1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/conf.h> 32 #include <sys/file.h> 33 #include <sys/user.h> 34 #include <sys/uio.h> 35 #include <sys/t_lock.h> 36 #include <sys/buf.h> 37 #include <sys/dkio.h> 38 #include <sys/vtoc.h> 39 #include <sys/kmem.h> 40 #include <vm/page.h> 41 #include <sys/cmn_err.h> 42 #include <sys/sysmacros.h> 43 #include <sys/types.h> 44 #include <sys/mkdev.h> 45 #include <sys/stat.h> 46 #include <sys/open.h> 47 #include <sys/modctl.h> 48 #include <sys/ddi.h> 49 #include <sys/sunddi.h> 50 #include <sys/debug.h> 51 #include <sys/dklabel.h> 52 #include <vm/hat.h> 53 #include <sys/lvm/md_mirror.h> 54 #include <sys/lvm/md_convert.h> 55 #include <sys/lvm/md_mddb.h> 56 #include <sys/esunddi.h> 57 58 #include <sys/sysevent/eventdefs.h> 59 #include <sys/sysevent/svm.h> 60 #include <sys/lvm/mdmn_commd.h> 61 62 md_ops_t mirror_md_ops; 63 #ifndef lint 64 static char _depends_on[] = "drv/md"; 65 md_ops_t *md_interface_ops = &mirror_md_ops; 66 #endif 67 68 extern mdq_anchor_t md_done_daemon; 69 extern mdq_anchor_t md_mstr_daemon; 70 extern mdq_anchor_t md_mirror_daemon; 71 extern mdq_anchor_t md_mirror_io_daemon; 72 extern mdq_anchor_t md_mirror_rs_daemon; 73 extern mdq_anchor_t md_mhs_daemon; 74 75 extern unit_t md_nunits; 76 extern set_t md_nsets; 77 extern md_set_t md_set[]; 78 79 extern int md_status; 80 extern clock_t md_hz; 81 82 extern md_krwlock_t md_unit_array_rw; 83 extern kmutex_t md_mx; 84 extern kcondvar_t md_cv; 85 extern int md_mtioctl_cnt; 86 87 daemon_request_t mirror_timeout; 88 static daemon_request_t hotspare_request; 89 static daemon_request_t mn_hs_request[MD_MAXSETS]; /* Multinode hs req */ 90 91 int md_mirror_mcs_buf_off; 92 93 /* Flags for mdmn_ksend_message to allow debugging */ 94 int md_mirror_msg_flags; 95 96 #ifdef DEBUG 97 /* Flag to switch on debug messages */ 98 int mirror_debug_flag = 0; 99 #endif 100 101 /* 102 * Struct used to hold count of DMR reads and the timestamp of last DMR read 103 * It is used to verify, using a debugger, that the DMR read ioctl has been 104 * executed. 105 */ 106 dmr_stats_t mirror_dmr_stats = {0, 0}; 107 108 /* 109 * Mutex protecting list of non-failfast drivers. 110 */ 111 static kmutex_t non_ff_drv_mutex; 112 static char **non_ff_drivers = NULL; 113 114 extern major_t md_major; 115 116 /* 117 * Write-On-Write memory pool. 118 */ 119 static void copy_write_cont(wowhdr_t *wowhdr); 120 static kmem_cache_t *mirror_wowblk_cache = NULL; 121 static int md_wowbuf_size = 16384; 122 static size_t md_wowblk_size; 123 124 /* 125 * This is a flag that allows: 126 * - disabling the write-on-write mechanism. 127 * - logging occurrences of write-on-write 128 * - switching wow handling procedure processing 129 * Counter for occurences of WOW. 130 */ 131 static uint_t md_mirror_wow_flg = 0; 132 static int md_mirror_wow_cnt = 0; 133 134 /* 135 * Tunable to enable/disable dirty region 136 * processing when closing down a mirror. 137 */ 138 static int new_resync = 1; 139 kmem_cache_t *mirror_parent_cache = NULL; 140 kmem_cache_t *mirror_child_cache = NULL; 141 142 extern int md_ff_disable; /* disable failfast */ 143 144 static int mirror_map_write(mm_unit_t *, md_mcs_t *, md_mps_t *, int); 145 static void mirror_read_strategy(buf_t *, int, void *); 146 static void mirror_write_strategy(buf_t *, int, void *); 147 static void become_owner(daemon_queue_t *); 148 static int mirror_done(struct buf *cb); 149 static int mirror_done_common(struct buf *cb); 150 static void clear_retry_error(struct buf *cb); 151 152 /* 153 * patchables 154 */ 155 int md_min_rr_size = 200; /* 2000 blocks, or 100k */ 156 int md_def_num_rr = 1000; /* Default number of dirty regions */ 157 158 /* 159 * patchable to change delay before rescheduling mirror ownership request. 160 * Value is clock ticks, default 0.5 seconds 161 */ 162 clock_t md_mirror_owner_to = 500000; 163 164 /*ARGSUSED1*/ 165 static int 166 mirror_parent_constructor(void *p, void *d1, int d2) 167 { 168 mutex_init(&((md_mps_t *)p)->ps_mx, NULL, MUTEX_DEFAULT, NULL); 169 return (0); 170 } 171 172 static void 173 mirror_parent_init(md_mps_t *ps) 174 { 175 bzero(ps, offsetof(md_mps_t, ps_mx)); 176 } 177 178 /*ARGSUSED1*/ 179 static void 180 mirror_parent_destructor(void *p, void *d) 181 { 182 mutex_destroy(&((md_mps_t *)p)->ps_mx); 183 } 184 185 /*ARGSUSED1*/ 186 static int 187 mirror_child_constructor(void *p, void *d1, int d2) 188 { 189 bioinit(&((md_mcs_t *)p)->cs_buf); 190 return (0); 191 } 192 193 void 194 mirror_child_init(md_mcs_t *cs) 195 { 196 cs->cs_ps = NULL; 197 cs->cs_mdunit = 0; 198 md_bioreset(&cs->cs_buf); 199 } 200 201 /*ARGSUSED1*/ 202 static void 203 mirror_child_destructor(void *p, void *d) 204 { 205 biofini(&((md_mcs_t *)p)->cs_buf); 206 } 207 208 static void 209 mirror_wowblk_init(wowhdr_t *p) 210 { 211 bzero(p, md_wowblk_size); 212 } 213 214 static void 215 send_poke_hotspares_msg(daemon_request_t *drq) 216 { 217 int rval; 218 md_mn_msg_pokehsp_t pokehsp; 219 md_mn_kresult_t *kresult; 220 set_t setno = (set_t)drq->dq.qlen; 221 222 pokehsp.pokehsp_setno = setno; 223 224 kresult = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP); 225 rval = mdmn_ksend_message(setno, MD_MN_MSG_POKE_HOTSPARES, 226 MD_MSGF_NO_LOG | MD_MSGF_NO_BCAST, (char *)&pokehsp, 227 sizeof (pokehsp), kresult); 228 229 if (!MDMN_KSEND_MSG_OK(rval, kresult)) { 230 mdmn_ksend_show_error(rval, kresult, "POKE_HOTSPARES"); 231 cmn_err(CE_PANIC, 232 "ksend_message failure: POKE_HOTSPARES"); 233 } 234 kmem_free(kresult, sizeof (md_mn_kresult_t)); 235 236 /* Allow further requests to use this set's queue structure */ 237 mutex_enter(&drq->dr_mx); 238 drq->dr_pending = 0; 239 mutex_exit(&drq->dr_mx); 240 } 241 242 /* 243 * Send a poke_hotspares message to the master node. To avoid swamping the 244 * commd handler with requests we only send a message if there is not one 245 * already outstanding. We punt the request to a separate thread context as 246 * cannot afford to block waiting on the request to be serviced. This is 247 * essential when a reconfig cycle is in progress as any open() of a multinode 248 * metadevice may result in a livelock. 249 */ 250 static void 251 send_poke_hotspares(set_t setno) 252 { 253 daemon_request_t *drq = &mn_hs_request[setno]; 254 255 mutex_enter(&drq->dr_mx); 256 if (drq->dr_pending == 0) { 257 drq->dr_pending = 1; 258 drq->dq.qlen = (int)setno; 259 daemon_request(&md_mhs_daemon, 260 send_poke_hotspares_msg, (daemon_queue_t *)drq, REQ_OLD); 261 } 262 mutex_exit(&drq->dr_mx); 263 } 264 265 void 266 mirror_set_sm_state( 267 mm_submirror_t *sm, 268 mm_submirror_ic_t *smic, 269 sm_state_t newstate, 270 int force) 271 { 272 int compcnt; 273 int i; 274 int errcnt; 275 sm_state_t origstate; 276 md_m_shared_t *shared; 277 278 if (force) { 279 sm->sm_state = newstate; 280 uniqtime32(&sm->sm_timestamp); 281 return; 282 } 283 284 origstate = newstate; 285 286 compcnt = (*(smic->sm_get_component_count))(sm->sm_dev, sm); 287 for (i = 0, errcnt = 0; i < compcnt; i++) { 288 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 289 (sm->sm_dev, sm, i); 290 if (shared->ms_state & (CS_ERRED | CS_LAST_ERRED)) 291 newstate |= SMS_COMP_ERRED; 292 if (shared->ms_state & (CS_RESYNC)) 293 newstate |= SMS_COMP_RESYNC; 294 if (shared->ms_state & CS_ERRED) 295 errcnt++; 296 } 297 298 if ((newstate & (SMS_COMP_ERRED | SMS_COMP_RESYNC)) != 0) 299 newstate &= ~origstate; 300 301 if (errcnt == compcnt) 302 newstate |= SMS_ALL_ERRED; 303 else 304 newstate &= ~SMS_ALL_ERRED; 305 306 sm->sm_state = newstate; 307 uniqtime32(&sm->sm_timestamp); 308 } 309 310 static int 311 mirror_geterror(mm_unit_t *un, int *smi, int *cip, int clr_error, 312 int frm_probe) 313 { 314 mm_submirror_t *sm; 315 mm_submirror_ic_t *smic; 316 md_m_shared_t *shared; 317 int ci; 318 int i; 319 int compcnt; 320 int open_comp; /* flag for open component */ 321 322 for (i = *smi; i < NMIRROR; i++) { 323 sm = &un->un_sm[i]; 324 smic = &un->un_smic[i]; 325 326 if (!SMS_IS(sm, SMS_INUSE)) 327 continue; 328 329 compcnt = (*(smic->sm_get_component_count)) (sm->sm_dev, un); 330 for (ci = *cip; ci < compcnt; ci++) { 331 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 332 (sm->sm_dev, sm, ci); 333 /* 334 * if called from any routine but probe, we check for 335 * MDM_S_ISOPEN flag. Since probe does a pseduo open, 336 * it sets MDM_S_PROBEOPEN flag and we test for this 337 * flag. They are both exclusive tests. 338 */ 339 open_comp = (frm_probe) ? 340 (shared->ms_flags & MDM_S_PROBEOPEN): 341 (shared->ms_flags & MDM_S_ISOPEN); 342 if ((shared->ms_flags & MDM_S_IOERR || !open_comp) && 343 ((shared->ms_state == CS_OKAY) || 344 (shared->ms_state == CS_RESYNC))) { 345 if (clr_error) { 346 shared->ms_flags &= ~MDM_S_IOERR; 347 } 348 *cip = ci; 349 *smi = i; 350 return (1); 351 } 352 353 if (clr_error && (shared->ms_flags & MDM_S_IOERR)) { 354 shared->ms_flags &= ~MDM_S_IOERR; 355 } 356 } 357 358 *cip = 0; 359 } 360 return (0); 361 } 362 363 /*ARGSUSED*/ 364 static void 365 mirror_run_queue(void *d) 366 { 367 if (!(md_status & MD_GBL_DAEMONS_LIVE)) 368 md_daemon(1, &md_done_daemon); 369 } 370 /* 371 * check_comp_4_hotspares 372 * 373 * This function attempts to allocate a hotspare for this component if the 374 * component is in error. In a MN set, the function can be called in 2 modes. 375 * It can be called either when a component error has been detected or when a 376 * new hotspare has been allocated. In this case, MD_HOTSPARE_XMIT is set 377 * in flags and the request is sent to all nodes. 378 * The handler on each of the nodes then calls this function with 379 * MD_HOTSPARE_XMIT unset and the hotspare allocation is then performed. 380 * 381 * For non-MN sets the function simply attempts to allocate a hotspare. 382 * 383 * On entry, the following locks are held 384 * mirror_md_ops.md_link_rw (if flags has MD_HOTSPARE_LINKHELD set) 385 * md_unit_writerlock 386 * 387 * Returns 0 if ok 388 * 1 if the unit containing the component has been cleared while 389 * the mdmn_ksend_message() was being executed 390 */ 391 extern int 392 check_comp_4_hotspares( 393 mm_unit_t *un, 394 int smi, 395 int ci, 396 uint_t flags, 397 mddb_recid_t hs_id, /* Only used by MN disksets */ 398 IOLOCK *lockp /* can be NULL */ 399 ) 400 { 401 mm_submirror_t *sm; 402 mm_submirror_ic_t *smic; 403 md_m_shared_t *shared; 404 mddb_recid_t recids[6]; 405 minor_t mnum; 406 intptr_t (*hs_dev)(); 407 void (*hs_done)(); 408 void *hs_data; 409 md_error_t mde = mdnullerror; 410 set_t setno; 411 md_mn_msg_allochsp_t allochspmsg; 412 md_mn_kresult_t *kresult; 413 mm_unit_t *new_un; 414 int rval; 415 416 mnum = MD_SID(un); 417 setno = MD_UN2SET(un); 418 sm = &un->un_sm[smi]; 419 smic = &un->un_smic[smi]; 420 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 421 (sm->sm_dev, sm, ci); 422 423 if (shared->ms_state != CS_ERRED) 424 return (0); 425 426 /* Don't start a new component resync if a resync is already running. */ 427 if (MD_STATUS(un) & MD_UN_RESYNC_ACTIVE) 428 return (0); 429 430 if (MD_MNSET_SETNO(setno) && (flags & MD_HOTSPARE_XMIT)) { 431 uint_t msgflags; 432 md_mn_msgtype_t msgtype; 433 434 /* Send allocate hotspare message to all nodes */ 435 436 allochspmsg.msg_allochsp_mnum = un->c.un_self_id; 437 allochspmsg.msg_allochsp_sm = smi; 438 allochspmsg.msg_allochsp_comp = ci; 439 allochspmsg.msg_allochsp_hs_id = shared->ms_hs_id; 440 441 /* 442 * Before calling mdmn_ksend_message(), release locks 443 * Can never be in the context of an ioctl. 444 */ 445 md_unit_writerexit(MDI_UNIT(mnum)); 446 if (flags & MD_HOTSPARE_LINKHELD) 447 rw_exit(&mirror_md_ops.md_link_rw.lock); 448 #ifdef DEBUG 449 if (mirror_debug_flag) 450 printf("send alloc hotspare, flags=0x%x %x, %x, %x, %x\n", 451 flags, 452 allochspmsg.msg_allochsp_mnum, 453 allochspmsg.msg_allochsp_sm, 454 allochspmsg.msg_allochsp_comp, 455 allochspmsg.msg_allochsp_hs_id); 456 #endif 457 if (flags & MD_HOTSPARE_WMUPDATE) { 458 msgtype = MD_MN_MSG_ALLOCATE_HOTSPARE2; 459 /* 460 * When coming from an update of watermarks, there 461 * must already be a message logged that triggered 462 * this action. So, no need to log this message, too. 463 */ 464 msgflags = MD_MSGF_NO_LOG; 465 } else { 466 msgtype = MD_MN_MSG_ALLOCATE_HOTSPARE; 467 msgflags = MD_MSGF_DEFAULT_FLAGS; 468 } 469 470 kresult = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP); 471 rval = mdmn_ksend_message(setno, msgtype, msgflags, 472 (char *)&allochspmsg, sizeof (allochspmsg), 473 kresult); 474 475 if (!MDMN_KSEND_MSG_OK(rval, kresult)) { 476 #ifdef DEBUG 477 if (mirror_debug_flag) 478 mdmn_ksend_show_error(rval, kresult, 479 "ALLOCATE HOTSPARE"); 480 #endif 481 /* 482 * If message is sent ok but exitval indicates an error 483 * it must be because the mirror has been cleared. In 484 * this case re-obtain lock and return an error 485 */ 486 if ((rval == 0) && (kresult->kmmr_exitval != 0)) { 487 if (flags & MD_HOTSPARE_LINKHELD) { 488 rw_enter(&mirror_md_ops.md_link_rw.lock, 489 RW_READER); 490 } 491 kmem_free(kresult, sizeof (md_mn_kresult_t)); 492 return (1); 493 } 494 cmn_err(CE_PANIC, 495 "ksend_message failure: ALLOCATE_HOTSPARE"); 496 } 497 kmem_free(kresult, sizeof (md_mn_kresult_t)); 498 499 /* 500 * re-obtain the locks 501 */ 502 if (flags & MD_HOTSPARE_LINKHELD) 503 rw_enter(&mirror_md_ops.md_link_rw.lock, RW_READER); 504 new_un = md_unit_writerlock(MDI_UNIT(mnum)); 505 506 /* 507 * As we had to release the locks in order to send the 508 * message to all nodes, we need to check to see if the 509 * unit has changed. If it has we release the writerlock 510 * and return fail. 511 */ 512 if ((new_un != un) || (un->c.un_type != MD_METAMIRROR)) { 513 md_unit_writerexit(MDI_UNIT(mnum)); 514 return (1); 515 } 516 } else { 517 if (MD_MNSET_SETNO(setno)) { 518 /* 519 * If 2 or more nodes simultaneously see a 520 * component failure, these nodes will each 521 * send an ALLOCATE_HOTSPARE[2] message. 522 * The first message will allocate the hotspare 523 * and the subsequent messages should do nothing. 524 * 525 * If a slave node doesn't have a hotspare allocated 526 * at the time the message is initiated, then the 527 * passed in hs_id will be 0. If the node 528 * executing this routine has a component shared 529 * ms_hs_id of non-zero, but the message shows a 530 * hs_id of 0, then just return since a hotspare 531 * has already been allocated for this failing 532 * component. When the slave node returns from 533 * the ksend_message the hotspare will have 534 * already been allocated. 535 * 536 * If the slave node does send an hs_id of non-zero, 537 * and the slave node's hs_id matches this node's 538 * ms_hs_id, then the hotspare has error'd and 539 * should be replaced. 540 * 541 * If the slave node sends an hs_id of non-zero and 542 * this node has a different shared ms_hs_id, then 543 * just return since this hotspare has already 544 * been hotspared. 545 */ 546 if (shared->ms_hs_id != 0) { 547 if (hs_id == 0) { 548 #ifdef DEBUG 549 if (mirror_debug_flag) { 550 printf("check_comp_4_hotspares" 551 "(NOXMIT), short circuit " 552 "hs_id=0x%x, " 553 "ms_hs_id=0x%x\n", 554 hs_id, shared->ms_hs_id); 555 } 556 #endif 557 return (0); 558 } 559 if (hs_id != shared->ms_hs_id) { 560 #ifdef DEBUG 561 if (mirror_debug_flag) { 562 printf("check_comp_4_hotspares" 563 "(NOXMIT), short circuit2 " 564 "hs_id=0x%x, " 565 "ms_hs_id=0x%x\n", 566 hs_id, shared->ms_hs_id); 567 } 568 #endif 569 return (0); 570 } 571 } 572 } 573 574 sm = &un->un_sm[smi]; 575 hs_dev = md_get_named_service(sm->sm_dev, 0, 576 "hotspare device", 0); 577 if ((*hs_dev)(sm->sm_dev, 0, ci, recids, 6, &hs_done, 578 &hs_data) != 0) 579 return (0); 580 581 /* 582 * set_sm_comp_state() commits the modified records. 583 * As we don't transmit the changes, no need to drop the lock. 584 */ 585 set_sm_comp_state(un, smi, ci, CS_RESYNC, recids, 586 MD_STATE_NO_XMIT, (IOLOCK *)NULL); 587 588 (*hs_done)(sm->sm_dev, hs_data); 589 590 mirror_check_failfast(mnum); 591 592 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_HOTSPARED, SVM_TAG_METADEVICE, 593 setno, MD_SID(un)); 594 595 /* 596 * For a multi-node set we need to reset the un_rs_type, 597 * un_rs_resync_done and un_rs_resync_2_do fields as the 598 * hot-spare resync must copy all applicable data. 599 */ 600 if (MD_MNSET_SETNO(setno)) { 601 un->un_rs_type = MD_RS_NONE; 602 un->un_rs_resync_done = 0; 603 un->un_rs_resync_2_do = 0; 604 } 605 606 /* 607 * Must drop writer lock since mirror_resync_unit will 608 * open devices and must be able to grab readerlock. 609 * Don't need to drop IOLOCK since any descendent routines 610 * calling ksend_messages will drop the IOLOCK as needed. 611 * 612 */ 613 if (lockp) { 614 md_ioctl_writerexit(lockp); 615 } else { 616 md_unit_writerexit(MDI_UNIT(mnum)); 617 } 618 619 /* start resync */ 620 (void) mirror_resync_unit(mnum, NULL, &mde, lockp); 621 622 if (lockp) { 623 new_un = md_ioctl_writerlock(lockp, MDI_UNIT(mnum)); 624 } else { 625 new_un = md_unit_writerlock(MDI_UNIT(mnum)); 626 } 627 } 628 return (0); 629 } 630 631 /* 632 * check_unit_4_hotspares 633 * 634 * For a given mirror, allocate hotspares, if available for any components 635 * that are in error 636 * 637 * Returns 0 if ok 638 * 1 if check_comp_4_hotspares returns non-zero. This will only 639 * happen for a MN unit where the unit has been cleared while 640 * the allocate hotspare message is sent to all nodes. 641 */ 642 static int 643 check_unit_4_hotspares(mm_unit_t *un, int flags) 644 { 645 mm_submirror_t *sm; 646 mm_submirror_ic_t *smic; 647 int ci; 648 int i; 649 int compcnt; 650 651 if (MD_STATUS(un) & MD_UN_RESYNC_ACTIVE) 652 return (0); 653 654 for (i = 0; i < NMIRROR; i++) { 655 sm = &un->un_sm[i]; 656 smic = &un->un_smic[i]; 657 if (!SMS_IS(sm, SMS_INUSE)) 658 continue; 659 compcnt = (*(smic->sm_get_component_count)) (sm->sm_dev, sm); 660 for (ci = 0; ci < compcnt; ci++) { 661 md_m_shared_t *shared; 662 663 shared = (md_m_shared_t *) 664 (*(smic->sm_shared_by_indx))(sm->sm_dev, 665 sm, ci); 666 /* 667 * Never called from ioctl context, so pass in 668 * (IOLOCK *)NULL. Pass through flags from calling 669 * routine, also setting XMIT flag. 670 */ 671 if (check_comp_4_hotspares(un, i, ci, 672 (MD_HOTSPARE_XMIT | flags), 673 shared->ms_hs_id, (IOLOCK *)NULL) != 0) 674 return (1); 675 } 676 } 677 return (0); 678 } 679 680 static void 681 check_4_hotspares(daemon_request_t *drq) 682 { 683 mdi_unit_t *ui; 684 mm_unit_t *un; 685 md_link_t *next; 686 int x; 687 688 mutex_enter(&drq->dr_mx); /* clear up front so can poke */ 689 drq->dr_pending = 0; /* again in low level routine if */ 690 mutex_exit(&drq->dr_mx); /* something found to do */ 691 692 /* 693 * Used to have a problem here. The disksets weren't marked as being 694 * MNHOLD. This opened a window where we could be searching for 695 * hotspares and have the disk set unloaded (released) from under 696 * us causing a panic in stripe_component_count(). 697 * The way to prevent that is to mark the set MNHOLD which prevents 698 * any diskset from being released while we are scanning the mirrors, 699 * submirrors and components. 700 */ 701 702 for (x = 0; x < md_nsets; x++) 703 md_holdset_enter(x); 704 705 rw_enter(&mirror_md_ops.md_link_rw.lock, RW_READER); 706 for (next = mirror_md_ops.md_head; next != NULL; next = next->ln_next) { 707 ui = MDI_UNIT(next->ln_id); 708 709 un = (mm_unit_t *)md_unit_readerlock(ui); 710 711 /* 712 * Only check the unit if we are the master for this set 713 * For an MN set, poke_hotspares() is only effective on the 714 * master 715 */ 716 if (MD_MNSET_SETNO(MD_UN2SET(un)) && 717 md_set[MD_UN2SET(un)].s_am_i_master == 0) { 718 md_unit_readerexit(ui); 719 continue; 720 } 721 if (MD_STATUS(un) & MD_UN_RESYNC_ACTIVE) { 722 md_unit_readerexit(ui); 723 continue; 724 } 725 md_unit_readerexit(ui); 726 727 un = (mm_unit_t *)md_unit_writerlock(ui); 728 /* 729 * check_unit_4_hotspares will exit 1 if the unit has been 730 * removed during the process of allocating the hotspare. 731 * This can only happen for a MN metadevice. If unit no longer 732 * exists, no need to release writerlock 733 */ 734 if (check_unit_4_hotspares(un, MD_HOTSPARE_LINKHELD) == 0) 735 md_unit_writerexit(ui); 736 else { 737 /* 738 * If check_unit_4_hotspares failed, queue another 739 * request and break out of this one 740 */ 741 (void) poke_hotspares(); 742 break; 743 } 744 } 745 rw_exit(&mirror_md_ops.md_link_rw.lock); 746 747 for (x = 0; x < md_nsets; x++) 748 md_holdset_exit(x); 749 } 750 751 /* 752 * poke_hotspares 753 * 754 * If there is not a pending poke_hotspares request pending, queue a requent 755 * to call check_4_hotspares(). This will scan all mirrors and attempt to 756 * allocate hotspares for all components in error. 757 */ 758 int 759 poke_hotspares() 760 { 761 mutex_enter(&hotspare_request.dr_mx); 762 if (hotspare_request.dr_pending == 0) { 763 hotspare_request.dr_pending = 1; 764 daemon_request(&md_mhs_daemon, 765 check_4_hotspares, 766 (daemon_queue_t *)&hotspare_request, REQ_OLD); 767 } 768 mutex_exit(&hotspare_request.dr_mx); 769 return (0); 770 } 771 772 static void 773 free_all_ecomps(err_comp_t *ecomp) 774 { 775 err_comp_t *d; 776 777 while (ecomp != NULL) { 778 d = ecomp; 779 ecomp = ecomp->ec_next; 780 kmem_free(d, sizeof (err_comp_t)); 781 } 782 } 783 784 /* 785 * NAME: mirror_openfail_console_info 786 * 787 * DESCRIPTION: Prints a informative message to the console when mirror 788 * cannot be opened. 789 * 790 * PARAMETERS: mm_unit_t un - pointer to mirror unit structure 791 * int smi - submirror index 792 * int ci - component index 793 */ 794 795 void 796 mirror_openfail_console_info(mm_unit_t *un, int smi, int ci) 797 { 798 void (*get_dev)(); 799 ms_cd_info_t cd; 800 md_dev64_t tmpdev; 801 802 tmpdev = un->un_sm[smi].sm_dev; 803 get_dev = (void (*)())md_get_named_service(tmpdev, 0, "get device", 0); 804 if (get_dev != NULL) { 805 (void) (*get_dev)(tmpdev, smi, ci, &cd); 806 cmn_err(CE_WARN, "md %s: open error on %s", 807 md_shortname(MD_SID(un)), 808 md_devname(MD_UN2SET(un), cd.cd_dev, 809 NULL, 0)); 810 } else { 811 cmn_err(CE_WARN, "md %s: open error", 812 md_shortname(MD_SID(un))); 813 } 814 } 815 816 static int 817 mirror_close_all_devs(mm_unit_t *un, int md_cflags) 818 { 819 int i; 820 md_dev64_t dev; 821 822 for (i = 0; i < NMIRROR; i++) { 823 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 824 continue; 825 dev = un->un_sm[i].sm_dev; 826 md_layered_close(dev, md_cflags); 827 } 828 return (0); 829 } 830 831 /* 832 * Keep track of drivers that don't support failfast. We use this so that 833 * we only log one diagnostic message for each of these drivers, no matter 834 * how many times we run the mirror_check_failfast function. 835 * Return 1 if this is a new driver that does not support failfast, 836 * return 0 if we have already seen this non-failfast driver. 837 */ 838 static int 839 new_non_ff_driver(const char *s) 840 { 841 mutex_enter(&non_ff_drv_mutex); 842 if (non_ff_drivers == NULL) { 843 non_ff_drivers = (char **)kmem_alloc(2 * sizeof (char *), 844 KM_NOSLEEP); 845 if (non_ff_drivers == NULL) { 846 mutex_exit(&non_ff_drv_mutex); 847 return (1); 848 } 849 850 non_ff_drivers[0] = (char *)kmem_alloc(strlen(s) + 1, KM_NOSLEEP); 851 if (non_ff_drivers[0] == NULL) { 852 kmem_free(non_ff_drivers, 2 * sizeof (char *)); 853 non_ff_drivers = NULL; 854 mutex_exit(&non_ff_drv_mutex); 855 return (1); 856 } 857 858 (void) strcpy(non_ff_drivers[0], s); 859 non_ff_drivers[1] = NULL; 860 861 } else { 862 int i; 863 char **tnames; 864 char **tmp; 865 866 for (i = 0; non_ff_drivers[i] != NULL; i++) { 867 if (strcmp(s, non_ff_drivers[i]) == 0) { 868 mutex_exit(&non_ff_drv_mutex); 869 return (0); 870 } 871 } 872 873 /* allow for new element and null */ 874 i += 2; 875 tnames = (char **)kmem_alloc(i * sizeof (char *), KM_NOSLEEP); 876 if (tnames == NULL) { 877 mutex_exit(&non_ff_drv_mutex); 878 return (1); 879 } 880 881 for (i = 0; non_ff_drivers[i] != NULL; i++) 882 tnames[i] = non_ff_drivers[i]; 883 884 tnames[i] = (char *)kmem_alloc(strlen(s) + 1, KM_NOSLEEP); 885 if (tnames[i] == NULL) { 886 /* adjust i so that it is the right count to free */ 887 kmem_free(tnames, (i + 2) * sizeof (char *)); 888 mutex_exit(&non_ff_drv_mutex); 889 return (1); 890 } 891 892 (void) strcpy(tnames[i++], s); 893 tnames[i] = NULL; 894 895 tmp = non_ff_drivers; 896 non_ff_drivers = tnames; 897 /* i now represents the count we previously alloced */ 898 kmem_free(tmp, i * sizeof (char *)); 899 } 900 mutex_exit(&non_ff_drv_mutex); 901 902 return (1); 903 } 904 905 /* 906 * Check for the "ddi-failfast-supported" devtree property on each submirror 907 * component to indicate if we should do I/O to that submirror with the 908 * B_FAILFAST flag set or not. This check is made at various state transitions 909 * in the mirror code (e.g. open, enable, hotspare, etc.). Sometimes we 910 * only need to check one drive (e.g. hotspare) but since the check is 911 * fast and infrequent and sometimes needs to be done on all components we 912 * just check all components on each call. 913 */ 914 void 915 mirror_check_failfast(minor_t mnum) 916 { 917 int i; 918 mm_unit_t *un; 919 920 if (md_ff_disable) 921 return; 922 923 un = MD_UNIT(mnum); 924 925 for (i = 0; i < NMIRROR; i++) { 926 int ci; 927 int cnt; 928 int ff = 1; 929 mm_submirror_t *sm; 930 mm_submirror_ic_t *smic; 931 void (*get_dev)(); 932 933 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 934 continue; 935 936 sm = &un->un_sm[i]; 937 smic = &un->un_smic[i]; 938 939 get_dev = (void (*)())md_get_named_service(sm->sm_dev, 0, 940 "get device", 0); 941 942 cnt = (*(smic->sm_get_component_count))(sm->sm_dev, sm); 943 for (ci = 0; ci < cnt; ci++) { 944 int found = 0; 945 dev_t ci_dev; 946 major_t major; 947 dev_info_t *devi; 948 ms_cd_info_t cd; 949 950 /* this already returns the hs dev if the device is spared */ 951 (void) (*get_dev)(sm->sm_dev, sm, ci, &cd); 952 953 ci_dev = md_dev64_to_dev(cd.cd_dev); 954 major = getmajor(ci_dev); 955 956 if (major == md_major) { 957 /* this component must be a soft partition; get real dev */ 958 minor_t dev_mnum; 959 mdi_unit_t *ui; 960 mp_unit_t *un; 961 set_t setno; 962 side_t side; 963 md_dev64_t tmpdev; 964 965 ui = MDI_UNIT(getminor(ci_dev)); 966 967 /* grab necessary lock */ 968 un = (mp_unit_t *)md_unit_readerlock(ui); 969 970 dev_mnum = MD_SID(un); 971 setno = MD_MIN2SET(dev_mnum); 972 side = mddb_getsidenum(setno); 973 974 tmpdev = un->un_dev; 975 976 /* Get dev by device id */ 977 if (md_devid_found(setno, side, un->un_key) == 1) { 978 tmpdev = md_resolve_bydevid(dev_mnum, tmpdev, 979 un->un_key); 980 } 981 982 md_unit_readerexit(ui); 983 984 ci_dev = md_dev64_to_dev(tmpdev); 985 major = getmajor(ci_dev); 986 } 987 988 if (ci_dev != NODEV32 && 989 (devi = e_ddi_hold_devi_by_dev(ci_dev, 0)) != NULL) { 990 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 991 int propvalue = 0; 992 int proplength = sizeof (int); 993 int error; 994 struct cb_ops *cb; 995 996 if ((cb = devopsp[major]->devo_cb_ops) != NULL) { 997 error = (*cb->cb_prop_op)(DDI_DEV_T_ANY, devi, prop_op, 998 DDI_PROP_NOTPROM|DDI_PROP_DONTPASS, 999 "ddi-failfast-supported", 1000 (caddr_t)&propvalue, &proplength); 1001 1002 if (error == DDI_PROP_SUCCESS) 1003 found = 1; 1004 } 1005 1006 if (!found && new_non_ff_driver(ddi_driver_name(devi))) 1007 cmn_err(CE_NOTE, "!md: B_FAILFAST I/O disabled on %s", 1008 ddi_driver_name(devi)); 1009 1010 ddi_release_devi(devi); 1011 } 1012 1013 /* All components must support failfast in the submirror. */ 1014 if (!found) { 1015 ff = 0; 1016 break; 1017 } 1018 } 1019 1020 if (ff) { 1021 sm->sm_flags |= MD_SM_FAILFAST; 1022 } else { 1023 sm->sm_flags &= ~MD_SM_FAILFAST; 1024 } 1025 } 1026 } 1027 1028 /* 1029 * Return true if the submirror is unavailable. 1030 * If any of the submirror components are opened then the submirror cannot 1031 * be unavailable (MD_INACCESSIBLE). 1032 * If any of the components are already in the errored state, then the submirror 1033 * cannot be unavailable (MD_INACCESSIBLE). 1034 */ 1035 static bool_t 1036 submirror_unavailable(mm_unit_t *un, int smi, int from_probe) 1037 { 1038 mm_submirror_t *sm; 1039 mm_submirror_ic_t *smic; 1040 md_m_shared_t *shared; 1041 int ci; 1042 int compcnt; 1043 1044 sm = &un->un_sm[smi]; 1045 smic = &un->un_smic[smi]; 1046 1047 compcnt = (*(smic->sm_get_component_count)) (sm->sm_dev, un); 1048 for (ci = 0; ci < compcnt; ci++) { 1049 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 1050 (sm->sm_dev, sm, ci); 1051 if (from_probe) { 1052 if (shared->ms_flags & MDM_S_PROBEOPEN) 1053 return (B_FALSE); 1054 } else { 1055 if (shared->ms_flags & MDM_S_ISOPEN) 1056 return (B_FALSE); 1057 } 1058 if (shared->ms_state == CS_ERRED || 1059 shared->ms_state == CS_LAST_ERRED) 1060 return (B_FALSE); 1061 } 1062 1063 return (B_TRUE); 1064 } 1065 1066 static int 1067 mirror_open_all_devs(minor_t mnum, int md_oflags, IOLOCK *lockp) 1068 { 1069 int i; 1070 mm_unit_t *un; 1071 mdi_unit_t *ui; 1072 int err; 1073 int smi; 1074 int ci; 1075 err_comp_t *c; 1076 err_comp_t *ecomps = NULL; 1077 int smmask = 0; 1078 set_t setno; 1079 int sm_cnt; 1080 int sm_unavail_cnt; 1081 1082 mirror_check_failfast(mnum); 1083 1084 un = MD_UNIT(mnum); 1085 ui = MDI_UNIT(mnum); 1086 setno = MD_UN2SET(un); 1087 1088 for (i = 0; i < NMIRROR; i++) { 1089 md_dev64_t tmpdev = un->un_sm[i].sm_dev; 1090 1091 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 1092 continue; 1093 if (md_layered_open(mnum, &tmpdev, md_oflags)) 1094 smmask |= SMI2BIT(i); 1095 un->un_sm[i].sm_dev = tmpdev; 1096 } 1097 1098 /* 1099 * If smmask is clear, all submirrors are accessible. Clear the 1100 * MD_INACCESSIBLE bit in this case. This bit is also cleared for the 1101 * mirror device. If smmask is set, we have to determine which of the 1102 * submirrors are in error. If no submirror is accessible we mark the 1103 * whole mirror as MD_INACCESSIBLE. 1104 */ 1105 if (smmask == 0) { 1106 if (lockp) { 1107 md_ioctl_readerexit(lockp); 1108 (void) md_ioctl_writerlock(lockp, ui); 1109 } else { 1110 md_unit_readerexit(ui); 1111 (void) md_unit_writerlock(ui); 1112 } 1113 ui->ui_tstate &= ~MD_INACCESSIBLE; 1114 if (lockp) { 1115 md_ioctl_writerexit(lockp); 1116 (void) md_ioctl_readerlock(lockp, ui); 1117 } else { 1118 md_unit_writerexit(ui); 1119 (void) md_unit_readerlock(ui); 1120 } 1121 1122 for (i = 0; i < NMIRROR; i++) { 1123 md_dev64_t tmpdev; 1124 mdi_unit_t *sm_ui; 1125 1126 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 1127 continue; 1128 1129 tmpdev = un->un_sm[i].sm_dev; 1130 sm_ui = MDI_UNIT(getminor(md_dev64_to_dev(tmpdev))); 1131 (void) md_unit_writerlock(sm_ui); 1132 sm_ui->ui_tstate &= ~MD_INACCESSIBLE; 1133 md_unit_writerexit(sm_ui); 1134 } 1135 1136 return (0); 1137 } 1138 1139 for (i = 0; i < NMIRROR; i++) { 1140 md_dev64_t tmpdev; 1141 1142 if (!(smmask & SMI2BIT(i))) 1143 continue; 1144 1145 tmpdev = un->un_sm[i].sm_dev; 1146 err = md_layered_open(mnum, &tmpdev, MD_OFLG_CONT_ERRS); 1147 un->un_sm[i].sm_dev = tmpdev; 1148 ASSERT(err == 0); 1149 } 1150 1151 if (lockp) { 1152 md_ioctl_readerexit(lockp); 1153 un = (mm_unit_t *)md_ioctl_writerlock(lockp, ui); 1154 } else { 1155 md_unit_readerexit(ui); 1156 un = (mm_unit_t *)md_unit_writerlock(ui); 1157 } 1158 1159 /* 1160 * We want to make sure the unavailable flag is not masking a real 1161 * error on the submirror. 1162 * For each submirror, 1163 * if all of the submirror components couldn't be opened and there 1164 * are no errors on the submirror, then set the unavailable flag 1165 * otherwise, clear unavailable. 1166 */ 1167 sm_cnt = 0; 1168 sm_unavail_cnt = 0; 1169 for (i = 0; i < NMIRROR; i++) { 1170 md_dev64_t tmpdev; 1171 mdi_unit_t *sm_ui; 1172 1173 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 1174 continue; 1175 1176 sm_cnt++; 1177 tmpdev = un->un_sm[i].sm_dev; 1178 sm_ui = MDI_UNIT(getminor(md_dev64_to_dev(tmpdev))); 1179 1180 (void) md_unit_writerlock(sm_ui); 1181 if (submirror_unavailable(un, i, 0)) { 1182 sm_ui->ui_tstate |= MD_INACCESSIBLE; 1183 sm_unavail_cnt++; 1184 } else { 1185 sm_ui->ui_tstate &= ~MD_INACCESSIBLE; 1186 } 1187 md_unit_writerexit(sm_ui); 1188 } 1189 1190 /* 1191 * If all of the submirrors are unavailable, the mirror is also 1192 * unavailable. 1193 */ 1194 if (sm_cnt == sm_unavail_cnt) { 1195 ui->ui_tstate |= MD_INACCESSIBLE; 1196 } else { 1197 ui->ui_tstate &= ~MD_INACCESSIBLE; 1198 } 1199 1200 smi = 0; 1201 ci = 0; 1202 while (mirror_geterror(un, &smi, &ci, 1, 0) != 0) { 1203 if (mirror_other_sources(un, smi, ci, 1) == 1) { 1204 1205 free_all_ecomps(ecomps); 1206 (void) mirror_close_all_devs(un, md_oflags); 1207 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_OPEN_FAIL, 1208 SVM_TAG_METADEVICE, setno, MD_SID(un)); 1209 mirror_openfail_console_info(un, smi, ci); 1210 if (lockp) { 1211 md_ioctl_writerexit(lockp); 1212 (void) md_ioctl_readerlock(lockp, ui); 1213 } else { 1214 md_unit_writerexit(ui); 1215 (void) md_unit_readerlock(ui); 1216 } 1217 return (ENXIO); 1218 } 1219 1220 /* track all component states that need changing */ 1221 c = (err_comp_t *)kmem_alloc(sizeof (err_comp_t), KM_SLEEP); 1222 c->ec_next = ecomps; 1223 c->ec_smi = smi; 1224 c->ec_ci = ci; 1225 ecomps = c; 1226 ci++; 1227 } 1228 1229 /* Make all state changes and commit them */ 1230 for (c = ecomps; c != NULL; c = c->ec_next) { 1231 /* 1232 * If lockp is set, then entering kernel through ioctl. 1233 * For a MN set, the only ioctl path is via a commd message 1234 * (ALLOCATE_HOTSPARE or *RESYNC* messages) that is already 1235 * being sent to each node. 1236 * In this case, set NO_XMIT so that set_sm_comp_state 1237 * won't attempt to send a message on a message. 1238 * 1239 * In !MN sets, the xmit flag is ignored, so it doesn't matter 1240 * which flag is passed. 1241 */ 1242 if (lockp) { 1243 set_sm_comp_state(un, c->ec_smi, c->ec_ci, CS_ERRED, 0, 1244 MD_STATE_NO_XMIT, lockp); 1245 } else { 1246 set_sm_comp_state(un, c->ec_smi, c->ec_ci, CS_ERRED, 0, 1247 (MD_STATE_XMIT | MD_STATE_OCHELD), lockp); 1248 } 1249 /* 1250 * For a MN set, the NOTIFY is done when the state change is 1251 * processed on each node 1252 */ 1253 if (!MD_MNSET_SETNO(setno)) { 1254 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED, 1255 SVM_TAG_METADEVICE, setno, MD_SID(un)); 1256 } 1257 } 1258 1259 if (lockp) { 1260 md_ioctl_writerexit(lockp); 1261 (void) md_ioctl_readerlock(lockp, ui); 1262 } else { 1263 md_unit_writerexit(ui); 1264 (void) md_unit_readerlock(ui); 1265 } 1266 1267 free_all_ecomps(ecomps); 1268 1269 /* allocate hotspares for all errored components */ 1270 if (MD_MNSET_SETNO(setno)) { 1271 /* 1272 * If we're called from an ioctl (lockp set) then we cannot 1273 * directly call send_poke_hotspares as this will block until 1274 * the message gets despatched to all nodes. If the cluster is 1275 * going through a reconfig cycle then the message will block 1276 * until the cycle is complete, and as we originate from a 1277 * service call from commd we will livelock. 1278 */ 1279 if (lockp == NULL) { 1280 md_unit_readerexit(ui); 1281 send_poke_hotspares(setno); 1282 (void) md_unit_readerlock(ui); 1283 } 1284 } else { 1285 (void) poke_hotspares(); 1286 } 1287 return (0); 1288 } 1289 1290 void 1291 mirror_overlap_chain_remove(md_mps_t *ps) 1292 { 1293 mm_unit_t *un; 1294 1295 if (panicstr) 1296 return; 1297 1298 ASSERT(ps->ps_flags & MD_MPS_ON_OVERLAP); 1299 1300 un = ps->ps_un; 1301 1302 mutex_enter(&un->un_ovrlap_chn_mx); 1303 if (ps->ps_ovrlap_prev != &un->un_ovrlap_chn) 1304 ps->ps_ovrlap_prev->ps_ovrlap_next = ps->ps_ovrlap_next; 1305 else 1306 un->un_ovrlap_chn.ps_ovrlap_next = ps->ps_ovrlap_next; 1307 if (ps->ps_ovrlap_next != &un->un_ovrlap_chn) 1308 ps->ps_ovrlap_next->ps_ovrlap_prev = ps->ps_ovrlap_prev; 1309 else 1310 un->un_ovrlap_chn.ps_ovrlap_prev = ps->ps_ovrlap_prev; 1311 /* Handle empty overlap chain */ 1312 if (un->un_ovrlap_chn.ps_ovrlap_prev == &un->un_ovrlap_chn) { 1313 un->un_ovrlap_chn.ps_ovrlap_prev = 1314 un->un_ovrlap_chn.ps_ovrlap_next = NULL; 1315 } 1316 if (un->un_ovrlap_chn_flg) { 1317 un->un_ovrlap_chn_flg = 0; 1318 cv_broadcast(&un->un_ovrlap_chn_cv); 1319 } 1320 ps->ps_flags &= ~MD_MPS_ON_OVERLAP; 1321 mutex_exit(&un->un_ovrlap_chn_mx); 1322 } 1323 1324 1325 /* 1326 * wait_for_overlaps: 1327 * ----------------- 1328 * Check that given i/o request does not cause an overlap with already pending 1329 * i/o. If it does, block until the overlapped i/o completes. 1330 * 1331 * Note: the overlap chain is held as a monotonically increasing doubly-linked 1332 * list with the sentinel contained in un->un_ovrlap_chn. We avoid a linear 1333 * search of the list by the following logic: 1334 * ps->ps_lastblk < un_ovrlap_chn.ps_ovrlap_next->ps_firstblk => No overlap 1335 * ps->ps_firstblk > un_ovrlap_chn.ps_ovrlap_prev->ps_lastblk => No overlap 1336 * otherwise 1337 * scan un_ovrlap_chn.ps_ovrlap_next for location where ps->ps_firstblk 1338 * > chain->ps_lastblk. This is the insertion point. As the list is 1339 * guaranteed to be ordered there is no need to continue scanning. 1340 * 1341 * The flag argument has MD_OVERLAP_ALLOW_REPEAT set if it is ok for the parent 1342 * structure to be already on the overlap chain and MD_OVERLAP_NO_REPEAT 1343 * if it must not already be on the chain 1344 */ 1345 static void 1346 wait_for_overlaps(md_mps_t *ps, int flags) 1347 { 1348 mm_unit_t *un; 1349 md_mps_t *ps1, **head, **tail; 1350 1351 if (panicstr) 1352 return; 1353 1354 1355 un = ps->ps_un; 1356 1357 mutex_enter(&un->un_ovrlap_chn_mx); 1358 if ((flags & MD_OVERLAP_ALLOW_REPEAT) && 1359 (ps->ps_flags & MD_MPS_ON_OVERLAP)) { 1360 mutex_exit(&un->un_ovrlap_chn_mx); 1361 return; 1362 } 1363 1364 ASSERT(!(ps->ps_flags & MD_MPS_ON_OVERLAP)); 1365 head = &(un->un_ovrlap_chn.ps_ovrlap_next); 1366 tail = &(un->un_ovrlap_chn.ps_ovrlap_prev); 1367 ps1 = *head; 1368 /* 1369 * Check for simple limit cases: 1370 * *head == NULL 1371 * insert ps at head of list 1372 * lastblk < head->firstblk 1373 * insert at head of list 1374 * firstblk > tail->lastblk 1375 * insert at tail of list 1376 */ 1377 if (ps1 == NULL) { 1378 /* Insert at head */ 1379 ps->ps_ovrlap_next = &un->un_ovrlap_chn; 1380 ps->ps_ovrlap_prev = &un->un_ovrlap_chn; 1381 *head = ps; 1382 *tail = ps; 1383 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1384 mutex_exit(&un->un_ovrlap_chn_mx); 1385 return; 1386 } else if (ps->ps_lastblk < (*head)->ps_firstblk) { 1387 /* Insert at head */ 1388 ps->ps_ovrlap_next = (*head); 1389 ps->ps_ovrlap_prev = &un->un_ovrlap_chn; 1390 (*head)->ps_ovrlap_prev = ps; 1391 *head = ps; 1392 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1393 mutex_exit(&un->un_ovrlap_chn_mx); 1394 return; 1395 } else if (ps->ps_firstblk > (*tail)->ps_lastblk) { 1396 /* Insert at tail */ 1397 ps->ps_ovrlap_prev = (*tail); 1398 ps->ps_ovrlap_next = &un->un_ovrlap_chn; 1399 (*tail)->ps_ovrlap_next = ps; 1400 *tail = ps; 1401 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1402 mutex_exit(&un->un_ovrlap_chn_mx); 1403 return; 1404 } 1405 /* Now we have to scan the list for possible overlaps */ 1406 while (ps1 != NULL) { 1407 /* 1408 * If this region has been put on the chain by another thread 1409 * just exit 1410 */ 1411 if ((flags & MD_OVERLAP_ALLOW_REPEAT) && 1412 (ps->ps_flags & MD_MPS_ON_OVERLAP)) { 1413 mutex_exit(&un->un_ovrlap_chn_mx); 1414 return; 1415 1416 } 1417 for (ps1 = *head; ps1 && (ps1 != &un->un_ovrlap_chn); 1418 ps1 = ps1->ps_ovrlap_next) { 1419 if (ps->ps_firstblk > (*tail)->ps_lastblk) { 1420 /* Insert at tail */ 1421 ps->ps_ovrlap_prev = (*tail); 1422 ps->ps_ovrlap_next = &un->un_ovrlap_chn; 1423 (*tail)->ps_ovrlap_next = ps; 1424 *tail = ps; 1425 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1426 mutex_exit(&un->un_ovrlap_chn_mx); 1427 return; 1428 } 1429 if (ps->ps_firstblk > ps1->ps_lastblk) 1430 continue; 1431 if (ps->ps_lastblk < ps1->ps_firstblk) { 1432 /* Insert into list at current 'ps1' position */ 1433 ps->ps_ovrlap_next = ps1; 1434 ps->ps_ovrlap_prev = ps1->ps_ovrlap_prev; 1435 ps1->ps_ovrlap_prev->ps_ovrlap_next = ps; 1436 ps1->ps_ovrlap_prev = ps; 1437 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1438 mutex_exit(&un->un_ovrlap_chn_mx); 1439 return; 1440 } 1441 break; 1442 } 1443 if (ps1 != NULL) { 1444 un->un_ovrlap_chn_flg = 1; 1445 cv_wait(&un->un_ovrlap_chn_cv, &un->un_ovrlap_chn_mx); 1446 /* 1447 * Now ps1 refers to the old insertion point and we 1448 * have to check the whole chain to see if we're still 1449 * overlapping any other i/o. 1450 */ 1451 } 1452 } 1453 1454 /* 1455 * Only get here if we had one overlapping i/o on the list and that 1456 * has now completed. In this case the list is empty so we insert <ps> 1457 * at the head of the chain. 1458 */ 1459 ASSERT(*head == NULL); 1460 *tail = *head = ps; 1461 ps->ps_ovrlap_next = ps->ps_ovrlap_prev = &un->un_ovrlap_chn; 1462 ps->ps_flags |= MD_MPS_ON_OVERLAP; 1463 mutex_exit(&un->un_ovrlap_chn_mx); 1464 } 1465 1466 /* 1467 * This function is called from mirror_done to check whether any pages have 1468 * been modified while a mirrored write was in progress. Returns 0 if 1469 * all pages associated with bp are clean, 1 otherwise. 1470 */ 1471 static int 1472 any_pages_dirty(struct buf *bp) 1473 { 1474 int rval; 1475 1476 rval = biomodified(bp); 1477 if (rval == -1) 1478 rval = 0; 1479 1480 return (rval); 1481 } 1482 1483 #define MAX_EXTRAS 10 1484 1485 void 1486 mirror_commit( 1487 mm_unit_t *un, 1488 int smmask, 1489 mddb_recid_t *extras 1490 ) 1491 { 1492 mm_submirror_t *sm; 1493 md_unit_t *su; 1494 int i; 1495 1496 /* 2=mirror,null id */ 1497 mddb_recid_t recids[NMIRROR+2+MAX_EXTRAS]; 1498 1499 int ri = 0; 1500 1501 if (md_get_setstatus(MD_UN2SET(un)) & MD_SET_STALE) 1502 return; 1503 1504 /* Add two, this includes the mirror unit and the null recid */ 1505 if (extras != NULL) { 1506 int nrecids = 0; 1507 while (extras[nrecids] != 0) { 1508 nrecids++; 1509 } 1510 ASSERT(nrecids <= MAX_EXTRAS); 1511 } 1512 1513 if (un != NULL) 1514 recids[ri++] = un->c.un_record_id; 1515 for (i = 0; i < NMIRROR; i++) { 1516 if (!(smmask & SMI2BIT(i))) 1517 continue; 1518 sm = &un->un_sm[i]; 1519 if (!SMS_IS(sm, SMS_INUSE)) 1520 continue; 1521 if (md_getmajor(sm->sm_dev) != md_major) 1522 continue; 1523 su = MD_UNIT(md_getminor(sm->sm_dev)); 1524 recids[ri++] = su->c.un_record_id; 1525 } 1526 1527 if (extras != NULL) 1528 while (*extras != 0) { 1529 recids[ri++] = *extras; 1530 extras++; 1531 } 1532 1533 if (ri == 0) 1534 return; 1535 recids[ri] = 0; 1536 1537 /* 1538 * Ok to hold ioctl lock across record commit to mddb as 1539 * long as the record(s) being committed aren't resync records. 1540 */ 1541 mddb_commitrecs_wrapper(recids); 1542 } 1543 1544 1545 /* 1546 * This routine is used to set a bit in the writable_bm bitmap 1547 * which represents each submirror in a metamirror which 1548 * is writable. The first writable submirror index is assigned 1549 * to the sm_index. The number of writable submirrors are returned in nunits. 1550 * 1551 * This routine returns the submirror's unit number. 1552 */ 1553 1554 static void 1555 select_write_units(struct mm_unit *un, md_mps_t *ps) 1556 { 1557 1558 int i; 1559 unsigned writable_bm = 0; 1560 unsigned nunits = 0; 1561 1562 for (i = 0; i < NMIRROR; i++) { 1563 if (SUBMIRROR_IS_WRITEABLE(un, i)) { 1564 /* set bit of all writable units */ 1565 writable_bm |= SMI2BIT(i); 1566 nunits++; 1567 } 1568 } 1569 ps->ps_writable_sm = writable_bm; 1570 ps->ps_active_cnt = nunits; 1571 ps->ps_current_sm = 0; 1572 } 1573 1574 static 1575 unsigned 1576 select_write_after_read_units(struct mm_unit *un, md_mps_t *ps) 1577 { 1578 1579 int i; 1580 unsigned writable_bm = 0; 1581 unsigned nunits = 0; 1582 1583 for (i = 0; i < NMIRROR; i++) { 1584 if (SUBMIRROR_IS_WRITEABLE(un, i) && 1585 un->un_sm[i].sm_flags & MD_SM_RESYNC_TARGET) { 1586 writable_bm |= SMI2BIT(i); 1587 nunits++; 1588 } 1589 } 1590 if ((writable_bm & ps->ps_allfrom_sm) != 0) { 1591 writable_bm &= ~ps->ps_allfrom_sm; 1592 nunits--; 1593 } 1594 ps->ps_writable_sm = writable_bm; 1595 ps->ps_active_cnt = nunits; 1596 ps->ps_current_sm = 0; 1597 return (nunits); 1598 } 1599 1600 static md_dev64_t 1601 select_read_unit( 1602 mm_unit_t *un, 1603 diskaddr_t blkno, 1604 u_longlong_t reqcount, 1605 u_longlong_t *cando, 1606 int must_be_opened, 1607 md_m_shared_t **shared, 1608 md_mcs_t *cs) 1609 { 1610 int i; 1611 md_m_shared_t *s; 1612 uint_t lasterrcnt = 0; 1613 md_dev64_t dev = 0; 1614 u_longlong_t cnt; 1615 u_longlong_t mincnt; 1616 mm_submirror_t *sm; 1617 mm_submirror_ic_t *smic; 1618 mdi_unit_t *ui; 1619 1620 mincnt = reqcount; 1621 for (i = 0; i < NMIRROR; i++) { 1622 if (!SUBMIRROR_IS_READABLE(un, i)) 1623 continue; 1624 sm = &un->un_sm[i]; 1625 smic = &un->un_smic[i]; 1626 cnt = reqcount; 1627 1628 /* 1629 * If the current submirror is marked as inaccessible, do not 1630 * try to access it. 1631 */ 1632 ui = MDI_UNIT(getminor(expldev(sm->sm_dev))); 1633 (void) md_unit_readerlock(ui); 1634 if (ui->ui_tstate & MD_INACCESSIBLE) { 1635 md_unit_readerexit(ui); 1636 continue; 1637 } 1638 md_unit_readerexit(ui); 1639 1640 s = (md_m_shared_t *)(*(smic->sm_shared_by_blk)) 1641 (sm->sm_dev, sm, blkno, &cnt); 1642 1643 if (must_be_opened && !(s->ms_flags & MDM_S_ISOPEN)) 1644 continue; 1645 if (s->ms_state == CS_OKAY) { 1646 *cando = cnt; 1647 if (shared != NULL) 1648 *shared = s; 1649 1650 if (un->un_sm[i].sm_flags & MD_SM_FAILFAST && 1651 cs != NULL) { 1652 cs->cs_buf.b_flags |= B_FAILFAST; 1653 } 1654 1655 return (un->un_sm[i].sm_dev); 1656 } 1657 if (s->ms_state != CS_LAST_ERRED) 1658 continue; 1659 1660 /* don't use B_FAILFAST since we're Last Erred */ 1661 1662 if (mincnt > cnt) 1663 mincnt = cnt; 1664 if (s->ms_lasterrcnt > lasterrcnt) { 1665 lasterrcnt = s->ms_lasterrcnt; 1666 if (shared != NULL) 1667 *shared = s; 1668 dev = un->un_sm[i].sm_dev; 1669 } 1670 } 1671 *cando = mincnt; 1672 return (dev); 1673 } 1674 1675 /* 1676 * Given a 32-bit bitmap, this routine will return the bit number 1677 * of the nth bit set. The nth bit set is passed via the index integer. 1678 * 1679 * This routine is used to run through the writable submirror bitmap 1680 * and starting all of the writes. See the value returned is the 1681 * index to appropriate submirror structure, in the md_sm 1682 * array for metamirrors. 1683 */ 1684 static int 1685 md_find_nth_unit(uint_t mask, int index) 1686 { 1687 int bit, nfound; 1688 1689 for (bit = -1, nfound = -1; nfound != index; bit++) { 1690 ASSERT(mask != 0); 1691 nfound += (mask & 1); 1692 mask >>= 1; 1693 } 1694 return (bit); 1695 } 1696 1697 static int 1698 fast_select_read_unit(md_mps_t *ps, md_mcs_t *cs) 1699 { 1700 mm_unit_t *un; 1701 buf_t *bp; 1702 int i; 1703 unsigned nunits = 0; 1704 int iunit; 1705 uint_t running_bm = 0; 1706 uint_t sm_index; 1707 1708 bp = &cs->cs_buf; 1709 un = ps->ps_un; 1710 1711 for (i = 0; i < NMIRROR; i++) { 1712 if (!SMS_BY_INDEX_IS(un, i, SMS_RUNNING)) 1713 continue; 1714 running_bm |= SMI2BIT(i); 1715 nunits++; 1716 } 1717 if (nunits == 0) 1718 return (1); 1719 1720 /* 1721 * For directed mirror read (DMR) we only use the specified side and 1722 * do not compute the source of the read. 1723 */ 1724 if (ps->ps_flags & MD_MPS_DMR) { 1725 sm_index = un->un_dmr_last_read; 1726 } else { 1727 /* Normal (non-DMR) operation */ 1728 switch (un->un_read_option) { 1729 case RD_GEOMETRY: 1730 iunit = (int)(bp->b_lblkno / 1731 howmany(un->c.un_total_blocks, nunits)); 1732 sm_index = md_find_nth_unit(running_bm, iunit); 1733 break; 1734 case RD_FIRST: 1735 sm_index = md_find_nth_unit(running_bm, 0); 1736 break; 1737 case RD_LOAD_BAL: 1738 /* this is intentional to fall into the default */ 1739 default: 1740 un->un_last_read = (un->un_last_read + 1) % nunits; 1741 sm_index = md_find_nth_unit(running_bm, 1742 un->un_last_read); 1743 break; 1744 } 1745 } 1746 bp->b_edev = md_dev64_to_dev(un->un_sm[sm_index].sm_dev); 1747 ps->ps_allfrom_sm = SMI2BIT(sm_index); 1748 1749 if (un->un_sm[sm_index].sm_flags & MD_SM_FAILFAST) { 1750 bp->b_flags |= B_FAILFAST; 1751 } 1752 1753 return (0); 1754 } 1755 1756 static 1757 int 1758 mirror_are_submirrors_available(mm_unit_t *un) 1759 { 1760 int i; 1761 for (i = 0; i < NMIRROR; i++) { 1762 md_dev64_t tmpdev = un->un_sm[i].sm_dev; 1763 1764 if ((!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) || 1765 md_getmajor(tmpdev) != md_major) 1766 continue; 1767 1768 if ((MD_MIN2SET(md_getminor(tmpdev)) >= md_nsets) || 1769 (MD_MIN2UNIT(md_getminor(tmpdev)) >= md_nunits)) 1770 return (0); 1771 1772 if (MDI_UNIT(md_getminor(tmpdev)) == NULL) 1773 return (0); 1774 } 1775 return (1); 1776 } 1777 1778 void 1779 build_submirror(mm_unit_t *un, int i, int snarfing) 1780 { 1781 struct mm_submirror *sm; 1782 struct mm_submirror_ic *smic; 1783 md_unit_t *su; 1784 set_t setno; 1785 1786 sm = &un->un_sm[i]; 1787 smic = &un->un_smic[i]; 1788 1789 sm->sm_flags = 0; /* sometime we may need to do more here */ 1790 1791 setno = MD_UN2SET(un); 1792 1793 if (!SMS_IS(sm, SMS_INUSE)) 1794 return; 1795 if (snarfing) { 1796 sm->sm_dev = md_getdevnum(setno, mddb_getsidenum(setno), 1797 sm->sm_key, MD_NOTRUST_DEVT); 1798 } else { 1799 if (md_getmajor(sm->sm_dev) == md_major) { 1800 su = MD_UNIT(md_getminor(sm->sm_dev)); 1801 un->c.un_flag |= (su->c.un_flag & MD_LABELED); 1802 /* submirror can no longer be soft partitioned */ 1803 MD_CAPAB(su) &= (~MD_CAN_SP); 1804 } 1805 } 1806 smic->sm_shared_by_blk = md_get_named_service(sm->sm_dev, 1807 0, "shared by blk", 0); 1808 smic->sm_shared_by_indx = md_get_named_service(sm->sm_dev, 1809 0, "shared by indx", 0); 1810 smic->sm_get_component_count = 1811 (int (*)())md_get_named_service(sm->sm_dev, 0, 1812 "get component count", 0); 1813 smic->sm_get_bcss = 1814 (int (*)())md_get_named_service(sm->sm_dev, 0, 1815 "get block count skip size", 0); 1816 sm->sm_state &= ~SMS_IGNORE; 1817 if (SMS_IS(sm, SMS_OFFLINE)) 1818 MD_STATUS(un) |= MD_UN_OFFLINE_SM; 1819 md_set_parent(sm->sm_dev, MD_SID(un)); 1820 } 1821 1822 static void 1823 mirror_cleanup(mm_unit_t *un) 1824 { 1825 mddb_recid_t recid; 1826 int smi; 1827 sv_dev_t sv[NMIRROR]; 1828 int nsv = 0; 1829 1830 /* 1831 * If a MN diskset and this node is not the master, do 1832 * not delete any records on snarf of the mirror records. 1833 */ 1834 if (MD_MNSET_SETNO(MD_UN2SET(un)) && 1835 md_set[MD_UN2SET(un)].s_am_i_master == 0) { 1836 return; 1837 } 1838 1839 for (smi = 0; smi < NMIRROR; smi++) { 1840 if (!SMS_BY_INDEX_IS(un, smi, SMS_INUSE)) 1841 continue; 1842 sv[nsv].setno = MD_UN2SET(un); 1843 sv[nsv++].key = un->un_sm[smi].sm_key; 1844 } 1845 1846 recid = un->un_rr_dirty_recid; 1847 mddb_deleterec_wrapper(un->c.un_record_id); 1848 if (recid > 0) 1849 mddb_deleterec_wrapper(recid); 1850 1851 md_rem_names(sv, nsv); 1852 } 1853 1854 /* Return a -1 if optimized record unavailable and set should be released */ 1855 int 1856 mirror_build_incore(mm_unit_t *un, int snarfing) 1857 { 1858 int i; 1859 1860 if (MD_STATUS(un) & MD_UN_BEING_RESET) { 1861 mddb_setrecprivate(un->c.un_record_id, MD_PRV_PENDCLEAN); 1862 return (1); 1863 } 1864 1865 if (mirror_are_submirrors_available(un) == 0) 1866 return (1); 1867 1868 if (MD_UNIT(MD_SID(un)) != NULL) 1869 return (0); 1870 1871 MD_STATUS(un) = 0; 1872 1873 /* pre-4.1 didn't define CAN_META_CHILD capability */ 1874 MD_CAPAB(un) = MD_CAN_META_CHILD | MD_CAN_PARENT | MD_CAN_SP; 1875 1876 un->un_ovrlap_chn_flg = 0; 1877 bzero(&un->un_ovrlap_chn, sizeof (un->un_ovrlap_chn)); 1878 1879 for (i = 0; i < NMIRROR; i++) 1880 build_submirror(un, i, snarfing); 1881 1882 if (unit_setup_resync(un, snarfing) != 0) { 1883 if (snarfing) { 1884 mddb_setrecprivate(un->c.un_record_id, MD_PRV_GOTIT); 1885 /* 1886 * If a MN set and set is not stale, then return -1 1887 * which will force the caller to unload the set. 1888 * The MN diskset nodes will return failure if 1889 * unit_setup_resync fails so that nodes won't 1890 * get out of sync. 1891 * 1892 * If set is STALE, the master node can't allocate 1893 * a resync record (if needed), but node needs to 1894 * join the set so that user can delete broken mddbs. 1895 * So, if set is STALE, just continue on. 1896 */ 1897 if (MD_MNSET_SETNO(MD_UN2SET(un)) && 1898 !(md_get_setstatus(MD_UN2SET(un)) & MD_SET_STALE)) { 1899 return (-1); 1900 } 1901 } else 1902 return (1); 1903 } 1904 1905 mutex_init(&un->un_ovrlap_chn_mx, NULL, MUTEX_DEFAULT, NULL); 1906 cv_init(&un->un_ovrlap_chn_cv, NULL, CV_DEFAULT, NULL); 1907 1908 un->un_suspend_wr_flag = 0; 1909 mutex_init(&un->un_suspend_wr_mx, NULL, MUTEX_DEFAULT, NULL); 1910 cv_init(&un->un_suspend_wr_cv, NULL, CV_DEFAULT, NULL); 1911 1912 /* 1913 * Allocate mutexes for mirror-owner and resync-owner changes. 1914 * All references to the owner message state field must be guarded 1915 * by this mutex. 1916 */ 1917 mutex_init(&un->un_owner_mx, NULL, MUTEX_DEFAULT, NULL); 1918 1919 /* 1920 * Allocate mutex and condvar for resync thread manipulation. These 1921 * will be used by mirror_resync_unit/mirror_ioctl_resync 1922 */ 1923 mutex_init(&un->un_rs_thread_mx, NULL, MUTEX_DEFAULT, NULL); 1924 cv_init(&un->un_rs_thread_cv, NULL, CV_DEFAULT, NULL); 1925 1926 /* 1927 * Allocate mutex and condvar for resync progress thread manipulation. 1928 * This allows resyncs to be continued across an intervening reboot. 1929 */ 1930 mutex_init(&un->un_rs_progress_mx, NULL, MUTEX_DEFAULT, NULL); 1931 cv_init(&un->un_rs_progress_cv, NULL, CV_DEFAULT, NULL); 1932 1933 /* 1934 * Allocate mutex and condvar for Directed Mirror Reads (DMR). This 1935 * provides synchronization between a user-ioctl and the resulting 1936 * strategy() call that performs the read(). 1937 */ 1938 mutex_init(&un->un_dmr_mx, NULL, MUTEX_DEFAULT, NULL); 1939 cv_init(&un->un_dmr_cv, NULL, CV_DEFAULT, NULL); 1940 1941 MD_UNIT(MD_SID(un)) = un; 1942 return (0); 1943 } 1944 1945 1946 void 1947 reset_mirror(struct mm_unit *un, minor_t mnum, int removing) 1948 { 1949 mddb_recid_t recid, vtoc_id; 1950 size_t bitcnt; 1951 size_t shortcnt; 1952 int smi; 1953 sv_dev_t sv[NMIRROR]; 1954 int nsv = 0; 1955 uint_t bits = 0; 1956 minor_t selfid; 1957 md_unit_t *su; 1958 1959 md_destroy_unit_incore(mnum, &mirror_md_ops); 1960 1961 shortcnt = un->un_rrd_num * sizeof (short); 1962 bitcnt = howmany(un->un_rrd_num, NBBY); 1963 1964 if (un->un_outstanding_writes) 1965 kmem_free((caddr_t)un->un_outstanding_writes, shortcnt); 1966 if (un->un_goingclean_bm) 1967 kmem_free((caddr_t)un->un_goingclean_bm, bitcnt); 1968 if (un->un_goingdirty_bm) 1969 kmem_free((caddr_t)un->un_goingdirty_bm, bitcnt); 1970 if (un->un_resync_bm) 1971 kmem_free((caddr_t)un->un_resync_bm, bitcnt); 1972 1973 MD_UNIT(mnum) = NULL; 1974 1975 if (!removing) 1976 return; 1977 1978 for (smi = 0; smi < NMIRROR; smi++) { 1979 if (!SMS_BY_INDEX_IS(un, smi, SMS_INUSE)) 1980 continue; 1981 /* reallow soft partitioning of submirror and reset parent */ 1982 su = MD_UNIT(md_getminor(un->un_sm[smi].sm_dev)); 1983 MD_CAPAB(su) |= MD_CAN_SP; 1984 md_reset_parent(un->un_sm[smi].sm_dev); 1985 reset_comp_states(&un->un_sm[smi], &un->un_smic[smi]); 1986 1987 sv[nsv].setno = MD_MIN2SET(mnum); 1988 sv[nsv++].key = un->un_sm[smi].sm_key; 1989 bits |= SMI2BIT(smi); 1990 } 1991 1992 MD_STATUS(un) |= MD_UN_BEING_RESET; 1993 recid = un->un_rr_dirty_recid; 1994 vtoc_id = un->c.un_vtoc_id; 1995 selfid = MD_SID(un); 1996 1997 mirror_commit(un, bits, 0); 1998 1999 /* Destroy all mutexes and condvars before returning. */ 2000 mutex_destroy(&un->un_suspend_wr_mx); 2001 cv_destroy(&un->un_suspend_wr_cv); 2002 mutex_destroy(&un->un_ovrlap_chn_mx); 2003 cv_destroy(&un->un_ovrlap_chn_cv); 2004 mutex_destroy(&un->un_owner_mx); 2005 mutex_destroy(&un->un_rs_thread_mx); 2006 cv_destroy(&un->un_rs_thread_cv); 2007 mutex_destroy(&un->un_rs_progress_mx); 2008 cv_destroy(&un->un_rs_progress_cv); 2009 mutex_destroy(&un->un_dmr_mx); 2010 cv_destroy(&un->un_dmr_cv); 2011 mddb_deleterec_wrapper(un->c.un_record_id); 2012 if (recid != 0) 2013 mddb_deleterec_wrapper(recid); 2014 2015 /* Remove the vtoc, if present */ 2016 if (vtoc_id) 2017 mddb_deleterec_wrapper(vtoc_id); 2018 2019 md_rem_names(sv, nsv); 2020 2021 SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, SVM_TAG_METADEVICE, 2022 MD_MIN2SET(selfid), selfid); 2023 } 2024 2025 int 2026 mirror_internal_open( 2027 minor_t mnum, 2028 int flag, 2029 int otyp, 2030 int md_oflags, 2031 IOLOCK *lockp /* can be NULL */ 2032 ) 2033 { 2034 mdi_unit_t *ui = MDI_UNIT(mnum); 2035 int err = 0; 2036 2037 tryagain: 2038 /* single thread */ 2039 if (lockp) { 2040 /* 2041 * If ioctl lock is held, use openclose_enter 2042 * routine that will set the ioctl flag when 2043 * grabbing the readerlock. 2044 */ 2045 (void) md_ioctl_openclose_enter(lockp, ui); 2046 } else { 2047 (void) md_unit_openclose_enter(ui); 2048 } 2049 2050 /* 2051 * The mirror_open_all_devs routine may end up sending a STATE_UPDATE 2052 * message in a MN diskset and this requires that the openclose 2053 * lock is dropped in order to send this message. So, another 2054 * flag (MD_UL_OPENINPROGRESS) is used to keep another thread from 2055 * attempting an open while this thread has an open in progress. 2056 * Call the *_lh version of the lock exit routines since the ui_mx 2057 * mutex must be held from checking for OPENINPROGRESS until 2058 * after the cv_wait call. 2059 */ 2060 mutex_enter(&ui->ui_mx); 2061 if (ui->ui_lock & MD_UL_OPENINPROGRESS) { 2062 if (lockp) { 2063 (void) md_ioctl_openclose_exit_lh(lockp); 2064 } else { 2065 md_unit_openclose_exit_lh(ui); 2066 } 2067 cv_wait(&ui->ui_cv, &ui->ui_mx); 2068 mutex_exit(&ui->ui_mx); 2069 goto tryagain; 2070 } 2071 2072 ui->ui_lock |= MD_UL_OPENINPROGRESS; 2073 mutex_exit(&ui->ui_mx); 2074 2075 /* open devices, if necessary */ 2076 if (! md_unit_isopen(ui) || (ui->ui_tstate & MD_INACCESSIBLE)) { 2077 if ((err = mirror_open_all_devs(mnum, md_oflags, lockp)) != 0) 2078 goto out; 2079 } 2080 2081 /* count open */ 2082 if ((err = md_unit_incopen(mnum, flag, otyp)) != 0) 2083 goto out; 2084 2085 /* unlock, return success */ 2086 out: 2087 mutex_enter(&ui->ui_mx); 2088 ui->ui_lock &= ~MD_UL_OPENINPROGRESS; 2089 mutex_exit(&ui->ui_mx); 2090 2091 if (lockp) { 2092 /* 2093 * If ioctl lock is held, use openclose_exit 2094 * routine that will clear the lockp reader flag. 2095 */ 2096 (void) md_ioctl_openclose_exit(lockp); 2097 } else { 2098 md_unit_openclose_exit(ui); 2099 } 2100 return (err); 2101 } 2102 2103 int 2104 mirror_internal_close( 2105 minor_t mnum, 2106 int otyp, 2107 int md_cflags, 2108 IOLOCK *lockp /* can be NULL */ 2109 ) 2110 { 2111 mdi_unit_t *ui = MDI_UNIT(mnum); 2112 mm_unit_t *un; 2113 int err = 0; 2114 2115 /* single thread */ 2116 if (lockp) { 2117 /* 2118 * If ioctl lock is held, use openclose_enter 2119 * routine that will set the ioctl flag when 2120 * grabbing the readerlock. 2121 */ 2122 un = (mm_unit_t *)md_ioctl_openclose_enter(lockp, ui); 2123 } else { 2124 un = (mm_unit_t *)md_unit_openclose_enter(ui); 2125 } 2126 2127 /* count closed */ 2128 if ((err = md_unit_decopen(mnum, otyp)) != 0) 2129 goto out; 2130 2131 /* close devices, if necessary */ 2132 if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) { 2133 /* 2134 * Clean up dirty bitmap for this unit. Do this 2135 * before closing the underlying devices to avoid 2136 * race conditions with reset_mirror() as a 2137 * result of a 'metaset -r' command running in 2138 * parallel. This might cause deallocation of 2139 * dirty region bitmaps; with underlying metadevices 2140 * in place this can't happen. 2141 * Don't do this if a MN set and ABR not set 2142 */ 2143 if (new_resync && !(MD_STATUS(un) & MD_UN_KEEP_DIRTY)) { 2144 if (!MD_MNSET_SETNO(MD_UN2SET(un)) || 2145 !(ui->ui_tstate & MD_ABR_CAP)) 2146 mirror_process_unit_resync(un); 2147 } 2148 (void) mirror_close_all_devs(un, md_cflags); 2149 2150 /* 2151 * For a MN set with transient capabilities (eg ABR/DMR) set, 2152 * clear these capabilities on the last open in the cluster. 2153 * To do this we send a message to all nodes to see of the 2154 * device is open. 2155 */ 2156 if (MD_MNSET_SETNO(MD_UN2SET(un)) && 2157 (ui->ui_tstate & (MD_ABR_CAP|MD_DMR_CAP))) { 2158 if (lockp) { 2159 (void) md_ioctl_openclose_exit(lockp); 2160 } else { 2161 md_unit_openclose_exit(ui); 2162 } 2163 2164 /* 2165 * if we are in the context of an ioctl, drop the 2166 * ioctl lock. 2167 * Otherwise, no other locks should be held. 2168 */ 2169 if (lockp) { 2170 IOLOCK_RETURN_RELEASE(0, lockp); 2171 } 2172 2173 mdmn_clear_all_capabilities(mnum); 2174 2175 /* if dropped the lock previously, regain it */ 2176 if (lockp) { 2177 IOLOCK_RETURN_REACQUIRE(lockp); 2178 } 2179 return (0); 2180 } 2181 /* unlock and return success */ 2182 } 2183 out: 2184 /* Call whether lockp is NULL or not. */ 2185 if (lockp) { 2186 md_ioctl_openclose_exit(lockp); 2187 } else { 2188 md_unit_openclose_exit(ui); 2189 } 2190 return (err); 2191 } 2192 2193 /* 2194 * When a component has completed resyncing and is now ok, check if the 2195 * corresponding component in the other submirrors is in the Last Erred 2196 * state. If it is, we want to change that to the Erred state so we stop 2197 * using that component and start using this good component instead. 2198 * 2199 * This is called from set_sm_comp_state and recursively calls 2200 * set_sm_comp_state if it needs to change the Last Erred state. 2201 */ 2202 static void 2203 reset_lasterred(mm_unit_t *un, int smi, mddb_recid_t *extras, uint_t flags, 2204 IOLOCK *lockp) 2205 { 2206 mm_submirror_t *sm; 2207 mm_submirror_ic_t *smic; 2208 int ci; 2209 int i; 2210 int compcnt; 2211 int changed = 0; 2212 2213 for (i = 0; i < NMIRROR; i++) { 2214 sm = &un->un_sm[i]; 2215 smic = &un->un_smic[i]; 2216 2217 if (!SMS_IS(sm, SMS_INUSE)) 2218 continue; 2219 2220 /* ignore the submirror that we just made ok */ 2221 if (i == smi) 2222 continue; 2223 2224 compcnt = (*(smic->sm_get_component_count)) (sm->sm_dev, un); 2225 for (ci = 0; ci < compcnt; ci++) { 2226 md_m_shared_t *shared; 2227 2228 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 2229 (sm->sm_dev, sm, ci); 2230 2231 if ((shared->ms_state & CS_LAST_ERRED) && 2232 !mirror_other_sources(un, i, ci, 1)) { 2233 2234 set_sm_comp_state(un, i, ci, CS_ERRED, extras, 2235 flags, lockp); 2236 changed = 1; 2237 } 2238 } 2239 } 2240 2241 /* maybe there is a hotspare for this newly erred component */ 2242 if (changed) { 2243 set_t setno; 2244 2245 setno = MD_UN2SET(un); 2246 if (MD_MNSET_SETNO(setno)) { 2247 send_poke_hotspares(setno); 2248 } else { 2249 (void) poke_hotspares(); 2250 } 2251 } 2252 } 2253 2254 /* 2255 * set_sm_comp_state 2256 * 2257 * Set the state of a submirror component to the specified new state. 2258 * If the mirror is in a multi-node set, send messages to all nodes to 2259 * block all writes to the mirror and then update the state and release the 2260 * writes. These messages are only sent if MD_STATE_XMIT is set in flags. 2261 * MD_STATE_XMIT will be unset in 2 cases: 2262 * 1. When the state is changed to CS_RESYNC as this state change 2263 * will already have been updated on each node by the processing of the 2264 * distributed metasync command, hence no need to xmit. 2265 * 2. When the state is change to CS_OKAY after a resync has completed. Again 2266 * the resync completion will already have been processed on each node by 2267 * the processing of the MD_MN_MSG_RESYNC_PHASE_DONE message for a component 2268 * resync, hence no need to xmit. 2269 * 2270 * In case we are called from the updates of a watermark, 2271 * (then MD_STATE_WMUPDATE will be set in the ps->flags) this is due to 2272 * a metainit or similar. In this case the message that we sent to propagate 2273 * the state change must not be a class1 message as that would deadlock with 2274 * the metainit command that is still being processed. 2275 * This we achieve by creating a class2 message MD_MN_MSG_STATE_UPDATE2 2276 * instead. This also makes the submessage generator to create a class2 2277 * submessage rather than a class1 (which would also block) 2278 * 2279 * On entry, unit_writerlock is held 2280 * If MD_STATE_OCHELD is set in flags, then unit_openclose lock is 2281 * also held. 2282 */ 2283 void 2284 set_sm_comp_state( 2285 mm_unit_t *un, 2286 int smi, 2287 int ci, 2288 int newstate, 2289 mddb_recid_t *extras, 2290 uint_t flags, 2291 IOLOCK *lockp 2292 ) 2293 { 2294 mm_submirror_t *sm; 2295 mm_submirror_ic_t *smic; 2296 md_m_shared_t *shared; 2297 int origstate; 2298 void (*get_dev)(); 2299 ms_cd_info_t cd; 2300 char devname[MD_MAX_CTDLEN]; 2301 int err; 2302 set_t setno = MD_UN2SET(un); 2303 md_mn_msg_stch_t stchmsg; 2304 mdi_unit_t *ui = MDI_UNIT(MD_SID(un)); 2305 md_mn_kresult_t *kresult; 2306 int rval; 2307 uint_t msgflags; 2308 md_mn_msgtype_t msgtype; 2309 int save_lock = 0; 2310 mdi_unit_t *ui_sm; 2311 2312 sm = &un->un_sm[smi]; 2313 smic = &un->un_smic[smi]; 2314 2315 /* If we have a real error status then turn off MD_INACCESSIBLE. */ 2316 ui_sm = MDI_UNIT(getminor(md_dev64_to_dev(sm->sm_dev))); 2317 if (newstate & (CS_ERRED | CS_RESYNC | CS_LAST_ERRED) && 2318 ui_sm->ui_tstate & MD_INACCESSIBLE) { 2319 ui_sm->ui_tstate &= ~MD_INACCESSIBLE; 2320 } 2321 2322 shared = (md_m_shared_t *) 2323 (*(smic->sm_shared_by_indx))(sm->sm_dev, sm, ci); 2324 origstate = shared->ms_state; 2325 2326 /* 2327 * If the new state is an error and the old one wasn't, generate 2328 * a console message. We do this before we send the state to other 2329 * nodes in a MN set because the state change may change the component 2330 * name if a hotspare is allocated. 2331 */ 2332 if ((! (origstate & (CS_ERRED|CS_LAST_ERRED))) && 2333 (newstate & (CS_ERRED|CS_LAST_ERRED))) { 2334 2335 get_dev = 2336 (void (*)())md_get_named_service(sm->sm_dev, 0, 2337 "get device", 0); 2338 (void) (*get_dev)(sm->sm_dev, sm, ci, &cd); 2339 2340 err = md_getdevname(setno, mddb_getsidenum(setno), 0, 2341 cd.cd_dev, devname, sizeof (devname)); 2342 2343 if (err == ENOENT) { 2344 (void) md_devname(setno, cd.cd_dev, devname, 2345 sizeof (devname)); 2346 } 2347 2348 cmn_err(CE_WARN, "md: %s: %s needs maintenance", 2349 md_shortname(md_getminor(sm->sm_dev)), devname); 2350 2351 if (newstate & CS_LAST_ERRED) { 2352 cmn_err(CE_WARN, "md: %s: %s last erred", 2353 md_shortname(md_getminor(sm->sm_dev)), 2354 devname); 2355 2356 } else if (shared->ms_flags & MDM_S_ISOPEN) { 2357 /* 2358 * Close the broken device and clear the open flag on 2359 * it. Closing the device means the RCM framework will 2360 * be able to unconfigure the device if required. 2361 * 2362 * We have to check that the device is open, otherwise 2363 * the first open on it has resulted in the error that 2364 * is being processed and the actual cd.cd_dev will be 2365 * NODEV64. 2366 * 2367 * If this is a multi-node mirror, then the multinode 2368 * state checks following this code will cause the 2369 * slave nodes to close the mirror in the function 2370 * mirror_set_state(). 2371 */ 2372 md_layered_close(cd.cd_dev, MD_OFLG_NULL); 2373 shared->ms_flags &= ~MDM_S_ISOPEN; 2374 } 2375 2376 } else if ((origstate & CS_LAST_ERRED) && (newstate & CS_ERRED) && 2377 (shared->ms_flags & MDM_S_ISOPEN)) { 2378 /* 2379 * Similar to logic above except no log messages since we 2380 * are just transitioning from Last Erred to Erred. 2381 */ 2382 get_dev = (void (*)())md_get_named_service(sm->sm_dev, 0, 2383 "get device", 0); 2384 (void) (*get_dev)(sm->sm_dev, sm, ci, &cd); 2385 2386 md_layered_close(cd.cd_dev, MD_OFLG_NULL); 2387 shared->ms_flags &= ~MDM_S_ISOPEN; 2388 } 2389 2390 if ((MD_MNSET_SETNO(setno)) && (origstate != newstate) && 2391 (flags & MD_STATE_XMIT) && !(ui->ui_tstate & MD_ERR_PENDING)) { 2392 /* 2393 * For a multi-node mirror, send the state change to the 2394 * master, which broadcasts to all nodes, including this 2395 * one. Once the message is received, the state is set 2396 * in-core and the master commits the change to disk. 2397 * There is a case, comp_replace, where this function 2398 * can be called from within an ioctl and therefore in this 2399 * case, as the ioctl will already be called on each node, 2400 * there is no need to xmit the state change to the master for 2401 * distribution to the other nodes. MD_STATE_XMIT flag is used 2402 * to indicate whether a xmit is required. The mirror's 2403 * transient state is set to MD_ERR_PENDING to avoid sending 2404 * multiple messages. 2405 */ 2406 if (newstate & (CS_ERRED|CS_LAST_ERRED)) 2407 ui->ui_tstate |= MD_ERR_PENDING; 2408 2409 /* 2410 * Send a state update message to all nodes. This message 2411 * will generate 2 submessages, the first one to suspend 2412 * all writes to the mirror and the second to update the 2413 * state and resume writes. 2414 */ 2415 stchmsg.msg_stch_mnum = un->c.un_self_id; 2416 stchmsg.msg_stch_sm = smi; 2417 stchmsg.msg_stch_comp = ci; 2418 stchmsg.msg_stch_new_state = newstate; 2419 stchmsg.msg_stch_hs_id = shared->ms_hs_id; 2420 #ifdef DEBUG 2421 if (mirror_debug_flag) 2422 printf("send set state, %x, %x, %x, %x, %x\n", 2423 stchmsg.msg_stch_mnum, stchmsg.msg_stch_sm, 2424 stchmsg.msg_stch_comp, stchmsg.msg_stch_new_state, 2425 stchmsg.msg_stch_hs_id); 2426 #endif 2427 if (flags & MD_STATE_WMUPDATE) { 2428 msgtype = MD_MN_MSG_STATE_UPDATE2; 2429 /* 2430 * When coming from an update of watermarks, there 2431 * must already be a message logged that triggered 2432 * this action. So, no need to log this message, too. 2433 */ 2434 msgflags = MD_MSGF_NO_LOG; 2435 } else { 2436 msgtype = MD_MN_MSG_STATE_UPDATE; 2437 msgflags = MD_MSGF_DEFAULT_FLAGS; 2438 } 2439 2440 /* 2441 * If we are in the context of an ioctl, drop the ioctl lock. 2442 * lockp holds the list of locks held. 2443 * 2444 * Otherwise, increment the appropriate reacquire counters. 2445 * If openclose lock is *held, then must reacquire reader 2446 * lock before releasing the openclose lock. 2447 * Do not drop the ARRAY_WRITER lock as we may not be able 2448 * to reacquire it. 2449 */ 2450 if (lockp) { 2451 if (lockp->l_flags & MD_ARRAY_WRITER) { 2452 save_lock = MD_ARRAY_WRITER; 2453 lockp->l_flags &= ~MD_ARRAY_WRITER; 2454 } else if (lockp->l_flags & MD_ARRAY_READER) { 2455 save_lock = MD_ARRAY_READER; 2456 lockp->l_flags &= ~MD_ARRAY_READER; 2457 } 2458 IOLOCK_RETURN_RELEASE(0, lockp); 2459 } else { 2460 if (flags & MD_STATE_OCHELD) { 2461 md_unit_writerexit(ui); 2462 (void) md_unit_readerlock(ui); 2463 md_unit_openclose_exit(ui); 2464 } else { 2465 md_unit_writerexit(ui); 2466 } 2467 } 2468 2469 kresult = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP); 2470 rval = mdmn_ksend_message(setno, 2471 msgtype, 2472 msgflags, 2473 (char *)&stchmsg, 2474 sizeof (stchmsg), 2475 kresult); 2476 2477 if (!MDMN_KSEND_MSG_OK(rval, kresult)) { 2478 mdmn_ksend_show_error(rval, kresult, "STATE UPDATE"); 2479 cmn_err(CE_PANIC, 2480 "ksend_message failure: STATE_UPDATE"); 2481 } 2482 kmem_free(kresult, sizeof (md_mn_kresult_t)); 2483 2484 /* if dropped the lock previously, regain it */ 2485 if (lockp) { 2486 IOLOCK_RETURN_REACQUIRE(lockp); 2487 lockp->l_flags |= save_lock; 2488 } else { 2489 /* 2490 * Reacquire dropped locks and update acquirecnts 2491 * appropriately. 2492 */ 2493 if (flags & MD_STATE_OCHELD) { 2494 /* 2495 * openclose also grabs readerlock. 2496 */ 2497 (void) md_unit_openclose_enter(ui); 2498 md_unit_readerexit(ui); 2499 (void) md_unit_writerlock(ui); 2500 } else { 2501 (void) md_unit_writerlock(ui); 2502 } 2503 } 2504 2505 ui->ui_tstate &= ~MD_ERR_PENDING; 2506 } else { 2507 shared->ms_state = newstate; 2508 uniqtime32(&shared->ms_timestamp); 2509 2510 if (newstate == CS_ERRED) 2511 shared->ms_flags |= MDM_S_NOWRITE; 2512 else 2513 shared->ms_flags &= ~MDM_S_NOWRITE; 2514 2515 shared->ms_flags &= ~MDM_S_IOERR; 2516 un->un_changecnt++; 2517 shared->ms_lasterrcnt = un->un_changecnt; 2518 2519 mirror_set_sm_state(sm, smic, SMS_RUNNING, 0); 2520 mirror_commit(un, SMI2BIT(smi), extras); 2521 } 2522 2523 if ((origstate & CS_RESYNC) && (newstate & CS_OKAY)) { 2524 /* 2525 * Resetting the Last Erred state will recursively call back 2526 * into this function (set_sm_comp_state) to update the state. 2527 */ 2528 reset_lasterred(un, smi, extras, flags, lockp); 2529 } 2530 } 2531 2532 static int 2533 find_another_logical( 2534 mm_unit_t *un, 2535 mm_submirror_t *esm, 2536 diskaddr_t blk, 2537 u_longlong_t cnt, 2538 int must_be_open, 2539 int state, 2540 int err_cnt) 2541 { 2542 u_longlong_t cando; 2543 md_dev64_t dev; 2544 md_m_shared_t *s; 2545 2546 esm->sm_state |= SMS_IGNORE; 2547 while (cnt != 0) { 2548 u_longlong_t mcnt; 2549 2550 mcnt = MIN(cnt, lbtodb(1024 * 1024 * 1024)); /* 1 Gig Blks */ 2551 2552 dev = select_read_unit(un, blk, mcnt, &cando, must_be_open, &s, 2553 NULL); 2554 if (dev == (md_dev64_t)0) 2555 break; 2556 2557 if ((state == CS_LAST_ERRED) && 2558 (s->ms_state == CS_LAST_ERRED) && 2559 (err_cnt > s->ms_lasterrcnt)) 2560 break; 2561 2562 cnt -= cando; 2563 blk += cando; 2564 } 2565 esm->sm_state &= ~SMS_IGNORE; 2566 return (cnt != 0); 2567 } 2568 2569 int 2570 mirror_other_sources(mm_unit_t *un, int smi, int ci, int must_be_open) 2571 { 2572 mm_submirror_t *sm; 2573 mm_submirror_ic_t *smic; 2574 size_t count; 2575 diskaddr_t block; 2576 u_longlong_t skip; 2577 u_longlong_t size; 2578 md_dev64_t dev; 2579 int cnt; 2580 md_m_shared_t *s; 2581 int not_found; 2582 2583 sm = &un->un_sm[smi]; 2584 smic = &un->un_smic[smi]; 2585 dev = sm->sm_dev; 2586 2587 /* 2588 * Make sure every component of the submirror 2589 * has other sources. 2590 */ 2591 if (ci < 0) { 2592 /* Find the highest lasterrcnt */ 2593 cnt = (*(smic->sm_get_component_count))(dev, sm); 2594 for (ci = 0; ci < cnt; ci++) { 2595 not_found = mirror_other_sources(un, smi, ci, 2596 must_be_open); 2597 if (not_found) 2598 return (1); 2599 } 2600 return (0); 2601 } 2602 2603 /* 2604 * Make sure this component has other sources 2605 */ 2606 (void) (*(smic->sm_get_bcss)) 2607 (dev, sm, ci, &block, &count, &skip, &size); 2608 2609 if (count == 0) 2610 return (1); 2611 2612 s = (md_m_shared_t *)(*(smic->sm_shared_by_indx))(dev, sm, ci); 2613 2614 while (count--) { 2615 if (block >= un->c.un_total_blocks) 2616 return (0); 2617 2618 if ((block + size) > un->c.un_total_blocks) 2619 size = un->c.un_total_blocks - block; 2620 2621 not_found = find_another_logical(un, sm, block, size, 2622 must_be_open, s->ms_state, s->ms_lasterrcnt); 2623 if (not_found) 2624 return (1); 2625 2626 block += size + skip; 2627 } 2628 return (0); 2629 } 2630 2631 static void 2632 finish_error(md_mps_t *ps) 2633 { 2634 struct buf *pb; 2635 mm_unit_t *un; 2636 mdi_unit_t *ui; 2637 uint_t new_str_flags; 2638 2639 pb = ps->ps_bp; 2640 un = ps->ps_un; 2641 ui = ps->ps_ui; 2642 2643 /* 2644 * Must flag any error to the resync originator if we're performing 2645 * a Write-after-Read. This corresponds to an i/o error on a resync 2646 * target device and in this case we ought to abort the resync as there 2647 * is nothing that can be done to recover from this without operator 2648 * intervention. If we don't set the B_ERROR flag we will continue 2649 * reading from the mirror but won't write to the target (as it will 2650 * have been placed into an errored state). 2651 * To handle the case of multiple components within a submirror we only 2652 * set the B_ERROR bit if explicitly requested to via MD_MPS_FLAG_ERROR. 2653 * The originator of the resync read will cause this bit to be set if 2654 * the underlying component count is one for a submirror resync. All 2655 * other resync types will have the flag set as there is no underlying 2656 * resync which can be performed on a contained metadevice for these 2657 * resync types (optimized or component). 2658 */ 2659 2660 if (ps->ps_flags & MD_MPS_WRITE_AFTER_READ) { 2661 if (ps->ps_flags & MD_MPS_FLAG_ERROR) 2662 pb->b_flags |= B_ERROR; 2663 md_kstat_done(ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 2664 MPS_FREE(mirror_parent_cache, ps); 2665 md_unit_readerexit(ui); 2666 md_biodone(pb); 2667 return; 2668 } 2669 /* 2670 * Set the MD_IO_COUNTED flag as we are retrying the same I/O 2671 * operation therefore this I/O request has already been counted, 2672 * the I/O count variable will be decremented by mirror_done()'s 2673 * call to md_biodone(). 2674 */ 2675 if (ps->ps_changecnt != un->un_changecnt) { 2676 new_str_flags = MD_STR_NOTTOP | MD_IO_COUNTED; 2677 if (ps->ps_flags & MD_MPS_WOW) 2678 new_str_flags |= MD_STR_WOW; 2679 if (ps->ps_flags & MD_MPS_MAPPED) 2680 new_str_flags |= MD_STR_MAPPED; 2681 /* 2682 * If this I/O request was a read that was part of a resync, 2683 * set MD_STR_WAR for the retried read to ensure that the 2684 * resync write (i.e. write-after-read) will be performed 2685 */ 2686 if (ps->ps_flags & MD_MPS_RESYNC_READ) 2687 new_str_flags |= MD_STR_WAR; 2688 md_kstat_done(ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 2689 MPS_FREE(mirror_parent_cache, ps); 2690 md_unit_readerexit(ui); 2691 (void) md_mirror_strategy(pb, new_str_flags, NULL); 2692 return; 2693 } 2694 2695 pb->b_flags |= B_ERROR; 2696 md_kstat_done(ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 2697 MPS_FREE(mirror_parent_cache, ps); 2698 md_unit_readerexit(ui); 2699 md_biodone(pb); 2700 } 2701 2702 static void 2703 error_update_unit(md_mps_t *ps) 2704 { 2705 mm_unit_t *un; 2706 mdi_unit_t *ui; 2707 int smi; /* sub mirror index */ 2708 int ci; /* errored component */ 2709 set_t setno; 2710 uint_t flags; /* for set_sm_comp_state() */ 2711 uint_t hspflags; /* for check_comp_4_hotspares() */ 2712 2713 ui = ps->ps_ui; 2714 un = (mm_unit_t *)md_unit_writerlock(ui); 2715 setno = MD_UN2SET(un); 2716 2717 /* All of these updates have to propagated in case of MN set */ 2718 flags = MD_STATE_XMIT; 2719 hspflags = MD_HOTSPARE_XMIT; 2720 2721 /* special treatment if we are called during updating watermarks */ 2722 if (ps->ps_flags & MD_MPS_WMUPDATE) { 2723 flags |= MD_STATE_WMUPDATE; 2724 hspflags |= MD_HOTSPARE_WMUPDATE; 2725 } 2726 smi = 0; 2727 ci = 0; 2728 while (mirror_geterror(un, &smi, &ci, 1, 0) != 0) { 2729 if (mirror_other_sources(un, smi, ci, 0) == 1) { 2730 2731 /* Never called from ioctl context, so (IOLOCK *)NULL */ 2732 set_sm_comp_state(un, smi, ci, CS_LAST_ERRED, 0, flags, 2733 (IOLOCK *)NULL); 2734 /* 2735 * For a MN set, the NOTIFY is done when the state 2736 * change is processed on each node 2737 */ 2738 if (!MD_MNSET_SETNO(MD_UN2SET(un))) { 2739 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_LASTERRED, 2740 SVM_TAG_METADEVICE, setno, MD_SID(un)); 2741 } 2742 continue; 2743 } 2744 /* Never called from ioctl context, so (IOLOCK *)NULL */ 2745 set_sm_comp_state(un, smi, ci, CS_ERRED, 0, flags, 2746 (IOLOCK *)NULL); 2747 /* 2748 * For a MN set, the NOTIFY is done when the state 2749 * change is processed on each node 2750 */ 2751 if (!MD_MNSET_SETNO(MD_UN2SET(un))) { 2752 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED, 2753 SVM_TAG_METADEVICE, setno, MD_SID(un)); 2754 } 2755 smi = 0; 2756 ci = 0; 2757 } 2758 2759 md_unit_writerexit(ui); 2760 if (MD_MNSET_SETNO(setno)) { 2761 send_poke_hotspares(setno); 2762 } else { 2763 (void) poke_hotspares(); 2764 } 2765 (void) md_unit_readerlock(ui); 2766 2767 finish_error(ps); 2768 } 2769 2770 /* 2771 * When we have a B_FAILFAST IO error on a Last Erred component we need to 2772 * retry the IO without B_FAILFAST set so that we try to ensure that the 2773 * component "sees" each IO. 2774 */ 2775 static void 2776 last_err_retry(md_mcs_t *cs) 2777 { 2778 struct buf *cb; 2779 md_mps_t *ps; 2780 uint_t flags; 2781 2782 cb = &cs->cs_buf; 2783 cb->b_flags &= ~B_FAILFAST; 2784 2785 /* if we're panicing just let this I/O error out */ 2786 if (panicstr) { 2787 (void) mirror_done(cb); 2788 return; 2789 } 2790 2791 /* reissue the I/O */ 2792 2793 ps = cs->cs_ps; 2794 2795 bioerror(cb, 0); 2796 2797 mutex_enter(&ps->ps_mx); 2798 2799 flags = MD_STR_NOTTOP; 2800 if (ps->ps_flags & MD_MPS_MAPPED) 2801 flags |= MD_STR_MAPPED; 2802 if (ps->ps_flags & MD_MPS_NOBLOCK) 2803 flags |= MD_NOBLOCK; 2804 2805 mutex_exit(&ps->ps_mx); 2806 2807 clear_retry_error(cb); 2808 2809 cmn_err(CE_NOTE, "!md: %s: Last Erred, retry I/O without B_FAILFAST", 2810 md_shortname(getminor(cb->b_edev))); 2811 2812 md_call_strategy(cb, flags, NULL); 2813 } 2814 2815 static void 2816 mirror_error(md_mps_t *ps) 2817 { 2818 int smi; /* sub mirror index */ 2819 int ci; /* errored component */ 2820 2821 if (panicstr) { 2822 finish_error(ps); 2823 return; 2824 } 2825 2826 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 2827 mirror_overlap_chain_remove(ps); 2828 2829 smi = 0; 2830 ci = 0; 2831 if (mirror_geterror(ps->ps_un, &smi, &ci, 0, 0) != 0) { 2832 md_unit_readerexit(ps->ps_ui); 2833 daemon_request(&md_mstr_daemon, error_update_unit, 2834 (daemon_queue_t *)ps, REQ_OLD); 2835 return; 2836 } 2837 2838 finish_error(ps); 2839 } 2840 2841 static int 2842 copy_write_done(struct buf *cb) 2843 { 2844 md_mps_t *ps; 2845 buf_t *pb; 2846 char *wowbuf; 2847 wowhdr_t *wowhdr; 2848 ssize_t wow_resid; 2849 2850 /* get wowbuf ans save structure */ 2851 wowbuf = cb->b_un.b_addr; 2852 wowhdr = WOWBUF_HDR(wowbuf); 2853 ps = wowhdr->wow_ps; 2854 pb = ps->ps_bp; 2855 2856 /* Save error information, then free cb */ 2857 if (cb->b_flags & B_ERROR) 2858 pb->b_flags |= B_ERROR; 2859 2860 if (cb->b_flags & B_REMAPPED) 2861 bp_mapout(cb); 2862 2863 freerbuf(cb); 2864 2865 /* update residual and continue if needed */ 2866 if ((pb->b_flags & B_ERROR) == 0) { 2867 wow_resid = pb->b_bcount - wowhdr->wow_offset; 2868 pb->b_resid = wow_resid; 2869 if (wow_resid > 0) { 2870 daemon_request(&md_mstr_daemon, copy_write_cont, 2871 (daemon_queue_t *)wowhdr, REQ_OLD); 2872 return (1); 2873 } 2874 } 2875 2876 /* Write is complete, release resources. */ 2877 kmem_cache_free(mirror_wowblk_cache, wowhdr); 2878 ASSERT(!(ps->ps_flags & MD_MPS_ON_OVERLAP)); 2879 md_kstat_done(ps->ps_ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 2880 MPS_FREE(mirror_parent_cache, ps); 2881 md_biodone(pb); 2882 return (0); 2883 } 2884 2885 static void 2886 copy_write_cont(wowhdr_t *wowhdr) 2887 { 2888 buf_t *pb; 2889 buf_t *cb; 2890 char *wowbuf; 2891 int wow_offset; 2892 size_t wow_resid; 2893 diskaddr_t wow_blkno; 2894 2895 wowbuf = WOWHDR_BUF(wowhdr); 2896 pb = wowhdr->wow_ps->ps_bp; 2897 2898 /* get data on current location */ 2899 wow_offset = wowhdr->wow_offset; 2900 wow_resid = pb->b_bcount - wow_offset; 2901 wow_blkno = pb->b_lblkno + lbtodb(wow_offset); 2902 2903 /* setup child buffer */ 2904 cb = getrbuf(KM_SLEEP); 2905 cb->b_flags = B_WRITE; 2906 cb->b_edev = pb->b_edev; 2907 cb->b_un.b_addr = wowbuf; /* change to point at WOWBUF */ 2908 cb->b_bufsize = md_wowbuf_size; /* change to wowbuf_size */ 2909 cb->b_iodone = copy_write_done; 2910 cb->b_bcount = MIN(md_wowbuf_size, wow_resid); 2911 cb->b_lblkno = wow_blkno; 2912 2913 /* move offset to next section */ 2914 wowhdr->wow_offset += cb->b_bcount; 2915 2916 /* copy and setup write for current section */ 2917 bcopy(&pb->b_un.b_addr[wow_offset], wowbuf, cb->b_bcount); 2918 2919 /* do it */ 2920 /* 2921 * Do not set the MD_IO_COUNTED flag as this is a new I/O request 2922 * that handles the WOW condition. The resultant increment on the 2923 * I/O count variable is cleared by copy_write_done()'s call to 2924 * md_biodone(). 2925 */ 2926 (void) md_mirror_strategy(cb, MD_STR_NOTTOP | MD_STR_WOW 2927 | MD_STR_MAPPED, NULL); 2928 } 2929 2930 static void 2931 md_mirror_copy_write(md_mps_t *ps) 2932 { 2933 wowhdr_t *wowhdr; 2934 2935 wowhdr = kmem_cache_alloc(mirror_wowblk_cache, MD_ALLOCFLAGS); 2936 mirror_wowblk_init(wowhdr); 2937 wowhdr->wow_ps = ps; 2938 wowhdr->wow_offset = 0; 2939 copy_write_cont(wowhdr); 2940 } 2941 2942 static void 2943 handle_wow(md_mps_t *ps) 2944 { 2945 buf_t *pb; 2946 2947 pb = ps->ps_bp; 2948 2949 bp_mapin(pb); 2950 2951 md_mirror_wow_cnt++; 2952 if (!(pb->b_flags & B_PHYS) && (md_mirror_wow_flg & WOW_LOGIT)) { 2953 cmn_err(CE_NOTE, 2954 "md: %s, blk %lld, cnt %ld: Write on write %d occurred", 2955 md_shortname(getminor(pb->b_edev)), 2956 (longlong_t)pb->b_lblkno, pb->b_bcount, md_mirror_wow_cnt); 2957 } 2958 2959 /* 2960 * Set the MD_IO_COUNTED flag as we are retrying the same I/O 2961 * operation therefore this I/O request has already been counted, 2962 * the I/O count variable will be decremented by mirror_done()'s 2963 * call to md_biodone(). 2964 */ 2965 if (md_mirror_wow_flg & WOW_NOCOPY) 2966 (void) md_mirror_strategy(pb, MD_STR_NOTTOP | MD_STR_WOW | 2967 MD_STR_MAPPED | MD_IO_COUNTED, ps); 2968 else 2969 md_mirror_copy_write(ps); 2970 } 2971 2972 /* 2973 * Return true if the specified submirror is either in the Last Erred 2974 * state or is transitioning into the Last Erred state. 2975 */ 2976 static bool_t 2977 submirror_is_lasterred(mm_unit_t *un, int smi) 2978 { 2979 mm_submirror_t *sm; 2980 mm_submirror_ic_t *smic; 2981 md_m_shared_t *shared; 2982 int ci; 2983 int compcnt; 2984 2985 sm = &un->un_sm[smi]; 2986 smic = &un->un_smic[smi]; 2987 2988 compcnt = (*(smic->sm_get_component_count)) (sm->sm_dev, un); 2989 for (ci = 0; ci < compcnt; ci++) { 2990 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 2991 (sm->sm_dev, sm, ci); 2992 2993 if (shared->ms_state == CS_LAST_ERRED) 2994 return (B_TRUE); 2995 2996 /* 2997 * It is not currently Last Erred, check if entering Last Erred. 2998 */ 2999 if ((shared->ms_flags & MDM_S_IOERR) && 3000 ((shared->ms_state == CS_OKAY) || 3001 (shared->ms_state == CS_RESYNC))) { 3002 if (mirror_other_sources(un, smi, ci, 0) == 1) 3003 return (B_TRUE); 3004 } 3005 } 3006 3007 return (B_FALSE); 3008 } 3009 3010 3011 static int 3012 mirror_done(struct buf *cb) 3013 { 3014 md_mps_t *ps; 3015 md_mcs_t *cs; 3016 3017 /*LINTED*/ 3018 cs = (md_mcs_t *)((caddr_t)cb - md_mirror_mcs_buf_off); 3019 ps = cs->cs_ps; 3020 3021 mutex_enter(&ps->ps_mx); 3022 3023 /* check if we need to retry an errored failfast I/O */ 3024 if (cb->b_flags & B_ERROR) { 3025 struct buf *pb = ps->ps_bp; 3026 3027 if (cb->b_flags & B_FAILFAST) { 3028 int i; 3029 mm_unit_t *un = ps->ps_un; 3030 3031 for (i = 0; i < NMIRROR; i++) { 3032 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) 3033 continue; 3034 3035 if (cb->b_edev == 3036 md_dev64_to_dev(un->un_sm[i].sm_dev)) { 3037 3038 /* 3039 * This is the submirror that had the 3040 * error. Check if it is Last Erred. 3041 */ 3042 if (submirror_is_lasterred(un, i)) { 3043 daemon_queue_t *dqp; 3044 3045 mutex_exit(&ps->ps_mx); 3046 dqp = (daemon_queue_t *)cs; 3047 dqp->dq_prev = NULL; 3048 dqp->dq_next = NULL; 3049 daemon_request(&md_done_daemon, 3050 last_err_retry, dqp, 3051 REQ_OLD); 3052 return (1); 3053 } 3054 break; 3055 } 3056 } 3057 } 3058 3059 /* continue to process the buf without doing a retry */ 3060 ps->ps_flags |= MD_MPS_ERROR; 3061 pb->b_error = cb->b_error; 3062 } 3063 3064 return (mirror_done_common(cb)); 3065 } 3066 3067 /* 3068 * Split from the original mirror_done function so we can handle bufs after a 3069 * retry. 3070 * ps->ps_mx is already held in the caller of this function and the cb error 3071 * has already been checked and handled in the caller. 3072 */ 3073 static int 3074 mirror_done_common(struct buf *cb) 3075 { 3076 struct buf *pb; 3077 mm_unit_t *un; 3078 mdi_unit_t *ui; 3079 md_mps_t *ps; 3080 md_mcs_t *cs; 3081 size_t end_rr, start_rr, current_rr; 3082 3083 /*LINTED*/ 3084 cs = (md_mcs_t *)((caddr_t)cb - md_mirror_mcs_buf_off); 3085 ps = cs->cs_ps; 3086 pb = ps->ps_bp; 3087 3088 if (cb->b_flags & B_REMAPPED) 3089 bp_mapout(cb); 3090 3091 ps->ps_frags--; 3092 if (ps->ps_frags != 0) { 3093 mutex_exit(&ps->ps_mx); 3094 kmem_cache_free(mirror_child_cache, cs); 3095 return (1); 3096 } 3097 un = ps->ps_un; 3098 ui = ps->ps_ui; 3099 3100 /* 3101 * Do not update outstanding_writes if we're running with ABR 3102 * set for this mirror or the write() was issued with MD_STR_ABR set. 3103 * Also a resync initiated write() has no outstanding_writes update 3104 * either. 3105 */ 3106 if (((cb->b_flags & B_READ) == 0) && 3107 (un->un_nsm >= 2) && 3108 (ps->ps_call == NULL) && 3109 !((ui->ui_tstate & MD_ABR_CAP) || (ps->ps_flags & MD_MPS_ABR)) && 3110 !(ps->ps_flags & MD_MPS_WRITE_AFTER_READ)) { 3111 BLK_TO_RR(end_rr, ps->ps_lastblk, un); 3112 BLK_TO_RR(start_rr, ps->ps_firstblk, un); 3113 mutex_enter(&un->un_resync_mx); 3114 for (current_rr = start_rr; current_rr <= end_rr; current_rr++) 3115 un->un_outstanding_writes[current_rr]--; 3116 mutex_exit(&un->un_resync_mx); 3117 } 3118 kmem_cache_free(mirror_child_cache, cs); 3119 mutex_exit(&ps->ps_mx); 3120 3121 if (ps->ps_call != NULL) { 3122 daemon_request(&md_done_daemon, ps->ps_call, 3123 (daemon_queue_t *)ps, REQ_OLD); 3124 return (1); 3125 } 3126 3127 if ((ps->ps_flags & MD_MPS_ERROR)) { 3128 daemon_request(&md_done_daemon, mirror_error, 3129 (daemon_queue_t *)ps, REQ_OLD); 3130 return (1); 3131 } 3132 3133 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 3134 mirror_overlap_chain_remove(ps); 3135 3136 /* 3137 * Handle Write-on-Write problem. 3138 * Skip In case of Raw and Direct I/O as they are 3139 * handled earlier. 3140 * 3141 */ 3142 if (!(md_mirror_wow_flg & WOW_DISABLE) && 3143 !(pb->b_flags & B_READ) && 3144 !(ps->ps_flags & MD_MPS_WOW) && 3145 !(pb->b_flags & B_PHYS) && 3146 any_pages_dirty(pb)) { 3147 md_unit_readerexit(ps->ps_ui); 3148 daemon_request(&md_mstr_daemon, handle_wow, 3149 (daemon_queue_t *)ps, REQ_OLD); 3150 return (1); 3151 } 3152 3153 md_kstat_done(ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 3154 MPS_FREE(mirror_parent_cache, ps); 3155 md_unit_readerexit(ui); 3156 md_biodone(pb); 3157 return (0); 3158 } 3159 3160 /* 3161 * Clear error state in submirror component if the retry worked after 3162 * a failfast error. 3163 */ 3164 static void 3165 clear_retry_error(struct buf *cb) 3166 { 3167 int smi; 3168 md_mcs_t *cs; 3169 mm_unit_t *un; 3170 mdi_unit_t *ui_sm; 3171 mm_submirror_t *sm; 3172 mm_submirror_ic_t *smic; 3173 u_longlong_t cnt; 3174 md_m_shared_t *shared; 3175 3176 /*LINTED*/ 3177 cs = (md_mcs_t *)((caddr_t)cb - md_mirror_mcs_buf_off); 3178 un = cs->cs_ps->ps_un; 3179 3180 for (smi = 0; smi < NMIRROR; smi++) { 3181 if (!SMS_BY_INDEX_IS(un, smi, SMS_INUSE)) 3182 continue; 3183 3184 if (cb->b_edev == md_dev64_to_dev(un->un_sm[smi].sm_dev)) { 3185 break; 3186 } 3187 } 3188 3189 if (smi >= NMIRROR) 3190 return; 3191 3192 sm = &un->un_sm[smi]; 3193 smic = &un->un_smic[smi]; 3194 cnt = cb->b_bcount; 3195 3196 ui_sm = MDI_UNIT(getminor(cb->b_edev)); 3197 (void) md_unit_writerlock(ui_sm); 3198 3199 shared = (md_m_shared_t *)(*(smic->sm_shared_by_blk))(sm->sm_dev, sm, 3200 cb->b_blkno, &cnt); 3201 3202 if (shared->ms_flags & MDM_S_IOERR) { 3203 shared->ms_flags &= ~MDM_S_IOERR; 3204 3205 } else { 3206 /* the I/O buf spans components and the first one is not erred */ 3207 int cnt; 3208 int i; 3209 3210 cnt = (*(smic->sm_get_component_count))(sm->sm_dev, un); 3211 for (i = 0; i < cnt; i++) { 3212 shared = (md_m_shared_t *)(*(smic->sm_shared_by_indx)) 3213 (sm->sm_dev, sm, i); 3214 3215 if (shared->ms_flags & MDM_S_IOERR && 3216 shared->ms_state == CS_OKAY) { 3217 3218 shared->ms_flags &= ~MDM_S_IOERR; 3219 break; 3220 } 3221 } 3222 } 3223 3224 md_unit_writerexit(ui_sm); 3225 } 3226 3227 static size_t 3228 mirror_map_read( 3229 md_mps_t *ps, 3230 md_mcs_t *cs, 3231 diskaddr_t blkno, 3232 u_longlong_t count 3233 ) 3234 { 3235 mm_unit_t *un; 3236 buf_t *bp; 3237 u_longlong_t cando; 3238 3239 bp = &cs->cs_buf; 3240 un = ps->ps_un; 3241 3242 bp->b_lblkno = blkno; 3243 if (fast_select_read_unit(ps, cs) == 0) { 3244 bp->b_bcount = ldbtob(count); 3245 return (0); 3246 } 3247 bp->b_edev = md_dev64_to_dev(select_read_unit(un, blkno, count, &cando, 3248 0, NULL, cs)); 3249 bp->b_bcount = ldbtob(cando); 3250 if (count != cando) 3251 return (cando); 3252 return (0); 3253 } 3254 3255 static void 3256 write_after_read(md_mps_t *ps) 3257 { 3258 struct buf *pb; 3259 int flags; 3260 3261 if (ps->ps_flags & MD_MPS_ERROR) { 3262 mirror_error(ps); 3263 return; 3264 } 3265 3266 pb = ps->ps_bp; 3267 md_kstat_done(ps->ps_ui, pb, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 3268 ps->ps_call = NULL; 3269 ps->ps_flags |= MD_MPS_WRITE_AFTER_READ; 3270 flags = MD_STR_NOTTOP | MD_STR_WAR; 3271 if (ps->ps_flags & MD_MPS_MAPPED) 3272 flags |= MD_STR_MAPPED; 3273 if (ps->ps_flags & MD_MPS_NOBLOCK) 3274 flags |= MD_NOBLOCK; 3275 if (ps->ps_flags & MD_MPS_DIRTY_RD) 3276 flags |= MD_STR_DIRTY_RD; 3277 (void) mirror_write_strategy(pb, flags, ps); 3278 } 3279 3280 static void 3281 continue_serial(md_mps_t *ps) 3282 { 3283 md_mcs_t *cs; 3284 buf_t *cb; 3285 mm_unit_t *un; 3286 int flags; 3287 3288 un = ps->ps_un; 3289 cs = kmem_cache_alloc(mirror_child_cache, MD_ALLOCFLAGS); 3290 mirror_child_init(cs); 3291 cb = &cs->cs_buf; 3292 ps->ps_call = NULL; 3293 ps->ps_frags = 1; 3294 (void) mirror_map_write(un, cs, ps, 0); 3295 flags = MD_STR_NOTTOP; 3296 if (ps->ps_flags & MD_MPS_MAPPED) 3297 flags |= MD_STR_MAPPED; 3298 md_call_strategy(cb, flags, NULL); 3299 } 3300 3301 static int 3302 mirror_map_write(mm_unit_t *un, md_mcs_t *cs, md_mps_t *ps, int war) 3303 { 3304 int i; 3305 dev_t dev; /* needed for bioclone, so not md_dev64_t */ 3306 buf_t *cb; 3307 buf_t *pb; 3308 diskaddr_t blkno; 3309 size_t bcount; 3310 off_t offset; 3311 3312 pb = ps->ps_bp; 3313 cb = &cs->cs_buf; 3314 cs->cs_ps = ps; 3315 3316 i = md_find_nth_unit(ps->ps_writable_sm, ps->ps_current_sm); 3317 3318 dev = md_dev64_to_dev(un->un_sm[i].sm_dev); 3319 3320 blkno = pb->b_lblkno; 3321 bcount = pb->b_bcount; 3322 offset = 0; 3323 if (war && (blkno == 0) && (un->c.un_flag & MD_LABELED)) { 3324 blkno = DK_LABEL_LOC + 1; 3325 /* 3326 * This handles the case where we're requesting 3327 * a write to block 0 on a label partition 3328 * and the request size was smaller than the 3329 * size of the label. If this is the case 3330 * then we'll return -1. Failure to do so will 3331 * either cause the calling thread to hang due to 3332 * an ssd bug, or worse if the bcount were allowed 3333 * to go negative (ie large). 3334 */ 3335 if (bcount <= DEV_BSIZE*(DK_LABEL_LOC + 1)) 3336 return (-1); 3337 bcount -= (DEV_BSIZE*(DK_LABEL_LOC + 1)); 3338 offset = (DEV_BSIZE*(DK_LABEL_LOC + 1)); 3339 } 3340 3341 cb = md_bioclone(pb, offset, bcount, dev, blkno, mirror_done, 3342 cb, KM_NOSLEEP); 3343 if (war) 3344 cb->b_flags = (cb->b_flags & ~B_READ) | B_WRITE; 3345 3346 /* 3347 * If the submirror is in the erred stated, check if any component is 3348 * in the Last Erred state. If so, we don't want to use the B_FAILFAST 3349 * flag on the IO. 3350 * 3351 * Provide a fast path for the non-erred case (which should be the 3352 * normal case). 3353 */ 3354 if (un->un_sm[i].sm_flags & MD_SM_FAILFAST) { 3355 if (un->un_sm[i].sm_state & SMS_COMP_ERRED) { 3356 mm_submirror_t *sm; 3357 mm_submirror_ic_t *smic; 3358 int ci; 3359 int compcnt; 3360 3361 sm = &un->un_sm[i]; 3362 smic = &un->un_smic[i]; 3363 3364 compcnt = (*(smic->sm_get_component_count)) 3365 (sm->sm_dev, un); 3366 for (ci = 0; ci < compcnt; ci++) { 3367 md_m_shared_t *shared; 3368 3369 shared = (md_m_shared_t *) 3370 (*(smic->sm_shared_by_indx))(sm->sm_dev, 3371 sm, ci); 3372 3373 if (shared->ms_state == CS_LAST_ERRED) 3374 break; 3375 } 3376 if (ci >= compcnt) 3377 cb->b_flags |= B_FAILFAST; 3378 3379 } else { 3380 cb->b_flags |= B_FAILFAST; 3381 } 3382 } 3383 3384 ps->ps_current_sm++; 3385 if (ps->ps_current_sm != ps->ps_active_cnt) { 3386 if (un->un_write_option == WR_SERIAL) { 3387 ps->ps_call = continue_serial; 3388 return (0); 3389 } 3390 return (1); 3391 } 3392 return (0); 3393 } 3394 3395 /* 3396 * directed_read_done: 3397 * ------------------ 3398 * Completion routine called when a DMR request has been returned from the 3399 * underlying driver. Wake-up the original ioctl() and return the data to 3400 * the user. 3401 */ 3402 static void 3403 directed_read_done(md_mps_t *ps) 3404 { 3405 mm_unit_t *un; 3406 mdi_unit_t *ui; 3407 3408 un = ps->ps_un; 3409 ui = ps->ps_ui; 3410 3411 md_unit_readerexit(ui); 3412 md_kstat_done(ui, ps->ps_bp, (ps->ps_flags & MD_MPS_WRITE_AFTER_READ)); 3413 ps->ps_call = NULL; 3414 3415 mutex_enter(&un->un_dmr_mx); 3416 cv_signal(&un->un_dmr_cv); 3417 mutex_exit(&un->un_dmr_mx); 3418 3419 /* release the parent structure */ 3420 kmem_cache_free(mirror_parent_cache, ps); 3421 } 3422 3423 /* 3424 * daemon_io: 3425 * ------------ 3426 * Called to issue a mirror_write_strategy() or mirror_read_strategy 3427 * call from a blockable context. NOTE: no mutex can be held on entry to this 3428 * routine 3429 */ 3430 static void 3431 daemon_io(daemon_queue_t *dq) 3432 { 3433 md_mps_t *ps = (md_mps_t *)dq; 3434 int flag = MD_STR_NOTTOP; 3435 buf_t *pb = ps->ps_bp; 3436 3437 if (ps->ps_flags & MD_MPS_MAPPED) 3438 flag |= MD_STR_MAPPED; 3439 if (ps->ps_flags & MD_MPS_WOW) 3440 flag |= MD_STR_WOW; 3441 if (ps->ps_flags & MD_MPS_WRITE_AFTER_READ) 3442 flag |= MD_STR_WAR; 3443 if (ps->ps_flags & MD_MPS_ABR) 3444 flag |= MD_STR_ABR; 3445 3446 /* 3447 * If this is a resync read, ie MD_STR_DIRTY_RD not set, set 3448 * MD_STR_WAR before calling mirror_read_strategy 3449 */ 3450 if (pb->b_flags & B_READ) { 3451 if (!(ps->ps_flags & MD_MPS_DIRTY_RD)) 3452 flag |= MD_STR_WAR; 3453 mirror_read_strategy(pb, flag, ps); 3454 } else 3455 mirror_write_strategy(pb, flag, ps); 3456 } 3457 3458 /* 3459 * update_resync: 3460 * ------------- 3461 * Called to update the in-core version of the resync record with the latest 3462 * version that was committed to disk when the previous mirror owner 3463 * relinquished ownership. This call is likely to block as we must hold-off 3464 * any current resync processing that may be occurring. 3465 * On completion of the resync record update we issue the mirror_write_strategy 3466 * call to complete the i/o that first started this sequence. To remove a race 3467 * condition between a new write() request which is submitted and the resync 3468 * record update we acquire the writerlock. This will hold off all i/o to the 3469 * mirror until the resync update has completed. 3470 * NOTE: no mutex can be held on entry to this routine 3471 */ 3472 static void 3473 update_resync(daemon_queue_t *dq) 3474 { 3475 md_mps_t *ps = (md_mps_t *)dq; 3476 buf_t *pb = ps->ps_bp; 3477 mdi_unit_t *ui = ps->ps_ui; 3478 mm_unit_t *un; 3479 set_t setno; 3480 int restart_resync; 3481 3482 un = md_unit_writerlock(ui); 3483 ps->ps_un = un; 3484 setno = MD_MIN2SET(getminor(pb->b_edev)); 3485 if (mddb_reread_rr(setno, un->un_rr_dirty_recid) == 0) { 3486 /* 3487 * Synchronize our in-core view of what regions need to be 3488 * resync'd with the on-disk version. 3489 */ 3490 mutex_enter(&un->un_rrp_inflight_mx); 3491 mirror_copy_rr(howmany(un->un_rrd_num, NBBY), un->un_resync_bm, 3492 un->un_dirty_bm); 3493 mutex_exit(&un->un_rrp_inflight_mx); 3494 3495 /* Region dirty map is now up to date */ 3496 } 3497 restart_resync = (un->un_rs_thread_flags & MD_RI_BLOCK_OWNER) ? 1 : 0; 3498 md_unit_writerexit(ui); 3499 3500 /* Restart the resync thread if it was previously blocked */ 3501 if (restart_resync) { 3502 mutex_enter(&un->un_rs_thread_mx); 3503 un->un_rs_thread_flags &= ~MD_RI_BLOCK_OWNER; 3504 cv_signal(&un->un_rs_thread_cv); 3505 mutex_exit(&un->un_rs_thread_mx); 3506 } 3507 /* Continue with original deferred i/o */ 3508 daemon_io(dq); 3509 } 3510 3511 /* 3512 * owner_timeout: 3513 * ------------- 3514 * Called if the original mdmn_ksend_message() failed and the request is to be 3515 * retried. Reattempt the original ownership change. 3516 * 3517 * NOTE: called at interrupt context (see timeout(9f)). 3518 */ 3519 static void 3520 owner_timeout(void *arg) 3521 { 3522 daemon_queue_t *dq = (daemon_queue_t *)arg; 3523 3524 daemon_request(&md_mirror_daemon, become_owner, dq, REQ_OLD); 3525 } 3526 3527 /* 3528 * become_owner: 3529 * ------------ 3530 * Called to issue RPC request to become the owner of the mirror 3531 * associated with this i/o request. We assume that the ownership request 3532 * is synchronous, so if it succeeds we will issue the request via 3533 * mirror_write_strategy(). 3534 * If multiple i/o's are outstanding we will be called from the mirror_daemon 3535 * service thread. 3536 * NOTE: no mutex should be held on entry to this routine. 3537 */ 3538 static void 3539 become_owner(daemon_queue_t *dq) 3540 { 3541 md_mps_t *ps = (md_mps_t *)dq; 3542 mm_unit_t *un = ps->ps_un; 3543 buf_t *pb = ps->ps_bp; 3544 set_t setno; 3545 md_mn_kresult_t *kres; 3546 int msg_flags = md_mirror_msg_flags; 3547 md_mps_t *ps1; 3548 3549 ASSERT(dq->dq_next == NULL && dq->dq_prev == NULL); 3550 3551 /* 3552 * If we're already the mirror owner we do not need to send a message 3553 * but can simply process the i/o request immediately. 3554 * If we've already sent the request to become owner we requeue the 3555 * request as we're waiting for the synchronous ownership message to 3556 * be processed. 3557 */ 3558 if (MD_MN_MIRROR_OWNER(un)) { 3559 /* 3560 * As the strategy() call will potentially block we need to 3561 * punt this to a separate thread and complete this request 3562 * as quickly as possible. Note: if we're a read request 3563 * this must be a resync, we cannot afford to be queued 3564 * behind any intervening i/o requests. In this case we put the 3565 * request on the md_mirror_rs_daemon queue. 3566 */ 3567 if (pb->b_flags & B_READ) { 3568 daemon_request(&md_mirror_rs_daemon, daemon_io, dq, 3569 REQ_OLD); 3570 } else { 3571 daemon_request(&md_mirror_io_daemon, daemon_io, dq, 3572 REQ_OLD); 3573 } 3574 } else { 3575 mutex_enter(&un->un_owner_mx); 3576 if ((un->un_owner_state & MM_MN_OWNER_SENT) == 0) { 3577 md_mn_req_owner_t *msg; 3578 int rval = 0; 3579 3580 /* 3581 * Check to see that we haven't exceeded the maximum 3582 * retry count. If we have we fail the i/o as the 3583 * comms mechanism has become wedged beyond recovery. 3584 */ 3585 if (dq->qlen++ >= MD_OWNER_RETRIES) { 3586 mutex_exit(&un->un_owner_mx); 3587 cmn_err(CE_WARN, 3588 "md_mirror: Request exhausted ownership " 3589 "retry limit of %d attempts", dq->qlen); 3590 pb->b_error = EIO; 3591 pb->b_flags |= B_ERROR; 3592 pb->b_resid = pb->b_bcount; 3593 kmem_cache_free(mirror_parent_cache, ps); 3594 md_biodone(pb); 3595 return; 3596 } 3597 3598 /* 3599 * Issue request to change ownership. The call is 3600 * synchronous so when it returns we can complete the 3601 * i/o (if successful), or enqueue it again so that 3602 * the operation will be retried. 3603 */ 3604 un->un_owner_state |= MM_MN_OWNER_SENT; 3605 mutex_exit(&un->un_owner_mx); 3606 3607 msg = kmem_zalloc(sizeof (md_mn_req_owner_t), KM_SLEEP); 3608 setno = MD_MIN2SET(getminor(pb->b_edev)); 3609 msg->mnum = MD_SID(un); 3610 msg->owner = md_mn_mynode_id; 3611 msg_flags |= MD_MSGF_NO_LOG; 3612 /* 3613 * If this IO is triggered by updating a watermark, 3614 * it might be issued by the creation of a softpartition 3615 * while the commd subsystem is suspended. 3616 * We don't want this message to block. 3617 */ 3618 if (ps->ps_flags & MD_MPS_WMUPDATE) { 3619 msg_flags |= MD_MSGF_OVERRIDE_SUSPEND; 3620 } 3621 3622 kres = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP); 3623 rval = mdmn_ksend_message(setno, 3624 MD_MN_MSG_REQUIRE_OWNER, 3625 msg_flags, /* flags */ 3626 (char *)msg, 3627 sizeof (md_mn_req_owner_t), 3628 kres); 3629 3630 kmem_free(msg, sizeof (md_mn_req_owner_t)); 3631 3632 if (MDMN_KSEND_MSG_OK(rval, kres)) { 3633 dq->qlen = 0; 3634 /* 3635 * Successfully changed owner, reread the 3636 * resync record so that we have a valid idea of 3637 * any previously committed incomplete write()s. 3638 * NOTE: As we need to acquire the resync mutex 3639 * this may block, so we defer it to a separate 3640 * thread handler. This makes us (effectively) 3641 * non-blocking once the ownership message 3642 * handling has completed. 3643 */ 3644 mutex_enter(&un->un_owner_mx); 3645 if (un->un_owner_state & MM_MN_BECOME_OWNER) { 3646 un->un_mirror_owner = md_mn_mynode_id; 3647 /* Sets owner of un_rr_dirty record */ 3648 if (un->un_rr_dirty_recid) 3649 (void) mddb_setowner( 3650 un->un_rr_dirty_recid, 3651 md_mn_mynode_id); 3652 un->un_owner_state &= 3653 ~MM_MN_BECOME_OWNER; 3654 /* 3655 * Release the block on the current 3656 * resync region if it is blocked 3657 */ 3658 ps1 = un->un_rs_prev_ovrlap; 3659 if ((ps1 != NULL) && 3660 (ps1->ps_flags & MD_MPS_ON_OVERLAP)) 3661 mirror_overlap_chain_remove( 3662 ps1); 3663 mutex_exit(&un->un_owner_mx); 3664 3665 /* 3666 * If we're a read, this must be a 3667 * resync request, issue 3668 * the i/o request on the 3669 * md_mirror_rs_daemon queue. This is 3670 * to avoid a deadlock between the 3671 * resync_unit thread and 3672 * subsequent i/o requests that may 3673 * block on the resync region. 3674 */ 3675 if (pb->b_flags & B_READ) { 3676 daemon_request( 3677 &md_mirror_rs_daemon, 3678 update_resync, dq, REQ_OLD); 3679 } else { 3680 daemon_request( 3681 &md_mirror_io_daemon, 3682 update_resync, dq, REQ_OLD); 3683 } 3684 kmem_free(kres, 3685 sizeof (md_mn_kresult_t)); 3686 return; 3687 } else { 3688 /* 3689 * Some other node has beaten us to 3690 * obtain ownership. We need to 3691 * reschedule our ownership request 3692 */ 3693 mutex_exit(&un->un_owner_mx); 3694 } 3695 } else { 3696 mdmn_ksend_show_error(rval, kres, 3697 "MD_MN_MSG_REQUIRE_OWNER"); 3698 /* 3699 * Message transport failure is handled by the 3700 * comms layer. If the ownership change request 3701 * does not succeed we need to flag the error to 3702 * the initiator of the i/o. This is handled by 3703 * the retry logic above. As the request failed 3704 * we do not know _who_ the owner of the mirror 3705 * currently is. We reset our idea of the owner 3706 * to None so that any further write()s will 3707 * attempt to become the owner again. This stops 3708 * multiple nodes writing to the same mirror 3709 * simultaneously. 3710 */ 3711 mutex_enter(&un->un_owner_mx); 3712 un->un_owner_state &= 3713 ~(MM_MN_OWNER_SENT|MM_MN_BECOME_OWNER); 3714 un->un_mirror_owner = MD_MN_MIRROR_UNOWNED; 3715 mutex_exit(&un->un_owner_mx); 3716 } 3717 kmem_free(kres, sizeof (md_mn_kresult_t)); 3718 } else 3719 mutex_exit(&un->un_owner_mx); 3720 3721 /* 3722 * Re-enqueue this request on the deferred i/o list. Delay the 3723 * request for md_mirror_owner_to usecs to stop thrashing. 3724 */ 3725 (void) timeout(owner_timeout, dq, 3726 drv_usectohz(md_mirror_owner_to)); 3727 } 3728 } 3729 3730 static void 3731 mirror_write_strategy(buf_t *pb, int flag, void *private) 3732 { 3733 md_mps_t *ps; 3734 md_mcs_t *cs; 3735 int more; 3736 mm_unit_t *un; 3737 mdi_unit_t *ui; 3738 buf_t *cb; /* child buf pointer */ 3739 set_t setno; 3740 int rs_on_overlap = 0; 3741 3742 ui = MDI_UNIT(getminor(pb->b_edev)); 3743 un = (mm_unit_t *)MD_UNIT(getminor(pb->b_edev)); 3744 3745 3746 md_kstat_waitq_enter(ui); 3747 3748 /* 3749 * If a state change is in progress for this mirror in a MN set, 3750 * suspend all non-resync writes until the state change is complete. 3751 * The objective of this suspend is to ensure that it is not 3752 * possible for one node to read data from a submirror that another node 3753 * has not written to because of the state change. Therefore we 3754 * suspend all writes until the state change has been made. As it is 3755 * not possible to read from the target of a resync, there is no need 3756 * to suspend resync writes. 3757 */ 3758 3759 if (!(flag & MD_STR_WAR)) { 3760 mutex_enter(&un->un_suspend_wr_mx); 3761 while (un->un_suspend_wr_flag) { 3762 cv_wait(&un->un_suspend_wr_cv, &un->un_suspend_wr_mx); 3763 } 3764 mutex_exit(&un->un_suspend_wr_mx); 3765 (void) md_unit_readerlock(ui); 3766 } 3767 3768 if (!(flag & MD_STR_NOTTOP)) { 3769 if (md_checkbuf(ui, (md_unit_t *)un, pb)) { 3770 md_kstat_waitq_exit(ui); 3771 return; 3772 } 3773 } 3774 3775 setno = MD_MIN2SET(getminor(pb->b_edev)); 3776 3777 /* If an ABR write has been requested, set MD_STR_ABR flag */ 3778 if (MD_MNSET_SETNO(setno) && (pb->b_flags & B_ABRWRITE)) 3779 flag |= MD_STR_ABR; 3780 3781 if (private == NULL) { 3782 ps = kmem_cache_alloc(mirror_parent_cache, MD_ALLOCFLAGS); 3783 mirror_parent_init(ps); 3784 } else { 3785 ps = private; 3786 private = NULL; 3787 } 3788 if (flag & MD_STR_MAPPED) 3789 ps->ps_flags |= MD_MPS_MAPPED; 3790 3791 if (flag & MD_STR_WOW) 3792 ps->ps_flags |= MD_MPS_WOW; 3793 3794 if (flag & MD_STR_ABR) 3795 ps->ps_flags |= MD_MPS_ABR; 3796 3797 if (flag & MD_STR_WMUPDATE) 3798 ps->ps_flags |= MD_MPS_WMUPDATE; 3799 3800 /* 3801 * Save essential information from the original buffhdr 3802 * in the md_save structure. 3803 */ 3804 ps->ps_un = un; 3805 ps->ps_ui = ui; 3806 ps->ps_bp = pb; 3807 ps->ps_addr = pb->b_un.b_addr; 3808 ps->ps_firstblk = pb->b_lblkno; 3809 ps->ps_lastblk = pb->b_lblkno + lbtodb(pb->b_bcount) - 1; 3810 ps->ps_changecnt = un->un_changecnt; 3811 3812 /* 3813 * If not MN owner and this is an ABR write, make sure the current 3814 * resync region is on the overlaps chain 3815 */ 3816 mutex_enter(&un->un_owner_mx); 3817 if (MD_MNSET_SETNO(setno) && (!(MD_MN_MIRROR_OWNER(un))) && 3818 ((ui->ui_tstate & MD_ABR_CAP) || (flag & MD_STR_ABR))) { 3819 md_mps_t *ps1; 3820 /* Block the current resync region, if not already blocked */ 3821 ps1 = un->un_rs_prev_ovrlap; 3822 3823 if ((ps1 != NULL) && ((ps1->ps_firstblk != 0) || 3824 (ps1->ps_lastblk != 0))) { 3825 /* Drop locks to avoid deadlock */ 3826 mutex_exit(&un->un_owner_mx); 3827 md_unit_readerexit(ui); 3828 wait_for_overlaps(ps1, MD_OVERLAP_ALLOW_REPEAT); 3829 rs_on_overlap = 1; 3830 (void) md_unit_readerlock(ui); 3831 mutex_enter(&un->un_owner_mx); 3832 /* 3833 * Check to see if we have obtained ownership 3834 * while waiting for overlaps. If we have, remove 3835 * the resync_region entry from the overlap chain 3836 */ 3837 if (MD_MN_MIRROR_OWNER(un) && 3838 (ps1->ps_flags & MD_MPS_ON_OVERLAP)) { 3839 mirror_overlap_chain_remove(ps1); 3840 rs_on_overlap = 0; 3841 } 3842 } 3843 } 3844 mutex_exit(&un->un_owner_mx); 3845 3846 3847 /* 3848 * following keep write after read from writing to the 3849 * source in the case where it all came from one place 3850 */ 3851 if (flag & MD_STR_WAR) { 3852 int abort_write = 0; 3853 /* 3854 * We are perfoming a write-after-read. This is either as a 3855 * result of a resync read or as a result of a read in a 3856 * dirty resync region when the optimized resync is not 3857 * complete. If in a MN set and a resync generated i/o, 3858 * if the current block is not in the current 3859 * resync region terminate the write as another node must have 3860 * completed this resync region 3861 */ 3862 if ((MD_MNSET_SETNO(MD_UN2SET(un))) && 3863 (!flag & MD_STR_DIRTY_RD)) { 3864 if (!IN_RESYNC_REGION(un, ps)) 3865 abort_write = 1; 3866 } 3867 if ((select_write_after_read_units(un, ps) == 0) || 3868 (abort_write)) { 3869 #ifdef DEBUG 3870 if (mirror_debug_flag) 3871 printf("Abort resync write on %x, block %lld\n", 3872 MD_SID(un), ps->ps_firstblk); 3873 #endif 3874 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 3875 mirror_overlap_chain_remove(ps); 3876 kmem_cache_free(mirror_parent_cache, ps); 3877 md_kstat_waitq_exit(ui); 3878 md_unit_readerexit(ui); 3879 md_biodone(pb); 3880 return; 3881 } 3882 } else { 3883 select_write_units(un, ps); 3884 3885 /* Drop readerlock to avoid deadlock */ 3886 md_unit_readerexit(ui); 3887 wait_for_overlaps(ps, MD_OVERLAP_NO_REPEAT); 3888 un = md_unit_readerlock(ui); 3889 /* 3890 * For a MN set with an ABR write, if we are now the 3891 * owner and we have a resync region on the overlap 3892 * chain, remove the entry from overlaps and retry the write. 3893 */ 3894 3895 if (MD_MNSET_SETNO(setno) && 3896 ((ui->ui_tstate & MD_ABR_CAP) || (flag & MD_STR_ABR))) { 3897 mutex_enter(&un->un_owner_mx); 3898 if (((MD_MN_MIRROR_OWNER(un))) && rs_on_overlap) { 3899 mirror_overlap_chain_remove(ps); 3900 md_kstat_waitq_exit(ui); 3901 mutex_exit(&un->un_owner_mx); 3902 md_unit_readerexit(ui); 3903 daemon_request(&md_mirror_daemon, daemon_io, 3904 (daemon_queue_t *)ps, REQ_OLD); 3905 return; 3906 } 3907 mutex_exit(&un->un_owner_mx); 3908 } 3909 } 3910 3911 /* 3912 * For Multinode mirrors with a Resync Region (not ABR) we need to 3913 * become the mirror owner before continuing with the write(). For ABR 3914 * mirrors we check that we 'own' the resync if we're in 3915 * write-after-read mode. We do this _after_ ensuring that there are no 3916 * overlaps to ensure that the once we know that we are the owner, the 3917 * readerlock will not released until the write is complete. As a 3918 * change of ownership in a MN set requires the writerlock, this 3919 * ensures that ownership cannot be changed until the write is 3920 * complete 3921 */ 3922 if (MD_MNSET_SETNO(setno) && (!((ui->ui_tstate & MD_ABR_CAP) || 3923 (flag & MD_STR_ABR)) || (flag & MD_STR_WAR))) { 3924 if (!MD_MN_MIRROR_OWNER(un)) { 3925 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 3926 mirror_overlap_chain_remove(ps); 3927 md_kstat_waitq_exit(ui); 3928 ASSERT(!(flag & MD_STR_WAR)); 3929 md_unit_readerexit(ui); 3930 daemon_request(&md_mirror_daemon, become_owner, 3931 (daemon_queue_t *)ps, REQ_OLD); 3932 return; 3933 } 3934 } 3935 3936 /* 3937 * Mark resync region if mirror has a Resync Region _and_ we are not 3938 * a resync initiated write(). Don't mark region if we're flagged as 3939 * an ABR write. 3940 */ 3941 if (!((ui->ui_tstate & MD_ABR_CAP) || (flag & MD_STR_ABR)) && 3942 !(flag & MD_STR_WAR)) { 3943 if (mirror_mark_resync_region(un, ps->ps_firstblk, 3944 ps->ps_lastblk)) { 3945 pb->b_flags |= B_ERROR; 3946 pb->b_resid = pb->b_bcount; 3947 ASSERT(!(ps->ps_flags & MD_MPS_ON_OVERLAP)); 3948 kmem_cache_free(mirror_parent_cache, ps); 3949 md_kstat_waitq_exit(ui); 3950 md_unit_readerexit(ui); 3951 md_biodone(pb); 3952 return; 3953 } 3954 } 3955 3956 ps->ps_childbflags = pb->b_flags | B_WRITE; 3957 ps->ps_childbflags &= ~B_READ; 3958 if (flag & MD_STR_MAPPED) 3959 ps->ps_childbflags &= ~B_PAGEIO; 3960 3961 if (!(flag & MD_STR_NOTTOP) && panicstr) 3962 /* Disable WOW and don't free ps */ 3963 ps->ps_flags |= (MD_MPS_WOW|MD_MPS_DONTFREE); 3964 3965 md_kstat_waitq_to_runq(ui); 3966 3967 /* 3968 * Treat Raw and Direct I/O as Write-on-Write always 3969 */ 3970 3971 if (!(md_mirror_wow_flg & WOW_DISABLE) && 3972 (md_mirror_wow_flg & WOW_PHYS_ENABLE) && 3973 (pb->b_flags & B_PHYS) && 3974 !(ps->ps_flags & MD_MPS_WOW)) { 3975 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 3976 mirror_overlap_chain_remove(ps); 3977 md_unit_readerexit(ui); 3978 daemon_request(&md_mstr_daemon, handle_wow, 3979 (daemon_queue_t *)ps, REQ_OLD); 3980 return; 3981 } 3982 3983 ps->ps_frags = 1; 3984 do { 3985 cs = kmem_cache_alloc(mirror_child_cache, MD_ALLOCFLAGS); 3986 mirror_child_init(cs); 3987 cb = &cs->cs_buf; 3988 more = mirror_map_write(un, cs, ps, (flag & MD_STR_WAR)); 3989 3990 /* 3991 * This handles the case where we're requesting 3992 * a write to block 0 on a label partition. (more < 0) 3993 * means that the request size was smaller than the 3994 * size of the label. If so this request is done. 3995 */ 3996 if (more < 0) { 3997 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 3998 mirror_overlap_chain_remove(ps); 3999 md_kstat_runq_exit(ui); 4000 kmem_cache_free(mirror_child_cache, cs); 4001 kmem_cache_free(mirror_parent_cache, ps); 4002 md_unit_readerexit(ui); 4003 md_biodone(pb); 4004 return; 4005 } 4006 if (more) { 4007 mutex_enter(&ps->ps_mx); 4008 ps->ps_frags++; 4009 mutex_exit(&ps->ps_mx); 4010 } 4011 md_call_strategy(cb, flag, private); 4012 } while (more); 4013 4014 if (!(flag & MD_STR_NOTTOP) && panicstr) { 4015 while (!(ps->ps_flags & MD_MPS_DONE)) { 4016 md_daemon(1, &md_done_daemon); 4017 drv_usecwait(10); 4018 } 4019 kmem_cache_free(mirror_parent_cache, ps); 4020 } 4021 } 4022 4023 static void 4024 mirror_read_strategy(buf_t *pb, int flag, void *private) 4025 { 4026 md_mps_t *ps; 4027 md_mcs_t *cs; 4028 size_t more; 4029 mm_unit_t *un; 4030 mdi_unit_t *ui; 4031 size_t current_count; 4032 diskaddr_t current_blkno; 4033 off_t current_offset; 4034 buf_t *cb; /* child buf pointer */ 4035 set_t setno; 4036 4037 ui = MDI_UNIT(getminor(pb->b_edev)); 4038 4039 md_kstat_waitq_enter(ui); 4040 4041 un = (mm_unit_t *)md_unit_readerlock(ui); 4042 4043 if (!(flag & MD_STR_NOTTOP)) { 4044 if (md_checkbuf(ui, (md_unit_t *)un, pb)) { 4045 md_kstat_waitq_exit(ui); 4046 return; 4047 } 4048 } 4049 4050 if (private == NULL) { 4051 ps = kmem_cache_alloc(mirror_parent_cache, MD_ALLOCFLAGS); 4052 mirror_parent_init(ps); 4053 } else { 4054 ps = private; 4055 private = NULL; 4056 } 4057 4058 if (flag & MD_STR_MAPPED) 4059 ps->ps_flags |= MD_MPS_MAPPED; 4060 if (flag & MD_NOBLOCK) 4061 ps->ps_flags |= MD_MPS_NOBLOCK; 4062 if (flag & MD_STR_WMUPDATE) 4063 ps->ps_flags |= MD_MPS_WMUPDATE; 4064 4065 /* 4066 * Check to see if this is a DMR driven read. If so we need to use the 4067 * specified side (in un->un_dmr_last_read) for the source of the data. 4068 */ 4069 if (flag & MD_STR_DMR) 4070 ps->ps_flags |= MD_MPS_DMR; 4071 4072 /* 4073 * Save essential information from the original buffhdr 4074 * in the md_save structure. 4075 */ 4076 ps->ps_un = un; 4077 ps->ps_ui = ui; 4078 ps->ps_bp = pb; 4079 ps->ps_addr = pb->b_un.b_addr; 4080 ps->ps_firstblk = pb->b_lblkno; 4081 ps->ps_lastblk = pb->b_lblkno + lbtodb(pb->b_bcount) - 1; 4082 ps->ps_changecnt = un->un_changecnt; 4083 4084 current_count = btodb(pb->b_bcount); 4085 current_blkno = pb->b_lblkno; 4086 current_offset = 0; 4087 4088 /* 4089 * If flag has MD_STR_WAR set this means that the read is issued by a 4090 * resync thread which may or may not be an optimised resync. 4091 * 4092 * If MD_UN_OPT_NOT_DONE is set this means that the optimized resync 4093 * code has not completed; either a resync has not started since snarf, 4094 * or there is an optimized resync in progress. 4095 * 4096 * We need to generate a write after this read in the following two 4097 * cases, 4098 * 4099 * 1. Any Resync-Generated read 4100 * 4101 * 2. Any read to a DIRTY REGION if there is an optimized resync 4102 * pending or in progress. 4103 * 4104 * The write after read is done in these cases to ensure that all sides 4105 * of the mirror are in sync with the read data and that it is not 4106 * possible for an application to read the same block multiple times 4107 * and get different data. 4108 * 4109 * This would be possible if the block was in a dirty region. 4110 * 4111 * If we're performing a directed read we don't write the data out as 4112 * the application is responsible for restoring the mirror to a known 4113 * state. 4114 */ 4115 if (((MD_STATUS(un) & MD_UN_OPT_NOT_DONE) || (flag & MD_STR_WAR)) && 4116 !(flag & MD_STR_DMR)) { 4117 size_t start_rr, i, end_rr; 4118 int region_dirty = 1; 4119 4120 /* 4121 * We enter here under three circumstances, 4122 * 4123 * MD_UN_OPT_NOT_DONE MD_STR_WAR 4124 * 0 1 4125 * 1 0 4126 * 1 1 4127 * 4128 * To be optimal we only care to explicitly check for dirty 4129 * regions in the second case since if MD_STR_WAR is set we 4130 * always do the write after read. 4131 */ 4132 if (!(flag & MD_STR_WAR)) { 4133 BLK_TO_RR(end_rr, ps->ps_lastblk, un); 4134 BLK_TO_RR(start_rr, ps->ps_firstblk, un); 4135 4136 for (i = start_rr; i <= end_rr; i++) 4137 if ((region_dirty = IS_KEEPDIRTY(i, un)) != 0) 4138 break; 4139 } 4140 4141 if ((region_dirty) && 4142 !(md_get_setstatus(MD_UN2SET(un)) & MD_SET_STALE)) { 4143 ps->ps_call = write_after_read; 4144 /* 4145 * Mark this as a RESYNC_READ in ps_flags. 4146 * This is used if the read fails during a 4147 * resync of a 3-way mirror to ensure that 4148 * the retried read to the remaining 4149 * good submirror has MD_STR_WAR set. This 4150 * is needed to ensure that the resync write 4151 * (write-after-read) takes place. 4152 */ 4153 ps->ps_flags |= MD_MPS_RESYNC_READ; 4154 4155 /* 4156 * If MD_STR_FLAG_ERR is set in the flags we 4157 * set MD_MPS_FLAG_ERROR so that an error on the resync 4158 * write (issued by write_after_read) will be flagged 4159 * to the biowait'ing resync thread. This allows us to 4160 * avoid issuing further resync requests to a device 4161 * that has had a write failure. 4162 */ 4163 if (flag & MD_STR_FLAG_ERR) 4164 ps->ps_flags |= MD_MPS_FLAG_ERROR; 4165 4166 setno = MD_UN2SET(un); 4167 /* 4168 * Drop the readerlock to avoid 4169 * deadlock 4170 */ 4171 md_unit_readerexit(ui); 4172 wait_for_overlaps(ps, MD_OVERLAP_NO_REPEAT); 4173 un = md_unit_readerlock(ui); 4174 /* 4175 * Ensure that we are owner 4176 */ 4177 if (MD_MNSET_SETNO(setno)) { 4178 /* 4179 * For a non-resync read that requires a 4180 * write-after-read to be done, set a flag 4181 * in the parent structure, so that the 4182 * write_strategy routine can omit the 4183 * test that the write is still within the 4184 * resync region 4185 */ 4186 if (!(flag & MD_STR_WAR)) 4187 ps->ps_flags |= MD_MPS_DIRTY_RD; 4188 4189 /* 4190 * Before reading the buffer, see if 4191 * we are the owner 4192 */ 4193 if (!MD_MN_MIRROR_OWNER(un)) { 4194 ps->ps_call = NULL; 4195 mirror_overlap_chain_remove(ps); 4196 md_kstat_waitq_exit(ui); 4197 md_unit_readerexit(ui); 4198 daemon_request( 4199 &md_mirror_daemon, 4200 become_owner, 4201 (daemon_queue_t *)ps, 4202 REQ_OLD); 4203 return; 4204 } 4205 /* 4206 * For a resync read, check to see if I/O is 4207 * outside of the current resync region, or 4208 * the resync has finished. If so 4209 * just terminate the I/O 4210 */ 4211 if ((flag & MD_STR_WAR) && 4212 (!(un->c.un_status & MD_UN_WAR) || 4213 (!IN_RESYNC_REGION(un, ps)))) { 4214 #ifdef DEBUG 4215 if (mirror_debug_flag) 4216 printf("Abort resync read " 4217 "%x: %lld\n", 4218 MD_SID(un), 4219 ps->ps_firstblk); 4220 #endif 4221 mirror_overlap_chain_remove(ps); 4222 kmem_cache_free(mirror_parent_cache, 4223 ps); 4224 md_kstat_waitq_exit(ui); 4225 md_unit_readerexit(ui); 4226 md_biodone(pb); 4227 return; 4228 } 4229 } 4230 } 4231 } 4232 4233 if (flag & MD_STR_DMR) { 4234 ps->ps_call = directed_read_done; 4235 } 4236 4237 if (!(flag & MD_STR_NOTTOP) && panicstr) 4238 ps->ps_flags |= MD_MPS_DONTFREE; 4239 4240 md_kstat_waitq_to_runq(ui); 4241 4242 ps->ps_frags++; 4243 do { 4244 cs = kmem_cache_alloc(mirror_child_cache, MD_ALLOCFLAGS); 4245 mirror_child_init(cs); 4246 cb = &cs->cs_buf; 4247 cs->cs_ps = ps; 4248 4249 cb = md_bioclone(pb, current_offset, current_count, NODEV, 4250 current_blkno, mirror_done, cb, KM_NOSLEEP); 4251 4252 more = mirror_map_read(ps, cs, current_blkno, 4253 (u_longlong_t)current_count); 4254 if (more) { 4255 mutex_enter(&ps->ps_mx); 4256 ps->ps_frags++; 4257 mutex_exit(&ps->ps_mx); 4258 } 4259 4260 /* 4261 * Do these calculations now, 4262 * so that we pickup a valid b_bcount from the chld_bp. 4263 */ 4264 current_count -= more; 4265 current_offset += cb->b_bcount; 4266 current_blkno += more; 4267 md_call_strategy(cb, flag, private); 4268 } while (more); 4269 4270 if (!(flag & MD_STR_NOTTOP) && panicstr) { 4271 while (!(ps->ps_flags & MD_MPS_DONE)) { 4272 md_daemon(1, &md_done_daemon); 4273 drv_usecwait(10); 4274 } 4275 kmem_cache_free(mirror_parent_cache, ps); 4276 } 4277 } 4278 4279 void 4280 md_mirror_strategy(buf_t *bp, int flag, void *private) 4281 { 4282 set_t setno = MD_MIN2SET(getminor(bp->b_edev)); 4283 4284 /* 4285 * When doing IO to a multi owner meta device, check if set is halted. 4286 * We do this check without the needed lock held, for performance 4287 * reasons. 4288 * If an IO just slips through while the set is locked via an 4289 * MD_MN_SUSPEND_SET, we don't care about it. 4290 * Only check for suspension if we are a top-level i/o request 4291 * (MD_STR_NOTTOP is cleared in 'flag'). 4292 */ 4293 if ((md_set[setno].s_status & (MD_SET_HALTED | MD_SET_MNSET)) == 4294 (MD_SET_HALTED | MD_SET_MNSET)) { 4295 if ((flag & MD_STR_NOTTOP) == 0) { 4296 mutex_enter(&md_mx); 4297 /* Here we loop until the set is no longer halted */ 4298 while (md_set[setno].s_status & MD_SET_HALTED) { 4299 cv_wait(&md_cv, &md_mx); 4300 } 4301 mutex_exit(&md_mx); 4302 } 4303 } 4304 4305 if ((flag & MD_IO_COUNTED) == 0) { 4306 if ((flag & MD_NOBLOCK) == 0) { 4307 if (md_inc_iocount(setno) != 0) { 4308 bp->b_flags |= B_ERROR; 4309 bp->b_error = ENXIO; 4310 bp->b_resid = bp->b_bcount; 4311 biodone(bp); 4312 return; 4313 } 4314 } else { 4315 md_inc_iocount_noblock(setno); 4316 } 4317 } 4318 4319 if (bp->b_flags & B_READ) 4320 mirror_read_strategy(bp, flag, private); 4321 else 4322 mirror_write_strategy(bp, flag, private); 4323 } 4324 4325 /* 4326 * mirror_directed_read: 4327 * -------------------- 4328 * Entry-point for the DKIOCDMR ioctl. We issue a read to a specified sub-mirror 4329 * so that the application can determine what (if any) resync needs to be 4330 * performed. The data is copied out to the user-supplied buffer. 4331 * 4332 * Parameters: 4333 * mdev - dev_t for the mirror device 4334 * vdr - directed read parameters specifying location and submirror 4335 * to perform the read from 4336 * mode - used to ddi_copyout() any resulting data from the read 4337 * 4338 * Returns: 4339 * 0 success 4340 * !0 error code 4341 * EINVAL - invalid request format 4342 */ 4343 int 4344 mirror_directed_read(dev_t mdev, vol_directed_rd_t *vdr, int mode) 4345 { 4346 buf_t *bp; 4347 minor_t mnum = getminor(mdev); 4348 mdi_unit_t *ui = MDI_UNIT(mnum); 4349 mm_unit_t *un; 4350 mm_submirror_t *sm; 4351 char *sm_nm; 4352 size_t namelen; 4353 uint_t next_side; 4354 void *kbuffer; 4355 4356 if (ui == NULL) 4357 return (ENXIO); 4358 4359 if (!(vdr->vdr_flags & DKV_DMR_NEXT_SIDE)) { 4360 return (EINVAL); 4361 } 4362 4363 /* Check for aligned block access. We disallow non-aligned requests. */ 4364 if (vdr->vdr_offset % DEV_BSIZE) { 4365 return (EINVAL); 4366 } 4367 4368 /* 4369 * Allocate kernel buffer for target of read(). If we had a reliable 4370 * (sorry functional) DDI this wouldn't be needed. 4371 */ 4372 kbuffer = kmem_alloc(vdr->vdr_nbytes, KM_NOSLEEP); 4373 if (kbuffer == NULL) { 4374 cmn_err(CE_WARN, "mirror_directed_read: couldn't allocate %lx" 4375 " bytes\n", vdr->vdr_nbytes); 4376 return (ENOMEM); 4377 } 4378 4379 bp = getrbuf(KM_SLEEP); 4380 4381 bp->b_un.b_addr = kbuffer; 4382 bp->b_flags = B_READ; 4383 bp->b_bcount = vdr->vdr_nbytes; 4384 bp->b_lblkno = lbtodb(vdr->vdr_offset); 4385 bp->b_edev = mdev; 4386 4387 un = md_unit_readerlock(ui); 4388 4389 /* 4390 * If DKV_SIDE_INIT is set we need to determine the first available 4391 * side to start reading from. If it isn't set we increment to the 4392 * next readable submirror. 4393 * If there are no readable submirrors we error out with DKV_DMR_ERROR. 4394 * Note: we check for a readable submirror on completion of the i/o so 4395 * we should _always_ have one available. If this becomes unavailable 4396 * we have missed the 'DKV_DMR_DONE' opportunity. This could happen if 4397 * a metadetach is made between the completion of one DKIOCDMR ioctl 4398 * and the start of the next (i.e. a sys-admin 'accident' occurred). 4399 * The chance of this is small, but not non-existent. 4400 */ 4401 if (vdr->vdr_side == DKV_SIDE_INIT) { 4402 next_side = 0; 4403 } else { 4404 next_side = vdr->vdr_side + 1; 4405 } 4406 while ((next_side < NMIRROR) && 4407 !SUBMIRROR_IS_READABLE(un, next_side)) 4408 next_side++; 4409 if (next_side >= NMIRROR) { 4410 vdr->vdr_flags |= DKV_DMR_ERROR; 4411 freerbuf(bp); 4412 vdr->vdr_bytesread = 0; 4413 md_unit_readerexit(ui); 4414 return (0); 4415 } 4416 4417 /* Set the side to read from */ 4418 un->un_dmr_last_read = next_side; 4419 4420 md_unit_readerexit(ui); 4421 4422 /* 4423 * Save timestamp for verification purposes. Can be read by debugger 4424 * to verify that this ioctl has been executed and to find the number 4425 * of DMR reads and the time of the last DMR read. 4426 */ 4427 uniqtime(&mirror_dmr_stats.dmr_timestamp); 4428 mirror_dmr_stats.dmr_count++; 4429 4430 /* Issue READ request and wait for completion */ 4431 mirror_read_strategy(bp, MD_STR_DMR|MD_NOBLOCK|MD_STR_NOTTOP, NULL); 4432 4433 mutex_enter(&un->un_dmr_mx); 4434 cv_wait(&un->un_dmr_cv, &un->un_dmr_mx); 4435 mutex_exit(&un->un_dmr_mx); 4436 4437 /* 4438 * Check to see if we encountered an error during the read. If so we 4439 * can make no guarantee about any possibly returned data. 4440 */ 4441 if ((bp->b_flags & B_ERROR) == 0) { 4442 vdr->vdr_flags &= ~DKV_DMR_ERROR; 4443 if (bp->b_resid) { 4444 vdr->vdr_flags |= DKV_DMR_SHORT; 4445 vdr->vdr_bytesread = vdr->vdr_nbytes - bp->b_resid; 4446 } else { 4447 vdr->vdr_flags |= DKV_DMR_SUCCESS; 4448 vdr->vdr_bytesread = vdr->vdr_nbytes; 4449 } 4450 /* Copy the data read back out to the user supplied buffer */ 4451 if (ddi_copyout(kbuffer, vdr->vdr_data, vdr->vdr_bytesread, 4452 mode)) { 4453 kmem_free(kbuffer, vdr->vdr_nbytes); 4454 return (EFAULT); 4455 } 4456 4457 } else { 4458 /* Error out with DKV_DMR_ERROR */ 4459 vdr->vdr_flags |= DKV_DMR_ERROR; 4460 vdr->vdr_flags &= ~(DKV_DMR_SUCCESS|DKV_DMR_SHORT|DKV_DMR_DONE); 4461 } 4462 /* 4463 * Update the DMR parameters with the side and name of submirror that 4464 * we have just read from (un->un_dmr_last_read) 4465 */ 4466 un = md_unit_readerlock(ui); 4467 4468 vdr->vdr_side = un->un_dmr_last_read; 4469 sm = &un->un_sm[un->un_dmr_last_read]; 4470 sm_nm = md_shortname(md_getminor(sm->sm_dev)); 4471 4472 namelen = MIN(MD_MAX_SIDENAME_LEN, VOL_SIDENAME); 4473 (void) strncpy(vdr->vdr_side_name, sm_nm, namelen); 4474 4475 /* 4476 * Determine if we've completed the read cycle. This is true iff the 4477 * next computed submirror (side) equals or exceeds NMIRROR. We cannot 4478 * use un_nsm as we need to handle a sparse array of submirrors (which 4479 * can occur if a submirror is metadetached). 4480 */ 4481 next_side = un->un_dmr_last_read + 1; 4482 while ((next_side < NMIRROR) && 4483 !SUBMIRROR_IS_READABLE(un, next_side)) 4484 next_side++; 4485 if (next_side >= NMIRROR) { 4486 /* We've finished */ 4487 vdr->vdr_flags |= DKV_DMR_DONE; 4488 } 4489 4490 md_unit_readerexit(ui); 4491 freerbuf(bp); 4492 kmem_free(kbuffer, vdr->vdr_nbytes); 4493 4494 return (0); 4495 } 4496 4497 /* 4498 * mirror_resync_message: 4499 * --------------------- 4500 * Handle the multi-node resync messages that keep all nodes within a given 4501 * disk-set in sync with their view of a mirror's resync status. 4502 * 4503 * The message types dealt with are: 4504 * MD_MN_MSG_RESYNC_STARTING - start a resync thread for a unit 4505 * MD_MN_MSG_RESYNC_NEXT - specified next region to be resynced 4506 * MD_MN_MSG_RESYNC_FINISH - stop the resync thread for a unit 4507 * MD_MN_MSG_RESYNC_PHASE_DONE - end of a resync phase, opt, submirror or comp 4508 * 4509 * Returns: 4510 * 0 Success 4511 * >0 Failure error number 4512 */ 4513 int 4514 mirror_resync_message(md_mn_rs_params_t *p, IOLOCK *lockp) 4515 { 4516 mdi_unit_t *ui; 4517 mm_unit_t *un; 4518 set_t setno; 4519 int is_ABR; 4520 int smi; 4521 int ci; 4522 sm_state_t state; 4523 int broke_out; 4524 mm_submirror_t *sm; 4525 mm_submirror_ic_t *smic; 4526 md_m_shared_t *shared; 4527 md_error_t mde = mdnullerror; 4528 md_mps_t *ps; 4529 int rs_active; 4530 4531 /* Check that the given device is part of a multi-node set */ 4532 setno = MD_MIN2SET(p->mnum); 4533 if (setno >= md_nsets) { 4534 return (ENXIO); 4535 } 4536 if (!MD_MNSET_SETNO(setno)) { 4537 return (EINVAL); 4538 } 4539 4540 if ((un = mirror_getun(p->mnum, &p->mde, NO_LOCK, NULL)) == NULL) 4541 return (EINVAL); 4542 if ((ui = MDI_UNIT(p->mnum)) == NULL) 4543 return (EINVAL); 4544 is_ABR = (ui->ui_tstate & MD_ABR_CAP); 4545 4546 /* Obtain the current resync status */ 4547 (void) md_ioctl_readerlock(lockp, ui); 4548 rs_active = (MD_STATUS(un) & MD_UN_RESYNC_ACTIVE) ? 1 : 0; 4549 md_ioctl_readerexit(lockp); 4550 4551 switch ((md_mn_msgtype_t)p->msg_type) { 4552 case MD_MN_MSG_RESYNC_STARTING: 4553 /* Start the resync thread for the mirror */ 4554 (void) mirror_resync_unit(p->mnum, NULL, &p->mde, lockp); 4555 break; 4556 4557 case MD_MN_MSG_RESYNC_NEXT: 4558 /* 4559 * We have to release any previously marked overlap regions 4560 * so that i/o can resume. Then we need to block the region 4561 * from [rs_start..rs_start+rs_size) * so that no i/o is issued. 4562 * Update un_rs_resync_done and un_rs_resync_2_do. 4563 */ 4564 (void) md_ioctl_readerlock(lockp, ui); 4565 /* 4566 * Ignore the message if there is no active resync thread or 4567 * if it is for a resync type that we have already completed. 4568 * un_resync_completed is set to the last resync completed 4569 * when processing a PHASE_DONE message. 4570 */ 4571 if (!rs_active || (p->rs_type == un->un_resync_completed)) 4572 break; 4573 /* 4574 * If this message is for the same resync and is for an earlier 4575 * resync region, just ignore it. This can only occur if this 4576 * node has progressed on to the next resync region before 4577 * we receive this message. This can occur if the class for 4578 * this message is busy and the originator has to retry thus 4579 * allowing this node to move onto the next resync_region. 4580 */ 4581 if ((p->rs_type == un->un_rs_type) && 4582 (p->rs_start < un->un_resync_startbl)) 4583 break; 4584 ps = un->un_rs_prev_ovrlap; 4585 4586 /* Allocate previous overlap reference if needed */ 4587 if (ps == NULL) { 4588 ps = kmem_cache_alloc(mirror_parent_cache, 4589 MD_ALLOCFLAGS); 4590 ps->ps_un = un; 4591 ps->ps_ui = ui; 4592 ps->ps_firstblk = 0; 4593 ps->ps_lastblk = 0; 4594 ps->ps_flags = 0; 4595 md_ioctl_readerexit(lockp); 4596 (void) md_ioctl_writerlock(lockp, ui); 4597 un->un_rs_prev_ovrlap = ps; 4598 md_ioctl_writerexit(lockp); 4599 } else 4600 md_ioctl_readerexit(lockp); 4601 4602 if (p->rs_originator != md_mn_mynode_id) { 4603 /* 4604 * On all but the originating node, first update 4605 * the resync state, then unblock the previous 4606 * region and block the next one. No need 4607 * to do this if the region is already blocked. 4608 * Update the submirror state and flags from the 4609 * originator. This keeps the cluster in sync with 4610 * regards to the resync status. 4611 */ 4612 4613 (void) md_ioctl_writerlock(lockp, ui); 4614 un->un_rs_resync_done = p->rs_done; 4615 un->un_rs_resync_2_do = p->rs_2_do; 4616 un->un_rs_type = p->rs_type; 4617 un->un_resync_startbl = p->rs_start; 4618 md_ioctl_writerexit(lockp); 4619 /* 4620 * Use un_owner_mx to ensure that an ownership change 4621 * cannot happen at the same time as this message 4622 */ 4623 mutex_enter(&un->un_owner_mx); 4624 if (MD_MN_MIRROR_OWNER(un)) { 4625 ps->ps_firstblk = p->rs_start; 4626 ps->ps_lastblk = ps->ps_firstblk + 4627 p->rs_size - 1; 4628 } else { 4629 if ((ps->ps_firstblk != p->rs_start) || 4630 (ps->ps_lastblk != p->rs_start + 4631 p->rs_size - 1)) { 4632 /* Remove previous overlap range */ 4633 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 4634 mirror_overlap_chain_remove(ps); 4635 4636 ps->ps_firstblk = p->rs_start; 4637 ps->ps_lastblk = ps->ps_firstblk + 4638 p->rs_size - 1; 4639 4640 mutex_exit(&un->un_owner_mx); 4641 /* Block this range from all i/o. */ 4642 if (ps->ps_firstblk != 0 || 4643 ps->ps_lastblk != 0) 4644 wait_for_overlaps(ps, 4645 MD_OVERLAP_ALLOW_REPEAT); 4646 mutex_enter(&un->un_owner_mx); 4647 /* 4648 * Check to see if we have obtained 4649 * ownership while waiting for 4650 * overlaps. If we have, remove 4651 * the resync_region entry from the 4652 * overlap chain 4653 */ 4654 if (MD_MN_MIRROR_OWNER(un) && 4655 (ps->ps_flags & MD_MPS_ON_OVERLAP)) 4656 mirror_overlap_chain_remove(ps); 4657 } 4658 } 4659 mutex_exit(&un->un_owner_mx); 4660 4661 /* 4662 * If this is the first RESYNC_NEXT message (i.e. 4663 * MD_MN_RS_FIRST_RESYNC_NEXT set in p->rs_flags), 4664 * issue RESYNC_START NOTIFY event 4665 */ 4666 if (p->rs_flags & MD_MN_RS_FIRST_RESYNC_NEXT) { 4667 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_RESYNC_START, 4668 SVM_TAG_METADEVICE, MD_UN2SET(un), 4669 MD_SID(un)); 4670 } 4671 4672 /* Ensure that our local resync thread is running */ 4673 if (un->un_rs_thread == NULL) { 4674 (void) mirror_resync_unit(p->mnum, NULL, 4675 &p->mde, lockp); 4676 } 4677 } 4678 break; 4679 case MD_MN_MSG_RESYNC_FINISH: 4680 /* 4681 * Complete the resync by stopping the resync thread. 4682 * Also release the previous overlap region field. 4683 * Update the resync_progress_thread by cv_signal'ing it so 4684 * that we mark the end of the resync as soon as possible. This 4685 * stops an unnecessary delay should be panic after resync 4686 * completion. 4687 */ 4688 #ifdef DEBUG 4689 if (!rs_active) { 4690 if (mirror_debug_flag) 4691 printf("RESYNC_FINISH (mnum = %x), " 4692 "Resync *NOT* active", 4693 p->mnum); 4694 } 4695 #endif 4696 4697 if ((un->c.un_status & MD_UN_RESYNC_ACTIVE) && 4698 (p->rs_originator != md_mn_mynode_id)) { 4699 mutex_enter(&un->un_rs_thread_mx); 4700 un->c.un_status &= ~MD_UN_RESYNC_CANCEL; 4701 un->un_rs_thread_flags |= MD_RI_SHUTDOWN; 4702 un->un_rs_thread_flags &= 4703 ~(MD_RI_BLOCK|MD_RI_BLOCK_OWNER); 4704 cv_signal(&un->un_rs_thread_cv); 4705 mutex_exit(&un->un_rs_thread_mx); 4706 } 4707 if (is_ABR) { 4708 /* Resync finished, if ABR set owner to NULL */ 4709 mutex_enter(&un->un_owner_mx); 4710 un->un_mirror_owner = 0; 4711 mutex_exit(&un->un_owner_mx); 4712 } 4713 (void) md_ioctl_writerlock(lockp, ui); 4714 ps = un->un_rs_prev_ovrlap; 4715 if (ps != NULL) { 4716 /* Remove previous overlap range */ 4717 if (ps->ps_flags & MD_MPS_ON_OVERLAP) 4718 mirror_overlap_chain_remove(ps); 4719 /* 4720 * Release the overlap range reference 4721 */ 4722 un->un_rs_prev_ovrlap = NULL; 4723 kmem_cache_free(mirror_parent_cache, 4724 ps); 4725 } 4726 md_ioctl_writerexit(lockp); 4727 4728 /* Mark the resync as complete in the metadb */ 4729 un->un_rs_resync_done = p->rs_done; 4730 un->un_rs_resync_2_do = p->rs_2_do; 4731 un->un_rs_type = p->rs_type; 4732 mutex_enter(&un->un_rs_progress_mx); 4733 cv_signal(&un->un_rs_progress_cv); 4734 mutex_exit(&un->un_rs_progress_mx); 4735 4736 un = md_ioctl_writerlock(lockp, ui); 4737 un->c.un_status &= ~MD_UN_RESYNC_ACTIVE; 4738 /* Deal with any pending grow_unit */ 4739 if (un->c.un_status & MD_UN_GROW_PENDING) { 4740 if ((mirror_grow_unit(un, &mde) != 0) || 4741 (! mdismderror(&mde, MDE_GROW_DELAYED))) { 4742 un->c.un_status &= ~MD_UN_GROW_PENDING; 4743 } 4744 } 4745 md_ioctl_writerexit(lockp); 4746 break; 4747 4748 case MD_MN_MSG_RESYNC_PHASE_DONE: 4749 /* 4750 * A phase of the resync, optimized. component or 4751 * submirror is complete. Update mirror status. 4752 * If the flag CLEAR_OPT_NOT_DONE is set, it means that the 4753 * mirror owner is peforming a resync. If we have just snarfed 4754 * this set, then we must clear any of the flags set at snarf 4755 * time by unit_setup_resync(). 4756 * Note that unit_setup_resync() sets up these flags to 4757 * indicate that an optimized resync is required. These flags 4758 * need to be reset because if we get here, the mirror owner 4759 * will have handled the optimized resync. 4760 * The flags that must be cleared are MD_UN_OPT_NOT_DONE and 4761 * MD_UN_WAR. In addition, for each submirror, 4762 * MD_SM_RESYNC_TARGET must be cleared and SMS_OFFLINE_RESYNC 4763 * set to SMS_OFFLINE. 4764 */ 4765 #ifdef DEBUG 4766 if (mirror_debug_flag) 4767 printf("phase done mess received from %d, mnum=%x," 4768 "type=%x, flags=%x\n", p->rs_originator, p->mnum, 4769 p->rs_type, p->rs_flags); 4770 #endif 4771 /* 4772 * Ignore the message if there is no active resync thread. 4773 */ 4774 if (!rs_active) 4775 break; 4776 4777 broke_out = p->rs_flags & MD_MN_RS_ERR; 4778 switch (RS_TYPE(p->rs_type)) { 4779 case MD_RS_OPTIMIZED: 4780 un = md_ioctl_writerlock(lockp, ui); 4781 if (p->rs_flags & MD_MN_RS_CLEAR_OPT_NOT_DONE) { 4782 /* If we are originator, just clear rs_type */ 4783 if (p->rs_originator == md_mn_mynode_id) { 4784 SET_RS_TYPE_NONE(un->un_rs_type); 4785 md_ioctl_writerexit(lockp); 4786 break; 4787 } 4788 /* 4789 * If CLEAR_OPT_NOT_DONE is set, only clear the 4790 * flags if OPT_NOT_DONE is set *and* rs_type 4791 * is MD_RS_NONE. 4792 */ 4793 if ((un->c.un_status & MD_UN_OPT_NOT_DONE) && 4794 (RS_TYPE(un->un_rs_type) == MD_RS_NONE)) { 4795 /* No resync in progress */ 4796 un->c.un_status &= ~MD_UN_OPT_NOT_DONE; 4797 un->c.un_status &= ~MD_UN_WAR; 4798 } else { 4799 /* 4800 * We are in the middle of an 4801 * optimized resync and this message 4802 * should be ignored. 4803 */ 4804 md_ioctl_writerexit(lockp); 4805 break; 4806 } 4807 } else { 4808 /* 4809 * This is the end of an optimized resync, 4810 * clear the OPT_NOT_DONE and OFFLINE_SM flags 4811 */ 4812 4813 un->c.un_status &= ~MD_UN_KEEP_DIRTY; 4814 if (!broke_out) 4815 un->c.un_status &= ~MD_UN_WAR; 4816 } 4817 4818 /* 4819 * Set resync_completed to last resync type and then 4820 * clear resync_type to indicate no resync in progress 4821 */ 4822 un->un_resync_completed = un->un_rs_type; 4823 SET_RS_TYPE_NONE(un->un_rs_type); 4824 4825 /* 4826 * If resync is as a result of a submirror ONLINE, 4827 * reset the submirror state to SMS_RUNNING if the 4828 * resync was ok else set back to SMS_OFFLINE. 4829 */ 4830 for (smi = 0; smi < NMIRROR; smi++) { 4831 un->un_sm[smi].sm_flags &= 4832 ~MD_SM_RESYNC_TARGET; 4833 if (SMS_BY_INDEX_IS(un, smi, 4834 SMS_OFFLINE_RESYNC)) { 4835 if (p->rs_flags & 4836 MD_MN_RS_CLEAR_OPT_NOT_DONE) { 4837 state = SMS_OFFLINE; 4838 } else { 4839 state = (broke_out ? 4840 SMS_OFFLINE : SMS_RUNNING); 4841 } 4842 mirror_set_sm_state( 4843 &un->un_sm[smi], 4844 &un->un_smic[smi], state, 4845 broke_out); 4846 mirror_commit(un, NO_SUBMIRRORS, 4847 0); 4848 } 4849 /* 4850 * If we still have an offline submirror, reset 4851 * the OFFLINE_SM flag in the mirror status 4852 */ 4853 if (SMS_BY_INDEX_IS(un, smi, 4854 SMS_OFFLINE)) 4855 un->c.un_status |= 4856 MD_UN_OFFLINE_SM; 4857 } 4858 md_ioctl_writerexit(lockp); 4859 break; 4860 case MD_RS_SUBMIRROR: 4861 un = md_ioctl_writerlock(lockp, ui); 4862 smi = RS_SMI(p->rs_type); 4863 sm = &un->un_sm[smi]; 4864 smic = &un->un_smic[smi]; 4865 /* Clear RESYNC target */ 4866 un->un_sm[smi].sm_flags &= ~MD_SM_RESYNC_TARGET; 4867 /* 4868 * Set resync_completed to last resync type and then 4869 * clear resync_type to indicate no resync in progress 4870 */ 4871 un->un_resync_completed = un->un_rs_type; 4872 SET_RS_TYPE_NONE(un->un_rs_type); 4873 /* 4874 * If the resync completed ok reset the submirror 4875 * state to SMS_RUNNING else reset it to SMS_ATTACHED 4876 */ 4877 state = (broke_out ? 4878 SMS_ATTACHED : SMS_RUNNING); 4879 mirror_set_sm_state(sm, smic, state, broke_out); 4880 un->c.un_status &= ~MD_UN_WAR; 4881 mirror_commit(un, SMI2BIT(smi), 0); 4882 md_ioctl_writerexit(lockp); 4883 break; 4884 case MD_RS_COMPONENT: 4885 un = md_ioctl_writerlock(lockp, ui); 4886 smi = RS_SMI(p->rs_type); 4887 ci = RS_CI(p->rs_type); 4888 sm = &un->un_sm[smi]; 4889 smic = &un->un_smic[smi]; 4890 shared = (md_m_shared_t *) 4891 (*(smic->sm_shared_by_indx)) 4892 (sm->sm_dev, sm, ci); 4893 un->c.un_status &= ~MD_UN_WAR; 4894 /* Clear RESYNC target */ 4895 un->un_sm[smi].sm_flags &= ~MD_SM_RESYNC_TARGET; 4896 /* 4897 * Set resync_completed to last resync type and then 4898 * clear resync_type to indicate no resync in progress 4899 */ 4900 un->un_resync_completed = un->un_rs_type; 4901 SET_RS_TYPE_NONE(un->un_rs_type); 4902 4903 /* 4904 * If the resync completed ok, set the component state 4905 * to CS_OKAY. 4906 */ 4907 if (broke_out) 4908 shared->ms_flags |= MDM_S_RS_TRIED; 4909 else { 4910 /* 4911 * As we don't transmit the changes, 4912 * no need to drop the lock. 4913 */ 4914 set_sm_comp_state(un, smi, ci, CS_OKAY, 0, 4915 MD_STATE_NO_XMIT, (IOLOCK *)NULL); 4916 } 4917 md_ioctl_writerexit(lockp); 4918 default: 4919 break; 4920 } 4921 /* 4922 * If the purpose of this PHASE_DONE message is just to 4923 * indicate to all other nodes that the optimized resync 4924 * required (OPT_NOT_DONE) flag is to be cleared, there is 4925 * no need to generate a notify event as there has not 4926 * actually been a resync. 4927 */ 4928 if (!(p->rs_flags & MD_MN_RS_CLEAR_OPT_NOT_DONE)) { 4929 if (broke_out) { 4930 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_RESYNC_FAILED, 4931 SVM_TAG_METADEVICE, MD_UN2SET(un), 4932 MD_SID(un)); 4933 } else { 4934 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_RESYNC_DONE, 4935 SVM_TAG_METADEVICE, MD_UN2SET(un), 4936 MD_SID(un)); 4937 } 4938 } 4939 break; 4940 4941 default: 4942 #ifdef DEBUG 4943 cmn_err(CE_PANIC, "mirror_resync_message: Unknown message type" 4944 " %x\n", p->msg_type); 4945 #endif 4946 return (EINVAL); 4947 } 4948 return (0); 4949 } 4950 4951 /* Return a -1 if snarf of optimized record failed and set should be released */ 4952 static int 4953 mirror_snarf(md_snarfcmd_t cmd, set_t setno) 4954 { 4955 mddb_recid_t recid; 4956 int gotsomething; 4957 int all_mirrors_gotten; 4958 mm_unit_t *un; 4959 mddb_type_t typ1; 4960 mddb_de_ic_t *dep; 4961 mddb_rb32_t *rbp; 4962 size_t newreqsize; 4963 mm_unit_t *big_un; 4964 mm_unit32_od_t *small_un; 4965 int retval; 4966 mdi_unit_t *ui; 4967 4968 if (cmd == MD_SNARF_CLEANUP) { 4969 if (md_get_setstatus(setno) & MD_SET_STALE) 4970 return (0); 4971 4972 recid = mddb_makerecid(setno, 0); 4973 typ1 = (mddb_type_t)md_getshared_key(setno, 4974 mirror_md_ops.md_driver.md_drivername); 4975 while ((recid = mddb_getnextrec(recid, typ1, MIRROR_REC)) > 0) { 4976 if (mddb_getrecprivate(recid) & MD_PRV_CLEANUP) { 4977 un = (mm_unit_t *)mddb_getrecaddr(recid); 4978 mirror_cleanup(un); 4979 recid = mddb_makerecid(setno, 0); 4980 } 4981 } 4982 return (0); 4983 } 4984 4985 all_mirrors_gotten = 1; 4986 gotsomething = 0; 4987 4988 recid = mddb_makerecid(setno, 0); 4989 typ1 = (mddb_type_t)md_getshared_key(setno, 4990 mirror_md_ops.md_driver.md_drivername); 4991 4992 while ((recid = mddb_getnextrec(recid, typ1, MIRROR_REC)) > 0) { 4993 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 4994 continue; 4995 4996 dep = mddb_getrecdep(recid); 4997 dep->de_flags = MDDB_F_MIRROR; 4998 rbp = dep->de_rb; 4999 5000 if ((rbp->rb_revision == MDDB_REV_RB) && 5001 ((rbp->rb_private & MD_PRV_CONVD) == 0)) { 5002 /* 5003 * This means, we have an old and small record 5004 * and this record hasn't already been converted. 5005 * Before we create an incore metadevice from this 5006 * we have to convert it to a big record. 5007 */ 5008 small_un = (mm_unit32_od_t *)mddb_getrecaddr(recid); 5009 newreqsize = sizeof (mm_unit_t); 5010 big_un = (mm_unit_t *)kmem_zalloc(newreqsize, KM_SLEEP); 5011 mirror_convert((caddr_t)small_un, (caddr_t)big_un, 5012 SMALL_2_BIG); 5013 kmem_free(small_un, dep->de_reqsize); 5014 5015 /* 5016 * Update userdata and incore userdata 5017 * incores are at the end of un 5018 */ 5019 dep->de_rb_userdata_ic = big_un; 5020 dep->de_rb_userdata = big_un; 5021 dep->de_icreqsize = newreqsize; 5022 un = big_un; 5023 rbp->rb_private |= MD_PRV_CONVD; 5024 } else { 5025 /* Big device */ 5026 un = (mm_unit_t *)mddb_getrecaddr_resize(recid, 5027 sizeof (*un), 0); 5028 } 5029 5030 /* Set revision and flag accordingly */ 5031 if (rbp->rb_revision == MDDB_REV_RB) { 5032 un->c.un_revision = MD_32BIT_META_DEV; 5033 } else { 5034 un->c.un_revision = MD_64BIT_META_DEV; 5035 un->c.un_flag |= MD_EFILABEL; 5036 } 5037 5038 /* 5039 * Create minor device node for snarfed entry. 5040 */ 5041 (void) md_create_minor_node(setno, MD_SID(un)); 5042 5043 if (MD_UNIT(MD_SID(un)) != NULL) { 5044 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 5045 continue; 5046 } 5047 all_mirrors_gotten = 0; 5048 retval = mirror_build_incore(un, 1); 5049 if (retval == 0) { 5050 mddb_setrecprivate(recid, MD_PRV_GOTIT); 5051 md_create_unit_incore(MD_SID(un), &mirror_md_ops, 0); 5052 resync_start_timeout(setno); 5053 gotsomething = 1; 5054 } else if (retval == -1) { 5055 return (-1); 5056 } 5057 /* 5058 * Set flag to indicate that the mirror has not yet 5059 * been through a reconfig. This flag is used for MN sets 5060 * when determining whether to update the mirror state from 5061 * the Master node. 5062 */ 5063 if (MD_MNSET_SETNO(setno)) { 5064 ui = MDI_UNIT(MD_SID(un)); 5065 ui->ui_tstate |= MD_RESYNC_NOT_DONE; 5066 } 5067 } 5068 5069 if (!all_mirrors_gotten) 5070 return (gotsomething); 5071 5072 recid = mddb_makerecid(setno, 0); 5073 while ((recid = mddb_getnextrec(recid, typ1, RESYNC_REC)) > 0) 5074 if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT)) 5075 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 5076 5077 return (0); 5078 } 5079 5080 static int 5081 mirror_halt(md_haltcmd_t cmd, set_t setno) 5082 { 5083 unit_t i; 5084 mdi_unit_t *ui; 5085 minor_t mnum; 5086 int reset_mirror_flag = 0; 5087 5088 if (cmd == MD_HALT_CLOSE) 5089 return (0); 5090 5091 if (cmd == MD_HALT_OPEN) 5092 return (0); 5093 5094 if (cmd == MD_HALT_UNLOAD) 5095 return (0); 5096 5097 if (cmd == MD_HALT_CHECK) { 5098 for (i = 0; i < md_nunits; i++) { 5099 mnum = MD_MKMIN(setno, i); 5100 if ((ui = MDI_UNIT(mnum)) == NULL) 5101 continue; 5102 if (ui->ui_opsindex != mirror_md_ops.md_selfindex) 5103 continue; 5104 if (md_unit_isopen(ui)) 5105 return (1); 5106 } 5107 return (0); 5108 } 5109 5110 if (cmd != MD_HALT_DOIT) 5111 return (1); 5112 5113 for (i = 0; i < md_nunits; i++) { 5114 mnum = MD_MKMIN(setno, i); 5115 if ((ui = MDI_UNIT(mnum)) == NULL) 5116 continue; 5117 if (ui->ui_opsindex != mirror_md_ops.md_selfindex) 5118 continue; 5119 reset_mirror((mm_unit_t *)MD_UNIT(mnum), mnum, 0); 5120 5121 /* Set a flag if there is at least one mirror metadevice. */ 5122 reset_mirror_flag = 1; 5123 } 5124 5125 /* 5126 * Only wait for the global dr_timeout to finish 5127 * - if there are mirror metadevices in this diskset or 5128 * - if this is the local set since an unload of the md_mirror 5129 * driver could follow a successful mirror halt in the local set. 5130 */ 5131 if ((reset_mirror_flag != 0) || (setno == MD_LOCAL_SET)) { 5132 while ((mirror_md_ops.md_head == NULL) && 5133 (mirror_timeout.dr_timeout_id != 0)) 5134 delay(md_hz); 5135 } 5136 5137 return (0); 5138 } 5139 5140 /*ARGSUSED3*/ 5141 static int 5142 mirror_open(dev_t *dev, int flag, int otyp, cred_t *cred_p, int md_oflags) 5143 { 5144 IOLOCK lock; 5145 minor_t mnum = getminor(*dev); 5146 set_t setno; 5147 5148 /* 5149 * When doing an open of a multi owner metadevice, check to see if this 5150 * node is a starting node and if a reconfig cycle is underway. 5151 * If so, the system isn't sufficiently set up enough to handle the 5152 * open (which involves I/O during sp_validate), so fail with ENXIO. 5153 */ 5154 setno = MD_MIN2SET(mnum); 5155 if ((md_set[setno].s_status & (MD_SET_MNSET | MD_SET_MN_START_RC)) == 5156 (MD_SET_MNSET | MD_SET_MN_START_RC)) { 5157 return (ENXIO); 5158 } 5159 5160 if (md_oflags & MD_OFLG_FROMIOCTL) { 5161 /* 5162 * This indicates that the caller is an ioctl service routine. 5163 * In this case we initialise our stack-based IOLOCK and pass 5164 * this into the internal open routine. This allows multi-owner 5165 * metadevices to avoid deadlocking if an error is encountered 5166 * during the open() attempt. The failure case is: 5167 * s-p -> mirror -> s-p (with error). Attempting to metaclear 5168 * this configuration would deadlock as the mirror code has to 5169 * send a state-update to the other nodes when it detects the 5170 * failure of the underlying submirror with an errored soft-part 5171 * on it. As there is a class1 message in progress (metaclear) 5172 * set_sm_comp_state() cannot send another class1 message; 5173 * instead we do not send a state_update message as the 5174 * metaclear is distributed and the failed submirror will be 5175 * cleared from the configuration by the metaclear. 5176 */ 5177 IOLOCK_INIT(&lock); 5178 return (mirror_internal_open(getminor(*dev), flag, otyp, 5179 md_oflags, &lock)); 5180 } else { 5181 return (mirror_internal_open(getminor(*dev), flag, otyp, 5182 md_oflags, (IOLOCK *)NULL)); 5183 } 5184 } 5185 5186 5187 /*ARGSUSED1*/ 5188 static int 5189 mirror_close(dev_t dev, int flag, int otyp, cred_t *cred_p, int md_cflags) 5190 { 5191 return (mirror_internal_close(getminor(dev), otyp, md_cflags, 5192 (IOLOCK *)NULL)); 5193 } 5194 5195 5196 /* 5197 * This routine dumps memory to the disk. It assumes that the memory has 5198 * already been mapped into mainbus space. It is called at disk interrupt 5199 * priority when the system is in trouble. 5200 * 5201 */ 5202 static int 5203 mirror_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 5204 { 5205 mm_unit_t *un; 5206 dev_t mapdev; 5207 int result; 5208 int smi; 5209 int any_succeed = 0; 5210 int save_result = 0; 5211 5212 /* 5213 * Don't need to grab the unit lock. 5214 * Cause nothing else is suppose to be happenning. 5215 * Also dump is not suppose to sleep. 5216 */ 5217 un = (mm_unit_t *)MD_UNIT(getminor(dev)); 5218 5219 if ((diskaddr_t)blkno >= un->c.un_total_blocks) 5220 return (EINVAL); 5221 5222 if ((diskaddr_t)blkno + nblk > un->c.un_total_blocks) 5223 return (EINVAL); 5224 5225 for (smi = 0; smi < NMIRROR; smi++) { 5226 if (!SUBMIRROR_IS_WRITEABLE(un, smi)) 5227 continue; 5228 mapdev = md_dev64_to_dev(un->un_sm[smi].sm_dev); 5229 result = bdev_dump(mapdev, addr, blkno, nblk); 5230 if (result) 5231 save_result = result; 5232 5233 if (result == 0) 5234 any_succeed++; 5235 } 5236 5237 if (any_succeed) 5238 return (0); 5239 5240 return (save_result); 5241 } 5242 5243 /* 5244 * NAME: mirror_probe_dev 5245 * 5246 * DESCRITPION: force opens every component of a mirror. 5247 * 5248 * On entry the unit writerlock is held 5249 */ 5250 static int 5251 mirror_probe_dev(mdi_unit_t *ui, minor_t mnum) 5252 { 5253 int i; 5254 int smi; 5255 int ci; 5256 mm_unit_t *un; 5257 int md_devopen = 0; 5258 set_t setno; 5259 int sm_cnt; 5260 int sm_unavail_cnt; 5261 5262 if (md_unit_isopen(ui)) 5263 md_devopen++; 5264 5265 un = MD_UNIT(mnum); 5266 setno = MD_UN2SET(un); 5267 5268 sm_cnt = 0; 5269 sm_unavail_cnt = 0; 5270 for (i = 0; i < NMIRROR; i++) { 5271 md_dev64_t tmpdev; 5272 mdi_unit_t *sm_ui; 5273 5274 if (!SMS_BY_INDEX_IS(un, i, SMS_INUSE)) { 5275 continue; 5276 } 5277 5278 sm_cnt++; 5279 tmpdev = un->un_sm[i].sm_dev; 5280 (void) md_layered_open(mnum, &tmpdev, 5281 MD_OFLG_CONT_ERRS | MD_OFLG_PROBEDEV); 5282 un->un_sm[i].sm_dev = tmpdev; 5283 5284 sm_ui = MDI_UNIT(getminor(md_dev64_to_dev(tmpdev))); 5285 5286 /* 5287 * Logic similar to that in mirror_open_all_devs. We set or 5288 * clear the submirror Unavailable bit. 5289 */ 5290 (void) md_unit_writerlock(sm_ui); 5291 if (submirror_unavailable(un, i, 1)) { 5292 sm_ui->ui_tstate |= MD_INACCESSIBLE; 5293 sm_unavail_cnt++; 5294 } else { 5295 sm_ui->ui_tstate &= ~MD_INACCESSIBLE; 5296 } 5297 md_unit_writerexit(sm_ui); 5298 } 5299 5300 /* 5301 * If all of the submirrors are unavailable, the mirror is also 5302 * unavailable. 5303 */ 5304 if (sm_cnt == sm_unavail_cnt) { 5305 ui->ui_tstate |= MD_INACCESSIBLE; 5306 } else { 5307 ui->ui_tstate &= ~MD_INACCESSIBLE; 5308 } 5309 5310 /* 5311 * Start checking from probe failures. If failures occur we 5312 * set the appropriate erred state only if the metadevice is in 5313 * use. This is specifically to prevent unnecessary resyncs. 5314 * For instance if the disks were accidentally disconnected when 5315 * the system booted up then until the metadevice is accessed 5316 * (like file system mount) the user can shutdown, recable and 5317 * reboot w/o incurring a potentially huge resync. 5318 */ 5319 5320 smi = 0; 5321 ci = 0; 5322 while (mirror_geterror(un, &smi, &ci, 1, 1) != 0) { 5323 5324 if (mirror_other_sources(un, smi, ci, 0) == 1) { 5325 /* 5326 * Note that for a MN set, there is no need to call 5327 * SE_NOTIFY as that is done when processing the 5328 * state change 5329 */ 5330 if (md_devopen) { 5331 /* 5332 * Never called from ioctl context, 5333 * so (IOLOCK *)NULL 5334 */ 5335 set_sm_comp_state(un, smi, ci, CS_LAST_ERRED, 5336 0, MD_STATE_XMIT, (IOLOCK *)NULL); 5337 if (!MD_MNSET_SETNO(setno)) { 5338 SE_NOTIFY(EC_SVM_STATE, 5339 ESC_SVM_LASTERRED, 5340 SVM_TAG_METADEVICE, setno, 5341 MD_SID(un)); 5342 } 5343 continue; 5344 } else { 5345 (void) mirror_close_all_devs(un, 5346 MD_OFLG_PROBEDEV); 5347 if (!MD_MNSET_SETNO(setno)) { 5348 SE_NOTIFY(EC_SVM_STATE, 5349 ESC_SVM_OPEN_FAIL, 5350 SVM_TAG_METADEVICE, setno, 5351 MD_SID(un)); 5352 } 5353 mirror_openfail_console_info(un, smi, ci); 5354 return (ENXIO); 5355 } 5356 } 5357 5358 /* 5359 * Note that for a MN set, there is no need to call 5360 * SE_NOTIFY as that is done when processing the 5361 * state change 5362 */ 5363 if (md_devopen) { 5364 /* Never called from ioctl context, so (IOLOCK *)NULL */ 5365 set_sm_comp_state(un, smi, ci, CS_ERRED, 0, 5366 MD_STATE_XMIT, (IOLOCK *)NULL); 5367 if (!MD_MNSET_SETNO(setno)) { 5368 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED, 5369 SVM_TAG_METADEVICE, setno, 5370 MD_SID(un)); 5371 } 5372 } 5373 mirror_openfail_console_info(un, smi, ci); 5374 ci++; 5375 } 5376 5377 if (MD_MNSET_SETNO(setno)) { 5378 send_poke_hotspares(setno); 5379 } else { 5380 (void) poke_hotspares(); 5381 } 5382 (void) mirror_close_all_devs(un, MD_OFLG_PROBEDEV); 5383 5384 return (0); 5385 } 5386 5387 5388 static int 5389 mirror_imp_set( 5390 set_t setno 5391 ) 5392 { 5393 5394 mddb_recid_t recid; 5395 int gotsomething, i; 5396 mddb_type_t typ1; 5397 mddb_de_ic_t *dep; 5398 mddb_rb32_t *rbp; 5399 mm_unit32_od_t *un32; 5400 mm_unit_t *un64; 5401 minor_t *self_id; /* minor needs to be updated */ 5402 md_parent_t *parent_id; /* parent needs to be updated */ 5403 mddb_recid_t *record_id; /* record id needs to be updated */ 5404 mddb_recid_t *optrec_id; 5405 md_dev64_t tmpdev; 5406 5407 5408 gotsomething = 0; 5409 5410 typ1 = (mddb_type_t)md_getshared_key(setno, 5411 mirror_md_ops.md_driver.md_drivername); 5412 recid = mddb_makerecid(setno, 0); 5413 5414 while ((recid = mddb_getnextrec(recid, typ1, MIRROR_REC)) > 0) { 5415 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 5416 continue; 5417 5418 dep = mddb_getrecdep(recid); 5419 rbp = dep->de_rb; 5420 5421 if (rbp->rb_revision == MDDB_REV_RB) { 5422 /* 5423 * Small device 5424 */ 5425 un32 = (mm_unit32_od_t *)mddb_getrecaddr(recid); 5426 self_id = &(un32->c.un_self_id); 5427 parent_id = &(un32->c.un_parent); 5428 record_id = &(un32->c.un_record_id); 5429 optrec_id = &(un32->un_rr_dirty_recid); 5430 5431 for (i = 0; i < un32->un_nsm; i++) { 5432 tmpdev = md_expldev(un32->un_sm[i].sm_dev); 5433 un32->un_sm[i].sm_dev = md_cmpldev 5434 (md_makedevice(md_major, MD_MKMIN(setno, 5435 MD_MIN2UNIT(md_getminor(tmpdev))))); 5436 5437 if (!md_update_minor(setno, mddb_getsidenum 5438 (setno), un32->un_sm[i].sm_key)) 5439 goto out; 5440 } 5441 } else { 5442 un64 = (mm_unit_t *)mddb_getrecaddr(recid); 5443 self_id = &(un64->c.un_self_id); 5444 parent_id = &(un64->c.un_parent); 5445 record_id = &(un64->c.un_record_id); 5446 optrec_id = &(un64->un_rr_dirty_recid); 5447 5448 for (i = 0; i < un64->un_nsm; i++) { 5449 tmpdev = un64->un_sm[i].sm_dev; 5450 un64->un_sm[i].sm_dev = md_makedevice 5451 (md_major, MD_MKMIN(setno, MD_MIN2UNIT 5452 (md_getminor(tmpdev)))); 5453 5454 if (!md_update_minor(setno, mddb_getsidenum 5455 (setno), un64->un_sm[i].sm_key)) 5456 goto out; 5457 } 5458 } 5459 5460 /* 5461 * Update unit with the imported setno 5462 * 5463 */ 5464 mddb_setrecprivate(recid, MD_PRV_GOTIT); 5465 5466 *self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id)); 5467 if (*parent_id != MD_NO_PARENT) 5468 *parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id)); 5469 *record_id = MAKERECID(setno, DBID(*record_id)); 5470 *optrec_id = MAKERECID(setno, DBID(*optrec_id)); 5471 5472 gotsomething = 1; 5473 } 5474 5475 out: 5476 return (gotsomething); 5477 } 5478 5479 /* 5480 * NAME: mirror_check_offline 5481 * 5482 * DESCRIPTION: return offline_status = 1 if any submirrors are offline 5483 * 5484 * Called from ioctl, so access to MD_UN_OFFLINE_SM in un_status is 5485 * protected by the global ioctl lock as it is only set by the MD_IOCOFFLINE 5486 * ioctl. 5487 */ 5488 int 5489 mirror_check_offline(md_dev64_t dev, int *offline_status) 5490 { 5491 mm_unit_t *un; 5492 md_error_t mde = mdnullerror; 5493 5494 if ((un = mirror_getun(getminor(dev), &mde, NO_LOCK, NULL)) == NULL) 5495 return (EINVAL); 5496 *offline_status = 0; 5497 if (un->c.un_status & MD_UN_OFFLINE_SM) 5498 *offline_status = 1; 5499 return (0); 5500 } 5501 5502 /* 5503 * NAME: mirror_inc_abr_count 5504 * 5505 * DESCRIPTION: increment the count of layered soft parts with ABR set 5506 * 5507 * Called from ioctl, so access to un_abr_count is protected by the global 5508 * ioctl lock. It is only referenced in the MD_IOCOFFLINE ioctl. 5509 */ 5510 int 5511 mirror_inc_abr_count(md_dev64_t dev) 5512 { 5513 mm_unit_t *un; 5514 md_error_t mde = mdnullerror; 5515 5516 if ((un = mirror_getun(getminor(dev), &mde, NO_LOCK, NULL)) == NULL) 5517 return (EINVAL); 5518 un->un_abr_count++; 5519 return (0); 5520 } 5521 5522 /* 5523 * NAME: mirror_dec_abr_count 5524 * 5525 * DESCRIPTION: decrement the count of layered soft parts with ABR set 5526 * 5527 * Called from ioctl, so access to un_abr_count is protected by the global 5528 * ioctl lock. It is only referenced in the MD_IOCOFFLINE ioctl. 5529 */ 5530 int 5531 mirror_dec_abr_count(md_dev64_t dev) 5532 { 5533 mm_unit_t *un; 5534 md_error_t mde = mdnullerror; 5535 5536 if ((un = mirror_getun(getminor(dev), &mde, NO_LOCK, NULL)) == NULL) 5537 return (EINVAL); 5538 un->un_abr_count--; 5539 return (0); 5540 } 5541 5542 static md_named_services_t mirror_named_services[] = { 5543 {(intptr_t (*)()) poke_hotspares, "poke hotspares" }, 5544 {(intptr_t (*)()) mirror_rename_listkids, MDRNM_LIST_URKIDS }, 5545 {mirror_rename_check, MDRNM_CHECK }, 5546 {(intptr_t (*)()) mirror_renexch_update_kids, MDRNM_UPDATE_KIDS }, 5547 {(intptr_t (*)()) mirror_exchange_parent_update_to, 5548 MDRNM_PARENT_UPDATE_TO}, 5549 {(intptr_t (*)()) mirror_exchange_self_update_from_down, 5550 MDRNM_SELF_UPDATE_FROM_DOWN }, 5551 {(intptr_t (*)())mirror_probe_dev, "probe open test" }, 5552 {(intptr_t (*)())mirror_check_offline, MD_CHECK_OFFLINE }, 5553 {(intptr_t (*)())mirror_inc_abr_count, MD_INC_ABR_COUNT }, 5554 {(intptr_t (*)())mirror_dec_abr_count, MD_DEC_ABR_COUNT }, 5555 { NULL, 0 } 5556 }; 5557 5558 md_ops_t mirror_md_ops = { 5559 mirror_open, /* open */ 5560 mirror_close, /* close */ 5561 md_mirror_strategy, /* strategy */ 5562 NULL, /* print */ 5563 mirror_dump, /* dump */ 5564 NULL, /* read */ 5565 NULL, /* write */ 5566 md_mirror_ioctl, /* mirror_ioctl, */ 5567 mirror_snarf, /* mirror_snarf */ 5568 mirror_halt, /* mirror_halt */ 5569 NULL, /* aread */ 5570 NULL, /* awrite */ 5571 mirror_imp_set, /* import set */ 5572 mirror_named_services 5573 }; 5574 5575 /* module specific initilization */ 5576 static void 5577 init_init() 5578 { 5579 md_mirror_mcs_buf_off = sizeof (md_mcs_t) - sizeof (buf_t); 5580 5581 /* Initialize the parent and child save memory pools */ 5582 mirror_parent_cache = kmem_cache_create("md_mirror_parent", 5583 sizeof (md_mps_t), 0, mirror_parent_constructor, 5584 mirror_parent_destructor, mirror_run_queue, NULL, NULL, 5585 0); 5586 5587 mirror_child_cache = kmem_cache_create("md_mirror_child", 5588 sizeof (md_mcs_t) - sizeof (buf_t) + biosize(), 0, 5589 mirror_child_constructor, mirror_child_destructor, 5590 mirror_run_queue, NULL, NULL, 0); 5591 5592 /* 5593 * Insure wowbuf_size is a multiple of DEV_BSIZE, 5594 * then initialize wowbuf memory pool. 5595 */ 5596 md_wowbuf_size = roundup(md_wowbuf_size, DEV_BSIZE); 5597 if (md_wowbuf_size <= 0) 5598 md_wowbuf_size = 2 * DEV_BSIZE; 5599 if (md_wowbuf_size > (32 * DEV_BSIZE)) 5600 md_wowbuf_size = (32 * DEV_BSIZE); 5601 5602 md_wowblk_size = md_wowbuf_size + sizeof (wowhdr_t); 5603 mirror_wowblk_cache = kmem_cache_create("md_mirror_wow", 5604 md_wowblk_size, 0, NULL, NULL, NULL, NULL, NULL, 0); 5605 5606 mutex_init(&mirror_timeout.dr_mx, NULL, MUTEX_DEFAULT, NULL); 5607 mutex_init(&hotspare_request.dr_mx, NULL, MUTEX_DEFAULT, NULL); 5608 5609 mutex_init(&non_ff_drv_mutex, NULL, MUTEX_DEFAULT, NULL); 5610 } 5611 5612 /* module specific uninitilization (undo init_init()) */ 5613 static void 5614 fini_uninit() 5615 { 5616 kmem_cache_destroy(mirror_parent_cache); 5617 kmem_cache_destroy(mirror_child_cache); 5618 kmem_cache_destroy(mirror_wowblk_cache); 5619 mirror_parent_cache = mirror_child_cache = 5620 mirror_wowblk_cache = NULL; 5621 5622 mutex_destroy(&mirror_timeout.dr_mx); 5623 mutex_destroy(&hotspare_request.dr_mx); 5624 mutex_destroy(&non_ff_drv_mutex); 5625 } 5626 5627 /* define the module linkage */ 5628 MD_PLUGIN_MISC_MODULE("mirrors module %I%", init_init(), fini_uninit()) 5629