0Sstevel@tonic-gate * for some form of I/O to complete -- gets added to 403*0Sstevel@tonic-gate * sysinfo.waiting. To know the state of the system, must add 404*0Sstevel@tonic-gate * wait counts from all CPUs. Also add up the per-partition 405*0Sstevel@tonic-gate * statistics. 406*0Sstevel@tonic-gate */ 407*0Sstevel@tonic-gate w_io = 0; 408*0Sstevel@tonic-gate nrunnable = 0; 409*0Sstevel@tonic-gate 410*0Sstevel@tonic-gate /* 411*0Sstevel@tonic-gate * keep track of when to update lgrp/part loads 412*0Sstevel@tonic-gate */ 413*0Sstevel@tonic-gate 414*0Sstevel@tonic-gate do_lgrp_load = 0; 415*0Sstevel@tonic-gate if (lgrp_ticks++ >= hz / 10) { 416*0Sstevel@tonic-gate lgrp_ticks = 0; 417*0Sstevel@tonic-gate do_lgrp_load = 1; 418*0Sstevel@tonic-gate } 419*0Sstevel@tonic-gate 420*0Sstevel@tonic-gate /* 421*0Sstevel@tonic-gate * The dispatcher tunable rechoose_interval may be hot-patched. 422*0Sstevel@tonic-gate * Note if it has a new value. If so, the effective rechoose_interval 423*0Sstevel@tonic-gate * cached in the cpu structures needs to be updated. 424*0Sstevel@tonic-gate * If needed we'll do this during the walk of the cpu_list below. 425*0Sstevel@tonic-gate */ 426*0Sstevel@tonic-gate if (rechoose_interval != rechoose_interval_history) { 427*0Sstevel@tonic-gate rechoose_interval_history = rechoose_interval; 428*0Sstevel@tonic-gate rechoose_update = 1; 429*0Sstevel@tonic-gate } 430*0Sstevel@tonic-gate 431*0Sstevel@tonic-gate if (one_sec) 432*0Sstevel@tonic-gate loadavg_update(); 433*0Sstevel@tonic-gate 434*0Sstevel@tonic-gate 435*0Sstevel@tonic-gate /* 436*0Sstevel@tonic-gate * First count the threads waiting on kpreempt queues in each 437*0Sstevel@tonic-gate * CPU partition. 438*0Sstevel@tonic-gate */ 439*0Sstevel@tonic-gate 440*0Sstevel@tonic-gate cpupart = cp_list_head; 441*0Sstevel@tonic-gate do { 442*0Sstevel@tonic-gate uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 443*0Sstevel@tonic-gate 444*0Sstevel@tonic-gate cpupart->cp_updates++; 445*0Sstevel@tonic-gate nrunnable += cpupart_nrunnable; 446*0Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpupart_nrunnable; 447*0Sstevel@tonic-gate if (one_sec) { 448*0Sstevel@tonic-gate cpupart->cp_nrunning = 0; 449*0Sstevel@tonic-gate cpupart->cp_nrunnable = cpupart_nrunnable; 450*0Sstevel@tonic-gate } 451*0Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 452*0Sstevel@tonic-gate 453*0Sstevel@tonic-gate 454*0Sstevel@tonic-gate /* Now count the per-CPU statistics. */ 455*0Sstevel@tonic-gate cp = cpu_list; 456*0Sstevel@tonic-gate do { 457*0Sstevel@tonic-gate uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 458*0Sstevel@tonic-gate 459*0Sstevel@tonic-gate nrunnable += cpu_nrunnable; 460*0Sstevel@tonic-gate cpupart = cp->cpu_part; 461*0Sstevel@tonic-gate cpupart->cp_nrunnable_cum += cpu_nrunnable; 462*0Sstevel@tonic-gate if (one_sec) 463*0Sstevel@tonic-gate cpupart->cp_nrunnable += cpu_nrunnable; 464*0Sstevel@tonic-gate if (do_lgrp_load && 465*0Sstevel@tonic-gate (cp->cpu_flags & CPU_EXISTS)) { 466*0Sstevel@tonic-gate /* 467*0Sstevel@tonic-gate * When updating the lgroup's load average, 468*0Sstevel@tonic-gate * account for the thread running on the CPU. 469*0Sstevel@tonic-gate * If the CPU is the current one, then we need 470*0Sstevel@tonic-gate * to account for the underlying thread which 471*0Sstevel@tonic-gate * got the clock interrupt not the thread that is 472*0Sstevel@tonic-gate * handling the interrupt and caculating the load 473*0Sstevel@tonic-gate * average 474*0Sstevel@tonic-gate */ 475*0Sstevel@tonic-gate t = cp->cpu_thread; 476*0Sstevel@tonic-gate if (CPU == cp) 477*0Sstevel@tonic-gate t = t->t_intr; 478*0Sstevel@tonic-gate 479*0Sstevel@tonic-gate /* 480*0Sstevel@tonic-gate * Account for the load average for this thread if 481*0Sstevel@tonic-gate * it isn't the idle thread or it is on the interrupt 482*0Sstevel@tonic-gate * stack and not the current CPU handling the clock 483*0Sstevel@tonic-gate * interrupt 484*0Sstevel@tonic-gate */ 485*0Sstevel@tonic-gate if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 486*0Sstevel@tonic-gate CPU_ON_INTR(cp))) { 487*0Sstevel@tonic-gate if (t->t_lpl == cp->cpu_lpl) { 488*0Sstevel@tonic-gate /* local thread */ 489*0Sstevel@tonic-gate cpu_nrunnable++; 490*0Sstevel@tonic-gate } else { 491*0Sstevel@tonic-gate /* 492*0Sstevel@tonic-gate * This is a remote thread, charge it 493*0Sstevel@tonic-gate * against its home lgroup. Note that 494*0Sstevel@tonic-gate * we notice that a thread is remote 495*0Sstevel@tonic-gate * only if it's currently executing. 496*0Sstevel@tonic-gate * This is a reasonable approximation, 497*0Sstevel@tonic-gate * since queued remote threads are rare. 498*0Sstevel@tonic-gate * Note also that if we didn't charge 499*0Sstevel@tonic-gate * it to its home lgroup, remote 500*0Sstevel@tonic-gate * execution would often make a system 501*0Sstevel@tonic-gate * appear balanced even though it was 502*0Sstevel@tonic-gate * not, and thread placement/migration 503*0Sstevel@tonic-gate * would often not be done correctly. 504*0Sstevel@tonic-gate */ 505*0Sstevel@tonic-gate lgrp_loadavg(t->t_lpl, 506*0Sstevel@tonic-gate LGRP_LOADAVG_IN_THREAD_MAX, 0); 507*0Sstevel@tonic-gate } 508*0Sstevel@tonic-gate } 509*0Sstevel@tonic-gate lgrp_loadavg(cp->cpu_lpl, 510*0Sstevel@tonic-gate cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 511*0Sstevel@tonic-gate } 512*0Sstevel@tonic-gate /* 513*0Sstevel@tonic-gate * The platform may define a per physical processor 514*0Sstevel@tonic-gate * adjustment of rechoose_interval. The effective 515*0Sstevel@tonic-gate * (base + adjustment) rechoose_interval is cached 516*0Sstevel@tonic-gate * in the cpu structures for efficiency. Above we detect 517*0Sstevel@tonic-gate * if the cached values need updating, and here is where 518*0Sstevel@tonic-gate * the update happens. 519*0Sstevel@tonic-gate */ 520*0Sstevel@tonic-gate if (rechoose_update) { 521*0Sstevel@tonic-gate rechoose = rechoose_interval + 522*0Sstevel@tonic-gate cp->cpu_chip->chip_rechoose_adj; 523*0Sstevel@tonic-gate cp->cpu_rechoose = (rechoose < 0) ? 0 : rechoose; 524*0Sstevel@tonic-gate } 525*0Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 526*0Sstevel@tonic-gate 527*0Sstevel@tonic-gate /* 528*0Sstevel@tonic-gate * Do tick processing for all the active threads running in 529*0Sstevel@tonic-gate * the system. 530*0Sstevel@tonic-gate */ 531*0Sstevel@tonic-gate cp = cpu_list; 532*0Sstevel@tonic-gate nrunning = 0; 533*0Sstevel@tonic-gate do { 534*0Sstevel@tonic-gate klwp_id_t lwp; 535*0Sstevel@tonic-gate int intr; 536*0Sstevel@tonic-gate int thread_away; 537*0Sstevel@tonic-gate 538*0Sstevel@tonic-gate /* 539*0Sstevel@tonic-gate * Don't do any tick processing on CPUs that 540*0Sstevel@tonic-gate * aren't even in the system or aren't up yet. 541*0Sstevel@tonic-gate */ 542*0Sstevel@tonic-gate if ((cp->cpu_flags & CPU_EXISTS) == 0) { 543*0Sstevel@tonic-gate continue; 544*0Sstevel@tonic-gate } 545*0Sstevel@tonic-gate 546*0Sstevel@tonic-gate /* 547*0Sstevel@tonic-gate * The locking here is rather tricky. We use 548*0Sstevel@tonic-gate * thread_free_lock to keep the currently running 549*0Sstevel@tonic-gate * thread from being freed or recycled while we're 550*0Sstevel@tonic-gate * looking at it. We can then check if the thread 551*0Sstevel@tonic-gate * is exiting and get the appropriate p_lock if it 552*0Sstevel@tonic-gate * is not. We have to be careful, though, because 553*0Sstevel@tonic-gate * the _process_ can still be freed while we're 554*0Sstevel@tonic-gate * holding thread_free_lock. To avoid touching the 555*0Sstevel@tonic-gate * proc structure we put a pointer to the p_lock in the 556*0Sstevel@tonic-gate * thread structure. The p_lock is persistent so we 557*0Sstevel@tonic-gate * can acquire it even if the process is gone. At that 558*0Sstevel@tonic-gate * point we can check (again) if the thread is exiting 559*0Sstevel@tonic-gate * and either drop the lock or do the tick processing. 560*0Sstevel@tonic-gate */ 561*0Sstevel@tonic-gate mutex_enter(&thread_free_lock); 562*0Sstevel@tonic-gate /* 563*0Sstevel@tonic-gate * We cannot hold the cpu_lock to prevent the 564*0Sstevel@tonic-gate * cpu_list from changing in the clock interrupt. 565*0Sstevel@tonic-gate * As long as we don't block (or don't get pre-empted) 566*0Sstevel@tonic-gate * the cpu_list will not change (all threads are paused 567*0Sstevel@tonic-gate * before list modification). If the list does change 568*0Sstevel@tonic-gate * any deleted cpu structures will remain with cpu_next 569*0Sstevel@tonic-gate * set to NULL, hence the following test. 570*0Sstevel@tonic-gate */ 571*0Sstevel@tonic-gate if (cp->cpu_next == NULL) { 572*0Sstevel@tonic-gate mutex_exit(&thread_free_lock); 573*0Sstevel@tonic-gate break; 574*0Sstevel@tonic-gate } 575*0Sstevel@tonic-gate t = cp->cpu_thread; /* Current running thread */ 576*0Sstevel@tonic-gate if (CPU == cp) { 577*0Sstevel@tonic-gate /* 578*0Sstevel@tonic-gate * 't' will be the clock interrupt thread on this 579*0Sstevel@tonic-gate * CPU. Use the pinned thread (if any) on this CPU 580*0Sstevel@tonic-gate * as the target of the clock tick. If we pinned 581*0Sstevel@tonic-gate * an interrupt, though, just keep using the clock 582*0Sstevel@tonic-gate * interrupt thread since the formerly pinned one 583*0Sstevel@tonic-gate * may have gone away. One interrupt thread is as 584*0Sstevel@tonic-gate * good as another, and this means we don't have 585*0Sstevel@tonic-gate * to continue to check pinned_intr in subsequent 586*0Sstevel@tonic-gate * code. 587*0Sstevel@tonic-gate */ 588*0Sstevel@tonic-gate ASSERT(t == curthread); 589*0Sstevel@tonic-gate if (t->t_intr != NULL && !pinned_intr) 590*0Sstevel@tonic-gate t = t->t_intr; 591*0Sstevel@tonic-gate } 592*0Sstevel@tonic-gate 593*0Sstevel@tonic-gate intr = t->t_flag & T_INTR_THREAD; 594*0Sstevel@tonic-gate lwp = ttolwp(t); 595*0Sstevel@tonic-gate if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 596*0Sstevel@tonic-gate /* 597*0Sstevel@tonic-gate * Thread is exiting (or uninteresting) so don't 598*0Sstevel@tonic-gate * do tick processing or grab p_lock. Once we 599*0Sstevel@tonic-gate * drop thread_free_lock we can't look inside the 600*0Sstevel@tonic-gate * thread or lwp structure, since the thread may 601*0Sstevel@tonic-gate * have gone away. 602*0Sstevel@tonic-gate */ 603*0Sstevel@tonic-gate exiting = 1; 604*0Sstevel@tonic-gate } else { 605*0Sstevel@tonic-gate /* 606*0Sstevel@tonic-gate * OK, try to grab the process lock. See 607*0Sstevel@tonic-gate * comments above for why we're not using 608*0Sstevel@tonic-gate * ttoproc(t)->p_lockp here. 609*0Sstevel@tonic-gate */ 610*0Sstevel@tonic-gate plockp = t->t_plockp; 611*0Sstevel@tonic-gate mutex_enter(plockp); 612*0Sstevel@tonic-gate /* See above comment. */ 613*0Sstevel@tonic-gate if (cp->cpu_next == NULL) { 614*0Sstevel@tonic-gate mutex_exit(plockp); 615*0Sstevel@tonic-gate mutex_exit(&thread_free_lock); 616*0Sstevel@tonic-gate break; 617*0Sstevel@tonic-gate } 618*0Sstevel@tonic-gate /* 619*0Sstevel@tonic-gate * The thread may have exited between when we 620*0Sstevel@tonic-gate * checked above, and when we got the p_lock. 621*0Sstevel@tonic-gate */ 622*0Sstevel@tonic-gate if (t->t_proc_flag & TP_LWPEXIT) { 623*0Sstevel@tonic-gate mutex_exit(plockp); 624*0Sstevel@tonic-gate exiting = 1; 625*0Sstevel@tonic-gate } else { 626*0Sstevel@tonic-gate exiting = 0; 627*0Sstevel@tonic-gate } 628*0Sstevel@tonic-gate } 629*0Sstevel@tonic-gate /* 630*0Sstevel@tonic-gate * Either we have the p_lock for the thread's process, 631*0Sstevel@tonic-gate * or we don't care about the thread structure any more. 632*0Sstevel@tonic-gate * Either way we can drop thread_free_lock. 633*0Sstevel@tonic-gate */ 634*0Sstevel@tonic-gate mutex_exit(&thread_free_lock); 635*0Sstevel@tonic-gate 636*0Sstevel@tonic-gate /* 637*0Sstevel@tonic-gate * Update user, system, and idle cpu times. 638*0Sstevel@tonic-gate */ 639*0Sstevel@tonic-gate if (one_sec) { 640*0Sstevel@tonic-gate nrunning++; 641*0Sstevel@tonic-gate cp->cpu_part->cp_nrunning++; 642*0Sstevel@tonic-gate } 643*0Sstevel@tonic-gate /* 644*0Sstevel@tonic-gate * If we haven't done tick processing for this 645*0Sstevel@tonic-gate * lwp, then do it now. Since we don't hold the 646*0Sstevel@tonic-gate * lwp down on a CPU it can migrate and show up 647*0Sstevel@tonic-gate * more than once, hence the lbolt check. 648*0Sstevel@tonic-gate * 649*0Sstevel@tonic-gate * Also, make sure that it's okay to perform the 650*0Sstevel@tonic-gate * tick processing before calling clock_tick. 651*0Sstevel@tonic-gate * Setting thread_away to a TRUE value (ie. not 0) 652*0Sstevel@tonic-gate * results in tick processing not being performed for 653*0Sstevel@tonic-gate * that thread. Or, in other words, keeps the thread 654*0Sstevel@tonic-gate * away from clock_tick processing. 655*0Sstevel@tonic-gate */ 656*0Sstevel@tonic-gate thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 657*0Sstevel@tonic-gate CPU_ON_INTR(cp) || intr || 658*0Sstevel@tonic-gate (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 659*0Sstevel@tonic-gate 660*0Sstevel@tonic-gate if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 661*0Sstevel@tonic-gate t->t_lbolt = lbolt; 662*0Sstevel@tonic-gate clock_tick(t); 663*0Sstevel@tonic-gate } 664*0Sstevel@tonic-gate 665*0Sstevel@tonic-gate #ifdef KSLICE 666*0Sstevel@tonic-gate /* 667*0Sstevel@tonic-gate * Ah what the heck, give this kid a taste of the real 668*0Sstevel@tonic-gate * world and yank the rug out from under it. 669*0Sstevel@tonic-gate * But, only if we are running UniProcessor. 670*0Sstevel@tonic-gate */ 671*0Sstevel@tonic-gate if ((kslice) && (ncpus == 1)) { 672*0Sstevel@tonic-gate aston(t); 673*0Sstevel@tonic-gate cp->cpu_runrun = 1; 674*0Sstevel@tonic-gate cp->cpu_kprunrun = 1; 675*0Sstevel@tonic-gate } 676*0Sstevel@tonic-gate #endif 677*0Sstevel@tonic-gate if (!exiting) 678*0Sstevel@tonic-gate mutex_exit(plockp); 679*0Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 680*0Sstevel@tonic-gate 681*0Sstevel@tonic-gate /* 682*0Sstevel@tonic-gate * bump time in ticks 683*0Sstevel@tonic-gate * 684*0Sstevel@tonic-gate * We rely on there being only one clock thread and hence 685*0Sstevel@tonic-gate * don't need a lock to protect lbolt. 686*0Sstevel@tonic-gate */ 687*0Sstevel@tonic-gate lbolt++; 688*0Sstevel@tonic-gate atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 689*0Sstevel@tonic-gate 690*0Sstevel@tonic-gate /* 691*0Sstevel@tonic-gate * Check for a callout that needs be called from the clock 692*0Sstevel@tonic-gate * thread to support the membership protocol in a clustered 693*0Sstevel@tonic-gate * system. Copy the function pointer so that we can reset 694*0Sstevel@tonic-gate * this to NULL if needed. 695*0Sstevel@tonic-gate */ 696*0Sstevel@tonic-gate if ((funcp = cmm_clock_callout) != NULL) 697*0Sstevel@tonic-gate (*funcp)(); 698*0Sstevel@tonic-gate 699*0Sstevel@tonic-gate /* 700*0Sstevel@tonic-gate * Wakeup the cageout thread waiters once per second. 701*0Sstevel@tonic-gate */ 702*0Sstevel@tonic-gate if (one_sec) 703*0Sstevel@tonic-gate kcage_tick(); 704*0Sstevel@tonic-gate 705*0Sstevel@tonic-gate /* 706*0Sstevel@tonic-gate * Schedule timeout() requests if any are due at this time. 707*0Sstevel@tonic-gate */ 708*0Sstevel@tonic-gate callout_schedule(); 709*0Sstevel@tonic-gate 710*0Sstevel@tonic-gate if (one_sec) { 711*0Sstevel@tonic-gate 712*0Sstevel@tonic-gate int drift, absdrift; 713*0Sstevel@tonic-gate timestruc_t tod; 714*0Sstevel@tonic-gate int s; 715*0Sstevel@tonic-gate 716*0Sstevel@tonic-gate /* 717*0Sstevel@tonic-gate * Beginning of precision-kernel code fragment executed 718*0Sstevel@tonic-gate * every second. 719*0Sstevel@tonic-gate * 720*0Sstevel@tonic-gate * On rollover of the second the phase adjustment to be 721*0Sstevel@tonic-gate * used for the next second is calculated. Also, the 722*0Sstevel@tonic-gate * maximum error is increased by the tolerance. If the 723*0Sstevel@tonic-gate * PPS frequency discipline code is present, the phase is 724*0Sstevel@tonic-gate * increased to compensate for the CPU clock oscillator 725*0Sstevel@tonic-gate * frequency error. 726*0Sstevel@tonic-gate * 727*0Sstevel@tonic-gate * On a 32-bit machine and given parameters in the timex.h 728*0Sstevel@tonic-gate * header file, the maximum phase adjustment is +-512 ms 729*0Sstevel@tonic-gate * and maximum frequency offset is (a tad less than) 730*0Sstevel@tonic-gate * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 731*0Sstevel@tonic-gate */ 732*0Sstevel@tonic-gate time_maxerror += time_tolerance / SCALE_USEC; 733*0Sstevel@tonic-gate 734*0Sstevel@tonic-gate /* 735*0Sstevel@tonic-gate * Leap second processing. If in leap-insert state at 736*0Sstevel@tonic-gate * the end of the day, the system clock is set back one 737*0Sstevel@tonic-gate * second; if in leap-delete state, the system clock is 738*0Sstevel@tonic-gate * set ahead one second. The microtime() routine or 739*0Sstevel@tonic-gate * external clock driver will insure that reported time 740*0Sstevel@tonic-gate * is always monotonic. The ugly divides should be 741*0Sstevel@tonic-gate * replaced. 742*0Sstevel@tonic-gate */ 743*0Sstevel@tonic-gate switch (time_state) { 744*0Sstevel@tonic-gate 745*0Sstevel@tonic-gate case TIME_OK: 746*0Sstevel@tonic-gate if (time_status & STA_INS) 747*0Sstevel@tonic-gate time_state = TIME_INS; 748*0Sstevel@tonic-gate else if (time_status & STA_DEL) 749*0Sstevel@tonic-gate time_state = TIME_DEL; 750*0Sstevel@tonic-gate break; 751*0Sstevel@tonic-gate 752*0Sstevel@tonic-gate case TIME_INS: 753*0Sstevel@tonic-gate if (hrestime.tv_sec % 86400 == 0) { 754*0Sstevel@tonic-gate s = hr_clock_lock(); 755*0Sstevel@tonic-gate hrestime.tv_sec--; 756*0Sstevel@tonic-gate hr_clock_unlock(s); 757*0Sstevel@tonic-gate time_state = TIME_OOP; 758*0Sstevel@tonic-gate } 759*0Sstevel@tonic-gate break; 760*0Sstevel@tonic-gate 761*0Sstevel@tonic-gate case TIME_DEL: 762*0Sstevel@tonic-gate if ((hrestime.tv_sec + 1) % 86400 == 0) { 763*0Sstevel@tonic-gate s = hr_clock_lock(); 764*0Sstevel@tonic-gate hrestime.tv_sec++; 765*0Sstevel@tonic-gate hr_clock_unlock(s); 766*0Sstevel@tonic-gate time_state = TIME_WAIT; 767*0Sstevel@tonic-gate } 768*0Sstevel@tonic-gate break; 769*0Sstevel@tonic-gate 770*0Sstevel@tonic-gate case TIME_OOP: 771*0Sstevel@tonic-gate time_state = TIME_WAIT; 772*0Sstevel@tonic-gate break; 773*0Sstevel@tonic-gate 774*0Sstevel@tonic-gate case TIME_WAIT: 775*0Sstevel@tonic-gate if (!(time_status & (STA_INS | STA_DEL))) 776*0Sstevel@tonic-gate time_state = TIME_OK; 777*0Sstevel@tonic-gate default: 778*0Sstevel@tonic-gate break; 779*0Sstevel@tonic-gate } 780*0Sstevel@tonic-gate 781*0Sstevel@tonic-gate /* 782*0Sstevel@tonic-gate * Compute the phase adjustment for the next second. In 783*0Sstevel@tonic-gate * PLL mode, the offset is reduced by a fixed factor 784*0Sstevel@tonic-gate * times the time constant. In FLL mode the offset is 785*0Sstevel@tonic-gate * used directly. In either mode, the maximum phase 786*0Sstevel@tonic-gate * adjustment for each second is clamped so as to spread 787*0Sstevel@tonic-gate * the adjustment over not more than the number of 788*0Sstevel@tonic-gate * seconds between updates. 789*0Sstevel@tonic-gate */ 790*0Sstevel@tonic-gate if (time_offset == 0) 791*0Sstevel@tonic-gate time_adj = 0; 792*0Sstevel@tonic-gate else if (time_offset < 0) { 793*0Sstevel@tonic-gate lltemp = -time_offset; 794*0Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 795*0Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 796*0Sstevel@tonic-gate lltemp *= (1 << time_constant) / 797*0Sstevel@tonic-gate SCALE_KG; 798*0Sstevel@tonic-gate else 799*0Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 800*0Sstevel@tonic-gate time_constant; 801*0Sstevel@tonic-gate } 802*0Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 803*0Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 804*0Sstevel@tonic-gate time_offset += lltemp; 805*0Sstevel@tonic-gate time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 806*0Sstevel@tonic-gate } else { 807*0Sstevel@tonic-gate lltemp = time_offset; 808*0Sstevel@tonic-gate if (!(time_status & STA_FLL)) { 809*0Sstevel@tonic-gate if ((1 << time_constant) >= SCALE_KG) 810*0Sstevel@tonic-gate lltemp *= (1 << time_constant) / 811*0Sstevel@tonic-gate SCALE_KG; 812*0Sstevel@tonic-gate else 813*0Sstevel@tonic-gate lltemp = (lltemp / SCALE_KG) >> 814*0Sstevel@tonic-gate time_constant; 815*0Sstevel@tonic-gate } 816*0Sstevel@tonic-gate if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 817*0Sstevel@tonic-gate lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 818*0Sstevel@tonic-gate time_offset -= lltemp; 819*0Sstevel@tonic-gate time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 820*0Sstevel@tonic-gate } 821*0Sstevel@tonic-gate 822*0Sstevel@tonic-gate /* 823*0Sstevel@tonic-gate * Compute the frequency estimate and additional phase 824*0Sstevel@tonic-gate * adjustment due to frequency error for the next 825*0Sstevel@tonic-gate * second. When the PPS signal is engaged, gnaw on the 826*0Sstevel@tonic-gate * watchdog counter and update the frequency computed by 827*0Sstevel@tonic-gate * the pll and the PPS signal. 828*0Sstevel@tonic-gate */ 829*0Sstevel@tonic-gate pps_valid++; 830*0Sstevel@tonic-gate if (pps_valid == PPS_VALID) { 831*0Sstevel@tonic-gate pps_jitter = MAXTIME; 832*0Sstevel@tonic-gate pps_stabil = MAXFREQ; 833*0Sstevel@tonic-gate time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 834*0Sstevel@tonic-gate STA_PPSWANDER | STA_PPSERROR); 835*0Sstevel@tonic-gate } 836*0Sstevel@tonic-gate lltemp = time_freq + pps_freq; 837*0Sstevel@tonic-gate 838*0Sstevel@tonic-gate if (lltemp) 839*0Sstevel@tonic-gate time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 840*0Sstevel@tonic-gate 841*0Sstevel@tonic-gate /* 842*0Sstevel@tonic-gate * End of precision kernel-code fragment 843*0Sstevel@tonic-gate * 844*0Sstevel@tonic-gate * The section below should be modified if we are planning 845*0Sstevel@tonic-gate * to use NTP for synchronization. 846*0Sstevel@tonic-gate * 847*0Sstevel@tonic-gate * Note: the clock synchronization code now assumes 848*0Sstevel@tonic-gate * the following: 849*0Sstevel@tonic-gate * - if dosynctodr is 1, then compute the drift between 850*0Sstevel@tonic-gate * the tod chip and software time and adjust one or 851*0Sstevel@tonic-gate * the other depending on the circumstances 852*0Sstevel@tonic-gate * 853*0Sstevel@tonic-gate * - if dosynctodr is 0, then the tod chip is independent 854*0Sstevel@tonic-gate * of the software clock and should not be adjusted, 855*0Sstevel@tonic-gate * but allowed to free run. this allows NTP to sync. 856*0Sstevel@tonic-gate * hrestime without any interference from the tod chip. 857*0Sstevel@tonic-gate */ 858*0Sstevel@tonic-gate 859*0Sstevel@tonic-gate mutex_enter(&tod_lock); 860*0Sstevel@tonic-gate tod = tod_get(); 861*0Sstevel@tonic-gate drift = tod.tv_sec - hrestime.tv_sec; 862*0Sstevel@tonic-gate absdrift = (drift >= 0) ? drift : -drift; 863*0Sstevel@tonic-gate if (tod_needsync || absdrift > 1) { 864*0Sstevel@tonic-gate int s; 865*0Sstevel@tonic-gate if (absdrift > 2) { 866*0Sstevel@tonic-gate if (!tod_broken && tod_faulted == TOD_NOFAULT) { 867*0Sstevel@tonic-gate s = hr_clock_lock(); 868*0Sstevel@tonic-gate hrestime = tod; 869*0Sstevel@tonic-gate membar_enter(); /* hrestime visible */ 870*0Sstevel@tonic-gate timedelta = 0; 871*0Sstevel@tonic-gate timechanged++; 872*0Sstevel@tonic-gate tod_needsync = 0; 873*0Sstevel@tonic-gate hr_clock_unlock(s); 874*0Sstevel@tonic-gate } 875*0Sstevel@tonic-gate } else { 876*0Sstevel@tonic-gate if (tod_needsync || !dosynctodr) { 877*0Sstevel@tonic-gate gethrestime(&tod); 878*0Sstevel@tonic-gate tod_set(tod); 879*0Sstevel@tonic-gate s = hr_clock_lock(); 880*0Sstevel@tonic-gate if (timedelta == 0) 881*0Sstevel@tonic-gate tod_needsync = 0; 882*0Sstevel@tonic-gate hr_clock_unlock(s); 883*0Sstevel@tonic-gate } else { 884*0Sstevel@tonic-gate /* 885*0Sstevel@tonic-gate * If the drift is 2 seconds on the 886*0Sstevel@tonic-gate * money, then the TOD is adjusting 887*0Sstevel@tonic-gate * the clock; record that. 888*0Sstevel@tonic-gate */ 889*0Sstevel@tonic-gate clock_adj_hist[adj_hist_entry++ % 890*0Sstevel@tonic-gate CLOCK_ADJ_HIST_SIZE] = lbolt64; 891*0Sstevel@tonic-gate s = hr_clock_lock(); 892*0Sstevel@tonic-gate timedelta = (int64_t)drift*NANOSEC; 893*0Sstevel@tonic-gate hr_clock_unlock(s); 894*0Sstevel@tonic-gate } 895*0Sstevel@tonic-gate } 896*0Sstevel@tonic-gate } 897*0Sstevel@tonic-gate one_sec = 0; 898*0Sstevel@tonic-gate time = gethrestime_sec(); /* for crusty old kmem readers */ 899*0Sstevel@tonic-gate mutex_exit(&tod_lock); 900*0Sstevel@tonic-gate 901*0Sstevel@tonic-gate /* 902*0Sstevel@tonic-gate * Some drivers still depend on this... XXX 903*0Sstevel@tonic-gate */ 904*0Sstevel@tonic-gate cv_broadcast(&lbolt_cv); 905*0Sstevel@tonic-gate 906*0Sstevel@tonic-gate sysinfo.updates++; 907*0Sstevel@tonic-gate vminfo.freemem += freemem; 908*0Sstevel@tonic-gate { 909*0Sstevel@tonic-gate pgcnt_t maxswap, resv, free; 910*0Sstevel@tonic-gate pgcnt_t avail = 911*0Sstevel@tonic-gate MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 912*0Sstevel@tonic-gate 913*0Sstevel@tonic-gate maxswap = k_anoninfo.ani_mem_resv 914*0Sstevel@tonic-gate + k_anoninfo.ani_max +avail; 915*0Sstevel@tonic-gate free = k_anoninfo.ani_free + avail; 916*0Sstevel@tonic-gate resv = k_anoninfo.ani_phys_resv + 917*0Sstevel@tonic-gate k_anoninfo.ani_mem_resv; 918*0Sstevel@tonic-gate 919*0Sstevel@tonic-gate vminfo.swap_resv += resv; 920*0Sstevel@tonic-gate /* number of reserved and allocated pages */ 921*0Sstevel@tonic-gate #ifdef DEBUG 922*0Sstevel@tonic-gate if (maxswap < free) 923*0Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < free"); 924*0Sstevel@tonic-gate if (maxswap < resv) 925*0Sstevel@tonic-gate cmn_err(CE_WARN, "clock: maxswap < resv"); 926*0Sstevel@tonic-gate #endif 927*0Sstevel@tonic-gate vminfo.swap_alloc += maxswap - free; 928*0Sstevel@tonic-gate vminfo.swap_avail += maxswap - resv; 929*0Sstevel@tonic-gate vminfo.swap_free += free; 930*0Sstevel@tonic-gate } 931*0Sstevel@tonic-gate if (nrunnable) { 932*0Sstevel@tonic-gate sysinfo.runque += nrunnable; 933*0Sstevel@tonic-gate sysinfo.runocc++; 934*0Sstevel@tonic-gate } 935*0Sstevel@tonic-gate if (nswapped) { 936*0Sstevel@tonic-gate sysinfo.swpque += nswapped; 937*0Sstevel@tonic-gate sysinfo.swpocc++; 938*0Sstevel@tonic-gate } 939*0Sstevel@tonic-gate sysinfo.waiting += w_io; 940*0Sstevel@tonic-gate 941*0Sstevel@tonic-gate /* 942*0Sstevel@tonic-gate * Wake up fsflush to write out DELWRI 943*0Sstevel@tonic-gate * buffers, dirty pages and other cached 944*0Sstevel@tonic-gate * administrative data, e.g. inodes. 945*0Sstevel@tonic-gate */ 946*0Sstevel@tonic-gate if (--fsflushcnt <= 0) { 947*0Sstevel@tonic-gate fsflushcnt = tune.t_fsflushr; 948*0Sstevel@tonic-gate cv_signal(&fsflush_cv); 949*0Sstevel@tonic-gate } 950*0Sstevel@tonic-gate 951*0Sstevel@tonic-gate vmmeter(); 952*0Sstevel@tonic-gate calcloadavg(genloadavg(&loadavg), hp_avenrun); 953*0Sstevel@tonic-gate for (i = 0; i < 3; i++) 954*0Sstevel@tonic-gate /* 955*0Sstevel@tonic-gate * At the moment avenrun[] can only hold 31 956*0Sstevel@tonic-gate * bits of load average as it is a signed 957*0Sstevel@tonic-gate * int in the API. We need to ensure that 958*0Sstevel@tonic-gate * hp_avenrun[i] >> (16 - FSHIFT) will not be 959*0Sstevel@tonic-gate * too large. If it is, we put the largest value 960*0Sstevel@tonic-gate * that we can use into avenrun[i]. This is 961*0Sstevel@tonic-gate * kludgey, but about all we can do until we 962*0Sstevel@tonic-gate * avenrun[] is declared as an array of uint64[] 963*0Sstevel@tonic-gate */ 964*0Sstevel@tonic-gate if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 965*0Sstevel@tonic-gate avenrun[i] = (int32_t)(hp_avenrun[i] >> 966*0Sstevel@tonic-gate (16 - FSHIFT)); 967*0Sstevel@tonic-gate else 968*0Sstevel@tonic-gate avenrun[i] = 0x7fffffff; 969*0Sstevel@tonic-gate 970*0Sstevel@tonic-gate cpupart = cp_list_head; 971*0Sstevel@tonic-gate do { 972*0Sstevel@tonic-gate calcloadavg(genloadavg(&cpupart->cp_loadavg), 973*0Sstevel@tonic-gate cpupart->cp_hp_avenrun); 974*0Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 975*0Sstevel@tonic-gate 976*0Sstevel@tonic-gate /* 977*0Sstevel@tonic-gate * Wake up the swapper thread if necessary. 978*0Sstevel@tonic-gate */ 979*0Sstevel@tonic-gate if (runin || 980*0Sstevel@tonic-gate (runout && (avefree < desfree || wake_sched_sec))) { 981*0Sstevel@tonic-gate t = &t0; 982*0Sstevel@tonic-gate thread_lock(t); 983*0Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 984*0Sstevel@tonic-gate runin = runout = 0; 985*0Sstevel@tonic-gate wake_sched_sec = 0; 986*0Sstevel@tonic-gate t->t_whystop = 0; 987*0Sstevel@tonic-gate t->t_whatstop = 0; 988*0Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 989*0Sstevel@tonic-gate THREAD_TRANSITION(t); 990*0Sstevel@tonic-gate setfrontdq(t); 991*0Sstevel@tonic-gate } 992*0Sstevel@tonic-gate thread_unlock(t); 993*0Sstevel@tonic-gate } 994*0Sstevel@tonic-gate } 995*0Sstevel@tonic-gate 996*0Sstevel@tonic-gate /* 997*0Sstevel@tonic-gate * Wake up the swapper if any high priority swapped-out threads 998*0Sstevel@tonic-gate * became runable during the last tick. 999*0Sstevel@tonic-gate */ 1000*0Sstevel@tonic-gate if (wake_sched) { 1001*0Sstevel@tonic-gate t = &t0; 1002*0Sstevel@tonic-gate thread_lock(t); 1003*0Sstevel@tonic-gate if (t->t_state == TS_STOPPED) { 1004*0Sstevel@tonic-gate runin = runout = 0; 1005*0Sstevel@tonic-gate wake_sched = 0; 1006*0Sstevel@tonic-gate t->t_whystop = 0; 1007*0Sstevel@tonic-gate t->t_whatstop = 0; 1008*0Sstevel@tonic-gate t->t_schedflag &= ~TS_ALLSTART; 1009*0Sstevel@tonic-gate THREAD_TRANSITION(t); 1010*0Sstevel@tonic-gate setfrontdq(t); 1011*0Sstevel@tonic-gate } 1012*0Sstevel@tonic-gate thread_unlock(t); 1013*0Sstevel@tonic-gate } 1014*0Sstevel@tonic-gate } 1015*0Sstevel@tonic-gate 1016*0Sstevel@tonic-gate void 1017*0Sstevel@tonic-gate clock_init(void) 1018*0Sstevel@tonic-gate { 1019*0Sstevel@tonic-gate cyc_handler_t hdlr; 1020*0Sstevel@tonic-gate cyc_time_t when; 1021*0Sstevel@tonic-gate 1022*0Sstevel@tonic-gate hdlr.cyh_func = (cyc_func_t)clock; 1023*0Sstevel@tonic-gate hdlr.cyh_level = CY_LOCK_LEVEL; 1024*0Sstevel@tonic-gate hdlr.cyh_arg = NULL; 1025*0Sstevel@tonic-gate 1026*0Sstevel@tonic-gate when.cyt_when = 0; 1027*0Sstevel@tonic-gate when.cyt_interval = nsec_per_tick; 1028*0Sstevel@tonic-gate 1029*0Sstevel@tonic-gate mutex_enter(&cpu_lock); 1030*0Sstevel@tonic-gate clock_cyclic = cyclic_add(&hdlr, &when); 1031*0Sstevel@tonic-gate mutex_exit(&cpu_lock); 1032*0Sstevel@tonic-gate } 1033*0Sstevel@tonic-gate 1034*0Sstevel@tonic-gate /* 1035*0Sstevel@tonic-gate * Called before calcloadavg to get 10-sec moving loadavg together 1036*0Sstevel@tonic-gate */ 1037*0Sstevel@tonic-gate 1038*0Sstevel@tonic-gate static int 1039*0Sstevel@tonic-gate genloadavg(struct loadavg_s *avgs) 1040*0Sstevel@tonic-gate { 1041*0Sstevel@tonic-gate int avg; 1042*0Sstevel@tonic-gate int spos; /* starting position */ 1043*0Sstevel@tonic-gate int cpos; /* moving current position */ 1044*0Sstevel@tonic-gate int i; 1045*0Sstevel@tonic-gate int slen; 1046*0Sstevel@tonic-gate hrtime_t hr_avg; 1047*0Sstevel@tonic-gate 1048*0Sstevel@tonic-gate /* 10-second snapshot, calculate first positon */ 1049*0Sstevel@tonic-gate if (avgs->lg_len == 0) { 1050*0Sstevel@tonic-gate return (0); 1051*0Sstevel@tonic-gate } 1052*0Sstevel@tonic-gate slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1053*0Sstevel@tonic-gate 1054*0Sstevel@tonic-gate spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1055*0Sstevel@tonic-gate S_LOADAVG_SZ + (avgs->lg_cur - 1); 1056*0Sstevel@tonic-gate for (i = hr_avg = 0; i < slen; i++) { 1057*0Sstevel@tonic-gate cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1058*0Sstevel@tonic-gate hr_avg += avgs->lg_loads[cpos]; 1059*0Sstevel@tonic-gate } 1060*0Sstevel@tonic-gate 1061*0Sstevel@tonic-gate hr_avg = hr_avg / slen; 1062*0Sstevel@tonic-gate avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1063*0Sstevel@tonic-gate 1064*0Sstevel@tonic-gate return (avg); 1065*0Sstevel@tonic-gate } 1066*0Sstevel@tonic-gate 1067*0Sstevel@tonic-gate /* 1068*0Sstevel@tonic-gate * Run every second from clock () to update the loadavg count available to the 1069*0Sstevel@tonic-gate * system and cpu-partitions. 1070*0Sstevel@tonic-gate * 1071*0Sstevel@tonic-gate * This works by sampling the previous usr, sys, wait time elapsed, 1072*0Sstevel@tonic-gate * computing a delta, and adding that delta to the elapsed usr, sys, 1073*0Sstevel@tonic-gate * wait increase. 1074*0Sstevel@tonic-gate */ 1075*0Sstevel@tonic-gate 1076*0Sstevel@tonic-gate static void 1077*0Sstevel@tonic-gate loadavg_update() 1078*0Sstevel@tonic-gate { 1079*0Sstevel@tonic-gate cpu_t *cp; 1080*0Sstevel@tonic-gate cpupart_t *cpupart; 1081*0Sstevel@tonic-gate hrtime_t cpu_total; 1082*0Sstevel@tonic-gate int prev; 1083*0Sstevel@tonic-gate 1084*0Sstevel@tonic-gate cp = cpu_list; 1085*0Sstevel@tonic-gate loadavg.lg_total = 0; 1086*0Sstevel@tonic-gate 1087*0Sstevel@tonic-gate /* 1088*0Sstevel@tonic-gate * first pass totals up per-cpu statistics for system and cpu 1089*0Sstevel@tonic-gate * partitions 1090*0Sstevel@tonic-gate */ 1091*0Sstevel@tonic-gate 1092*0Sstevel@tonic-gate do { 1093*0Sstevel@tonic-gate struct loadavg_s *lavg; 1094*0Sstevel@tonic-gate 1095*0Sstevel@tonic-gate lavg = &cp->cpu_loadavg; 1096*0Sstevel@tonic-gate 1097*0Sstevel@tonic-gate cpu_total = cp->cpu_acct[CMS_USER] + 1098*0Sstevel@tonic-gate cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1099*0Sstevel@tonic-gate /* compute delta against last total */ 1100*0Sstevel@tonic-gate scalehrtime(&cpu_total); 1101*0Sstevel@tonic-gate prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1102*0Sstevel@tonic-gate S_LOADAVG_SZ + (lavg->lg_cur - 1); 1103*0Sstevel@tonic-gate if (lavg->lg_loads[prev] <= 0) { 1104*0Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 1105*0Sstevel@tonic-gate cpu_total = 0; 1106*0Sstevel@tonic-gate } else { 1107*0Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = cpu_total; 1108*0Sstevel@tonic-gate cpu_total = cpu_total - lavg->lg_loads[prev]; 1109*0Sstevel@tonic-gate if (cpu_total < 0) 1110*0Sstevel@tonic-gate cpu_total = 0; 1111*0Sstevel@tonic-gate } 1112*0Sstevel@tonic-gate 1113*0Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1114*0Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1115*0Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 1116*0Sstevel@tonic-gate 1117*0Sstevel@tonic-gate loadavg.lg_total += cpu_total; 1118*0Sstevel@tonic-gate cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1119*0Sstevel@tonic-gate 1120*0Sstevel@tonic-gate } while ((cp = cp->cpu_next) != cpu_list); 1121*0Sstevel@tonic-gate 1122*0Sstevel@tonic-gate loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1123*0Sstevel@tonic-gate loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1124*0Sstevel@tonic-gate loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1125*0Sstevel@tonic-gate loadavg.lg_len + 1 : S_LOADAVG_SZ; 1126*0Sstevel@tonic-gate /* 1127*0Sstevel@tonic-gate * Second pass updates counts 1128*0Sstevel@tonic-gate */ 1129*0Sstevel@tonic-gate cpupart = cp_list_head; 1130*0Sstevel@tonic-gate 1131*0Sstevel@tonic-gate do { 1132*0Sstevel@tonic-gate struct loadavg_s *lavg; 1133*0Sstevel@tonic-gate 1134*0Sstevel@tonic-gate lavg = &cpupart->cp_loadavg; 1135*0Sstevel@tonic-gate lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1136*0Sstevel@tonic-gate lavg->lg_total = 0; 1137*0Sstevel@tonic-gate lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1138*0Sstevel@tonic-gate lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1139*0Sstevel@tonic-gate lavg->lg_len + 1 : S_LOADAVG_SZ; 1140*0Sstevel@tonic-gate 1141*0Sstevel@tonic-gate } while ((cpupart = cpupart->cp_next) != cp_list_head); 1142*0Sstevel@tonic-gate 1143*0Sstevel@tonic-gate } 1144*0Sstevel@tonic-gate 1145*0Sstevel@tonic-gate /* 1146*0Sstevel@tonic-gate * clock_update() - local clock update 1147*0Sstevel@tonic-gate * 1148*0Sstevel@tonic-gate * This routine is called by ntp_adjtime() to update the local clock 1149*0Sstevel@tonic-gate * phase and frequency. The implementation is of an 1150*0Sstevel@tonic-gate * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1151*0Sstevel@tonic-gate * routine computes new time and frequency offset estimates for each 1152*0Sstevel@tonic-gate * call. The PPS signal itself determines the new time offset, 1153*0Sstevel@tonic-gate * instead of the calling argument. Presumably, calls to 1154*0Sstevel@tonic-gate * ntp_adjtime() occur only when the caller believes the local clock 1155*0Sstevel@tonic-gate * is valid within some bound (+-128 ms with NTP). If the caller's 1156*0Sstevel@tonic-gate * time is far different than the PPS time, an argument will ensue, 1157*0Sstevel@tonic-gate * and it's not clear who will lose. 1158*0Sstevel@tonic-gate * 1159*0Sstevel@tonic-gate * For uncompensated quartz crystal oscillatores and nominal update 1160*0Sstevel@tonic-gate * intervals less than 1024 s, operation should be in phase-lock mode 1161*0Sstevel@tonic-gate * (STA_FLL = 0), where the loop is disciplined to phase. For update 1162*0Sstevel@tonic-gate * intervals greater than this, operation should be in frequency-lock 1163*0Sstevel@tonic-gate * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1164*0Sstevel@tonic-gate * 1165*0Sstevel@tonic-gate * Note: mutex(&tod_lock) is in effect. 1166*0Sstevel@tonic-gate */ 1167*0Sstevel@tonic-gate void 1168*0Sstevel@tonic-gate clock_update(int offset) 1169*0Sstevel@tonic-gate { 1170*0Sstevel@tonic-gate int ltemp, mtemp, s; 1171*0Sstevel@tonic-gate 1172*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 1173*0Sstevel@tonic-gate 1174*0Sstevel@tonic-gate if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1175*0Sstevel@tonic-gate return; 1176*0Sstevel@tonic-gate ltemp = offset; 1177*0Sstevel@tonic-gate if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1178*0Sstevel@tonic-gate ltemp = pps_offset; 1179*0Sstevel@tonic-gate 1180*0Sstevel@tonic-gate /* 1181*0Sstevel@tonic-gate * Scale the phase adjustment and clamp to the operating range. 1182*0Sstevel@tonic-gate */ 1183*0Sstevel@tonic-gate if (ltemp > MAXPHASE) 1184*0Sstevel@tonic-gate time_offset = MAXPHASE * SCALE_UPDATE; 1185*0Sstevel@tonic-gate else if (ltemp < -MAXPHASE) 1186*0Sstevel@tonic-gate time_offset = -(MAXPHASE * SCALE_UPDATE); 1187*0Sstevel@tonic-gate else 1188*0Sstevel@tonic-gate time_offset = ltemp * SCALE_UPDATE; 1189*0Sstevel@tonic-gate 1190*0Sstevel@tonic-gate /* 1191*0Sstevel@tonic-gate * Select whether the frequency is to be controlled and in which 1192*0Sstevel@tonic-gate * mode (PLL or FLL). Clamp to the operating range. Ugly 1193*0Sstevel@tonic-gate * multiply/divide should be replaced someday. 1194*0Sstevel@tonic-gate */ 1195*0Sstevel@tonic-gate if (time_status & STA_FREQHOLD || time_reftime == 0) 1196*0Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 1197*0Sstevel@tonic-gate 1198*0Sstevel@tonic-gate mtemp = hrestime.tv_sec - time_reftime; 1199*0Sstevel@tonic-gate time_reftime = hrestime.tv_sec; 1200*0Sstevel@tonic-gate 1201*0Sstevel@tonic-gate if (time_status & STA_FLL) { 1202*0Sstevel@tonic-gate if (mtemp >= MINSEC) { 1203*0Sstevel@tonic-gate ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1204*0Sstevel@tonic-gate SCALE_UPDATE)); 1205*0Sstevel@tonic-gate if (ltemp) 1206*0Sstevel@tonic-gate time_freq += ltemp / SCALE_KH; 1207*0Sstevel@tonic-gate } 1208*0Sstevel@tonic-gate } else { 1209*0Sstevel@tonic-gate if (mtemp < MAXSEC) { 1210*0Sstevel@tonic-gate ltemp *= mtemp; 1211*0Sstevel@tonic-gate if (ltemp) 1212*0Sstevel@tonic-gate time_freq += (int)(((int64_t)ltemp * 1213*0Sstevel@tonic-gate SCALE_USEC) / SCALE_KF) 1214*0Sstevel@tonic-gate / (1 << (time_constant * 2)); 1215*0Sstevel@tonic-gate } 1216*0Sstevel@tonic-gate } 1217*0Sstevel@tonic-gate if (time_freq > time_tolerance) 1218*0Sstevel@tonic-gate time_freq = time_tolerance; 1219*0Sstevel@tonic-gate else if (time_freq < -time_tolerance) 1220*0Sstevel@tonic-gate time_freq = -time_tolerance; 1221*0Sstevel@tonic-gate 1222*0Sstevel@tonic-gate s = hr_clock_lock(); 1223*0Sstevel@tonic-gate tod_needsync = 1; 1224*0Sstevel@tonic-gate hr_clock_unlock(s); 1225*0Sstevel@tonic-gate } 1226*0Sstevel@tonic-gate 1227*0Sstevel@tonic-gate /* 1228*0Sstevel@tonic-gate * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1229*0Sstevel@tonic-gate * 1230*0Sstevel@tonic-gate * This routine is called at each PPS interrupt in order to discipline 1231*0Sstevel@tonic-gate * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1232*0Sstevel@tonic-gate * and leaves it in a handy spot for the clock() routine. It 1233*0Sstevel@tonic-gate * integrates successive PPS phase differences and calculates the 1234*0Sstevel@tonic-gate * frequency offset. This is used in clock() to discipline the CPU 1235*0Sstevel@tonic-gate * clock oscillator so that intrinsic frequency error is cancelled out. 1236*0Sstevel@tonic-gate * The code requires the caller to capture the time and hardware counter 1237*0Sstevel@tonic-gate * value at the on-time PPS signal transition. 1238*0Sstevel@tonic-gate * 1239*0Sstevel@tonic-gate * Note that, on some Unix systems, this routine runs at an interrupt 1240*0Sstevel@tonic-gate * priority level higher than the timer interrupt routine clock(). 1241*0Sstevel@tonic-gate * Therefore, the variables used are distinct from the clock() 1242*0Sstevel@tonic-gate * variables, except for certain exceptions: The PPS frequency pps_freq 1243*0Sstevel@tonic-gate * and phase pps_offset variables are determined by this routine and 1244*0Sstevel@tonic-gate * updated atomically. The time_tolerance variable can be considered a 1245*0Sstevel@tonic-gate * constant, since it is infrequently changed, and then only when the 1246*0Sstevel@tonic-gate * PPS signal is disabled. The watchdog counter pps_valid is updated 1247*0Sstevel@tonic-gate * once per second by clock() and is atomically cleared in this 1248*0Sstevel@tonic-gate * routine. 1249*0Sstevel@tonic-gate * 1250*0Sstevel@tonic-gate * tvp is the time of the last tick; usec is a microsecond count since the 1251*0Sstevel@tonic-gate * last tick. 1252*0Sstevel@tonic-gate * 1253*0Sstevel@tonic-gate * Note: In Solaris systems, the tick value is actually given by 1254*0Sstevel@tonic-gate * usec_per_tick. This is called from the serial driver cdintr(), 1255*0Sstevel@tonic-gate * or equivalent, at a high PIL. Because the kernel keeps a 1256*0Sstevel@tonic-gate * highresolution time, the following code can accept either 1257*0Sstevel@tonic-gate * the traditional argument pair, or the current highres timestamp 1258*0Sstevel@tonic-gate * in tvp and zero in usec. 1259*0Sstevel@tonic-gate */ 1260*0Sstevel@tonic-gate void 1261*0Sstevel@tonic-gate ddi_hardpps(struct timeval *tvp, int usec) 1262*0Sstevel@tonic-gate { 1263*0Sstevel@tonic-gate int u_usec, v_usec, bigtick; 1264*0Sstevel@tonic-gate time_t cal_sec; 1265*0Sstevel@tonic-gate int cal_usec; 1266*0Sstevel@tonic-gate 1267*0Sstevel@tonic-gate /* 1268*0Sstevel@tonic-gate * An occasional glitch can be produced when the PPS interrupt 1269*0Sstevel@tonic-gate * occurs in the clock() routine before the time variable is 1270*0Sstevel@tonic-gate * updated. Here the offset is discarded when the difference 1271*0Sstevel@tonic-gate * between it and the last one is greater than tick/2, but not 1272*0Sstevel@tonic-gate * if the interval since the first discard exceeds 30 s. 1273*0Sstevel@tonic-gate */ 1274*0Sstevel@tonic-gate time_status |= STA_PPSSIGNAL; 1275*0Sstevel@tonic-gate time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1276*0Sstevel@tonic-gate pps_valid = 0; 1277*0Sstevel@tonic-gate u_usec = -tvp->tv_usec; 1278*0Sstevel@tonic-gate if (u_usec < -(MICROSEC/2)) 1279*0Sstevel@tonic-gate u_usec += MICROSEC; 1280*0Sstevel@tonic-gate v_usec = pps_offset - u_usec; 1281*0Sstevel@tonic-gate if (v_usec < 0) 1282*0Sstevel@tonic-gate v_usec = -v_usec; 1283*0Sstevel@tonic-gate if (v_usec > (usec_per_tick >> 1)) { 1284*0Sstevel@tonic-gate if (pps_glitch > MAXGLITCH) { 1285*0Sstevel@tonic-gate pps_glitch = 0; 1286*0Sstevel@tonic-gate pps_tf[2] = u_usec; 1287*0Sstevel@tonic-gate pps_tf[1] = u_usec; 1288*0Sstevel@tonic-gate } else { 1289*0Sstevel@tonic-gate pps_glitch++; 1290*0Sstevel@tonic-gate u_usec = pps_offset; 1291*0Sstevel@tonic-gate } 1292*0Sstevel@tonic-gate } else 1293*0Sstevel@tonic-gate pps_glitch = 0; 1294*0Sstevel@tonic-gate 1295*0Sstevel@tonic-gate /* 1296*0Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 1297*0Sstevel@tonic-gate * time. The median sample becomes the time offset estimate; the 1298*0Sstevel@tonic-gate * difference between the other two samples becomes the time 1299*0Sstevel@tonic-gate * dispersion (jitter) estimate. 1300*0Sstevel@tonic-gate */ 1301*0Sstevel@tonic-gate pps_tf[2] = pps_tf[1]; 1302*0Sstevel@tonic-gate pps_tf[1] = pps_tf[0]; 1303*0Sstevel@tonic-gate pps_tf[0] = u_usec; 1304*0Sstevel@tonic-gate if (pps_tf[0] > pps_tf[1]) { 1305*0Sstevel@tonic-gate if (pps_tf[1] > pps_tf[2]) { 1306*0Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 0 1 2 */ 1307*0Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[2]; 1308*0Sstevel@tonic-gate } else if (pps_tf[2] > pps_tf[0]) { 1309*0Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 2 0 1 */ 1310*0Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[1]; 1311*0Sstevel@tonic-gate } else { 1312*0Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 0 2 1 */ 1313*0Sstevel@tonic-gate v_usec = pps_tf[0] - pps_tf[1]; 1314*0Sstevel@tonic-gate } 1315*0Sstevel@tonic-gate } else { 1316*0Sstevel@tonic-gate if (pps_tf[1] < pps_tf[2]) { 1317*0Sstevel@tonic-gate pps_offset = pps_tf[1]; /* 2 1 0 */ 1318*0Sstevel@tonic-gate v_usec = pps_tf[2] - pps_tf[0]; 1319*0Sstevel@tonic-gate } else if (pps_tf[2] < pps_tf[0]) { 1320*0Sstevel@tonic-gate pps_offset = pps_tf[0]; /* 1 0 2 */ 1321*0Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[2]; 1322*0Sstevel@tonic-gate } else { 1323*0Sstevel@tonic-gate pps_offset = pps_tf[2]; /* 1 2 0 */ 1324*0Sstevel@tonic-gate v_usec = pps_tf[1] - pps_tf[0]; 1325*0Sstevel@tonic-gate } 1326*0Sstevel@tonic-gate } 1327*0Sstevel@tonic-gate if (v_usec > MAXTIME) 1328*0Sstevel@tonic-gate pps_jitcnt++; 1329*0Sstevel@tonic-gate v_usec = (v_usec << PPS_AVG) - pps_jitter; 1330*0Sstevel@tonic-gate pps_jitter += v_usec / (1 << PPS_AVG); 1331*0Sstevel@tonic-gate if (pps_jitter > (MAXTIME >> 1)) 1332*0Sstevel@tonic-gate time_status |= STA_PPSJITTER; 1333*0Sstevel@tonic-gate 1334*0Sstevel@tonic-gate /* 1335*0Sstevel@tonic-gate * During the calibration interval adjust the starting time when 1336*0Sstevel@tonic-gate * the tick overflows. At the end of the interval compute the 1337*0Sstevel@tonic-gate * duration of the interval and the difference of the hardware 1338*0Sstevel@tonic-gate * counters at the beginning and end of the interval. This code 1339*0Sstevel@tonic-gate * is deliciously complicated by the fact valid differences may 1340*0Sstevel@tonic-gate * exceed the value of tick when using long calibration 1341*0Sstevel@tonic-gate * intervals and small ticks. Note that the counter can be 1342*0Sstevel@tonic-gate * greater than tick if caught at just the wrong instant, but 1343*0Sstevel@tonic-gate * the values returned and used here are correct. 1344*0Sstevel@tonic-gate */ 1345*0Sstevel@tonic-gate bigtick = (int)usec_per_tick * SCALE_USEC; 1346*0Sstevel@tonic-gate pps_usec -= pps_freq; 1347*0Sstevel@tonic-gate if (pps_usec >= bigtick) 1348*0Sstevel@tonic-gate pps_usec -= bigtick; 1349*0Sstevel@tonic-gate if (pps_usec < 0) 1350*0Sstevel@tonic-gate pps_usec += bigtick; 1351*0Sstevel@tonic-gate pps_time.tv_sec++; 1352*0Sstevel@tonic-gate pps_count++; 1353*0Sstevel@tonic-gate if (pps_count < (1 << pps_shift)) 1354*0Sstevel@tonic-gate return; 1355*0Sstevel@tonic-gate pps_count = 0; 1356*0Sstevel@tonic-gate pps_calcnt++; 1357*0Sstevel@tonic-gate u_usec = usec * SCALE_USEC; 1358*0Sstevel@tonic-gate v_usec = pps_usec - u_usec; 1359*0Sstevel@tonic-gate if (v_usec >= bigtick >> 1) 1360*0Sstevel@tonic-gate v_usec -= bigtick; 1361*0Sstevel@tonic-gate if (v_usec < -(bigtick >> 1)) 1362*0Sstevel@tonic-gate v_usec += bigtick; 1363*0Sstevel@tonic-gate if (v_usec < 0) 1364*0Sstevel@tonic-gate v_usec = -(-v_usec >> pps_shift); 1365*0Sstevel@tonic-gate else 1366*0Sstevel@tonic-gate v_usec = v_usec >> pps_shift; 1367*0Sstevel@tonic-gate pps_usec = u_usec; 1368*0Sstevel@tonic-gate cal_sec = tvp->tv_sec; 1369*0Sstevel@tonic-gate cal_usec = tvp->tv_usec; 1370*0Sstevel@tonic-gate cal_sec -= pps_time.tv_sec; 1371*0Sstevel@tonic-gate cal_usec -= pps_time.tv_usec; 1372*0Sstevel@tonic-gate if (cal_usec < 0) { 1373*0Sstevel@tonic-gate cal_usec += MICROSEC; 1374*0Sstevel@tonic-gate cal_sec--; 1375*0Sstevel@tonic-gate } 1376*0Sstevel@tonic-gate pps_time = *tvp; 1377*0Sstevel@tonic-gate 1378*0Sstevel@tonic-gate /* 1379*0Sstevel@tonic-gate * Check for lost interrupts, noise, excessive jitter and 1380*0Sstevel@tonic-gate * excessive frequency error. The number of timer ticks during 1381*0Sstevel@tonic-gate * the interval may vary +-1 tick. Add to this a margin of one 1382*0Sstevel@tonic-gate * tick for the PPS signal jitter and maximum frequency 1383*0Sstevel@tonic-gate * deviation. If the limits are exceeded, the calibration 1384*0Sstevel@tonic-gate * interval is reset to the minimum and we start over. 1385*0Sstevel@tonic-gate */ 1386*0Sstevel@tonic-gate u_usec = (int)usec_per_tick << 1; 1387*0Sstevel@tonic-gate if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1388*0Sstevel@tonic-gate (cal_sec == 0 && cal_usec < u_usec)) || 1389*0Sstevel@tonic-gate v_usec > time_tolerance || v_usec < -time_tolerance) { 1390*0Sstevel@tonic-gate pps_errcnt++; 1391*0Sstevel@tonic-gate pps_shift = PPS_SHIFT; 1392*0Sstevel@tonic-gate pps_intcnt = 0; 1393*0Sstevel@tonic-gate time_status |= STA_PPSERROR; 1394*0Sstevel@tonic-gate return; 1395*0Sstevel@tonic-gate } 1396*0Sstevel@tonic-gate 1397*0Sstevel@tonic-gate /* 1398*0Sstevel@tonic-gate * A three-stage median filter is used to help deglitch the pps 1399*0Sstevel@tonic-gate * frequency. The median sample becomes the frequency offset 1400*0Sstevel@tonic-gate * estimate; the difference between the other two samples 1401*0Sstevel@tonic-gate * becomes the frequency dispersion (stability) estimate. 1402*0Sstevel@tonic-gate */ 1403*0Sstevel@tonic-gate pps_ff[2] = pps_ff[1]; 1404*0Sstevel@tonic-gate pps_ff[1] = pps_ff[0]; 1405*0Sstevel@tonic-gate pps_ff[0] = v_usec; 1406*0Sstevel@tonic-gate if (pps_ff[0] > pps_ff[1]) { 1407*0Sstevel@tonic-gate if (pps_ff[1] > pps_ff[2]) { 1408*0Sstevel@tonic-gate u_usec = pps_ff[1]; /* 0 1 2 */ 1409*0Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[2]; 1410*0Sstevel@tonic-gate } else if (pps_ff[2] > pps_ff[0]) { 1411*0Sstevel@tonic-gate u_usec = pps_ff[0]; /* 2 0 1 */ 1412*0Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[1]; 1413*0Sstevel@tonic-gate } else { 1414*0Sstevel@tonic-gate u_usec = pps_ff[2]; /* 0 2 1 */ 1415*0Sstevel@tonic-gate v_usec = pps_ff[0] - pps_ff[1]; 1416*0Sstevel@tonic-gate } 1417*0Sstevel@tonic-gate } else { 1418*0Sstevel@tonic-gate if (pps_ff[1] < pps_ff[2]) { 1419*0Sstevel@tonic-gate u_usec = pps_ff[1]; /* 2 1 0 */ 1420*0Sstevel@tonic-gate v_usec = pps_ff[2] - pps_ff[0]; 1421*0Sstevel@tonic-gate } else if (pps_ff[2] < pps_ff[0]) { 1422*0Sstevel@tonic-gate u_usec = pps_ff[0]; /* 1 0 2 */ 1423*0Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[2]; 1424*0Sstevel@tonic-gate } else { 1425*0Sstevel@tonic-gate u_usec = pps_ff[2]; /* 1 2 0 */ 1426*0Sstevel@tonic-gate v_usec = pps_ff[1] - pps_ff[0]; 1427*0Sstevel@tonic-gate } 1428*0Sstevel@tonic-gate } 1429*0Sstevel@tonic-gate 1430*0Sstevel@tonic-gate /* 1431*0Sstevel@tonic-gate * Here the frequency dispersion (stability) is updated. If it 1432*0Sstevel@tonic-gate * is less than one-fourth the maximum (MAXFREQ), the frequency 1433*0Sstevel@tonic-gate * offset is updated as well, but clamped to the tolerance. It 1434*0Sstevel@tonic-gate * will be processed later by the clock() routine. 1435*0Sstevel@tonic-gate */ 1436*0Sstevel@tonic-gate v_usec = (v_usec >> 1) - pps_stabil; 1437*0Sstevel@tonic-gate if (v_usec < 0) 1438*0Sstevel@tonic-gate pps_stabil -= -v_usec >> PPS_AVG; 1439*0Sstevel@tonic-gate else 1440*0Sstevel@tonic-gate pps_stabil += v_usec >> PPS_AVG; 1441*0Sstevel@tonic-gate if (pps_stabil > MAXFREQ >> 2) { 1442*0Sstevel@tonic-gate pps_stbcnt++; 1443*0Sstevel@tonic-gate time_status |= STA_PPSWANDER; 1444*0Sstevel@tonic-gate return; 1445*0Sstevel@tonic-gate } 1446*0Sstevel@tonic-gate if (time_status & STA_PPSFREQ) { 1447*0Sstevel@tonic-gate if (u_usec < 0) { 1448*0Sstevel@tonic-gate pps_freq -= -u_usec >> PPS_AVG; 1449*0Sstevel@tonic-gate if (pps_freq < -time_tolerance) 1450*0Sstevel@tonic-gate pps_freq = -time_tolerance; 1451*0Sstevel@tonic-gate u_usec = -u_usec; 1452*0Sstevel@tonic-gate } else { 1453*0Sstevel@tonic-gate pps_freq += u_usec >> PPS_AVG; 1454*0Sstevel@tonic-gate if (pps_freq > time_tolerance) 1455*0Sstevel@tonic-gate pps_freq = time_tolerance; 1456*0Sstevel@tonic-gate } 1457*0Sstevel@tonic-gate } 1458*0Sstevel@tonic-gate 1459*0Sstevel@tonic-gate /* 1460*0Sstevel@tonic-gate * Here the calibration interval is adjusted. If the maximum 1461*0Sstevel@tonic-gate * time difference is greater than tick / 4, reduce the interval 1462*0Sstevel@tonic-gate * by half. If this is not the case for four consecutive 1463*0Sstevel@tonic-gate * intervals, double the interval. 1464*0Sstevel@tonic-gate */ 1465*0Sstevel@tonic-gate if (u_usec << pps_shift > bigtick >> 2) { 1466*0Sstevel@tonic-gate pps_intcnt = 0; 1467*0Sstevel@tonic-gate if (pps_shift > PPS_SHIFT) 1468*0Sstevel@tonic-gate pps_shift--; 1469*0Sstevel@tonic-gate } else if (pps_intcnt >= 4) { 1470*0Sstevel@tonic-gate pps_intcnt = 0; 1471*0Sstevel@tonic-gate if (pps_shift < PPS_SHIFTMAX) 1472*0Sstevel@tonic-gate pps_shift++; 1473*0Sstevel@tonic-gate } else 1474*0Sstevel@tonic-gate pps_intcnt++; 1475*0Sstevel@tonic-gate 1476*0Sstevel@tonic-gate /* 1477*0Sstevel@tonic-gate * If recovering from kmdb, then make sure the tod chip gets resynced. 1478*0Sstevel@tonic-gate * If we took an early exit above, then we don't yet have a stable 1479*0Sstevel@tonic-gate * calibration signal to lock onto, so don't mark the tod for sync 1480*0Sstevel@tonic-gate * until we get all the way here. 1481*0Sstevel@tonic-gate */ 1482*0Sstevel@tonic-gate { 1483*0Sstevel@tonic-gate int s = hr_clock_lock(); 1484*0Sstevel@tonic-gate 1485*0Sstevel@tonic-gate tod_needsync = 1; 1486*0Sstevel@tonic-gate hr_clock_unlock(s); 1487*0Sstevel@tonic-gate } 1488*0Sstevel@tonic-gate } 1489*0Sstevel@tonic-gate 1490*0Sstevel@tonic-gate /* 1491*0Sstevel@tonic-gate * Handle clock tick processing for a thread. 1492*0Sstevel@tonic-gate * Check for timer action, enforce CPU rlimit, do profiling etc. 1493*0Sstevel@tonic-gate */ 1494*0Sstevel@tonic-gate void 1495*0Sstevel@tonic-gate clock_tick(kthread_t *t) 1496*0Sstevel@tonic-gate { 1497*0Sstevel@tonic-gate struct proc *pp; 1498*0Sstevel@tonic-gate klwp_id_t lwp; 1499*0Sstevel@tonic-gate struct as *as; 1500*0Sstevel@tonic-gate clock_t utime; 1501*0Sstevel@tonic-gate clock_t stime; 1502*0Sstevel@tonic-gate int poke = 0; /* notify another CPU */ 1503*0Sstevel@tonic-gate int user_mode; 1504*0Sstevel@tonic-gate size_t rss; 1505*0Sstevel@tonic-gate 1506*0Sstevel@tonic-gate /* Must be operating on a lwp/thread */ 1507*0Sstevel@tonic-gate if ((lwp = ttolwp(t)) == NULL) { 1508*0Sstevel@tonic-gate panic("clock_tick: no lwp"); 1509*0Sstevel@tonic-gate /*NOTREACHED*/ 1510*0Sstevel@tonic-gate } 1511*0Sstevel@tonic-gate 1512*0Sstevel@tonic-gate CL_TICK(t); /* Class specific tick processing */ 1513*0Sstevel@tonic-gate DTRACE_SCHED1(tick, kthread_t *, t); 1514*0Sstevel@tonic-gate 1515*0Sstevel@tonic-gate pp = ttoproc(t); 1516*0Sstevel@tonic-gate 1517*0Sstevel@tonic-gate /* pp->p_lock makes sure that the thread does not exit */ 1518*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&pp->p_lock)); 1519*0Sstevel@tonic-gate 1520*0Sstevel@tonic-gate user_mode = (lwp->lwp_state == LWP_USER); 1521*0Sstevel@tonic-gate 1522*0Sstevel@tonic-gate /* 1523*0Sstevel@tonic-gate * Update process times. Should use high res clock and state 1524*0Sstevel@tonic-gate * changes instead of statistical sampling method. XXX 1525*0Sstevel@tonic-gate */ 1526*0Sstevel@tonic-gate if (user_mode) { 1527*0Sstevel@tonic-gate pp->p_utime++; 1528*0Sstevel@tonic-gate pp->p_task->tk_cpu_time++; 1529*0Sstevel@tonic-gate } else { 1530*0Sstevel@tonic-gate pp->p_stime++; 1531*0Sstevel@tonic-gate pp->p_task->tk_cpu_time++; 1532*0Sstevel@tonic-gate } 1533*0Sstevel@tonic-gate as = pp->p_as; 1534*0Sstevel@tonic-gate 1535*0Sstevel@tonic-gate /* 1536*0Sstevel@tonic-gate * Update user profiling statistics. Get the pc from the 1537*0Sstevel@tonic-gate * lwp when the AST happens. 1538*0Sstevel@tonic-gate */ 1539*0Sstevel@tonic-gate if (pp->p_prof.pr_scale) { 1540*0Sstevel@tonic-gate atomic_add_32(&lwp->lwp_oweupc, 1); 1541*0Sstevel@tonic-gate if (user_mode) { 1542*0Sstevel@tonic-gate poke = 1; 1543*0Sstevel@tonic-gate aston(t); 1544*0Sstevel@tonic-gate } 1545*0Sstevel@tonic-gate } 1546*0Sstevel@tonic-gate 1547*0Sstevel@tonic-gate utime = pp->p_utime; 1548*0Sstevel@tonic-gate stime = pp->p_stime; 1549*0Sstevel@tonic-gate 1550*0Sstevel@tonic-gate /* 1551*0Sstevel@tonic-gate * If CPU was in user state, process lwp-virtual time 1552*0Sstevel@tonic-gate * interval timer. 1553*0Sstevel@tonic-gate */ 1554*0Sstevel@tonic-gate if (user_mode && 1555*0Sstevel@tonic-gate timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1556*0Sstevel@tonic-gate itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1557*0Sstevel@tonic-gate poke = 1; 1558*0Sstevel@tonic-gate sigtoproc(pp, t, SIGVTALRM); 1559*0Sstevel@tonic-gate } 1560*0Sstevel@tonic-gate 1561*0Sstevel@tonic-gate if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1562*0Sstevel@tonic-gate itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1563*0Sstevel@tonic-gate poke = 1; 1564*0Sstevel@tonic-gate sigtoproc(pp, t, SIGPROF); 1565*0Sstevel@tonic-gate } 1566*0Sstevel@tonic-gate 1567*0Sstevel@tonic-gate /* 1568*0Sstevel@tonic-gate * Enforce CPU resource controls: 1569*0Sstevel@tonic-gate * (a) process.max-cpu-time resource control 1570*0Sstevel@tonic-gate */ 1571*0Sstevel@tonic-gate (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1572*0Sstevel@tonic-gate (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1573*0Sstevel@tonic-gate 1574*0Sstevel@tonic-gate /* 1575*0Sstevel@tonic-gate * (b) task.max-cpu-time resource control 1576*0Sstevel@tonic-gate */ 1577*0Sstevel@tonic-gate (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1578*0Sstevel@tonic-gate RCA_UNSAFE_SIGINFO); 1579*0Sstevel@tonic-gate 1580*0Sstevel@tonic-gate /* 1581*0Sstevel@tonic-gate * Update memory usage for the currently running process. 1582*0Sstevel@tonic-gate */ 1583*0Sstevel@tonic-gate rss = rm_asrss(as); 1584*0Sstevel@tonic-gate PTOU(pp)->u_mem += rss; 1585*0Sstevel@tonic-gate if (rss > PTOU(pp)->u_mem_max) 1586*0Sstevel@tonic-gate PTOU(pp)->u_mem_max = rss; 1587*0Sstevel@tonic-gate 1588*0Sstevel@tonic-gate /* 1589*0Sstevel@tonic-gate * Notify the CPU the thread is running on. 1590*0Sstevel@tonic-gate */ 1591*0Sstevel@tonic-gate if (poke && t->t_cpu != CPU) 1592*0Sstevel@tonic-gate poke_cpu(t->t_cpu->cpu_id); 1593*0Sstevel@tonic-gate } 1594*0Sstevel@tonic-gate 1595*0Sstevel@tonic-gate void 1596*0Sstevel@tonic-gate profil_tick(uintptr_t upc) 1597*0Sstevel@tonic-gate { 1598*0Sstevel@tonic-gate int ticks; 1599*0Sstevel@tonic-gate proc_t *p = ttoproc(curthread); 1600*0Sstevel@tonic-gate klwp_t *lwp = ttolwp(curthread); 1601*0Sstevel@tonic-gate struct prof *pr = &p->p_prof; 1602*0Sstevel@tonic-gate 1603*0Sstevel@tonic-gate do { 1604*0Sstevel@tonic-gate ticks = lwp->lwp_oweupc; 1605*0Sstevel@tonic-gate } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1606*0Sstevel@tonic-gate 1607*0Sstevel@tonic-gate mutex_enter(&p->p_pflock); 1608*0Sstevel@tonic-gate if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1609*0Sstevel@tonic-gate /* 1610*0Sstevel@tonic-gate * Old-style profiling 1611*0Sstevel@tonic-gate */ 1612*0Sstevel@tonic-gate uint16_t *slot = pr->pr_base; 1613*0Sstevel@tonic-gate uint16_t old, new; 1614*0Sstevel@tonic-gate if (pr->pr_scale != 2) { 1615*0Sstevel@tonic-gate uintptr_t delta = upc - pr->pr_off; 1616*0Sstevel@tonic-gate uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1617*0Sstevel@tonic-gate (((delta & 0xffff) * pr->pr_scale) >> 16); 1618*0Sstevel@tonic-gate if (byteoff >= (uintptr_t)pr->pr_size) { 1619*0Sstevel@tonic-gate mutex_exit(&p->p_pflock); 1620*0Sstevel@tonic-gate return; 1621*0Sstevel@tonic-gate } 1622*0Sstevel@tonic-gate slot += byteoff / sizeof (uint16_t); 1623*0Sstevel@tonic-gate } 1624*0Sstevel@tonic-gate if (fuword16(slot, &old) < 0 || 1625*0Sstevel@tonic-gate (new = old + ticks) > SHRT_MAX || 1626*0Sstevel@tonic-gate suword16(slot, new) < 0) { 1627*0Sstevel@tonic-gate pr->pr_scale = 0; 1628*0Sstevel@tonic-gate } 1629*0Sstevel@tonic-gate } else if (pr->pr_scale == 1) { 1630*0Sstevel@tonic-gate /* 1631*0Sstevel@tonic-gate * PC Sampling 1632*0Sstevel@tonic-gate */ 1633*0Sstevel@tonic-gate model_t model = lwp_getdatamodel(lwp); 1634*0Sstevel@tonic-gate int result; 1635*0Sstevel@tonic-gate #ifdef __lint 1636*0Sstevel@tonic-gate model = model; 1637*0Sstevel@tonic-gate #endif 1638*0Sstevel@tonic-gate while (ticks-- > 0) { 1639*0Sstevel@tonic-gate if (pr->pr_samples == pr->pr_size) { 1640*0Sstevel@tonic-gate /* buffer full, turn off sampling */ 1641*0Sstevel@tonic-gate pr->pr_scale = 0; 1642*0Sstevel@tonic-gate break; 1643*0Sstevel@tonic-gate } 1644*0Sstevel@tonic-gate switch (SIZEOF_PTR(model)) { 1645*0Sstevel@tonic-gate case sizeof (uint32_t): 1646*0Sstevel@tonic-gate result = suword32(pr->pr_base, (uint32_t)upc); 1647*0Sstevel@tonic-gate break; 1648*0Sstevel@tonic-gate #ifdef _LP64 1649*0Sstevel@tonic-gate case sizeof (uint64_t): 1650*0Sstevel@tonic-gate result = suword64(pr->pr_base, (uint64_t)upc); 1651*0Sstevel@tonic-gate break; 1652*0Sstevel@tonic-gate #endif 1653*0Sstevel@tonic-gate default: 1654*0Sstevel@tonic-gate cmn_err(CE_WARN, "profil_tick: unexpected " 1655*0Sstevel@tonic-gate "data model"); 1656*0Sstevel@tonic-gate result = -1; 1657*0Sstevel@tonic-gate break; 1658*0Sstevel@tonic-gate } 1659*0Sstevel@tonic-gate if (result != 0) { 1660*0Sstevel@tonic-gate pr->pr_scale = 0; 1661*0Sstevel@tonic-gate break; 1662*0Sstevel@tonic-gate } 1663*0Sstevel@tonic-gate pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1664*0Sstevel@tonic-gate pr->pr_samples++; 1665*0Sstevel@tonic-gate } 1666*0Sstevel@tonic-gate } 1667*0Sstevel@tonic-gate mutex_exit(&p->p_pflock); 1668*0Sstevel@tonic-gate } 1669*0Sstevel@tonic-gate 1670*0Sstevel@tonic-gate static void 1671*0Sstevel@tonic-gate delay_wakeup(void *arg) 1672*0Sstevel@tonic-gate { 1673*0Sstevel@tonic-gate kthread_t *t = arg; 1674*0Sstevel@tonic-gate 1675*0Sstevel@tonic-gate mutex_enter(&t->t_delay_lock); 1676*0Sstevel@tonic-gate cv_signal(&t->t_delay_cv); 1677*0Sstevel@tonic-gate mutex_exit(&t->t_delay_lock); 1678*0Sstevel@tonic-gate } 1679*0Sstevel@tonic-gate 1680*0Sstevel@tonic-gate void 1681*0Sstevel@tonic-gate delay(clock_t ticks) 1682*0Sstevel@tonic-gate { 1683*0Sstevel@tonic-gate kthread_t *t = curthread; 1684*0Sstevel@tonic-gate clock_t deadline = lbolt + ticks; 1685*0Sstevel@tonic-gate clock_t timeleft; 1686*0Sstevel@tonic-gate timeout_id_t id; 1687*0Sstevel@tonic-gate 1688*0Sstevel@tonic-gate if (panicstr && ticks > 0) { 1689*0Sstevel@tonic-gate /* 1690*0Sstevel@tonic-gate * Timeouts aren't running, so all we can do is spin. 1691*0Sstevel@tonic-gate */ 1692*0Sstevel@tonic-gate drv_usecwait(TICK_TO_USEC(ticks)); 1693*0Sstevel@tonic-gate return; 1694*0Sstevel@tonic-gate } 1695*0Sstevel@tonic-gate 1696*0Sstevel@tonic-gate while ((timeleft = deadline - lbolt) > 0) { 1697*0Sstevel@tonic-gate mutex_enter(&t->t_delay_lock); 1698*0Sstevel@tonic-gate id = timeout(delay_wakeup, t, timeleft); 1699*0Sstevel@tonic-gate cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1700*0Sstevel@tonic-gate mutex_exit(&t->t_delay_lock); 1701*0Sstevel@tonic-gate (void) untimeout(id); 1702*0Sstevel@tonic-gate } 1703*0Sstevel@tonic-gate } 1704*0Sstevel@tonic-gate 1705*0Sstevel@tonic-gate /* 1706*0Sstevel@tonic-gate * Like delay, but interruptible by a signal. 1707*0Sstevel@tonic-gate */ 1708*0Sstevel@tonic-gate int 1709*0Sstevel@tonic-gate delay_sig(clock_t ticks) 1710*0Sstevel@tonic-gate { 1711*0Sstevel@tonic-gate clock_t deadline = lbolt + ticks; 1712*0Sstevel@tonic-gate clock_t rc; 1713*0Sstevel@tonic-gate 1714*0Sstevel@tonic-gate mutex_enter(&curthread->t_delay_lock); 1715*0Sstevel@tonic-gate do { 1716*0Sstevel@tonic-gate rc = cv_timedwait_sig(&curthread->t_delay_cv, 1717*0Sstevel@tonic-gate &curthread->t_delay_lock, deadline); 1718*0Sstevel@tonic-gate } while (rc > 0); 1719*0Sstevel@tonic-gate mutex_exit(&curthread->t_delay_lock); 1720*0Sstevel@tonic-gate if (rc == 0) 1721*0Sstevel@tonic-gate return (EINTR); 1722*0Sstevel@tonic-gate return (0); 1723*0Sstevel@tonic-gate } 1724*0Sstevel@tonic-gate 1725*0Sstevel@tonic-gate #define SECONDS_PER_DAY 86400 1726*0Sstevel@tonic-gate 1727*0Sstevel@tonic-gate /* 1728*0Sstevel@tonic-gate * Initialize the system time based on the TOD chip. approx is used as 1729*0Sstevel@tonic-gate * an approximation of time (e.g. from the filesystem) in the event that 1730*0Sstevel@tonic-gate * the TOD chip has been cleared or is unresponsive. An approx of -1 1731*0Sstevel@tonic-gate * means the filesystem doesn't keep time. 1732*0Sstevel@tonic-gate */ 1733*0Sstevel@tonic-gate void 1734*0Sstevel@tonic-gate clkset(time_t approx) 1735*0Sstevel@tonic-gate { 1736*0Sstevel@tonic-gate timestruc_t ts; 1737*0Sstevel@tonic-gate int spl; 1738*0Sstevel@tonic-gate int set_clock = 0; 1739*0Sstevel@tonic-gate 1740*0Sstevel@tonic-gate mutex_enter(&tod_lock); 1741*0Sstevel@tonic-gate ts = tod_get(); 1742*0Sstevel@tonic-gate 1743*0Sstevel@tonic-gate if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1744*0Sstevel@tonic-gate /* 1745*0Sstevel@tonic-gate * If the TOD chip is reporting some time after 1971, 1746*0Sstevel@tonic-gate * then it probably didn't lose power or become otherwise 1747*0Sstevel@tonic-gate * cleared in the recent past; check to assure that 1748*0Sstevel@tonic-gate * the time coming from the filesystem isn't in the future 1749*0Sstevel@tonic-gate * according to the TOD chip. 1750*0Sstevel@tonic-gate */ 1751*0Sstevel@tonic-gate if (approx != -1 && approx > ts.tv_sec) { 1752*0Sstevel@tonic-gate cmn_err(CE_WARN, "Last shutdown is later " 1753*0Sstevel@tonic-gate "than time on time-of-day chip; check date."); 1754*0Sstevel@tonic-gate } 1755*0Sstevel@tonic-gate } else { 1756*0Sstevel@tonic-gate /* 1757*0Sstevel@tonic-gate * If the TOD chip isn't giving correct time, then set it to 1758*0Sstevel@tonic-gate * the time that was passed in as a rough estimate. If we 1759*0Sstevel@tonic-gate * don't have an estimate, then set the clock back to a time 1760*0Sstevel@tonic-gate * when Oliver North, ALF and Dire Straits were all on the 1761*0Sstevel@tonic-gate * collective brain: 1987. 1762*0Sstevel@tonic-gate */ 1763*0Sstevel@tonic-gate timestruc_t tmp; 1764*0Sstevel@tonic-gate if (approx == -1) 1765*0Sstevel@tonic-gate ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1766*0Sstevel@tonic-gate else 1767*0Sstevel@tonic-gate ts.tv_sec = approx; 1768*0Sstevel@tonic-gate ts.tv_nsec = 0; 1769*0Sstevel@tonic-gate 1770*0Sstevel@tonic-gate /* 1771*0Sstevel@tonic-gate * Attempt to write the new time to the TOD chip. Set spl high 1772*0Sstevel@tonic-gate * to avoid getting preempted between the tod_set and tod_get. 1773*0Sstevel@tonic-gate */ 1774*0Sstevel@tonic-gate spl = splhi(); 1775*0Sstevel@tonic-gate tod_set(ts); 1776*0Sstevel@tonic-gate tmp = tod_get(); 1777*0Sstevel@tonic-gate splx(spl); 1778*0Sstevel@tonic-gate 1779*0Sstevel@tonic-gate if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1780*0Sstevel@tonic-gate tod_broken = 1; 1781*0Sstevel@tonic-gate dosynctodr = 0; 1782*0Sstevel@tonic-gate cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1783*0Sstevel@tonic-gate " dead batteries?"); 1784*0Sstevel@tonic-gate } else { 1785*0Sstevel@tonic-gate cmn_err(CE_WARN, "Time-of-day chip had " 1786*0Sstevel@tonic-gate "incorrect date; check and reset."); 1787*0Sstevel@tonic-gate } 1788*0Sstevel@tonic-gate set_clock = 1; 1789*0Sstevel@tonic-gate } 1790*0Sstevel@tonic-gate 1791*0Sstevel@tonic-gate if (!boot_time) { 1792*0Sstevel@tonic-gate boot_time = ts.tv_sec; 1793*0Sstevel@tonic-gate set_clock = 1; 1794*0Sstevel@tonic-gate } 1795*0Sstevel@tonic-gate 1796*0Sstevel@tonic-gate if (set_clock) 1797*0Sstevel@tonic-gate set_hrestime(&ts); 1798*0Sstevel@tonic-gate 1799*0Sstevel@tonic-gate mutex_exit(&tod_lock); 1800*0Sstevel@tonic-gate } 1801*0Sstevel@tonic-gate 1802*0Sstevel@tonic-gate int timechanged; /* for testing if the system time has been reset */ 1803*0Sstevel@tonic-gate 1804*0Sstevel@tonic-gate void 1805*0Sstevel@tonic-gate set_hrestime(timestruc_t *ts) 1806*0Sstevel@tonic-gate { 1807*0Sstevel@tonic-gate int spl = hr_clock_lock(); 1808*0Sstevel@tonic-gate hrestime = *ts; 1809*0Sstevel@tonic-gate membar_enter(); /* hrestime must be visible before timechanged++ */ 1810*0Sstevel@tonic-gate timedelta = 0; 1811*0Sstevel@tonic-gate timechanged++; 1812*0Sstevel@tonic-gate hr_clock_unlock(spl); 1813*0Sstevel@tonic-gate } 1814*0Sstevel@tonic-gate 1815*0Sstevel@tonic-gate static uint_t deadman_seconds; 1816*0Sstevel@tonic-gate static uint32_t deadman_panics; 1817*0Sstevel@tonic-gate static int deadman_enabled = 0; 1818*0Sstevel@tonic-gate static int deadman_panic_timers = 1; 1819*0Sstevel@tonic-gate 1820*0Sstevel@tonic-gate static void 1821*0Sstevel@tonic-gate deadman(void) 1822*0Sstevel@tonic-gate { 1823*0Sstevel@tonic-gate if (panicstr) { 1824*0Sstevel@tonic-gate /* 1825*0Sstevel@tonic-gate * During panic, other CPUs besides the panic 1826*0Sstevel@tonic-gate * master continue to handle cyclics and some other 1827*0Sstevel@tonic-gate * interrupts. The code below is intended to be 1828*0Sstevel@tonic-gate * single threaded, so any CPU other than the master 1829*0Sstevel@tonic-gate * must keep out. 1830*0Sstevel@tonic-gate */ 1831*0Sstevel@tonic-gate if (CPU->cpu_id != panic_cpu.cpu_id) 1832*0Sstevel@tonic-gate return; 1833*0Sstevel@tonic-gate 1834*0Sstevel@tonic-gate /* 1835*0Sstevel@tonic-gate * If we're panicking, the deadman cyclic continues to increase 1836*0Sstevel@tonic-gate * lbolt in case the dump device driver relies on this for 1837*0Sstevel@tonic-gate * timeouts. Note that we rely on deadman() being invoked once 1838*0Sstevel@tonic-gate * per second, and credit lbolt and lbolt64 with hz ticks each. 1839*0Sstevel@tonic-gate */ 1840*0Sstevel@tonic-gate lbolt += hz; 1841*0Sstevel@tonic-gate lbolt64 += hz; 1842*0Sstevel@tonic-gate 1843*0Sstevel@tonic-gate if (!deadman_panic_timers) 1844*0Sstevel@tonic-gate return; /* allow all timers to be manually disabled */ 1845*0Sstevel@tonic-gate 1846*0Sstevel@tonic-gate /* 1847*0Sstevel@tonic-gate * If we are generating a crash dump or syncing filesystems and 1848*0Sstevel@tonic-gate * the corresponding timer is set, decrement it and re-enter 1849*0Sstevel@tonic-gate * the panic code to abort it and advance to the next state. 1850*0Sstevel@tonic-gate * The panic states and triggers are explained in panic.c. 1851*0Sstevel@tonic-gate */ 1852*0Sstevel@tonic-gate if (panic_dump) { 1853*0Sstevel@tonic-gate if (dump_timeleft && (--dump_timeleft == 0)) { 1854*0Sstevel@tonic-gate panic("panic dump timeout"); 1855*0Sstevel@tonic-gate /*NOTREACHED*/ 1856*0Sstevel@tonic-gate } 1857*0Sstevel@tonic-gate } else if (panic_sync) { 1858*0Sstevel@tonic-gate if (sync_timeleft && (--sync_timeleft == 0)) { 1859*0Sstevel@tonic-gate panic("panic sync timeout"); 1860*0Sstevel@tonic-gate /*NOTREACHED*/ 1861*0Sstevel@tonic-gate } 1862*0Sstevel@tonic-gate } 1863*0Sstevel@tonic-gate 1864*0Sstevel@tonic-gate return; 1865*0Sstevel@tonic-gate } 1866*0Sstevel@tonic-gate 1867*0Sstevel@tonic-gate if (lbolt != CPU->cpu_deadman_lbolt) { 1868*0Sstevel@tonic-gate CPU->cpu_deadman_lbolt = lbolt; 1869*0Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 1870*0Sstevel@tonic-gate return; 1871*0Sstevel@tonic-gate } 1872*0Sstevel@tonic-gate 1873*0Sstevel@tonic-gate if (CPU->cpu_deadman_countdown-- > 0) 1874*0Sstevel@tonic-gate return; 1875*0Sstevel@tonic-gate 1876*0Sstevel@tonic-gate /* 1877*0Sstevel@tonic-gate * Regardless of whether or not we actually bring the system down, 1878*0Sstevel@tonic-gate * bump the deadman_panics variable. 1879*0Sstevel@tonic-gate * 1880*0Sstevel@tonic-gate * N.B. deadman_panics is incremented once for each CPU that 1881*0Sstevel@tonic-gate * passes through here. It's expected that all the CPUs will 1882*0Sstevel@tonic-gate * detect this condition within one second of each other, so 1883*0Sstevel@tonic-gate * when deadman_enabled is off, deadman_panics will 1884*0Sstevel@tonic-gate * typically be a multiple of the total number of CPUs in 1885*0Sstevel@tonic-gate * the system. 1886*0Sstevel@tonic-gate */ 1887*0Sstevel@tonic-gate atomic_add_32(&deadman_panics, 1); 1888*0Sstevel@tonic-gate 1889*0Sstevel@tonic-gate if (!deadman_enabled) { 1890*0Sstevel@tonic-gate CPU->cpu_deadman_countdown = deadman_seconds; 1891*0Sstevel@tonic-gate return; 1892*0Sstevel@tonic-gate } 1893*0Sstevel@tonic-gate 1894*0Sstevel@tonic-gate /* 1895*0Sstevel@tonic-gate * If we're here, we want to bring the system down. 1896*0Sstevel@tonic-gate */ 1897*0Sstevel@tonic-gate panic("deadman: timed out after %d seconds of clock " 1898*0Sstevel@tonic-gate "inactivity", deadman_seconds); 1899*0Sstevel@tonic-gate /*NOTREACHED*/ 1900*0Sstevel@tonic-gate } 1901*0Sstevel@tonic-gate 1902*0Sstevel@tonic-gate /*ARGSUSED*/ 1903*0Sstevel@tonic-gate static void 1904*0Sstevel@tonic-gate deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1905*0Sstevel@tonic-gate { 1906*0Sstevel@tonic-gate cpu->cpu_deadman_lbolt = 0; 1907*0Sstevel@tonic-gate cpu->cpu_deadman_countdown = deadman_seconds; 1908*0Sstevel@tonic-gate 1909*0Sstevel@tonic-gate hdlr->cyh_func = (cyc_func_t)deadman; 1910*0Sstevel@tonic-gate hdlr->cyh_level = CY_HIGH_LEVEL; 1911*0Sstevel@tonic-gate hdlr->cyh_arg = NULL; 1912*0Sstevel@tonic-gate 1913*0Sstevel@tonic-gate /* 1914*0Sstevel@tonic-gate * Stagger the CPUs so that they don't all run deadman() at 1915*0Sstevel@tonic-gate * the same time. Simplest reason to do this is to make it 1916*0Sstevel@tonic-gate * more likely that only one CPU will panic in case of a 1917*0Sstevel@tonic-gate * timeout. This is (strictly speaking) an aesthetic, not a 1918*0Sstevel@tonic-gate * technical consideration. 1919*0Sstevel@tonic-gate * 1920*0Sstevel@tonic-gate * The interval must be one second in accordance with the 1921*0Sstevel@tonic-gate * code in deadman() above to increase lbolt during panic. 1922*0Sstevel@tonic-gate */ 1923*0Sstevel@tonic-gate when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1924*0Sstevel@tonic-gate when->cyt_interval = NANOSEC; 1925*0Sstevel@tonic-gate } 1926*0Sstevel@tonic-gate 1927*0Sstevel@tonic-gate 1928*0Sstevel@tonic-gate void 1929*0Sstevel@tonic-gate deadman_init(void) 1930*0Sstevel@tonic-gate { 1931*0Sstevel@tonic-gate cyc_omni_handler_t hdlr; 1932*0Sstevel@tonic-gate 1933*0Sstevel@tonic-gate if (deadman_seconds == 0) 1934*0Sstevel@tonic-gate deadman_seconds = snoop_interval / MICROSEC; 1935*0Sstevel@tonic-gate 1936*0Sstevel@tonic-gate if (snooping) 1937*0Sstevel@tonic-gate deadman_enabled = 1; 1938*0Sstevel@tonic-gate 1939*0Sstevel@tonic-gate hdlr.cyo_online = deadman_online; 1940*0Sstevel@tonic-gate hdlr.cyo_offline = NULL; 1941*0Sstevel@tonic-gate hdlr.cyo_arg = NULL; 1942*0Sstevel@tonic-gate 1943*0Sstevel@tonic-gate mutex_enter(&cpu_lock); 1944*0Sstevel@tonic-gate deadman_cyclic = cyclic_add_omni(&hdlr); 1945*0Sstevel@tonic-gate mutex_exit(&cpu_lock); 1946*0Sstevel@tonic-gate } 1947*0Sstevel@tonic-gate 1948*0Sstevel@tonic-gate /* 1949*0Sstevel@tonic-gate * tod_fault() is for updating tod validate mechanism state: 1950*0Sstevel@tonic-gate * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1951*0Sstevel@tonic-gate * currently used for debugging only 1952*0Sstevel@tonic-gate * (2) The following four cases detected by tod validate mechanism: 1953*0Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous value. 1954*0Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 1955*0Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 1956*0Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 1957*0Sstevel@tonic-gate * average tick delta has changed. 1958*0Sstevel@tonic-gate */ 1959*0Sstevel@tonic-gate enum tod_fault_type 1960*0Sstevel@tonic-gate tod_fault(enum tod_fault_type ftype, int off) 1961*0Sstevel@tonic-gate { 1962*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 1963*0Sstevel@tonic-gate 1964*0Sstevel@tonic-gate if (tod_faulted != ftype) { 1965*0Sstevel@tonic-gate switch (ftype) { 1966*0Sstevel@tonic-gate case TOD_NOFAULT: 1967*0Sstevel@tonic-gate if (&plat_tod_fault) 1968*0Sstevel@tonic-gate plat_tod_fault(TOD_NOFAULT); 1969*0Sstevel@tonic-gate cmn_err(CE_NOTE, "Restarted tracking " 1970*0Sstevel@tonic-gate "Time of Day clock."); 1971*0Sstevel@tonic-gate tod_faulted = ftype; 1972*0Sstevel@tonic-gate break; 1973*0Sstevel@tonic-gate case TOD_REVERSED: 1974*0Sstevel@tonic-gate case TOD_JUMPED: 1975*0Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 1976*0Sstevel@tonic-gate if (&plat_tod_fault) 1977*0Sstevel@tonic-gate plat_tod_fault(ftype); 1978*0Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 1979*0Sstevel@tonic-gate "reason [%s by 0x%x]. -- " 1980*0Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 1981*0Sstevel@tonic-gate tod_fault_table[ftype], off); 1982*0Sstevel@tonic-gate tod_faulted = ftype; 1983*0Sstevel@tonic-gate } 1984*0Sstevel@tonic-gate break; 1985*0Sstevel@tonic-gate case TOD_STALLED: 1986*0Sstevel@tonic-gate case TOD_RATECHANGED: 1987*0Sstevel@tonic-gate if (tod_faulted == TOD_NOFAULT) { 1988*0Sstevel@tonic-gate if (&plat_tod_fault) 1989*0Sstevel@tonic-gate plat_tod_fault(ftype); 1990*0Sstevel@tonic-gate cmn_err(CE_WARN, "Time of Day clock error: " 1991*0Sstevel@tonic-gate "reason [%s]. -- " 1992*0Sstevel@tonic-gate " Stopped tracking Time Of Day clock.", 1993*0Sstevel@tonic-gate tod_fault_table[ftype]); 1994*0Sstevel@tonic-gate tod_faulted = ftype; 1995*0Sstevel@tonic-gate } 1996*0Sstevel@tonic-gate break; 1997*0Sstevel@tonic-gate default: 1998*0Sstevel@tonic-gate break; 1999*0Sstevel@tonic-gate } 2000*0Sstevel@tonic-gate } 2001*0Sstevel@tonic-gate return (tod_faulted); 2002*0Sstevel@tonic-gate } 2003*0Sstevel@tonic-gate 2004*0Sstevel@tonic-gate void 2005*0Sstevel@tonic-gate tod_fault_reset() 2006*0Sstevel@tonic-gate { 2007*0Sstevel@tonic-gate tod_fault_reset_flag = 1; 2008*0Sstevel@tonic-gate } 2009*0Sstevel@tonic-gate 2010*0Sstevel@tonic-gate 2011*0Sstevel@tonic-gate /* 2012*0Sstevel@tonic-gate * tod_validate() is used for checking values returned by tod_get(). 2013*0Sstevel@tonic-gate * Four error cases can be detected by this routine: 2014*0Sstevel@tonic-gate * TOD_REVERSED: current tod value is less than previous. 2015*0Sstevel@tonic-gate * TOD_STALLED: current tod value hasn't advanced. 2016*0Sstevel@tonic-gate * TOD_JUMPED: current tod value advanced too far from previous value. 2017*0Sstevel@tonic-gate * TOD_RATECHANGED: the ratio between average tod delta and 2018*0Sstevel@tonic-gate * average tick delta has changed. 2019*0Sstevel@tonic-gate */ 2020*0Sstevel@tonic-gate time_t 2021*0Sstevel@tonic-gate tod_validate(time_t tod) 2022*0Sstevel@tonic-gate { 2023*0Sstevel@tonic-gate time_t diff_tod; 2024*0Sstevel@tonic-gate hrtime_t diff_tick; 2025*0Sstevel@tonic-gate 2026*0Sstevel@tonic-gate long dtick; 2027*0Sstevel@tonic-gate int dtick_delta; 2028*0Sstevel@tonic-gate 2029*0Sstevel@tonic-gate int off = 0; 2030*0Sstevel@tonic-gate enum tod_fault_type tod_bad = TOD_NOFAULT; 2031*0Sstevel@tonic-gate 2032*0Sstevel@tonic-gate static int firsttime = 1; 2033*0Sstevel@tonic-gate 2034*0Sstevel@tonic-gate static time_t prev_tod = 0; 2035*0Sstevel@tonic-gate static hrtime_t prev_tick = 0; 2036*0Sstevel@tonic-gate static long dtick_avg = TOD_REF_FREQ; 2037*0Sstevel@tonic-gate 2038*0Sstevel@tonic-gate hrtime_t tick = gethrtime(); 2039*0Sstevel@tonic-gate 2040*0Sstevel@tonic-gate ASSERT(MUTEX_HELD(&tod_lock)); 2041*0Sstevel@tonic-gate 2042*0Sstevel@tonic-gate /* 2043*0Sstevel@tonic-gate * tod_validate_enable is patchable via /etc/system. 2044*0Sstevel@tonic-gate * If TOD is already faulted, there is nothing to do 2045*0Sstevel@tonic-gate */ 2046*0Sstevel@tonic-gate if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT)) { 2047*0Sstevel@tonic-gate return (tod); 2048*0Sstevel@tonic-gate } 2049*0Sstevel@tonic-gate 2050*0Sstevel@tonic-gate /* 2051*0Sstevel@tonic-gate * Update prev_tod and prev_tick values for first run 2052*0Sstevel@tonic-gate */ 2053*0Sstevel@tonic-gate if (firsttime) { 2054*0Sstevel@tonic-gate firsttime = 0; 2055*0Sstevel@tonic-gate prev_tod = tod; 2056*0Sstevel@tonic-gate prev_tick = tick; 2057*0Sstevel@tonic-gate return (tod); 2058*0Sstevel@tonic-gate } 2059*0Sstevel@tonic-gate 2060*0Sstevel@tonic-gate /* 2061*0Sstevel@tonic-gate * For either of these conditions, we need to reset ourself 2062*0Sstevel@tonic-gate * and start validation from zero since each condition 2063*0Sstevel@tonic-gate * indicates that the TOD will be updated with new value 2064*0Sstevel@tonic-gate * Also, note that tod_needsync will be reset in clock() 2065*0Sstevel@tonic-gate */ 2066*0Sstevel@tonic-gate if (tod_needsync || tod_fault_reset_flag) { 2067*0Sstevel@tonic-gate firsttime = 1; 2068*0Sstevel@tonic-gate prev_tod = 0; 2069*0Sstevel@tonic-gate prev_tick = 0; 2070*0Sstevel@tonic-gate dtick_avg = TOD_REF_FREQ; 2071*0Sstevel@tonic-gate 2072*0Sstevel@tonic-gate if (tod_fault_reset_flag) 2073*0Sstevel@tonic-gate tod_fault_reset_flag = 0; 2074*0Sstevel@tonic-gate 2075*0Sstevel@tonic-gate return (tod); 2076*0Sstevel@tonic-gate } 2077*0Sstevel@tonic-gate 2078*0Sstevel@tonic-gate /* test hook */ 2079*0Sstevel@tonic-gate switch (tod_unit_test) { 2080*0Sstevel@tonic-gate case 1: /* for testing jumping tod */ 2081*0Sstevel@tonic-gate tod += tod_test_injector; 2082*0Sstevel@tonic-gate tod_unit_test = 0; 2083*0Sstevel@tonic-gate break; 2084*0Sstevel@tonic-gate case 2: /* for testing stuck tod bit */ 2085*0Sstevel@tonic-gate tod |= 1 << tod_test_injector; 2086*0Sstevel@tonic-gate tod_unit_test = 0; 2087*0Sstevel@tonic-gate break; 2088*0Sstevel@tonic-gate case 3: /* for testing stalled tod */ 2089*0Sstevel@tonic-gate tod = prev_tod; 2090*0Sstevel@tonic-gate tod_unit_test = 0; 2091*0Sstevel@tonic-gate break; 2092*0Sstevel@tonic-gate case 4: /* reset tod fault status */ 2093*0Sstevel@tonic-gate (void) tod_fault(TOD_NOFAULT, 0); 2094*0Sstevel@tonic-gate tod_unit_test = 0; 2095*0Sstevel@tonic-gate break; 2096*0Sstevel@tonic-gate default: 2097*0Sstevel@tonic-gate break; 2098*0Sstevel@tonic-gate } 2099*0Sstevel@tonic-gate 2100*0Sstevel@tonic-gate diff_tod = tod - prev_tod; 2101*0Sstevel@tonic-gate diff_tick = tick - prev_tick; 2102*0Sstevel@tonic-gate 2103*0Sstevel@tonic-gate ASSERT(diff_tick >= 0); 2104*0Sstevel@tonic-gate 2105*0Sstevel@tonic-gate if (diff_tod < 0) { 2106*0Sstevel@tonic-gate /* ERROR - tod reversed */ 2107*0Sstevel@tonic-gate tod_bad = TOD_REVERSED; 2108*0Sstevel@tonic-gate off = (int)(prev_tod - tod); 2109*0Sstevel@tonic-gate } else if (diff_tod == 0) { 2110*0Sstevel@tonic-gate /* tod did not advance */ 2111*0Sstevel@tonic-gate if (diff_tick > TOD_STALL_THRESHOLD) { 2112*0Sstevel@tonic-gate /* ERROR - tod stalled */ 2113*0Sstevel@tonic-gate tod_bad = TOD_STALLED; 2114*0Sstevel@tonic-gate } else { 2115*0Sstevel@tonic-gate /* 2116*0Sstevel@tonic-gate * Make sure we don't update prev_tick 2117*0Sstevel@tonic-gate * so that diff_tick is calculated since 2118*0Sstevel@tonic-gate * the first diff_tod == 0 2119*0Sstevel@tonic-gate */ 2120*0Sstevel@tonic-gate return (tod); 2121*0Sstevel@tonic-gate } 2122*0Sstevel@tonic-gate } else { 2123*0Sstevel@tonic-gate /* calculate dtick */ 2124*0Sstevel@tonic-gate dtick = diff_tick / diff_tod; 2125*0Sstevel@tonic-gate 2126*0Sstevel@tonic-gate /* update dtick averages */ 2127*0Sstevel@tonic-gate dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2128*0Sstevel@tonic-gate 2129*0Sstevel@tonic-gate /* 2130*0Sstevel@tonic-gate * Calculate dtick_delta as 2131*0Sstevel@tonic-gate * variation from reference freq in quartiles 2132*0Sstevel@tonic-gate */ 2133*0Sstevel@tonic-gate dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2134*0Sstevel@tonic-gate (TOD_REF_FREQ >> 2); 2135*0Sstevel@tonic-gate 2136*0Sstevel@tonic-gate /* 2137*0Sstevel@tonic-gate * Even with a perfectly functioning TOD device, 2138*0Sstevel@tonic-gate * when the number of elapsed seconds is low the 2139*0Sstevel@tonic-gate * algorithm can calculate a rate that is beyond 2140*0Sstevel@tonic-gate * tolerance, causing an error. The algorithm is 2141*0Sstevel@tonic-gate * inaccurate when elapsed time is low (less than 2142*0Sstevel@tonic-gate * 5 seconds). 2143*0Sstevel@tonic-gate */ 2144*0Sstevel@tonic-gate if (diff_tod > 4) { 2145*0Sstevel@tonic-gate if (dtick < TOD_JUMP_THRESHOLD) { 2146*0Sstevel@tonic-gate /* ERROR - tod jumped */ 2147*0Sstevel@tonic-gate tod_bad = TOD_JUMPED; 2148*0Sstevel@tonic-gate off = (int)diff_tod; 2149*0Sstevel@tonic-gate } else if (dtick_delta) { 2150*0Sstevel@tonic-gate /* ERROR - change in clock rate */ 2151*0Sstevel@tonic-gate tod_bad = TOD_RATECHANGED; 2152*0Sstevel@tonic-gate } 2153*0Sstevel@tonic-gate } 2154*0Sstevel@tonic-gate } 2155*0Sstevel@tonic-gate 2156*0Sstevel@tonic-gate if (tod_bad != TOD_NOFAULT) { 2157*0Sstevel@tonic-gate (void) tod_fault(tod_bad, off); 2158*0Sstevel@tonic-gate 2159*0Sstevel@tonic-gate /* 2160*0Sstevel@tonic-gate * Disable dosynctodr since we are going to fault 2161*0Sstevel@tonic-gate * the TOD chip anyway here 2162*0Sstevel@tonic-gate */ 2163*0Sstevel@tonic-gate dosynctodr = 0; 2164*0Sstevel@tonic-gate 2165*0Sstevel@tonic-gate /* 2166*0Sstevel@tonic-gate * Set tod to the correct value from hrestime 2167*0Sstevel@tonic-gate */ 2168*0Sstevel@tonic-gate tod = hrestime.tv_sec; 2169*0Sstevel@tonic-gate } 2170*0Sstevel@tonic-gate 2171*0Sstevel@tonic-gate prev_tod = tod; 2172*0Sstevel@tonic-gate prev_tick = tick; 2173*0Sstevel@tonic-gate return (tod); 2174*0Sstevel@tonic-gate } 2175*0Sstevel@tonic-gate 2176*0Sstevel@tonic-gate static void 2177*0Sstevel@tonic-gate calcloadavg(int nrun, uint64_t *hp_ave) 2178*0Sstevel@tonic-gate { 2179*0Sstevel@tonic-gate static int64_t f[3] = { 135, 27, 9 }; 2180*0Sstevel@tonic-gate uint_t i; 2181*0Sstevel@tonic-gate int64_t q, r; 2182*0Sstevel@tonic-gate 2183*0Sstevel@tonic-gate /* 2184*0Sstevel@tonic-gate * Compute load average over the last 1, 5, and 15 minutes 2185*0Sstevel@tonic-gate * (60, 300, and 900 seconds). The constants in f[3] are for 2186*0Sstevel@tonic-gate * exponential decay: 2187*0Sstevel@tonic-gate * (1 - exp(-1/60)) << 13 = 135, 2188*0Sstevel@tonic-gate * (1 - exp(-1/300)) << 13 = 27, 2189*0Sstevel@tonic-gate * (1 - exp(-1/900)) << 13 = 9. 2190*0Sstevel@tonic-gate */ 2191*0Sstevel@tonic-gate 2192*0Sstevel@tonic-gate /* 2193*0Sstevel@tonic-gate * a little hoop-jumping to avoid integer overflow 2194*0Sstevel@tonic-gate */ 2195*0Sstevel@tonic-gate for (i = 0; i < 3; i++) { 2196*0Sstevel@tonic-gate q = (hp_ave[i] >> 16) << 7; 2197*0Sstevel@tonic-gate r = (hp_ave[i] & 0xffff) << 7; 2198*0Sstevel@tonic-gate hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2199*0Sstevel@tonic-gate } 2200*0Sstevel@tonic-gate } 2201