xref: /onnv-gate/usr/src/uts/common/io/e1000g/e1000_api.c (revision 7426:008ea04d81d3)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * IntelVersion: 1.79 v2008-02-29
28  */
29 
30 #include "e1000_api.h"
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
33 #include "e1000_phy.h"
34 
35 /*
36  * e1000_init_mac_params - Initialize MAC function pointers
37  * @hw: pointer to the HW structure
38  *
39  * This function initializes the function pointers for the MAC
40  * set of functions.  Called by drivers or by e1000_setup_init_funcs.
41  */
42 s32
43 e1000_init_mac_params(struct e1000_hw *hw)
44 {
45 	s32 ret_val = E1000_SUCCESS;
46 
47 	if (hw->mac.ops.init_params) {
48 		ret_val = hw->mac.ops.init_params(hw);
49 		if (ret_val) {
50 			DEBUGOUT("MAC Initialization Error\n");
51 			goto out;
52 		}
53 	} else {
54 		DEBUGOUT("mac.init_mac_params was NULL\n");
55 		ret_val = -E1000_ERR_CONFIG;
56 	}
57 
58 out:
59 	return (ret_val);
60 }
61 
62 /*
63  * e1000_init_nvm_params - Initialize NVM function pointers
64  * @hw: pointer to the HW structure
65  *
66  * This function initializes the function pointers for the NVM
67  * set of functions.  Called by drivers or by e1000_setup_init_funcs.
68  */
69 s32
70 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return (ret_val);
87 }
88 
89 /*
90  * e1000_init_phy_params - Initialize PHY function pointers
91  * @hw: pointer to the HW structure
92  *
93  * This function initializes the function pointers for the PHY
94  * set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  */
96 s32
97 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val = -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return (ret_val);
114 }
115 
116 /*
117  * e1000_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the mac type of the adapter based on the
121  * device ID stored in the hw structure.
122  * MUST BE FIRST FUNCTION CALLED (explicitly or through
123  * e1000_setup_init_funcs()).
124  */
125 s32
126 e1000_set_mac_type(struct e1000_hw *hw)
127 {
128 	struct e1000_mac_info *mac = &hw->mac;
129 	s32 ret_val = E1000_SUCCESS;
130 
131 	DEBUGFUNC("e1000_set_mac_type");
132 
133 	switch (hw->device_id) {
134 	case E1000_DEV_ID_82542:
135 		mac->type = e1000_82542;
136 		break;
137 	case E1000_DEV_ID_82543GC_FIBER:
138 	case E1000_DEV_ID_82543GC_COPPER:
139 		mac->type = e1000_82543;
140 		break;
141 	case E1000_DEV_ID_82544EI_COPPER:
142 	case E1000_DEV_ID_82544EI_FIBER:
143 	case E1000_DEV_ID_82544GC_COPPER:
144 	case E1000_DEV_ID_82544GC_LOM:
145 		mac->type = e1000_82544;
146 		break;
147 	case E1000_DEV_ID_82540EM:
148 	case E1000_DEV_ID_82540EM_LOM:
149 	case E1000_DEV_ID_82540EP:
150 	case E1000_DEV_ID_82540EP_LOM:
151 	case E1000_DEV_ID_82540EP_LP:
152 		mac->type = e1000_82540;
153 		break;
154 	case E1000_DEV_ID_82545EM_COPPER:
155 	case E1000_DEV_ID_82545EM_FIBER:
156 		mac->type = e1000_82545;
157 		break;
158 	case E1000_DEV_ID_82545GM_COPPER:
159 	case E1000_DEV_ID_82545GM_FIBER:
160 	case E1000_DEV_ID_82545GM_SERDES:
161 		mac->type = e1000_82545_rev_3;
162 		break;
163 	case E1000_DEV_ID_82546EB_COPPER:
164 	case E1000_DEV_ID_82546EB_FIBER:
165 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
166 		mac->type = e1000_82546;
167 		break;
168 	case E1000_DEV_ID_82546GB_COPPER:
169 	case E1000_DEV_ID_82546GB_FIBER:
170 	case E1000_DEV_ID_82546GB_SERDES:
171 	case E1000_DEV_ID_82546GB_PCIE:
172 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
173 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
174 		mac->type = e1000_82546_rev_3;
175 		break;
176 	case E1000_DEV_ID_82541EI:
177 	case E1000_DEV_ID_82541EI_MOBILE:
178 	case E1000_DEV_ID_82541ER_LOM:
179 		mac->type = e1000_82541;
180 		break;
181 	case E1000_DEV_ID_82541ER:
182 	case E1000_DEV_ID_82541GI:
183 	case E1000_DEV_ID_82541GI_LF:
184 	case E1000_DEV_ID_82541GI_MOBILE:
185 		mac->type = e1000_82541_rev_2;
186 		break;
187 	case E1000_DEV_ID_82547EI:
188 	case E1000_DEV_ID_82547EI_MOBILE:
189 		mac->type = e1000_82547;
190 		break;
191 	case E1000_DEV_ID_82547GI:
192 		mac->type = e1000_82547_rev_2;
193 		break;
194 	case E1000_DEV_ID_82571EB_COPPER:
195 	case E1000_DEV_ID_82571EB_FIBER:
196 	case E1000_DEV_ID_82571EB_SERDES:
197 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
198 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
199 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
200 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
201 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
202 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
203 		mac->type = e1000_82571;
204 		break;
205 	case E1000_DEV_ID_82572EI:
206 	case E1000_DEV_ID_82572EI_COPPER:
207 	case E1000_DEV_ID_82572EI_FIBER:
208 	case E1000_DEV_ID_82572EI_SERDES:
209 		mac->type = e1000_82572;
210 		break;
211 	case E1000_DEV_ID_82573E:
212 	case E1000_DEV_ID_82573E_IAMT:
213 	case E1000_DEV_ID_82573L:
214 		mac->type = e1000_82573;
215 		break;
216 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
217 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
218 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
219 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
220 		mac->type = e1000_80003es2lan;
221 		break;
222 	case E1000_DEV_ID_ICH8_IFE:
223 	case E1000_DEV_ID_ICH8_IFE_GT:
224 	case E1000_DEV_ID_ICH8_IFE_G:
225 	case E1000_DEV_ID_ICH8_IGP_M:
226 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
227 	case E1000_DEV_ID_ICH8_IGP_AMT:
228 	case E1000_DEV_ID_ICH8_IGP_C:
229 		mac->type = e1000_ich8lan;
230 		break;
231 	case E1000_DEV_ID_ICH9_IFE:
232 	case E1000_DEV_ID_ICH9_IFE_GT:
233 	case E1000_DEV_ID_ICH9_IFE_G:
234 	case E1000_DEV_ID_ICH9_IGP_M:
235 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
236 	case E1000_DEV_ID_ICH9_IGP_M_V:
237 	case E1000_DEV_ID_ICH9_IGP_AMT:
238 	case E1000_DEV_ID_ICH9_BM:
239 	case E1000_DEV_ID_ICH9_IGP_C:
240 	case E1000_DEV_ID_ICH10D_BM_LM:
241 		mac->type = e1000_ich9lan;
242 		break;
243 	default:
244 		/* Should never have loaded on this device */
245 		ret_val = -E1000_ERR_MAC_INIT;
246 		break;
247 	}
248 
249 	return (ret_val);
250 }
251 
252 /*
253  * e1000_setup_init_funcs - Initializes function pointers
254  * @hw: pointer to the HW structure
255  * @init_device: TRUE will initialize the rest of the function pointers
256  *                getting the device ready for use.  FALSE will only set
257  *                MAC type and the function pointers for the other init
258  *                functions.  Passing FALSE will not generate any hardware
259  *                reads or writes.
260  *
261  * This function must be called by a driver in order to use the rest
262  * of the 'shared' code files. Called by drivers only.
263  */
264 s32
265 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
266 {
267 	s32 ret_val;
268 
269 	/* Can't do much good without knowing the MAC type. */
270 	ret_val = e1000_set_mac_type(hw);
271 	if (ret_val) {
272 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
273 		goto out;
274 	}
275 	if (!hw->hw_addr) {
276 		DEBUGOUT("ERROR: Registers not mapped\n");
277 		ret_val = -E1000_ERR_CONFIG;
278 		goto out;
279 	}
280 
281 	/*
282 	 * Init function pointers to generic implementations. We do this first
283 	 * allowing a driver module to override it afterward.
284 	 */
285 	e1000_init_mac_ops_generic(hw);
286 	e1000_init_phy_ops_generic(hw);
287 	e1000_init_nvm_ops_generic(hw);
288 
289 	/*
290 	 * Set up the init function pointers. These are functions within the
291 	 * adapter family file that sets up function pointers for the rest of
292 	 * the functions in that family.
293 	 */
294 	switch (hw->mac.type) {
295 	case e1000_82542:
296 		e1000_init_function_pointers_82542(hw);
297 		break;
298 	case e1000_82543:
299 	case e1000_82544:
300 		e1000_init_function_pointers_82543(hw);
301 		break;
302 	case e1000_82540:
303 	case e1000_82545:
304 	case e1000_82545_rev_3:
305 	case e1000_82546:
306 	case e1000_82546_rev_3:
307 		e1000_init_function_pointers_82540(hw);
308 		break;
309 	case e1000_82541:
310 	case e1000_82541_rev_2:
311 	case e1000_82547:
312 	case e1000_82547_rev_2:
313 		e1000_init_function_pointers_82541(hw);
314 		break;
315 	case e1000_82571:
316 	case e1000_82572:
317 	case e1000_82573:
318 		e1000_init_function_pointers_82571(hw);
319 		break;
320 	case e1000_80003es2lan:
321 		e1000_init_function_pointers_80003es2lan(hw);
322 		break;
323 	case e1000_ich8lan:
324 	case e1000_ich9lan:
325 		e1000_init_function_pointers_ich8lan(hw);
326 		break;
327 	default:
328 		DEBUGOUT("Hardware not supported\n");
329 		ret_val = -E1000_ERR_CONFIG;
330 		break;
331 	}
332 
333 	/*
334 	 * Initialize the rest of the function pointers. These require some
335 	 * register reads/writes in some cases.
336 	 */
337 	if (!(ret_val) && init_device) {
338 		ret_val = e1000_init_mac_params(hw);
339 		if (ret_val)
340 			goto out;
341 
342 		ret_val = e1000_init_nvm_params(hw);
343 		if (ret_val)
344 			goto out;
345 
346 		ret_val = e1000_init_phy_params(hw);
347 		if (ret_val)
348 			goto out;
349 
350 	}
351 
352 out:
353 	return (ret_val);
354 }
355 
356 /*
357  * e1000_remove_device - Free device specific structure
358  * @hw: pointer to the HW structure
359  *
360  * If a device specific structure was allocated, this function will
361  * free it. This is a function pointer entry point called by drivers.
362  */
363 void
364 e1000_remove_device(struct e1000_hw *hw)
365 {
366 	if (hw->mac.ops.remove_device)
367 		hw->mac.ops.remove_device(hw);
368 }
369 
370 /*
371  * e1000_get_bus_info - Obtain bus information for adapter
372  * @hw: pointer to the HW structure
373  *
374  * This will obtain information about the HW bus for which the
375  * adapter is attached and stores it in the hw structure. This is a
376  * function pointer entry point called by drivers.
377  */
378 s32
379 e1000_get_bus_info(struct e1000_hw *hw)
380 {
381 	if (hw->mac.ops.get_bus_info)
382 		return (hw->mac.ops.get_bus_info(hw));
383 
384 	return (E1000_SUCCESS);
385 }
386 
387 /*
388  * e1000_clear_vfta - Clear VLAN filter table
389  * @hw: pointer to the HW structure
390  *
391  * This clears the VLAN filter table on the adapter. This is a function
392  * pointer entry point called by drivers.
393  */
394 void
395 e1000_clear_vfta(struct e1000_hw *hw)
396 {
397 	if (hw->mac.ops.clear_vfta)
398 		hw->mac.ops.clear_vfta(hw);
399 }
400 
401 /*
402  * e1000_write_vfta - Write value to VLAN filter table
403  * @hw: pointer to the HW structure
404  * @offset: the 32-bit offset in which to write the value to.
405  * @value: the 32-bit value to write at location offset.
406  *
407  * This writes a 32-bit value to a 32-bit offset in the VLAN filter
408  * table. This is a function pointer entry point called by drivers.
409  */
410 void
411 e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
412 {
413 	if (hw->mac.ops.write_vfta)
414 		hw->mac.ops.write_vfta(hw, offset, value);
415 }
416 
417 /*
418  * e1000_update_mc_addr_list - Update Multicast addresses
419  * @hw: pointer to the HW structure
420  * @mc_addr_list: array of multicast addresses to program
421  * @mc_addr_count: number of multicast addresses to program
422  * @rar_used_count: the first RAR register free to program
423  * @rar_count: total number of supported Receive Address Registers
424  *
425  * Updates the Receive Address Registers and Multicast Table Array.
426  * The caller must have a packed mc_addr_list of multicast addresses.
427  * The parameter rar_count will usually be hw->mac.rar_entry_count
428  * unless there are workarounds that change this.  Currently no func pointer
429  * exists and all implementations are handled in the generic version of this
430  * function.
431  */
432 void
433 e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
434     u32 mc_addr_count, u32 rar_used_count, u32 rar_count)
435 {
436 	if (hw->mac.ops.update_mc_addr_list)
437 		hw->mac.ops.update_mc_addr_list(hw,
438 		    mc_addr_list,
439 		    mc_addr_count,
440 		    rar_used_count,
441 		    rar_count);
442 }
443 
444 /*
445  * e1000_force_mac_fc - Force MAC flow control
446  * @hw: pointer to the HW structure
447  *
448  * Force the MAC's flow control settings. Currently no func pointer exists
449  * and all implementations are handled in the generic version of this
450  * function.
451  */
452 s32
453 e1000_force_mac_fc(struct e1000_hw *hw)
454 {
455 	return (e1000_force_mac_fc_generic(hw));
456 }
457 
458 /*
459  * e1000_check_for_link - Check/Store link connection
460  * @hw: pointer to the HW structure
461  *
462  * This checks the link condition of the adapter and stores the
463  * results in the hw->mac structure. This is a function pointer entry
464  * point called by drivers.
465  */
466 s32
467 e1000_check_for_link(struct e1000_hw *hw)
468 {
469 	if (hw->mac.ops.check_for_link)
470 		return (hw->mac.ops.check_for_link(hw));
471 
472 	return (-E1000_ERR_CONFIG);
473 }
474 
475 /*
476  * e1000_check_mng_mode - Check management mode
477  * @hw: pointer to the HW structure
478  *
479  * This checks if the adapter has manageability enabled.
480  * This is a function pointer entry point called by drivers.
481  */
482 bool
483 e1000_check_mng_mode(struct e1000_hw *hw)
484 {
485 	if (hw->mac.ops.check_mng_mode)
486 		return (hw->mac.ops.check_mng_mode(hw));
487 
488 	return (FALSE);
489 }
490 
491 /*
492  * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
493  * @hw: pointer to the HW structure
494  * @buffer: pointer to the host interface
495  * @length: size of the buffer
496  *
497  * Writes the DHCP information to the host interface.
498  */
499 s32
500 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
501 {
502 	return (e1000_mng_write_dhcp_info_generic(hw, buffer, length));
503 }
504 
505 /*
506  * e1000_reset_hw - Reset hardware
507  * @hw: pointer to the HW structure
508  *
509  * This resets the hardware into a known state. This is a function pointer
510  * entry point called by drivers.
511  */
512 s32
513 e1000_reset_hw(struct e1000_hw *hw)
514 {
515 	if (hw->mac.ops.reset_hw)
516 		return (hw->mac.ops.reset_hw(hw));
517 
518 	return (-E1000_ERR_CONFIG);
519 }
520 
521 /*
522  * e1000_init_hw - Initialize hardware
523  * @hw: pointer to the HW structure
524  *
525  * This inits the hardware readying it for operation. This is a function
526  * pointer entry point called by drivers.
527  */
528 s32
529 e1000_init_hw(struct e1000_hw *hw)
530 {
531 	if (hw->mac.ops.init_hw)
532 		return (hw->mac.ops.init_hw(hw));
533 
534 	return (-E1000_ERR_CONFIG);
535 }
536 
537 /*
538  * e1000_setup_link - Configures link and flow control
539  * @hw: pointer to the HW structure
540  *
541  * This configures link and flow control settings for the adapter. This
542  * is a function pointer entry point called by drivers. While modules can
543  * also call this, they probably call their own version of this function.
544  */
545 s32
546 e1000_setup_link(struct e1000_hw *hw)
547 {
548 	if (hw->mac.ops.setup_link)
549 		return (hw->mac.ops.setup_link(hw));
550 
551 	return (-E1000_ERR_CONFIG);
552 }
553 
554 /*
555  * e1000_get_speed_and_duplex - Returns current speed and duplex
556  * @hw: pointer to the HW structure
557  * @speed: pointer to a 16-bit value to store the speed
558  * @duplex: pointer to a 16-bit value to store the duplex.
559  *
560  * This returns the speed and duplex of the adapter in the two 'out'
561  * variables passed in. This is a function pointer entry point called
562  * by drivers.
563  */
564 s32
565 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
566 {
567 	if (hw->mac.ops.get_link_up_info)
568 		return (hw->mac.ops.get_link_up_info(hw, speed, duplex));
569 
570 	return (-E1000_ERR_CONFIG);
571 }
572 
573 /*
574  * e1000_setup_led - Configures SW controllable LED
575  * @hw: pointer to the HW structure
576  *
577  * This prepares the SW controllable LED for use and saves the current state
578  * of the LED so it can be later restored. This is a function pointer entry
579  * point called by drivers.
580  */
581 s32
582 e1000_setup_led(struct e1000_hw *hw)
583 {
584 	if (hw->mac.ops.setup_led)
585 		return (hw->mac.ops.setup_led(hw));
586 
587 	return (E1000_SUCCESS);
588 }
589 
590 /*
591  * e1000_cleanup_led - Restores SW controllable LED
592  * @hw: pointer to the HW structure
593  *
594  * This restores the SW controllable LED to the value saved off by
595  * e1000_setup_led. This is a function pointer entry point called by drivers.
596  */
597 s32
598 e1000_cleanup_led(struct e1000_hw *hw)
599 {
600 	if (hw->mac.ops.cleanup_led)
601 		return (hw->mac.ops.cleanup_led(hw));
602 
603 	return (E1000_SUCCESS);
604 }
605 
606 /*
607  * e1000_blink_led - Blink SW controllable LED
608  * @hw: pointer to the HW structure
609  *
610  * This starts the adapter LED blinking. Request the LED to be setup first
611  * and cleaned up after. This is a function pointer entry point called by
612  * drivers.
613  */
614 s32
615 e1000_blink_led(struct e1000_hw *hw)
616 {
617 	if (hw->mac.ops.blink_led)
618 		return (hw->mac.ops.blink_led(hw));
619 
620 	return (E1000_SUCCESS);
621 }
622 
623 /*
624  * e1000_led_on - Turn on SW controllable LED
625  * @hw: pointer to the HW structure
626  *
627  * Turns the SW defined LED on. This is a function pointer entry point
628  * called by drivers.
629  */
630 s32
631 e1000_led_on(struct e1000_hw *hw)
632 {
633 	if (hw->mac.ops.led_on)
634 		return (hw->mac.ops.led_on(hw));
635 
636 	return (E1000_SUCCESS);
637 }
638 
639 /*
640  * e1000_led_off - Turn off SW controllable LED
641  * @hw: pointer to the HW structure
642  *
643  * Turns the SW defined LED off. This is a function pointer entry point
644  * called by drivers.
645  */
646 s32
647 e1000_led_off(struct e1000_hw *hw)
648 {
649 	if (hw->mac.ops.led_off)
650 		return (hw->mac.ops.led_off(hw));
651 
652 	return (E1000_SUCCESS);
653 }
654 
655 /*
656  * e1000_reset_adaptive - Reset adaptive IFS
657  * @hw: pointer to the HW structure
658  *
659  * Resets the adaptive IFS. Currently no func pointer exists and all
660  * implementations are handled in the generic version of this function.
661  */
662 void
663 e1000_reset_adaptive(struct e1000_hw *hw)
664 {
665 	e1000_reset_adaptive_generic(hw);
666 }
667 
668 /*
669  * e1000_update_adaptive - Update adaptive IFS
670  * @hw: pointer to the HW structure
671  *
672  * Updates adapter IFS. Currently no func pointer exists and all
673  * implementations are handled in the generic version of this function.
674  */
675 void
676 e1000_update_adaptive(struct e1000_hw *hw)
677 {
678 	e1000_update_adaptive_generic(hw);
679 }
680 
681 /*
682  * e1000_disable_pcie_master - Disable PCI-Express master access
683  * @hw: pointer to the HW structure
684  *
685  * Disables PCI-Express master access and verifies there are no pending
686  * requests. Currently no func pointer exists and all implementations are
687  * handled in the generic version of this function.
688  */
689 s32
690 e1000_disable_pcie_master(struct e1000_hw *hw)
691 {
692 	return (e1000_disable_pcie_master_generic(hw));
693 }
694 
695 /*
696  * e1000_config_collision_dist - Configure collision distance
697  * @hw: pointer to the HW structure
698  *
699  * Configures the collision distance to the default value and is used
700  * during link setup.
701  */
702 void
703 e1000_config_collision_dist(struct e1000_hw *hw)
704 {
705 	if (hw->mac.ops.config_collision_dist)
706 		hw->mac.ops.config_collision_dist(hw);
707 }
708 
709 /*
710  * e1000_rar_set - Sets a receive address register
711  * @hw: pointer to the HW structure
712  * @addr: address to set the RAR to
713  * @index: the RAR to set
714  *
715  * Sets a Receive Address Register (RAR) to the specified address.
716  */
717 void
718 e1000_rar_set(struct e1000_hw *hw, u8 * addr, u32 index)
719 {
720 	if (hw->mac.ops.rar_set)
721 		hw->mac.ops.rar_set(hw, addr, index);
722 }
723 
724 /*
725  * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
726  * @hw: pointer to the HW structure
727  *
728  * Ensures that the MDI/MDIX SW state is valid.
729  */
730 s32
731 e1000_validate_mdi_setting(struct e1000_hw *hw)
732 {
733 	if (hw->mac.ops.validate_mdi_setting)
734 		return (hw->mac.ops.validate_mdi_setting(hw));
735 
736 	return (E1000_SUCCESS);
737 }
738 
739 /*
740  * e1000_mta_set - Sets multicast table bit
741  * @hw: pointer to the HW structure
742  * @hash_value: Multicast hash value.
743  *
744  * This sets the bit in the multicast table corresponding to the
745  * hash value.  This is a function pointer entry point called by drivers.
746  */
747 void
748 e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
749 {
750 	if (hw->mac.ops.mta_set)
751 		hw->mac.ops.mta_set(hw, hash_value);
752 }
753 
754 /*
755  * e1000_hash_mc_addr - Determines address location in multicast table
756  * @hw: pointer to the HW structure
757  * @mc_addr: Multicast address to hash.
758  *
759  * This hashes an address to determine its location in the multicast
760  * table. Currently no func pointer exists and all implementations
761  * are handled in the generic version of this function.
762  */
763 u32
764 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
765 {
766 	return (e1000_hash_mc_addr_generic(hw, mc_addr));
767 }
768 
769 /*
770  * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
771  * @hw: pointer to the HW structure
772  *
773  * Enables packet filtering on transmit packets if manageability is enabled
774  * and host interface is enabled.
775  * Currently no func pointer exists and all implementations are handled in the
776  * generic version of this function.
777  */
778 bool
779 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
780 {
781 	return (e1000_enable_tx_pkt_filtering_generic(hw));
782 }
783 
784 /*
785  * e1000_mng_host_if_write - Writes to the manageability host interface
786  * @hw: pointer to the HW structure
787  * @buffer: pointer to the host interface buffer
788  * @length: size of the buffer
789  * @offset: location in the buffer to write to
790  * @sum: sum of the data (not checksum)
791  *
792  * This function writes the buffer content at the offset given on the host if.
793  * It also does alignment considerations to do the writes in most efficient
794  * way.  Also fills up the sum of the buffer in *buffer parameter.
795  */
796 s32
797 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
798     u16 offset, u8 *sum)
799 {
800 	if (hw->mac.ops.mng_host_if_write)
801 		return (hw->mac.ops.mng_host_if_write(hw, buffer, length,
802 		    offset, sum));
803 
804 	return (E1000_NOT_IMPLEMENTED);
805 }
806 
807 /*
808  * e1000_mng_write_cmd_header - Writes manageability command header
809  * @hw: pointer to the HW structure
810  * @hdr: pointer to the host interface command header
811  *
812  * Writes the command header after does the checksum calculation.
813  */
814 s32
815 e1000_mng_write_cmd_header(struct e1000_hw *hw,
816     struct e1000_host_mng_command_header *hdr)
817 {
818 	if (hw->mac.ops.mng_write_cmd_header)
819 		return (hw->mac.ops.mng_write_cmd_header(hw, hdr));
820 
821 	return (E1000_NOT_IMPLEMENTED);
822 }
823 
824 /*
825  * e1000_mng_enable_host_if - Checks host interface is enabled
826  * @hw: pointer to the HW structure
827  *
828  * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
829  *
830  * This function checks whether the HOST IF is enabled for command operation
831  * and also checks whether the previous command is completed.  It busy waits
832  * in case of previous command is not completed.
833  */
834 s32
835 e1000_mng_enable_host_if(struct e1000_hw *hw)
836 {
837 	if (hw->mac.ops.mng_enable_host_if)
838 		return (hw->mac.ops.mng_enable_host_if(hw));
839 
840 	return (E1000_NOT_IMPLEMENTED);
841 }
842 
843 /*
844  * e1000_wait_autoneg - Waits for autonegotiation completion
845  * @hw: pointer to the HW structure
846  *
847  * Waits for autoneg to complete. Currently no func pointer exists and all
848  * implementations are handled in the generic version of this function.
849  */
850 s32
851 e1000_wait_autoneg(struct e1000_hw *hw)
852 {
853 	if (hw->mac.ops.wait_autoneg)
854 		return (hw->mac.ops.wait_autoneg(hw));
855 
856 	return (E1000_SUCCESS);
857 }
858 
859 /*
860  * e1000_check_reset_block - Verifies PHY can be reset
861  * @hw: pointer to the HW structure
862  *
863  * Checks if the PHY is in a state that can be reset or if manageability
864  * has it tied up. This is a function pointer entry point called by drivers.
865  */
866 s32
867 e1000_check_reset_block(struct e1000_hw *hw)
868 {
869 	if (hw->phy.ops.check_reset_block)
870 		return (hw->phy.ops.check_reset_block(hw));
871 
872 	return (E1000_SUCCESS);
873 }
874 
875 /*
876  * e1000_read_phy_reg - Reads PHY register
877  * @hw: pointer to the HW structure
878  * @offset: the register to read
879  * @data: the buffer to store the 16-bit read.
880  *
881  * Reads the PHY register and returns the value in data.
882  * This is a function pointer entry point called by drivers.
883  */
884 s32
885 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
886 {
887 	if (hw->phy.ops.read_reg)
888 		return (hw->phy.ops.read_reg(hw, offset, data));
889 
890 	return (E1000_SUCCESS);
891 }
892 
893 /*
894  * e1000_write_phy_reg - Writes PHY register
895  * @hw: pointer to the HW structure
896  * @offset: the register to write
897  * @data: the value to write.
898  *
899  * Writes the PHY register at offset with the value in data.
900  * This is a function pointer entry point called by drivers.
901  */
902 s32
903 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
904 {
905 	if (hw->phy.ops.write_reg)
906 		return (hw->phy.ops.write_reg(hw, offset, data));
907 
908 	return (E1000_SUCCESS);
909 }
910 
911 /*
912  * e1000_release_phy - Generic release PHY
913  * @hw: pointer to the HW structure
914  *
915  * Return if silicon family does not require a semaphore when accessing the
916  * PHY.
917  */
918 void
919 e1000_release_phy(struct e1000_hw *hw)
920 {
921 	if (hw->phy.ops.release)
922 		hw->phy.ops.release(hw);
923 }
924 
925 /*
926  * e1000_acquire_phy - Generic acquire PHY
927  * @hw: pointer to the HW structure
928  *
929  * Return success if silicon family does not require a semaphore when
930  * accessing the PHY.
931  */
932 s32
933 e1000_acquire_phy(struct e1000_hw *hw)
934 {
935 	if (hw->phy.ops.acquire)
936 		return (hw->phy.ops.acquire(hw));
937 
938 	return (E1000_SUCCESS);
939 }
940 
941 /*
942  * e1000_read_kmrn_reg - Reads register using Kumeran interface
943  * @hw: pointer to the HW structure
944  * @offset: the register to read
945  * @data: the location to store the 16-bit value read.
946  *
947  * Reads a register out of the Kumeran interface. Currently no func pointer
948  * exists and all implementations are handled in the generic version of
949  * this function.
950  */
951 s32
952 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
953 {
954 	return (e1000_read_kmrn_reg_generic(hw, offset, data));
955 }
956 
957 /*
958  * e1000_write_kmrn_reg - Writes register using Kumeran interface
959  * @hw: pointer to the HW structure
960  * @offset: the register to write
961  * @data: the value to write.
962  *
963  * Writes a register to the Kumeran interface. Currently no func pointer
964  * exists and all implementations are handled in the generic version of
965  * this function.
966  */
967 s32
968 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
969 {
970 	return (e1000_write_kmrn_reg_generic(hw, offset, data));
971 }
972 
973 /*
974  * e1000_get_cable_length - Retrieves cable length estimation
975  * @hw: pointer to the HW structure
976  *
977  * This function estimates the cable length and stores them in
978  * hw->phy.min_length and hw->phy.max_length. This is a function pointer
979  * entry point called by drivers.
980  */
981 s32
982 e1000_get_cable_length(struct e1000_hw *hw)
983 {
984 	if (hw->phy.ops.get_cable_length)
985 		return (hw->phy.ops.get_cable_length(hw));
986 
987 	return (E1000_SUCCESS);
988 }
989 
990 /*
991  * e1000_get_phy_info - Retrieves PHY information from registers
992  * @hw: pointer to the HW structure
993  *
994  * This function gets some information from various PHY registers and
995  * populates hw->phy values with it. This is a function pointer entry
996  * point called by drivers.
997  */
998 s32
999 e1000_get_phy_info(struct e1000_hw *hw)
1000 {
1001 	if (hw->phy.ops.get_info)
1002 		return (hw->phy.ops.get_info(hw));
1003 
1004 	return (E1000_SUCCESS);
1005 }
1006 
1007 /*
1008  * e1000_phy_hw_reset - Hard PHY reset
1009  * @hw: pointer to the HW structure
1010  *
1011  * Performs a hard PHY reset. This is a function pointer entry point called
1012  * by drivers.
1013  */
1014 s32
1015 e1000_phy_hw_reset(struct e1000_hw *hw)
1016 {
1017 	if (hw->phy.ops.reset)
1018 		return (hw->phy.ops.reset(hw));
1019 
1020 	return (E1000_SUCCESS);
1021 }
1022 
1023 /*
1024  * e1000_phy_commit - Soft PHY reset
1025  * @hw: pointer to the HW structure
1026  *
1027  * Performs a soft PHY reset on those that apply. This is a function pointer
1028  * entry point called by drivers.
1029  */
1030 s32
1031 e1000_phy_commit(struct e1000_hw *hw)
1032 {
1033 	if (hw->phy.ops.commit)
1034 		return (hw->phy.ops.commit(hw));
1035 
1036 	return (E1000_SUCCESS);
1037 }
1038 
1039 /*
1040  * e1000_set_d0_lplu_state - Sets low power link up state for D0
1041  * @hw: pointer to the HW structure
1042  * @active: boolean used to enable/disable lplu
1043  *
1044  * Success returns 0, Failure returns 1
1045  *
1046  * The low power link up (lplu) state is set to the power management level D0
1047  * and SmartSpeed is disabled when active is true, else clear lplu for D0
1048  * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1049  * is used during Dx states where the power conservation is most important.
1050  * During driver activity, SmartSpeed should be enabled so performance is
1051  * maintained.  This is a function pointer entry point called by drivers.
1052  */
1053 s32
1054 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1055 {
1056 	if (hw->phy.ops.set_d0_lplu_state)
1057 		return (hw->phy.ops.set_d0_lplu_state(hw, active));
1058 
1059 	return (E1000_SUCCESS);
1060 }
1061 
1062 /*
1063  * e1000_set_d3_lplu_state - Sets low power link up state for D3
1064  * @hw: pointer to the HW structure
1065  * @active: boolean used to enable/disable lplu
1066  *
1067  * Success returns 0, Failure returns 1
1068  *
1069  * The low power link up (lplu) state is set to the power management level D3
1070  * and SmartSpeed is disabled when active is true, else clear lplu for D3
1071  * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1072  * is used during Dx states where the power conservation is most important.
1073  * During driver activity, SmartSpeed should be enabled so performance is
1074  * maintained.  This is a function pointer entry point called by drivers.
1075  */
1076 s32
1077 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1078 {
1079 	if (hw->phy.ops.set_d3_lplu_state)
1080 		return (hw->phy.ops.set_d3_lplu_state(hw, active));
1081 
1082 	return (E1000_SUCCESS);
1083 }
1084 
1085 /*
1086  * e1000_read_mac_addr - Reads MAC address
1087  * @hw: pointer to the HW structure
1088  *
1089  * Reads the MAC address out of the adapter and stores it in the HW structure.
1090  * Currently no func pointer exists and all implementations are handled in the
1091  * generic version of this function.
1092  */
1093 s32
1094 e1000_read_mac_addr(struct e1000_hw *hw)
1095 {
1096 	if (hw->mac.ops.read_mac_addr)
1097 		return (hw->mac.ops.read_mac_addr(hw));
1098 
1099 	return (e1000_read_mac_addr_generic(hw));
1100 }
1101 
1102 /*
1103  * e1000_read_pba_num - Read device part number
1104  * @hw: pointer to the HW structure
1105  * @pba_num: pointer to device part number
1106  *
1107  * Reads the product board assembly (PBA) number from the EEPROM and stores
1108  * the value in pba_num.
1109  * Currently no func pointer exists and all implementations are handled in the
1110  * generic version of this function.
1111  */
1112 s32
1113 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1114 {
1115 	return (e1000_read_pba_num_generic(hw, pba_num));
1116 }
1117 
1118 /*
1119  * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1120  * @hw: pointer to the HW structure
1121  *
1122  * Validates the NVM checksum is correct. This is a function pointer entry
1123  * point called by drivers.
1124  */
1125 s32
1126 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1127 {
1128 	if (hw->nvm.ops.validate)
1129 		return (hw->nvm.ops.validate(hw));
1130 
1131 	return (-E1000_ERR_CONFIG);
1132 }
1133 
1134 /*
1135  * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1136  * @hw: pointer to the HW structure
1137  *
1138  * Updates the NVM checksum. Currently no func pointer exists and all
1139  * implementations are handled in the generic version of this function.
1140  */
1141 s32
1142 e1000_update_nvm_checksum(struct e1000_hw *hw)
1143 {
1144 	if (hw->nvm.ops.update)
1145 		return (hw->nvm.ops.update(hw));
1146 
1147 	return (-E1000_ERR_CONFIG);
1148 }
1149 
1150 /*
1151  * e1000_reload_nvm - Reloads EEPROM
1152  * @hw: pointer to the HW structure
1153  *
1154  * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1155  * extended control register.
1156  */
1157 void
1158 e1000_reload_nvm(struct e1000_hw *hw)
1159 {
1160 	if (hw->nvm.ops.reload)
1161 		hw->nvm.ops.reload(hw);
1162 }
1163 
1164 /*
1165  * e1000_read_nvm - Reads NVM (EEPROM)
1166  * @hw: pointer to the HW structure
1167  * @offset: the word offset to read
1168  * @words: number of 16-bit words to read
1169  * @data: pointer to the properly sized buffer for the data.
1170  *
1171  * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1172  * pointer entry point called by drivers.
1173  */
1174 s32
1175 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1176 {
1177 	if (hw->nvm.ops.read)
1178 		return (hw->nvm.ops.read(hw, offset, words, data));
1179 
1180 	return (-E1000_ERR_CONFIG);
1181 }
1182 
1183 /*
1184  * e1000_write_nvm - Writes to NVM (EEPROM)
1185  * @hw: pointer to the HW structure
1186  * @offset: the word offset to read
1187  * @words: number of 16-bit words to write
1188  * @data: pointer to the properly sized buffer for the data.
1189  *
1190  * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1191  * pointer entry point called by drivers.
1192  */
1193 s32
1194 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1195 {
1196 	if (hw->nvm.ops.write)
1197 		return (hw->nvm.ops.write(hw, offset, words, data));
1198 
1199 	return (E1000_SUCCESS);
1200 }
1201 
1202 /*
1203  * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1204  * @hw: pointer to the HW structure
1205  * @reg: 32bit register offset
1206  * @offset: the register to write
1207  * @data: the value to write.
1208  *
1209  * Writes the PHY register at offset with the value in data.
1210  * This is a function pointer entry point called by drivers.
1211  */
1212 s32
1213 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
1214 {
1215 	return (e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data));
1216 }
1217 
1218 /*
1219  * e1000_power_up_phy - Restores link in case of PHY power down
1220  * @hw: pointer to the HW structure
1221  *
1222  * The phy may be powered down to save power, to turn off link when the
1223  * driver is unloaded, or wake on lan is not enabled (among others).
1224  */
1225 void
1226 e1000_power_up_phy(struct e1000_hw *hw)
1227 {
1228 	if (hw->phy.ops.power_up)
1229 		hw->phy.ops.power_up(hw);
1230 
1231 	(void) e1000_setup_link(hw);
1232 }
1233 
1234 /*
1235  * e1000_power_down_phy - Power down PHY
1236  * @hw: pointer to the HW structure
1237  *
1238  * The phy may be powered down to save power, to turn off link when the
1239  * driver is unloaded, or wake on lan is not enabled (among others).
1240  */
1241 void
1242 e1000_power_down_phy(struct e1000_hw *hw)
1243 {
1244 	if (hw->phy.ops.power_down)
1245 		hw->phy.ops.power_down(hw);
1246 }
1247