1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
67
68 int zfsfstype;
69 vfsops_t *zfs_vfsops = NULL;
70 static major_t zfs_major;
71 static minor_t zfs_minor;
72 static kmutex_t zfs_dev_mtx;
73
74 extern int sys_shutdown;
75
76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82 static void zfs_freevfs(vfs_t *vfsp);
83
84 static const fs_operation_def_t zfs_vfsops_template[] = {
85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
88 VFSNAME_ROOT, { .vfs_root = zfs_root },
89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
90 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
91 VFSNAME_VGET, { .vfs_vget = zfs_vget },
92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
93 NULL, NULL
94 };
95
96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
98 NULL, NULL
99 };
100
101 /*
102 * We need to keep a count of active fs's.
103 * This is necessary to prevent our module
104 * from being unloaded after a umount -f
105 */
106 static uint32_t zfs_active_fs_count = 0;
107
108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
112
113 /*
114 * MO_DEFAULT is not used since the default value is determined
115 * by the equivalent property.
116 */
117 static mntopt_t mntopts[] = {
118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
122 };
123
124 static mntopts_t zfs_mntopts = {
125 sizeof (mntopts) / sizeof (mntopt_t),
126 mntopts
127 };
128
129 /*ARGSUSED*/
130 int
zfs_sync(vfs_t * vfsp,short flag,cred_t * cr)131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
132 {
133 /*
134 * Data integrity is job one. We don't want a compromised kernel
135 * writing to the storage pool, so we never sync during panic.
136 */
137 if (panicstr)
138 return (0);
139
140 /*
141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142 * to sync metadata, which they would otherwise cache indefinitely.
143 * Semantically, the only requirement is that the sync be initiated.
144 * The DMU syncs out txgs frequently, so there's nothing to do.
145 */
146 if (flag & SYNC_ATTR)
147 return (0);
148
149 if (vfsp != NULL) {
150 /*
151 * Sync a specific filesystem.
152 */
153 zfsvfs_t *zfsvfs = vfsp->vfs_data;
154 dsl_pool_t *dp;
155
156 ZFS_ENTER(zfsvfs);
157 dp = dmu_objset_pool(zfsvfs->z_os);
158
159 /*
160 * If the system is shutting down, then skip any
161 * filesystems which may exist on a suspended pool.
162 */
163 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164 ZFS_EXIT(zfsvfs);
165 return (0);
166 }
167
168 if (zfsvfs->z_log != NULL)
169 zil_commit(zfsvfs->z_log, 0);
170
171 ZFS_EXIT(zfsvfs);
172 } else {
173 /*
174 * Sync all ZFS filesystems. This is what happens when you
175 * run sync(1M). Unlike other filesystems, ZFS honors the
176 * request by waiting for all pools to commit all dirty data.
177 */
178 spa_sync_allpools();
179 }
180
181 return (0);
182 }
183
184 static int
zfs_create_unique_device(dev_t * dev)185 zfs_create_unique_device(dev_t *dev)
186 {
187 major_t new_major;
188
189 do {
190 ASSERT3U(zfs_minor, <=, MAXMIN32);
191 minor_t start = zfs_minor;
192 do {
193 mutex_enter(&zfs_dev_mtx);
194 if (zfs_minor >= MAXMIN32) {
195 /*
196 * If we're still using the real major
197 * keep out of /dev/zfs and /dev/zvol minor
198 * number space. If we're using a getudev()'ed
199 * major number, we can use all of its minors.
200 */
201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202 zfs_minor = ZFS_MIN_MINOR;
203 else
204 zfs_minor = 0;
205 } else {
206 zfs_minor++;
207 }
208 *dev = makedevice(zfs_major, zfs_minor);
209 mutex_exit(&zfs_dev_mtx);
210 } while (vfs_devismounted(*dev) && zfs_minor != start);
211 if (zfs_minor == start) {
212 /*
213 * We are using all ~262,000 minor numbers for the
214 * current major number. Create a new major number.
215 */
216 if ((new_major = getudev()) == (major_t)-1) {
217 cmn_err(CE_WARN,
218 "zfs_mount: Can't get unique major "
219 "device number.");
220 return (-1);
221 }
222 mutex_enter(&zfs_dev_mtx);
223 zfs_major = new_major;
224 zfs_minor = 0;
225
226 mutex_exit(&zfs_dev_mtx);
227 } else {
228 break;
229 }
230 /* CONSTANTCONDITION */
231 } while (1);
232
233 return (0);
234 }
235
236 static void
atime_changed_cb(void * arg,uint64_t newval)237 atime_changed_cb(void *arg, uint64_t newval)
238 {
239 zfsvfs_t *zfsvfs = arg;
240
241 if (newval == TRUE) {
242 zfsvfs->z_atime = TRUE;
243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245 } else {
246 zfsvfs->z_atime = FALSE;
247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
249 }
250 }
251
252 static void
xattr_changed_cb(void * arg,uint64_t newval)253 xattr_changed_cb(void *arg, uint64_t newval)
254 {
255 zfsvfs_t *zfsvfs = arg;
256
257 if (newval == TRUE) {
258 /* XXX locking on vfs_flag? */
259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262 } else {
263 /* XXX locking on vfs_flag? */
264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267 }
268 }
269
270 static void
blksz_changed_cb(void * arg,uint64_t newval)271 blksz_changed_cb(void *arg, uint64_t newval)
272 {
273 zfsvfs_t *zfsvfs = arg;
274
275 if (newval < SPA_MINBLOCKSIZE ||
276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277 newval = SPA_MAXBLOCKSIZE;
278
279 zfsvfs->z_max_blksz = newval;
280 zfsvfs->z_vfs->vfs_bsize = newval;
281 }
282
283 static void
readonly_changed_cb(void * arg,uint64_t newval)284 readonly_changed_cb(void *arg, uint64_t newval)
285 {
286 zfsvfs_t *zfsvfs = arg;
287
288 if (newval) {
289 /* XXX locking on vfs_flag? */
290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 } else {
294 /* XXX locking on vfs_flag? */
295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298 }
299 }
300
301 static void
devices_changed_cb(void * arg,uint64_t newval)302 devices_changed_cb(void *arg, uint64_t newval)
303 {
304 zfsvfs_t *zfsvfs = arg;
305
306 if (newval == FALSE) {
307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 } else {
311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314 }
315 }
316
317 static void
setuid_changed_cb(void * arg,uint64_t newval)318 setuid_changed_cb(void *arg, uint64_t newval)
319 {
320 zfsvfs_t *zfsvfs = arg;
321
322 if (newval == FALSE) {
323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 } else {
327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330 }
331 }
332
333 static void
exec_changed_cb(void * arg,uint64_t newval)334 exec_changed_cb(void *arg, uint64_t newval)
335 {
336 zfsvfs_t *zfsvfs = arg;
337
338 if (newval == FALSE) {
339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 } else {
343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346 }
347 }
348
349 /*
350 * The nbmand mount option can be changed at mount time.
351 * We can't allow it to be toggled on live file systems or incorrect
352 * behavior may be seen from cifs clients
353 *
354 * This property isn't registered via dsl_prop_register(), but this callback
355 * will be called when a file system is first mounted
356 */
357 static void
nbmand_changed_cb(void * arg,uint64_t newval)358 nbmand_changed_cb(void *arg, uint64_t newval)
359 {
360 zfsvfs_t *zfsvfs = arg;
361 if (newval == FALSE) {
362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 } else {
365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367 }
368 }
369
370 static void
snapdir_changed_cb(void * arg,uint64_t newval)371 snapdir_changed_cb(void *arg, uint64_t newval)
372 {
373 zfsvfs_t *zfsvfs = arg;
374
375 zfsvfs->z_show_ctldir = newval;
376 }
377
378 static void
vscan_changed_cb(void * arg,uint64_t newval)379 vscan_changed_cb(void *arg, uint64_t newval)
380 {
381 zfsvfs_t *zfsvfs = arg;
382
383 zfsvfs->z_vscan = newval;
384 }
385
386 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)387 acl_inherit_changed_cb(void *arg, uint64_t newval)
388 {
389 zfsvfs_t *zfsvfs = arg;
390
391 zfsvfs->z_acl_inherit = newval;
392 }
393
394 static int
zfs_register_callbacks(vfs_t * vfsp)395 zfs_register_callbacks(vfs_t *vfsp)
396 {
397 struct dsl_dataset *ds = NULL;
398 objset_t *os = NULL;
399 zfsvfs_t *zfsvfs = NULL;
400 uint64_t nbmand;
401 int readonly, do_readonly = B_FALSE;
402 int setuid, do_setuid = B_FALSE;
403 int exec, do_exec = B_FALSE;
404 int devices, do_devices = B_FALSE;
405 int xattr, do_xattr = B_FALSE;
406 int atime, do_atime = B_FALSE;
407 int error = 0;
408
409 ASSERT(vfsp);
410 zfsvfs = vfsp->vfs_data;
411 ASSERT(zfsvfs);
412 os = zfsvfs->z_os;
413
414 /*
415 * The act of registering our callbacks will destroy any mount
416 * options we may have. In order to enable temporary overrides
417 * of mount options, we stash away the current values and
418 * restore them after we register the callbacks.
419 */
420 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
421 !spa_writeable(dmu_objset_spa(os))) {
422 readonly = B_TRUE;
423 do_readonly = B_TRUE;
424 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
425 readonly = B_FALSE;
426 do_readonly = B_TRUE;
427 }
428 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
429 devices = B_FALSE;
430 setuid = B_FALSE;
431 do_devices = B_TRUE;
432 do_setuid = B_TRUE;
433 } else {
434 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
435 devices = B_FALSE;
436 do_devices = B_TRUE;
437 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
438 devices = B_TRUE;
439 do_devices = B_TRUE;
440 }
441
442 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
443 setuid = B_FALSE;
444 do_setuid = B_TRUE;
445 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
446 setuid = B_TRUE;
447 do_setuid = B_TRUE;
448 }
449 }
450 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
451 exec = B_FALSE;
452 do_exec = B_TRUE;
453 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
454 exec = B_TRUE;
455 do_exec = B_TRUE;
456 }
457 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
458 xattr = B_FALSE;
459 do_xattr = B_TRUE;
460 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
461 xattr = B_TRUE;
462 do_xattr = B_TRUE;
463 }
464 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
465 atime = B_FALSE;
466 do_atime = B_TRUE;
467 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
468 atime = B_TRUE;
469 do_atime = B_TRUE;
470 }
471
472 /*
473 * nbmand is a special property. It can only be changed at
474 * mount time.
475 *
476 * This is weird, but it is documented to only be changeable
477 * at mount time.
478 */
479 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
480 nbmand = B_FALSE;
481 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
482 nbmand = B_TRUE;
483 } else {
484 char osname[MAXNAMELEN];
485
486 dmu_objset_name(os, osname);
487 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
488 NULL)) {
489 return (error);
490 }
491 }
492
493 /*
494 * Register property callbacks.
495 *
496 * It would probably be fine to just check for i/o error from
497 * the first prop_register(), but I guess I like to go
498 * overboard...
499 */
500 ds = dmu_objset_ds(os);
501 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 "xattr", xattr_changed_cb, zfsvfs);
504 error = error ? error : dsl_prop_register(ds,
505 "recordsize", blksz_changed_cb, zfsvfs);
506 error = error ? error : dsl_prop_register(ds,
507 "readonly", readonly_changed_cb, zfsvfs);
508 error = error ? error : dsl_prop_register(ds,
509 "devices", devices_changed_cb, zfsvfs);
510 error = error ? error : dsl_prop_register(ds,
511 "setuid", setuid_changed_cb, zfsvfs);
512 error = error ? error : dsl_prop_register(ds,
513 "exec", exec_changed_cb, zfsvfs);
514 error = error ? error : dsl_prop_register(ds,
515 "snapdir", snapdir_changed_cb, zfsvfs);
516 error = error ? error : dsl_prop_register(ds,
517 "aclinherit", acl_inherit_changed_cb, zfsvfs);
518 error = error ? error : dsl_prop_register(ds,
519 "vscan", vscan_changed_cb, zfsvfs);
520 if (error)
521 goto unregister;
522
523 /*
524 * Invoke our callbacks to restore temporary mount options.
525 */
526 if (do_readonly)
527 readonly_changed_cb(zfsvfs, readonly);
528 if (do_setuid)
529 setuid_changed_cb(zfsvfs, setuid);
530 if (do_exec)
531 exec_changed_cb(zfsvfs, exec);
532 if (do_devices)
533 devices_changed_cb(zfsvfs, devices);
534 if (do_xattr)
535 xattr_changed_cb(zfsvfs, xattr);
536 if (do_atime)
537 atime_changed_cb(zfsvfs, atime);
538
539 nbmand_changed_cb(zfsvfs, nbmand);
540
541 return (0);
542
543 unregister:
544 /*
545 * We may attempt to unregister some callbacks that are not
546 * registered, but this is OK; it will simply return ENOMSG,
547 * which we will ignore.
548 */
549 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
550 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
551 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
552 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
553 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
554 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
555 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
556 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
557 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
558 zfsvfs);
559 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
560 return (error);
561
562 }
563
564 static int
zfs_space_delta_cb(dmu_object_type_t bonustype,void * data,uint64_t * userp,uint64_t * groupp)565 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566 uint64_t *userp, uint64_t *groupp)
567 {
568 znode_phys_t *znp = data;
569 int error = 0;
570
571 /*
572 * Is it a valid type of object to track?
573 */
574 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
575 return (ENOENT);
576
577 /*
578 * If we have a NULL data pointer
579 * then assume the id's aren't changing and
580 * return EEXIST to the dmu to let it know to
581 * use the same ids
582 */
583 if (data == NULL)
584 return (EEXIST);
585
586 if (bonustype == DMU_OT_ZNODE) {
587 *userp = znp->zp_uid;
588 *groupp = znp->zp_gid;
589 } else {
590 int hdrsize;
591
592 ASSERT(bonustype == DMU_OT_SA);
593 hdrsize = sa_hdrsize(data);
594
595 if (hdrsize != 0) {
596 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
597 SA_UID_OFFSET));
598 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
599 SA_GID_OFFSET));
600 } else {
601 /*
602 * This should only happen for newly created
603 * files that haven't had the znode data filled
604 * in yet.
605 */
606 *userp = 0;
607 *groupp = 0;
608 }
609 }
610 return (error);
611 }
612
613 static void
fuidstr_to_sid(zfsvfs_t * zfsvfs,const char * fuidstr,char * domainbuf,int buflen,uid_t * ridp)614 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
615 char *domainbuf, int buflen, uid_t *ridp)
616 {
617 uint64_t fuid;
618 const char *domain;
619
620 fuid = strtonum(fuidstr, NULL);
621
622 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
623 if (domain)
624 (void) strlcpy(domainbuf, domain, buflen);
625 else
626 domainbuf[0] = '\0';
627 *ridp = FUID_RID(fuid);
628 }
629
630 static uint64_t
zfs_userquota_prop_to_obj(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type)631 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
632 {
633 switch (type) {
634 case ZFS_PROP_USERUSED:
635 return (DMU_USERUSED_OBJECT);
636 case ZFS_PROP_GROUPUSED:
637 return (DMU_GROUPUSED_OBJECT);
638 case ZFS_PROP_USERQUOTA:
639 return (zfsvfs->z_userquota_obj);
640 case ZFS_PROP_GROUPQUOTA:
641 return (zfsvfs->z_groupquota_obj);
642 }
643 return (0);
644 }
645
646 int
zfs_userspace_many(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,uint64_t * cookiep,void * vbuf,uint64_t * bufsizep)647 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
648 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
649 {
650 int error;
651 zap_cursor_t zc;
652 zap_attribute_t za;
653 zfs_useracct_t *buf = vbuf;
654 uint64_t obj;
655
656 if (!dmu_objset_userspace_present(zfsvfs->z_os))
657 return (ENOTSUP);
658
659 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
660 if (obj == 0) {
661 *bufsizep = 0;
662 return (0);
663 }
664
665 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
666 (error = zap_cursor_retrieve(&zc, &za)) == 0;
667 zap_cursor_advance(&zc)) {
668 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
669 *bufsizep)
670 break;
671
672 fuidstr_to_sid(zfsvfs, za.za_name,
673 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
674
675 buf->zu_space = za.za_first_integer;
676 buf++;
677 }
678 if (error == ENOENT)
679 error = 0;
680
681 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
682 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
683 *cookiep = zap_cursor_serialize(&zc);
684 zap_cursor_fini(&zc);
685 return (error);
686 }
687
688 /*
689 * buf must be big enough (eg, 32 bytes)
690 */
691 static int
id_to_fuidstr(zfsvfs_t * zfsvfs,const char * domain,uid_t rid,char * buf,boolean_t addok)692 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
693 char *buf, boolean_t addok)
694 {
695 uint64_t fuid;
696 int domainid = 0;
697
698 if (domain && domain[0]) {
699 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
700 if (domainid == -1)
701 return (ENOENT);
702 }
703 fuid = FUID_ENCODE(domainid, rid);
704 (void) sprintf(buf, "%llx", (longlong_t)fuid);
705 return (0);
706 }
707
708 int
zfs_userspace_one(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,const char * domain,uint64_t rid,uint64_t * valp)709 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
710 const char *domain, uint64_t rid, uint64_t *valp)
711 {
712 char buf[32];
713 int err;
714 uint64_t obj;
715
716 *valp = 0;
717
718 if (!dmu_objset_userspace_present(zfsvfs->z_os))
719 return (ENOTSUP);
720
721 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
722 if (obj == 0)
723 return (0);
724
725 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
726 if (err)
727 return (err);
728
729 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
730 if (err == ENOENT)
731 err = 0;
732 return (err);
733 }
734
735 int
zfs_set_userquota(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,const char * domain,uint64_t rid,uint64_t quota)736 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
737 const char *domain, uint64_t rid, uint64_t quota)
738 {
739 char buf[32];
740 int err;
741 dmu_tx_t *tx;
742 uint64_t *objp;
743 boolean_t fuid_dirtied;
744
745 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
746 return (EINVAL);
747
748 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
749 return (ENOTSUP);
750
751 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
752 &zfsvfs->z_groupquota_obj;
753
754 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
755 if (err)
756 return (err);
757 fuid_dirtied = zfsvfs->z_fuid_dirty;
758
759 tx = dmu_tx_create(zfsvfs->z_os);
760 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
761 if (*objp == 0) {
762 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
763 zfs_userquota_prop_prefixes[type]);
764 }
765 if (fuid_dirtied)
766 zfs_fuid_txhold(zfsvfs, tx);
767 err = dmu_tx_assign(tx, TXG_WAIT);
768 if (err) {
769 dmu_tx_abort(tx);
770 return (err);
771 }
772
773 mutex_enter(&zfsvfs->z_lock);
774 if (*objp == 0) {
775 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
776 DMU_OT_NONE, 0, tx);
777 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
778 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
779 }
780 mutex_exit(&zfsvfs->z_lock);
781
782 if (quota == 0) {
783 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
784 if (err == ENOENT)
785 err = 0;
786 } else {
787 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
788 }
789 ASSERT(err == 0);
790 if (fuid_dirtied)
791 zfs_fuid_sync(zfsvfs, tx);
792 dmu_tx_commit(tx);
793 return (err);
794 }
795
796 boolean_t
zfs_fuid_overquota(zfsvfs_t * zfsvfs,boolean_t isgroup,uint64_t fuid)797 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
798 {
799 char buf[32];
800 uint64_t used, quota, usedobj, quotaobj;
801 int err;
802
803 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
804 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
805
806 if (quotaobj == 0 || zfsvfs->z_replay)
807 return (B_FALSE);
808
809 (void) sprintf(buf, "%llx", (longlong_t)fuid);
810 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
811 if (err != 0)
812 return (B_FALSE);
813
814 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
815 if (err != 0)
816 return (B_FALSE);
817 return (used >= quota);
818 }
819
820 boolean_t
zfs_owner_overquota(zfsvfs_t * zfsvfs,znode_t * zp,boolean_t isgroup)821 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
822 {
823 uint64_t fuid;
824 uint64_t quotaobj;
825
826 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
827
828 fuid = isgroup ? zp->z_gid : zp->z_uid;
829
830 if (quotaobj == 0 || zfsvfs->z_replay)
831 return (B_FALSE);
832
833 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
834 }
835
836 int
zfsvfs_create(const char * osname,zfsvfs_t ** zfvp)837 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
838 {
839 objset_t *os;
840 zfsvfs_t *zfsvfs;
841 uint64_t zval;
842 int i, error;
843 uint64_t sa_obj;
844
845 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
846
847 /*
848 * We claim to always be readonly so we can open snapshots;
849 * other ZPL code will prevent us from writing to snapshots.
850 */
851 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
852 if (error) {
853 kmem_free(zfsvfs, sizeof (zfsvfs_t));
854 return (error);
855 }
856
857 /*
858 * Initialize the zfs-specific filesystem structure.
859 * Should probably make this a kmem cache, shuffle fields,
860 * and just bzero up to z_hold_mtx[].
861 */
862 zfsvfs->z_vfs = NULL;
863 zfsvfs->z_parent = zfsvfs;
864 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
865 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
866 zfsvfs->z_os = os;
867
868 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
869 if (error) {
870 goto out;
871 } else if (zfsvfs->z_version >
872 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
873 (void) printf("Can't mount a version %lld file system "
874 "on a version %lld pool\n. Pool must be upgraded to mount "
875 "this file system.", (u_longlong_t)zfsvfs->z_version,
876 (u_longlong_t)spa_version(dmu_objset_spa(os)));
877 error = ENOTSUP;
878 goto out;
879 }
880 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
881 goto out;
882 zfsvfs->z_norm = (int)zval;
883
884 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
885 goto out;
886 zfsvfs->z_utf8 = (zval != 0);
887
888 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
889 goto out;
890 zfsvfs->z_case = (uint_t)zval;
891
892 /*
893 * Fold case on file systems that are always or sometimes case
894 * insensitive.
895 */
896 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
897 zfsvfs->z_case == ZFS_CASE_MIXED)
898 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
899
900 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
901 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
902
903 if (zfsvfs->z_use_sa) {
904 /* should either have both of these objects or none */
905 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
906 &sa_obj);
907 if (error)
908 return (error);
909 } else {
910 /*
911 * Pre SA versions file systems should never touch
912 * either the attribute registration or layout objects.
913 */
914 sa_obj = 0;
915 }
916
917 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
918 &zfsvfs->z_attr_table);
919 if (error)
920 goto out;
921
922 if (zfsvfs->z_version >= ZPL_VERSION_SA)
923 sa_register_update_callback(os, zfs_sa_upgrade);
924
925 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
926 &zfsvfs->z_root);
927 if (error)
928 goto out;
929 ASSERT(zfsvfs->z_root != 0);
930
931 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
932 &zfsvfs->z_unlinkedobj);
933 if (error)
934 goto out;
935
936 error = zap_lookup(os, MASTER_NODE_OBJ,
937 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
938 8, 1, &zfsvfs->z_userquota_obj);
939 if (error && error != ENOENT)
940 goto out;
941
942 error = zap_lookup(os, MASTER_NODE_OBJ,
943 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
944 8, 1, &zfsvfs->z_groupquota_obj);
945 if (error && error != ENOENT)
946 goto out;
947
948 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
949 &zfsvfs->z_fuid_obj);
950 if (error && error != ENOENT)
951 goto out;
952
953 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
954 &zfsvfs->z_shares_dir);
955 if (error && error != ENOENT)
956 goto out;
957
958 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
959 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
960 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
961 offsetof(znode_t, z_link_node));
962 rrw_init(&zfsvfs->z_teardown_lock);
963 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
964 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
965 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
966 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
967
968 *zfvp = zfsvfs;
969 return (0);
970
971 out:
972 dmu_objset_disown(os, zfsvfs);
973 *zfvp = NULL;
974 kmem_free(zfsvfs, sizeof (zfsvfs_t));
975 return (error);
976 }
977
978 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)979 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
980 {
981 int error;
982
983 error = zfs_register_callbacks(zfsvfs->z_vfs);
984 if (error)
985 return (error);
986
987 /*
988 * Set the objset user_ptr to track its zfsvfs.
989 */
990 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
991 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
992 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
993
994 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
995
996 /*
997 * If we are not mounting (ie: online recv), then we don't
998 * have to worry about replaying the log as we blocked all
999 * operations out since we closed the ZIL.
1000 */
1001 if (mounting) {
1002 boolean_t readonly;
1003
1004 /*
1005 * During replay we remove the read only flag to
1006 * allow replays to succeed.
1007 */
1008 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1009 if (readonly != 0)
1010 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1011 else
1012 zfs_unlinked_drain(zfsvfs);
1013
1014 /*
1015 * Parse and replay the intent log.
1016 *
1017 * Because of ziltest, this must be done after
1018 * zfs_unlinked_drain(). (Further note: ziltest
1019 * doesn't use readonly mounts, where
1020 * zfs_unlinked_drain() isn't called.) This is because
1021 * ziltest causes spa_sync() to think it's committed,
1022 * but actually it is not, so the intent log contains
1023 * many txg's worth of changes.
1024 *
1025 * In particular, if object N is in the unlinked set in
1026 * the last txg to actually sync, then it could be
1027 * actually freed in a later txg and then reallocated
1028 * in a yet later txg. This would write a "create
1029 * object N" record to the intent log. Normally, this
1030 * would be fine because the spa_sync() would have
1031 * written out the fact that object N is free, before
1032 * we could write the "create object N" intent log
1033 * record.
1034 *
1035 * But when we are in ziltest mode, we advance the "open
1036 * txg" without actually spa_sync()-ing the changes to
1037 * disk. So we would see that object N is still
1038 * allocated and in the unlinked set, and there is an
1039 * intent log record saying to allocate it.
1040 */
1041 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1042 if (zil_replay_disable) {
1043 zil_destroy(zfsvfs->z_log, B_FALSE);
1044 } else {
1045 zfsvfs->z_replay = B_TRUE;
1046 zil_replay(zfsvfs->z_os, zfsvfs,
1047 zfs_replay_vector);
1048 zfsvfs->z_replay = B_FALSE;
1049 }
1050 }
1051 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1052 }
1053
1054 return (0);
1055 }
1056
1057 void
zfsvfs_free(zfsvfs_t * zfsvfs)1058 zfsvfs_free(zfsvfs_t *zfsvfs)
1059 {
1060 int i;
1061 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1062
1063 /*
1064 * This is a barrier to prevent the filesystem from going away in
1065 * zfs_znode_move() until we can safely ensure that the filesystem is
1066 * not unmounted. We consider the filesystem valid before the barrier
1067 * and invalid after the barrier.
1068 */
1069 rw_enter(&zfsvfs_lock, RW_READER);
1070 rw_exit(&zfsvfs_lock);
1071
1072 zfs_fuid_destroy(zfsvfs);
1073
1074 mutex_destroy(&zfsvfs->z_znodes_lock);
1075 mutex_destroy(&zfsvfs->z_lock);
1076 list_destroy(&zfsvfs->z_all_znodes);
1077 rrw_destroy(&zfsvfs->z_teardown_lock);
1078 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1079 rw_destroy(&zfsvfs->z_fuid_lock);
1080 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1081 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1082 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1083 }
1084
1085 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)1086 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1087 {
1088 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1089 if (zfsvfs->z_vfs) {
1090 if (zfsvfs->z_use_fuids) {
1091 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1092 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1093 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1094 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1097 } else {
1098 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1099 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1100 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1101 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1102 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1103 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1104 }
1105 }
1106 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1107 }
1108
1109 static int
zfs_domount(vfs_t * vfsp,char * osname)1110 zfs_domount(vfs_t *vfsp, char *osname)
1111 {
1112 dev_t mount_dev;
1113 uint64_t recordsize, fsid_guid;
1114 int error = 0;
1115 zfsvfs_t *zfsvfs;
1116
1117 ASSERT(vfsp);
1118 ASSERT(osname);
1119
1120 error = zfsvfs_create(osname, &zfsvfs);
1121 if (error)
1122 return (error);
1123 zfsvfs->z_vfs = vfsp;
1124
1125 /* Initialize the generic filesystem structure. */
1126 vfsp->vfs_bcount = 0;
1127 vfsp->vfs_data = NULL;
1128
1129 if (zfs_create_unique_device(&mount_dev) == -1) {
1130 error = ENODEV;
1131 goto out;
1132 }
1133 ASSERT(vfs_devismounted(mount_dev) == 0);
1134
1135 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1136 NULL))
1137 goto out;
1138
1139 vfsp->vfs_dev = mount_dev;
1140 vfsp->vfs_fstype = zfsfstype;
1141 vfsp->vfs_bsize = recordsize;
1142 vfsp->vfs_flag |= VFS_NOTRUNC;
1143 vfsp->vfs_data = zfsvfs;
1144
1145 /*
1146 * The fsid is 64 bits, composed of an 8-bit fs type, which
1147 * separates our fsid from any other filesystem types, and a
1148 * 56-bit objset unique ID. The objset unique ID is unique to
1149 * all objsets open on this system, provided by unique_create().
1150 * The 8-bit fs type must be put in the low bits of fsid[1]
1151 * because that's where other Solaris filesystems put it.
1152 */
1153 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1154 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1155 vfsp->vfs_fsid.val[0] = fsid_guid;
1156 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1157 zfsfstype & 0xFF;
1158
1159 /*
1160 * Set features for file system.
1161 */
1162 zfs_set_fuid_feature(zfsvfs);
1163 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1164 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1165 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1166 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1167 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1168 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1169 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1170 }
1171 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1172
1173 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1174 uint64_t pval;
1175
1176 atime_changed_cb(zfsvfs, B_FALSE);
1177 readonly_changed_cb(zfsvfs, B_TRUE);
1178 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1179 goto out;
1180 xattr_changed_cb(zfsvfs, pval);
1181 zfsvfs->z_issnap = B_TRUE;
1182 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1183
1184 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1185 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1186 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1187 } else {
1188 error = zfsvfs_setup(zfsvfs, B_TRUE);
1189 }
1190
1191 if (!zfsvfs->z_issnap)
1192 zfsctl_create(zfsvfs);
1193 out:
1194 if (error) {
1195 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1196 zfsvfs_free(zfsvfs);
1197 } else {
1198 atomic_add_32(&zfs_active_fs_count, 1);
1199 }
1200
1201 return (error);
1202 }
1203
1204 void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)1205 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1206 {
1207 objset_t *os = zfsvfs->z_os;
1208 struct dsl_dataset *ds;
1209
1210 /*
1211 * Unregister properties.
1212 */
1213 if (!dmu_objset_is_snapshot(os)) {
1214 ds = dmu_objset_ds(os);
1215 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1216 zfsvfs) == 0);
1217
1218 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1219 zfsvfs) == 0);
1220
1221 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1222 zfsvfs) == 0);
1223
1224 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1225 zfsvfs) == 0);
1226
1227 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1228 zfsvfs) == 0);
1229
1230 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1231 zfsvfs) == 0);
1232
1233 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1234 zfsvfs) == 0);
1235
1236 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1237 zfsvfs) == 0);
1238
1239 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1240 acl_inherit_changed_cb, zfsvfs) == 0);
1241
1242 VERIFY(dsl_prop_unregister(ds, "vscan",
1243 vscan_changed_cb, zfsvfs) == 0);
1244 }
1245 }
1246
1247 /*
1248 * Convert a decimal digit string to a uint64_t integer.
1249 */
1250 static int
str_to_uint64(char * str,uint64_t * objnum)1251 str_to_uint64(char *str, uint64_t *objnum)
1252 {
1253 uint64_t num = 0;
1254
1255 while (*str) {
1256 if (*str < '0' || *str > '9')
1257 return (EINVAL);
1258
1259 num = num*10 + *str++ - '0';
1260 }
1261
1262 *objnum = num;
1263 return (0);
1264 }
1265
1266 /*
1267 * The boot path passed from the boot loader is in the form of
1268 * "rootpool-name/root-filesystem-object-number'. Convert this
1269 * string to a dataset name: "rootpool-name/root-filesystem-name".
1270 */
1271 static int
zfs_parse_bootfs(char * bpath,char * outpath)1272 zfs_parse_bootfs(char *bpath, char *outpath)
1273 {
1274 char *slashp;
1275 uint64_t objnum;
1276 int error;
1277
1278 if (*bpath == 0 || *bpath == '/')
1279 return (EINVAL);
1280
1281 (void) strcpy(outpath, bpath);
1282
1283 slashp = strchr(bpath, '/');
1284
1285 /* if no '/', just return the pool name */
1286 if (slashp == NULL) {
1287 return (0);
1288 }
1289
1290 /* if not a number, just return the root dataset name */
1291 if (str_to_uint64(slashp+1, &objnum)) {
1292 return (0);
1293 }
1294
1295 *slashp = '\0';
1296 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1297 *slashp = '/';
1298
1299 return (error);
1300 }
1301
1302 /*
1303 * zfs_check_global_label:
1304 * Check that the hex label string is appropriate for the dataset
1305 * being mounted into the global_zone proper.
1306 *
1307 * Return an error if the hex label string is not default or
1308 * admin_low/admin_high. For admin_low labels, the corresponding
1309 * dataset must be readonly.
1310 */
1311 int
zfs_check_global_label(const char * dsname,const char * hexsl)1312 zfs_check_global_label(const char *dsname, const char *hexsl)
1313 {
1314 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1315 return (0);
1316 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1317 return (0);
1318 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1319 /* must be readonly */
1320 uint64_t rdonly;
1321
1322 if (dsl_prop_get_integer(dsname,
1323 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1324 return (EACCES);
1325 return (rdonly ? 0 : EACCES);
1326 }
1327 return (EACCES);
1328 }
1329
1330 /*
1331 * zfs_mount_label_policy:
1332 * Determine whether the mount is allowed according to MAC check.
1333 * by comparing (where appropriate) label of the dataset against
1334 * the label of the zone being mounted into. If the dataset has
1335 * no label, create one.
1336 *
1337 * Returns:
1338 * 0 : access allowed
1339 * >0 : error code, such as EACCES
1340 */
1341 static int
zfs_mount_label_policy(vfs_t * vfsp,char * osname)1342 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1343 {
1344 int error, retv;
1345 zone_t *mntzone = NULL;
1346 ts_label_t *mnt_tsl;
1347 bslabel_t *mnt_sl;
1348 bslabel_t ds_sl;
1349 char ds_hexsl[MAXNAMELEN];
1350
1351 retv = EACCES; /* assume the worst */
1352
1353 /*
1354 * Start by getting the dataset label if it exists.
1355 */
1356 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1357 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1358 if (error)
1359 return (EACCES);
1360
1361 /*
1362 * If labeling is NOT enabled, then disallow the mount of datasets
1363 * which have a non-default label already. No other label checks
1364 * are needed.
1365 */
1366 if (!is_system_labeled()) {
1367 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1368 return (0);
1369 return (EACCES);
1370 }
1371
1372 /*
1373 * Get the label of the mountpoint. If mounting into the global
1374 * zone (i.e. mountpoint is not within an active zone and the
1375 * zoned property is off), the label must be default or
1376 * admin_low/admin_high only; no other checks are needed.
1377 */
1378 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1379 if (mntzone->zone_id == GLOBAL_ZONEID) {
1380 uint64_t zoned;
1381
1382 zone_rele(mntzone);
1383
1384 if (dsl_prop_get_integer(osname,
1385 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1386 return (EACCES);
1387 if (!zoned)
1388 return (zfs_check_global_label(osname, ds_hexsl));
1389 else
1390 /*
1391 * This is the case of a zone dataset being mounted
1392 * initially, before the zone has been fully created;
1393 * allow this mount into global zone.
1394 */
1395 return (0);
1396 }
1397
1398 mnt_tsl = mntzone->zone_slabel;
1399 ASSERT(mnt_tsl != NULL);
1400 label_hold(mnt_tsl);
1401 mnt_sl = label2bslabel(mnt_tsl);
1402
1403 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1404 /*
1405 * The dataset doesn't have a real label, so fabricate one.
1406 */
1407 char *str = NULL;
1408
1409 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1410 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1411 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1412 retv = 0;
1413 if (str != NULL)
1414 kmem_free(str, strlen(str) + 1);
1415 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1416 /*
1417 * Now compare labels to complete the MAC check. If the
1418 * labels are equal then allow access. If the mountpoint
1419 * label dominates the dataset label, allow readonly access.
1420 * Otherwise, access is denied.
1421 */
1422 if (blequal(mnt_sl, &ds_sl))
1423 retv = 0;
1424 else if (bldominates(mnt_sl, &ds_sl)) {
1425 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1426 retv = 0;
1427 }
1428 }
1429
1430 label_rele(mnt_tsl);
1431 zone_rele(mntzone);
1432 return (retv);
1433 }
1434
1435 static int
zfs_mountroot(vfs_t * vfsp,enum whymountroot why)1436 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1437 {
1438 int error = 0;
1439 static int zfsrootdone = 0;
1440 zfsvfs_t *zfsvfs = NULL;
1441 znode_t *zp = NULL;
1442 vnode_t *vp = NULL;
1443 char *zfs_bootfs;
1444 char *zfs_devid;
1445
1446 ASSERT(vfsp);
1447
1448 /*
1449 * The filesystem that we mount as root is defined in the
1450 * boot property "zfs-bootfs" with a format of
1451 * "poolname/root-dataset-objnum".
1452 */
1453 if (why == ROOT_INIT) {
1454 if (zfsrootdone++)
1455 return (EBUSY);
1456 /*
1457 * the process of doing a spa_load will require the
1458 * clock to be set before we could (for example) do
1459 * something better by looking at the timestamp on
1460 * an uberblock, so just set it to -1.
1461 */
1462 clkset(-1);
1463
1464 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1465 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1466 "bootfs name");
1467 return (EINVAL);
1468 }
1469 zfs_devid = spa_get_bootprop("diskdevid");
1470 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1471 if (zfs_devid)
1472 spa_free_bootprop(zfs_devid);
1473 if (error) {
1474 spa_free_bootprop(zfs_bootfs);
1475 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1476 error);
1477 return (error);
1478 }
1479 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1480 spa_free_bootprop(zfs_bootfs);
1481 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1482 error);
1483 return (error);
1484 }
1485
1486 spa_free_bootprop(zfs_bootfs);
1487
1488 if (error = vfs_lock(vfsp))
1489 return (error);
1490
1491 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1492 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1493 goto out;
1494 }
1495
1496 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1497 ASSERT(zfsvfs);
1498 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1499 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1500 goto out;
1501 }
1502
1503 vp = ZTOV(zp);
1504 mutex_enter(&vp->v_lock);
1505 vp->v_flag |= VROOT;
1506 mutex_exit(&vp->v_lock);
1507 rootvp = vp;
1508
1509 /*
1510 * Leave rootvp held. The root file system is never unmounted.
1511 */
1512
1513 vfs_add((struct vnode *)0, vfsp,
1514 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1515 out:
1516 vfs_unlock(vfsp);
1517 return (error);
1518 } else if (why == ROOT_REMOUNT) {
1519 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1520 vfsp->vfs_flag |= VFS_REMOUNT;
1521
1522 /* refresh mount options */
1523 zfs_unregister_callbacks(vfsp->vfs_data);
1524 return (zfs_register_callbacks(vfsp));
1525
1526 } else if (why == ROOT_UNMOUNT) {
1527 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1528 (void) zfs_sync(vfsp, 0, 0);
1529 return (0);
1530 }
1531
1532 /*
1533 * if "why" is equal to anything else other than ROOT_INIT,
1534 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1535 */
1536 return (ENOTSUP);
1537 }
1538
1539 /*ARGSUSED*/
1540 static int
zfs_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)1541 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1542 {
1543 char *osname;
1544 pathname_t spn;
1545 int error = 0;
1546 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1547 UIO_SYSSPACE : UIO_USERSPACE;
1548 int canwrite;
1549
1550 if (mvp->v_type != VDIR)
1551 return (ENOTDIR);
1552
1553 mutex_enter(&mvp->v_lock);
1554 if ((uap->flags & MS_REMOUNT) == 0 &&
1555 (uap->flags & MS_OVERLAY) == 0 &&
1556 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1557 mutex_exit(&mvp->v_lock);
1558 return (EBUSY);
1559 }
1560 mutex_exit(&mvp->v_lock);
1561
1562 /*
1563 * ZFS does not support passing unparsed data in via MS_DATA.
1564 * Users should use the MS_OPTIONSTR interface; this means
1565 * that all option parsing is already done and the options struct
1566 * can be interrogated.
1567 */
1568 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1569 return (EINVAL);
1570
1571 /*
1572 * Get the objset name (the "special" mount argument).
1573 */
1574 if (error = pn_get(uap->spec, fromspace, &spn))
1575 return (error);
1576
1577 osname = spn.pn_path;
1578
1579 /*
1580 * Check for mount privilege?
1581 *
1582 * If we don't have privilege then see if
1583 * we have local permission to allow it
1584 */
1585 error = secpolicy_fs_mount(cr, mvp, vfsp);
1586 if (error) {
1587 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1588 vattr_t vattr;
1589
1590 /*
1591 * Make sure user is the owner of the mount point
1592 * or has sufficient privileges.
1593 */
1594
1595 vattr.va_mask = AT_UID;
1596
1597 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1598 goto out;
1599 }
1600
1601 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1602 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1603 goto out;
1604 }
1605 secpolicy_fs_mount_clearopts(cr, vfsp);
1606 } else {
1607 goto out;
1608 }
1609 }
1610
1611 /*
1612 * Refuse to mount a filesystem if we are in a local zone and the
1613 * dataset is not visible.
1614 */
1615 if (!INGLOBALZONE(curproc) &&
1616 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1617 error = EPERM;
1618 goto out;
1619 }
1620
1621 error = zfs_mount_label_policy(vfsp, osname);
1622 if (error)
1623 goto out;
1624
1625 /*
1626 * When doing a remount, we simply refresh our temporary properties
1627 * according to those options set in the current VFS options.
1628 */
1629 if (uap->flags & MS_REMOUNT) {
1630 /* refresh mount options */
1631 zfs_unregister_callbacks(vfsp->vfs_data);
1632 error = zfs_register_callbacks(vfsp);
1633 goto out;
1634 }
1635
1636 error = zfs_domount(vfsp, osname);
1637
1638 /*
1639 * Add an extra VFS_HOLD on our parent vfs so that it can't
1640 * disappear due to a forced unmount.
1641 */
1642 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1643 VFS_HOLD(mvp->v_vfsp);
1644
1645 out:
1646 pn_free(&spn);
1647 return (error);
1648 }
1649
1650 static int
zfs_statvfs(vfs_t * vfsp,struct statvfs64 * statp)1651 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1652 {
1653 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1654 dev32_t d32;
1655 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1656
1657 ZFS_ENTER(zfsvfs);
1658
1659 dmu_objset_space(zfsvfs->z_os,
1660 &refdbytes, &availbytes, &usedobjs, &availobjs);
1661
1662 /*
1663 * The underlying storage pool actually uses multiple block sizes.
1664 * We report the fragsize as the smallest block size we support,
1665 * and we report our blocksize as the filesystem's maximum blocksize.
1666 */
1667 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1668 statp->f_bsize = zfsvfs->z_max_blksz;
1669
1670 /*
1671 * The following report "total" blocks of various kinds in the
1672 * file system, but reported in terms of f_frsize - the
1673 * "fragment" size.
1674 */
1675
1676 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1677 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1678 statp->f_bavail = statp->f_bfree; /* no root reservation */
1679
1680 /*
1681 * statvfs() should really be called statufs(), because it assumes
1682 * static metadata. ZFS doesn't preallocate files, so the best
1683 * we can do is report the max that could possibly fit in f_files,
1684 * and that minus the number actually used in f_ffree.
1685 * For f_ffree, report the smaller of the number of object available
1686 * and the number of blocks (each object will take at least a block).
1687 */
1688 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1689 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1690 statp->f_files = statp->f_ffree + usedobjs;
1691
1692 (void) cmpldev(&d32, vfsp->vfs_dev);
1693 statp->f_fsid = d32;
1694
1695 /*
1696 * We're a zfs filesystem.
1697 */
1698 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1699
1700 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1701
1702 statp->f_namemax = ZFS_MAXNAMELEN;
1703
1704 /*
1705 * We have all of 32 characters to stuff a string here.
1706 * Is there anything useful we could/should provide?
1707 */
1708 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1709
1710 ZFS_EXIT(zfsvfs);
1711 return (0);
1712 }
1713
1714 static int
zfs_root(vfs_t * vfsp,vnode_t ** vpp)1715 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1716 {
1717 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1718 znode_t *rootzp;
1719 int error;
1720
1721 ZFS_ENTER(zfsvfs);
1722
1723 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1724 if (error == 0)
1725 *vpp = ZTOV(rootzp);
1726
1727 ZFS_EXIT(zfsvfs);
1728 return (error);
1729 }
1730
1731 /*
1732 * Teardown the zfsvfs::z_os.
1733 *
1734 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1735 * and 'z_teardown_inactive_lock' held.
1736 */
1737 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1738 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1739 {
1740 znode_t *zp;
1741
1742 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1743
1744 if (!unmounting) {
1745 /*
1746 * We purge the parent filesystem's vfsp as the parent
1747 * filesystem and all of its snapshots have their vnode's
1748 * v_vfsp set to the parent's filesystem's vfsp. Note,
1749 * 'z_parent' is self referential for non-snapshots.
1750 */
1751 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1752 }
1753
1754 /*
1755 * Close the zil. NB: Can't close the zil while zfs_inactive
1756 * threads are blocked as zil_close can call zfs_inactive.
1757 */
1758 if (zfsvfs->z_log) {
1759 zil_close(zfsvfs->z_log);
1760 zfsvfs->z_log = NULL;
1761 }
1762
1763 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1764
1765 /*
1766 * If we are not unmounting (ie: online recv) and someone already
1767 * unmounted this file system while we were doing the switcheroo,
1768 * or a reopen of z_os failed then just bail out now.
1769 */
1770 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1771 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1772 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1773 return (EIO);
1774 }
1775
1776 /*
1777 * At this point there are no vops active, and any new vops will
1778 * fail with EIO since we have z_teardown_lock for writer (only
1779 * relavent for forced unmount).
1780 *
1781 * Release all holds on dbufs.
1782 */
1783 mutex_enter(&zfsvfs->z_znodes_lock);
1784 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1785 zp = list_next(&zfsvfs->z_all_znodes, zp))
1786 if (zp->z_sa_hdl) {
1787 ASSERT(ZTOV(zp)->v_count > 0);
1788 zfs_znode_dmu_fini(zp);
1789 }
1790 mutex_exit(&zfsvfs->z_znodes_lock);
1791
1792 /*
1793 * If we are unmounting, set the unmounted flag and let new vops
1794 * unblock. zfs_inactive will have the unmounted behavior, and all
1795 * other vops will fail with EIO.
1796 */
1797 if (unmounting) {
1798 zfsvfs->z_unmounted = B_TRUE;
1799 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1800 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1801 }
1802
1803 /*
1804 * z_os will be NULL if there was an error in attempting to reopen
1805 * zfsvfs, so just return as the properties had already been
1806 * unregistered and cached data had been evicted before.
1807 */
1808 if (zfsvfs->z_os == NULL)
1809 return (0);
1810
1811 /*
1812 * Unregister properties.
1813 */
1814 zfs_unregister_callbacks(zfsvfs);
1815
1816 /*
1817 * Evict cached data
1818 */
1819 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1820 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1821 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1822 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1823
1824 return (0);
1825 }
1826
1827 /*ARGSUSED*/
1828 static int
zfs_umount(vfs_t * vfsp,int fflag,cred_t * cr)1829 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1830 {
1831 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1832 objset_t *os;
1833 int ret;
1834
1835 ret = secpolicy_fs_unmount(cr, vfsp);
1836 if (ret) {
1837 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1838 ZFS_DELEG_PERM_MOUNT, cr))
1839 return (ret);
1840 }
1841
1842 /*
1843 * We purge the parent filesystem's vfsp as the parent filesystem
1844 * and all of its snapshots have their vnode's v_vfsp set to the
1845 * parent's filesystem's vfsp. Note, 'z_parent' is self
1846 * referential for non-snapshots.
1847 */
1848 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1849
1850 /*
1851 * Unmount any snapshots mounted under .zfs before unmounting the
1852 * dataset itself.
1853 */
1854 if (zfsvfs->z_ctldir != NULL &&
1855 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1856 return (ret);
1857 }
1858
1859 if (!(fflag & MS_FORCE)) {
1860 /*
1861 * Check the number of active vnodes in the file system.
1862 * Our count is maintained in the vfs structure, but the
1863 * number is off by 1 to indicate a hold on the vfs
1864 * structure itself.
1865 *
1866 * The '.zfs' directory maintains a reference of its
1867 * own, and any active references underneath are
1868 * reflected in the vnode count.
1869 */
1870 if (zfsvfs->z_ctldir == NULL) {
1871 if (vfsp->vfs_count > 1)
1872 return (EBUSY);
1873 } else {
1874 if (vfsp->vfs_count > 2 ||
1875 zfsvfs->z_ctldir->v_count > 1)
1876 return (EBUSY);
1877 }
1878 }
1879
1880 vfsp->vfs_flag |= VFS_UNMOUNTED;
1881
1882 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1883 os = zfsvfs->z_os;
1884
1885 /*
1886 * z_os will be NULL if there was an error in
1887 * attempting to reopen zfsvfs.
1888 */
1889 if (os != NULL) {
1890 /*
1891 * Unset the objset user_ptr.
1892 */
1893 mutex_enter(&os->os_user_ptr_lock);
1894 dmu_objset_set_user(os, NULL);
1895 mutex_exit(&os->os_user_ptr_lock);
1896
1897 /*
1898 * Finally release the objset
1899 */
1900 dmu_objset_disown(os, zfsvfs);
1901 }
1902
1903 /*
1904 * We can now safely destroy the '.zfs' directory node.
1905 */
1906 if (zfsvfs->z_ctldir != NULL)
1907 zfsctl_destroy(zfsvfs);
1908
1909 return (0);
1910 }
1911
1912 static int
zfs_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)1913 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1914 {
1915 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1916 znode_t *zp;
1917 uint64_t object = 0;
1918 uint64_t fid_gen = 0;
1919 uint64_t gen_mask;
1920 uint64_t zp_gen;
1921 int i, err;
1922
1923 *vpp = NULL;
1924
1925 ZFS_ENTER(zfsvfs);
1926
1927 if (fidp->fid_len == LONG_FID_LEN) {
1928 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1929 uint64_t objsetid = 0;
1930 uint64_t setgen = 0;
1931
1932 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1933 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1934
1935 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1936 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1937
1938 ZFS_EXIT(zfsvfs);
1939
1940 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1941 if (err)
1942 return (EINVAL);
1943 ZFS_ENTER(zfsvfs);
1944 }
1945
1946 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1947 zfid_short_t *zfid = (zfid_short_t *)fidp;
1948
1949 for (i = 0; i < sizeof (zfid->zf_object); i++)
1950 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1951
1952 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1953 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1954 } else {
1955 ZFS_EXIT(zfsvfs);
1956 return (EINVAL);
1957 }
1958
1959 /* A zero fid_gen means we are in the .zfs control directories */
1960 if (fid_gen == 0 &&
1961 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1962 *vpp = zfsvfs->z_ctldir;
1963 ASSERT(*vpp != NULL);
1964 if (object == ZFSCTL_INO_SNAPDIR) {
1965 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1966 0, NULL, NULL, NULL, NULL, NULL) == 0);
1967 } else {
1968 VN_HOLD(*vpp);
1969 }
1970 ZFS_EXIT(zfsvfs);
1971 return (0);
1972 }
1973
1974 gen_mask = -1ULL >> (64 - 8 * i);
1975
1976 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1977 if (err = zfs_zget(zfsvfs, object, &zp)) {
1978 ZFS_EXIT(zfsvfs);
1979 return (err);
1980 }
1981 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1982 sizeof (uint64_t));
1983 zp_gen = zp_gen & gen_mask;
1984 if (zp_gen == 0)
1985 zp_gen = 1;
1986 if (zp->z_unlinked || zp_gen != fid_gen) {
1987 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1988 VN_RELE(ZTOV(zp));
1989 ZFS_EXIT(zfsvfs);
1990 return (EINVAL);
1991 }
1992
1993 *vpp = ZTOV(zp);
1994 ZFS_EXIT(zfsvfs);
1995 return (0);
1996 }
1997
1998 /*
1999 * Block out VOPs and close zfsvfs_t::z_os
2000 *
2001 * Note, if successful, then we return with the 'z_teardown_lock' and
2002 * 'z_teardown_inactive_lock' write held.
2003 */
2004 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)2005 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2006 {
2007 int error;
2008
2009 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2010 return (error);
2011 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2012
2013 return (0);
2014 }
2015
2016 /*
2017 * Reopen zfsvfs_t::z_os and release VOPs.
2018 */
2019 int
zfs_resume_fs(zfsvfs_t * zfsvfs,const char * osname)2020 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2021 {
2022 int err;
2023
2024 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2025 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2026
2027 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2028 &zfsvfs->z_os);
2029 if (err) {
2030 zfsvfs->z_os = NULL;
2031 } else {
2032 znode_t *zp;
2033 uint64_t sa_obj = 0;
2034
2035 /*
2036 * Make sure version hasn't changed
2037 */
2038
2039 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2040 &zfsvfs->z_version);
2041
2042 if (err)
2043 goto bail;
2044
2045 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2046 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2047
2048 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2049 goto bail;
2050
2051 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2052 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2053 goto bail;
2054
2055 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2056 sa_register_update_callback(zfsvfs->z_os,
2057 zfs_sa_upgrade);
2058
2059 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2060
2061 zfs_set_fuid_feature(zfsvfs);
2062
2063 /*
2064 * Attempt to re-establish all the active znodes with
2065 * their dbufs. If a zfs_rezget() fails, then we'll let
2066 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2067 * when they try to use their znode.
2068 */
2069 mutex_enter(&zfsvfs->z_znodes_lock);
2070 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2071 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2072 (void) zfs_rezget(zp);
2073 }
2074 mutex_exit(&zfsvfs->z_znodes_lock);
2075 }
2076
2077 bail:
2078 /* release the VOPs */
2079 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2080 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2081
2082 if (err) {
2083 /*
2084 * Since we couldn't reopen zfsvfs::z_os, or
2085 * setup the sa framework force unmount this file system.
2086 */
2087 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2088 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2089 }
2090 return (err);
2091 }
2092
2093 static void
zfs_freevfs(vfs_t * vfsp)2094 zfs_freevfs(vfs_t *vfsp)
2095 {
2096 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2097
2098 /*
2099 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2100 * from zfs_mount(). Release it here. If we came through
2101 * zfs_mountroot() instead, we didn't grab an extra hold, so
2102 * skip the VFS_RELE for rootvfs.
2103 */
2104 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2105 VFS_RELE(zfsvfs->z_parent->z_vfs);
2106
2107 zfsvfs_free(zfsvfs);
2108
2109 atomic_add_32(&zfs_active_fs_count, -1);
2110 }
2111
2112 /*
2113 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2114 * so we can't safely do any non-idempotent initialization here.
2115 * Leave that to zfs_init() and zfs_fini(), which are called
2116 * from the module's _init() and _fini() entry points.
2117 */
2118 /*ARGSUSED*/
2119 static int
zfs_vfsinit(int fstype,char * name)2120 zfs_vfsinit(int fstype, char *name)
2121 {
2122 int error;
2123
2124 zfsfstype = fstype;
2125
2126 /*
2127 * Setup vfsops and vnodeops tables.
2128 */
2129 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2130 if (error != 0) {
2131 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2132 }
2133
2134 error = zfs_create_op_tables();
2135 if (error) {
2136 zfs_remove_op_tables();
2137 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2138 (void) vfs_freevfsops_by_type(zfsfstype);
2139 return (error);
2140 }
2141
2142 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2143
2144 /*
2145 * Unique major number for all zfs mounts.
2146 * If we run out of 32-bit minors, we'll getudev() another major.
2147 */
2148 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2149 zfs_minor = ZFS_MIN_MINOR;
2150
2151 return (0);
2152 }
2153
2154 void
zfs_init(void)2155 zfs_init(void)
2156 {
2157 /*
2158 * Initialize .zfs directory structures
2159 */
2160 zfsctl_init();
2161
2162 /*
2163 * Initialize znode cache, vnode ops, etc...
2164 */
2165 zfs_znode_init();
2166
2167 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2168 }
2169
2170 void
zfs_fini(void)2171 zfs_fini(void)
2172 {
2173 zfsctl_fini();
2174 zfs_znode_fini();
2175 }
2176
2177 int
zfs_busy(void)2178 zfs_busy(void)
2179 {
2180 return (zfs_active_fs_count != 0);
2181 }
2182
2183 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)2184 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2185 {
2186 int error;
2187 objset_t *os = zfsvfs->z_os;
2188 dmu_tx_t *tx;
2189
2190 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2191 return (EINVAL);
2192
2193 if (newvers < zfsvfs->z_version)
2194 return (EINVAL);
2195
2196 if (zfs_spa_version_map(newvers) >
2197 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2198 return (ENOTSUP);
2199
2200 tx = dmu_tx_create(os);
2201 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2202 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2203 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2204 ZFS_SA_ATTRS);
2205 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2206 }
2207 error = dmu_tx_assign(tx, TXG_WAIT);
2208 if (error) {
2209 dmu_tx_abort(tx);
2210 return (error);
2211 }
2212
2213 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2214 8, 1, &newvers, tx);
2215
2216 if (error) {
2217 dmu_tx_commit(tx);
2218 return (error);
2219 }
2220
2221 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2222 uint64_t sa_obj;
2223
2224 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2225 SPA_VERSION_SA);
2226 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2227 DMU_OT_NONE, 0, tx);
2228
2229 error = zap_add(os, MASTER_NODE_OBJ,
2230 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2231 ASSERT3U(error, ==, 0);
2232
2233 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2234 sa_register_update_callback(os, zfs_sa_upgrade);
2235 }
2236
2237 spa_history_log_internal(LOG_DS_UPGRADE,
2238 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2239 zfsvfs->z_version, newvers, dmu_objset_id(os));
2240
2241 dmu_tx_commit(tx);
2242
2243 zfsvfs->z_version = newvers;
2244
2245 zfs_set_fuid_feature(zfsvfs);
2246
2247 return (0);
2248 }
2249
2250 /*
2251 * Read a property stored within the master node.
2252 */
2253 int
zfs_get_zplprop(objset_t * os,zfs_prop_t prop,uint64_t * value)2254 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2255 {
2256 const char *pname;
2257 int error = ENOENT;
2258
2259 /*
2260 * Look up the file system's value for the property. For the
2261 * version property, we look up a slightly different string.
2262 */
2263 if (prop == ZFS_PROP_VERSION)
2264 pname = ZPL_VERSION_STR;
2265 else
2266 pname = zfs_prop_to_name(prop);
2267
2268 if (os != NULL)
2269 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2270
2271 if (error == ENOENT) {
2272 /* No value set, use the default value */
2273 switch (prop) {
2274 case ZFS_PROP_VERSION:
2275 *value = ZPL_VERSION;
2276 break;
2277 case ZFS_PROP_NORMALIZE:
2278 case ZFS_PROP_UTF8ONLY:
2279 *value = 0;
2280 break;
2281 case ZFS_PROP_CASE:
2282 *value = ZFS_CASE_SENSITIVE;
2283 break;
2284 default:
2285 return (error);
2286 }
2287 error = 0;
2288 }
2289 return (error);
2290 }
2291
2292 static vfsdef_t vfw = {
2293 VFSDEF_VERSION,
2294 MNTTYPE_ZFS,
2295 zfs_vfsinit,
2296 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2297 VSW_XID|VSW_ZMOUNT,
2298 &zfs_mntopts
2299 };
2300
2301 struct modlfs zfs_modlfs = {
2302 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2303 };
2304