xref: /onnv-gate/usr/src/uts/common/fs/zfs/zap_leaf.c (revision 885:d925b21dba78)
1789Sahrens /*
2789Sahrens  * CDDL HEADER START
3789Sahrens  *
4789Sahrens  * The contents of this file are subject to the terms of the
5789Sahrens  * Common Development and Distribution License, Version 1.0 only
6789Sahrens  * (the "License").  You may not use this file except in compliance
7789Sahrens  * with the License.
8789Sahrens  *
9789Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10789Sahrens  * or http://www.opensolaris.org/os/licensing.
11789Sahrens  * See the License for the specific language governing permissions
12789Sahrens  * and limitations under the License.
13789Sahrens  *
14789Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
15789Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16789Sahrens  * If applicable, add the following below this CDDL HEADER, with the
17789Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
18789Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
19789Sahrens  *
20789Sahrens  * CDDL HEADER END
21789Sahrens  */
22789Sahrens /*
23789Sahrens  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24789Sahrens  * Use is subject to license terms.
25789Sahrens  */
26789Sahrens 
27789Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
28789Sahrens 
29789Sahrens /*
30789Sahrens  * The 512-byte leaf is broken into 32 16-byte chunks.
31789Sahrens  * chunk number n means l_chunk[n], even though the header precedes it.
32789Sahrens  * the names are stored null-terminated.
33789Sahrens  */
34789Sahrens 
35789Sahrens #include <sys/zfs_context.h>
36789Sahrens #include <sys/zap.h>
37789Sahrens #include <sys/zap_impl.h>
38789Sahrens #include <sys/zap_leaf.h>
39789Sahrens #include <sys/spa.h>
40789Sahrens #include <sys/dmu.h>
41789Sahrens 
42789Sahrens #define	CHAIN_END 0xffff /* end of the chunk chain */
43789Sahrens 
44789Sahrens /* somewhat arbitrary, could go up to around 100k ... */
45789Sahrens #define	MAX_ARRAY_BYTES (8<<10)
46789Sahrens 
47789Sahrens #define	NCHUNKS(bytes) (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
48789Sahrens 
49789Sahrens /*
50789Sahrens  * XXX This will >> by a negative number when
51789Sahrens  * lh_prefix_len > 64-ZAP_LEAF_HASH_SHIFT.
52789Sahrens  */
53789Sahrens #define	LEAF_HASH(l, h) \
54789Sahrens 	((ZAP_LEAF_HASH_NUMENTRIES-1) & \
55789Sahrens 		((h) >> (64 - ZAP_LEAF_HASH_SHIFT-(l)->lh_prefix_len)))
56789Sahrens 
57789Sahrens #define	LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
58789Sahrens 
59789Sahrens /* #define	MEMCHECK */
60789Sahrens 
61789Sahrens 
62789Sahrens static void
63789Sahrens zap_memset(void *a, int c, size_t n)
64789Sahrens {
65789Sahrens 	char *cp = a;
66789Sahrens 	char *cpend = cp + n;
67789Sahrens 
68789Sahrens 	while (cp < cpend)
69789Sahrens 		*cp++ = c;
70789Sahrens }
71789Sahrens 
72789Sahrens static void
73789Sahrens stv(int len, void *addr, uint64_t value)
74789Sahrens {
75789Sahrens 	switch (len) {
76789Sahrens 	case 1:
77789Sahrens 		*(uint8_t *)addr = value;
78789Sahrens 		return;
79789Sahrens 	case 2:
80789Sahrens 		*(uint16_t *)addr = value;
81789Sahrens 		return;
82789Sahrens 	case 4:
83789Sahrens 		*(uint32_t *)addr = value;
84789Sahrens 		return;
85789Sahrens 	case 8:
86789Sahrens 		*(uint64_t *)addr = value;
87789Sahrens 		return;
88789Sahrens 	}
89789Sahrens 	ASSERT(!"bad int len");
90789Sahrens }
91789Sahrens 
92789Sahrens static uint64_t
93789Sahrens ldv(int len, const void *addr)
94789Sahrens {
95789Sahrens 	switch (len) {
96789Sahrens 	case 1:
97789Sahrens 		return (*(uint8_t *)addr);
98789Sahrens 	case 2:
99789Sahrens 		return (*(uint16_t *)addr);
100789Sahrens 	case 4:
101789Sahrens 		return (*(uint32_t *)addr);
102789Sahrens 	case 8:
103789Sahrens 		return (*(uint64_t *)addr);
104789Sahrens 	}
105789Sahrens 	ASSERT(!"bad int len");
106789Sahrens 	return (0xFEEDFACEDEADBEEF);
107789Sahrens }
108789Sahrens 
109789Sahrens void
110789Sahrens zap_leaf_byteswap(zap_leaf_phys_t *buf)
111789Sahrens {
112789Sahrens 	int i;
113789Sahrens 
114789Sahrens 	buf->l_hdr.lhr_block_type = 	BSWAP_64(buf->l_hdr.lhr_block_type);
115789Sahrens 	buf->l_hdr.lhr_next = 		BSWAP_64(buf->l_hdr.lhr_next);
116789Sahrens 	buf->l_hdr.lhr_prefix = 	BSWAP_64(buf->l_hdr.lhr_prefix);
117789Sahrens 	buf->l_hdr.lhr_magic = 		BSWAP_32(buf->l_hdr.lhr_magic);
118789Sahrens 	buf->l_hdr.lhr_nfree = 		BSWAP_16(buf->l_hdr.lhr_nfree);
119789Sahrens 	buf->l_hdr.lhr_nentries = 	BSWAP_16(buf->l_hdr.lhr_nentries);
120789Sahrens 	buf->l_hdr.lhr_prefix_len = 	BSWAP_16(buf->l_hdr.lhr_prefix_len);
121789Sahrens 	buf->l_hdr.lh_freelist = 	BSWAP_16(buf->l_hdr.lh_freelist);
122789Sahrens 
123789Sahrens 	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++)
124789Sahrens 		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
125789Sahrens 
126789Sahrens 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
127789Sahrens 		struct zap_leaf_entry *le;
128789Sahrens 
129789Sahrens 		switch (buf->l_chunk[i].l_free.lf_type) {
130789Sahrens 		case ZAP_LEAF_ENTRY:
131789Sahrens 			le = &buf->l_chunk[i].l_entry;
132789Sahrens 
133789Sahrens 			le->le_type = BSWAP_8(le->le_type);
134789Sahrens 			le->le_int_size = BSWAP_8(le->le_int_size);
135789Sahrens 			le->le_next = BSWAP_16(le->le_next);
136789Sahrens 			le->le_name_chunk = BSWAP_16(le->le_name_chunk);
137789Sahrens 			le->le_name_length = BSWAP_16(le->le_name_length);
138789Sahrens 			le->le_value_chunk = BSWAP_16(le->le_value_chunk);
139789Sahrens 			le->le_value_length = BSWAP_16(le->le_value_length);
140789Sahrens 			le->le_cd = BSWAP_32(le->le_cd);
141789Sahrens 			le->le_hash = BSWAP_64(le->le_hash);
142789Sahrens 			break;
143789Sahrens 		case ZAP_LEAF_FREE:
144789Sahrens 			buf->l_chunk[i].l_free.lf_type =
145789Sahrens 			    BSWAP_8(buf->l_chunk[i].l_free.lf_type);
146789Sahrens 			buf->l_chunk[i].l_free.lf_next =
147789Sahrens 			    BSWAP_16(buf->l_chunk[i].l_free.lf_next);
148789Sahrens 			break;
149789Sahrens 		case ZAP_LEAF_ARRAY:
150789Sahrens 			/* zap_leaf_array */
151789Sahrens 			buf->l_chunk[i].l_array.la_type =
152789Sahrens 			    BSWAP_8(buf->l_chunk[i].l_array.la_type);
153789Sahrens 			buf->l_chunk[i].l_array.la_next =
154789Sahrens 			    BSWAP_16(buf->l_chunk[i].l_array.la_next);
155789Sahrens 			/* la_array doesn't need swapping */
156789Sahrens 			break;
157789Sahrens 		default:
158789Sahrens 			ASSERT(!"bad leaf type");
159789Sahrens 		}
160789Sahrens 	}
161789Sahrens }
162789Sahrens 
163789Sahrens void
164789Sahrens zap_leaf_init(zap_leaf_t *l)
165789Sahrens {
166789Sahrens 	int i;
167789Sahrens 
168789Sahrens 	ASSERT3U(sizeof (zap_leaf_phys_t), ==, l->l_dbuf->db_size);
169789Sahrens 	zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
170789Sahrens 	zap_memset(&l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
171789Sahrens 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
172789Sahrens 		l->l_phys->l_chunk[i].l_free.lf_type = ZAP_LEAF_FREE;
173789Sahrens 		l->l_phys->l_chunk[i].l_free.lf_next = i+1;
174789Sahrens 	}
175789Sahrens 	l->l_phys->l_chunk[ZAP_LEAF_NUMCHUNKS-1].l_free.lf_next = CHAIN_END;
176789Sahrens 	l->lh_block_type = ZBT_LEAF;
177789Sahrens 	l->lh_magic = ZAP_LEAF_MAGIC;
178789Sahrens 	l->lh_nfree = ZAP_LEAF_NUMCHUNKS;
179789Sahrens }
180789Sahrens 
181789Sahrens zap_leaf_t *
182789Sahrens zap_leaf_chainmore(zap_leaf_t *l, zap_leaf_t *nl)
183789Sahrens {
184789Sahrens 	nl->lh_prefix = l->lh_prefix;
185789Sahrens 	nl->lh_prefix_len = l->lh_prefix_len;
186789Sahrens 	nl->l_next = l->l_next;
187789Sahrens 	l->l_next = nl;
188789Sahrens 	nl->lh_next = l->lh_next;
189789Sahrens 	l->lh_next = nl->l_blkid;
190789Sahrens 	return (nl);
191789Sahrens }
192789Sahrens 
193789Sahrens /*
194789Sahrens  * Routines which manipulate leaf chunks (l_chunk[]).
195789Sahrens  */
196789Sahrens 
197789Sahrens static uint16_t
198789Sahrens zap_leaf_chunk_alloc(zap_leaf_t *l)
199789Sahrens {
200789Sahrens 	int chunk;
201789Sahrens 
202789Sahrens 	ASSERT(l->lh_nfree > 0);
203789Sahrens 
204789Sahrens 	chunk = l->l_phys->l_hdr.lh_freelist;
205789Sahrens 	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
206789Sahrens 	ASSERT3U(l->l_phys->l_chunk[chunk].l_free.lf_type, ==, ZAP_LEAF_FREE);
207789Sahrens 
208789Sahrens 	l->l_phys->l_hdr.lh_freelist = l->l_phys->l_chunk[chunk].l_free.lf_next;
209789Sahrens 
210789Sahrens #ifdef MEMCHECK
211789Sahrens 	zap_memset(&l->l_phys->l_chunk[chunk], 0xa1,
212789Sahrens 	    sizeof (l->l_phys->l_chunk[chunk]));
213789Sahrens #endif
214789Sahrens 
215789Sahrens 	l->lh_nfree--;
216789Sahrens 
217789Sahrens 	return (chunk);
218789Sahrens }
219789Sahrens 
220789Sahrens static void
221789Sahrens zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
222789Sahrens {
223789Sahrens 	struct zap_leaf_free *zlf = &l->l_phys->l_chunk[chunk].l_free;
224789Sahrens 	ASSERT3U(l->lh_nfree, <, ZAP_LEAF_NUMCHUNKS);
225789Sahrens 	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
226789Sahrens 	ASSERT(zlf->lf_type != ZAP_LEAF_FREE);
227789Sahrens 
228789Sahrens #ifdef MEMCHECK
229789Sahrens 	zap_memset(&l->l_phys->l_chunk[chunk], 0xf4,
230789Sahrens 	    sizeof (l->l_phys->l_chunk[chunk]));
231789Sahrens #endif
232789Sahrens 
233789Sahrens 	zlf->lf_type = ZAP_LEAF_FREE;
234789Sahrens 	zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
235789Sahrens 	bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
236789Sahrens 	l->l_phys->l_hdr.lh_freelist = chunk;
237789Sahrens 
238789Sahrens 	l->lh_nfree++;
239789Sahrens }
240789Sahrens 
241789Sahrens 
242789Sahrens /*
243789Sahrens  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
244789Sahrens  */
245789Sahrens 
246789Sahrens static uint16_t
247789Sahrens zap_leaf_array_create(const zap_entry_handle_t *zeh, const char *buf,
248789Sahrens 	int integer_size, int num_integers)
249789Sahrens {
250789Sahrens 	uint16_t chunk_head;
251789Sahrens 	uint16_t *chunkp = &chunk_head;
252789Sahrens 	int byten = 0;
253789Sahrens 	uint64_t value;
254789Sahrens 	int shift = (integer_size-1)*8;
255789Sahrens 	int len = num_integers;
256789Sahrens 	zap_leaf_t *l = zeh->zeh_found_leaf;
257789Sahrens 
258789Sahrens 	ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
259789Sahrens 
260789Sahrens 	while (len > 0) {
261789Sahrens 		uint16_t chunk = zap_leaf_chunk_alloc(l);
262789Sahrens 		struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
263789Sahrens 		int i;
264789Sahrens 
265789Sahrens 		la->la_type = ZAP_LEAF_ARRAY;
266789Sahrens 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
267789Sahrens 			if (byten == 0)
268789Sahrens 				value = ldv(integer_size, buf);
269789Sahrens 			la->la_array[i] = (value & (0xff << shift)) >> shift;
270789Sahrens 			value <<= 8;
271789Sahrens 			if (++byten == integer_size) {
272789Sahrens 				byten = 0;
273789Sahrens 				buf += integer_size;
274789Sahrens 				if (--len == 0)
275789Sahrens 					break;
276789Sahrens 			}
277789Sahrens 		}
278789Sahrens 
279789Sahrens 		*chunkp = chunk;
280789Sahrens 		chunkp = &la->la_next;
281789Sahrens 	}
282789Sahrens 	*chunkp = CHAIN_END;
283789Sahrens 
284789Sahrens 	return (chunk_head);
285789Sahrens }
286789Sahrens 
287789Sahrens static void
288789Sahrens zap_leaf_array_free(zap_entry_handle_t *zeh, uint16_t *chunkp)
289789Sahrens {
290789Sahrens 	uint16_t chunk = *chunkp;
291789Sahrens 	zap_leaf_t *l = zeh->zeh_found_leaf;
292789Sahrens 
293789Sahrens 	*chunkp = CHAIN_END;
294789Sahrens 
295789Sahrens 	while (chunk != CHAIN_END) {
296789Sahrens 		int nextchunk = l->l_phys->l_chunk[chunk].l_array.la_next;
297789Sahrens 		ASSERT3U(l->l_phys->l_chunk[chunk].l_array.la_type, ==,
298789Sahrens 		    ZAP_LEAF_ARRAY);
299789Sahrens 		zap_leaf_chunk_free(l, chunk);
300789Sahrens 		chunk = nextchunk;
301789Sahrens 	}
302789Sahrens }
303789Sahrens 
304789Sahrens /* array_len and buf_len are in integers, not bytes */
305789Sahrens static void
306789Sahrens zap_leaf_array_read(const zap_entry_handle_t *zeh, uint16_t chunk,
307789Sahrens     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
308789Sahrens     char *buf)
309789Sahrens {
310789Sahrens 	int len = MIN(array_len, buf_len);
311789Sahrens 	int byten = 0;
312789Sahrens 	uint64_t value = 0;
313789Sahrens 	zap_leaf_t *l = zeh->zeh_found_leaf;
314789Sahrens 
315789Sahrens 	ASSERT3U(array_int_len, <=, buf_int_len);
316789Sahrens 
317*885Sahrens 	/* Fast path for one 8-byte integer */
318*885Sahrens 	if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
319*885Sahrens 		struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
320*885Sahrens 		uint64_t *buf64 = (uint64_t *)buf;
321*885Sahrens 		uint64_t val = *(uint64_t *)la->la_array;
322*885Sahrens 		*buf64 = BE_64(val);
323*885Sahrens 		return;
324*885Sahrens 	}
325*885Sahrens 
326*885Sahrens 	/* Fast path for an array of 1-byte integers (eg. the entry name) */
327*885Sahrens 	if (array_int_len == 1 && buf_int_len == 1 &&
328*885Sahrens 	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
329*885Sahrens 		while (chunk != CHAIN_END) {
330*885Sahrens 			struct zap_leaf_array *la =
331*885Sahrens 			    &l->l_phys->l_chunk[chunk].l_array;
332*885Sahrens 			bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES);
333*885Sahrens 			buf += ZAP_LEAF_ARRAY_BYTES;
334*885Sahrens 			chunk = la->la_next;
335*885Sahrens 		}
336*885Sahrens 		return;
337*885Sahrens 	}
338*885Sahrens 
339789Sahrens 	while (len > 0) {
340789Sahrens 		struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
341789Sahrens 		int i;
342789Sahrens 
343789Sahrens 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
344789Sahrens 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
345789Sahrens 			value = (value << 8) | la->la_array[i];
346789Sahrens 			byten++;
347789Sahrens 			if (byten == array_int_len) {
348789Sahrens 				stv(buf_int_len, buf, value);
349789Sahrens 				byten = 0;
350789Sahrens 				len--;
351789Sahrens 				if (len == 0)
352789Sahrens 					return;
353789Sahrens 				buf += buf_int_len;
354789Sahrens 			}
355789Sahrens 		}
356789Sahrens 		chunk = la->la_next;
357789Sahrens 	}
358789Sahrens }
359789Sahrens 
360789Sahrens /*
361789Sahrens  * Only to be used on 8-bit arrays.
362789Sahrens  * array_len is actual len in bytes (not encoded le_value_length).
363789Sahrens  * buf is null-terminated.
364789Sahrens  */
365789Sahrens static int
366789Sahrens zap_leaf_array_equal(const zap_entry_handle_t *zeh, int chunk,
367789Sahrens     int array_len, const char *buf)
368789Sahrens {
369789Sahrens 	int bseen = 0;
370789Sahrens 	zap_leaf_t *l = zeh->zeh_found_leaf;
371789Sahrens 
372789Sahrens 	while (bseen < array_len) {
373789Sahrens 		struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array;
374789Sahrens 		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
375789Sahrens 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
376789Sahrens 		if (bcmp(la->la_array, buf + bseen, toread))
377789Sahrens 			break;
378789Sahrens 		chunk = la->la_next;
379789Sahrens 		bseen += toread;
380789Sahrens 	}
381789Sahrens 	return (bseen == array_len);
382789Sahrens }
383789Sahrens 
384789Sahrens /*
385789Sahrens  * Routines which manipulate leaf entries.
386789Sahrens  */
387789Sahrens 
388789Sahrens int
389789Sahrens zap_leaf_lookup(zap_leaf_t *l,
390789Sahrens     const char *name, uint64_t h, zap_entry_handle_t *zeh)
391789Sahrens {
392789Sahrens 	uint16_t *chunkp;
393789Sahrens 	struct zap_leaf_entry *le;
394789Sahrens 
395789Sahrens 	zeh->zeh_head_leaf = l;
396789Sahrens 
397789Sahrens again:
398789Sahrens 	ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC);
399789Sahrens 
400789Sahrens 	for (chunkp = LEAF_HASH_ENTPTR(l, h);
401789Sahrens 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
402789Sahrens 		uint16_t chunk = *chunkp;
403789Sahrens 		le = &l->l_phys->l_chunk[chunk].l_entry;
404789Sahrens 
405789Sahrens 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
406789Sahrens 		ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
407789Sahrens 
408789Sahrens 		if (le->le_hash != h)
409789Sahrens 			continue;
410789Sahrens 
411789Sahrens 		zeh->zeh_found_leaf = l;
412789Sahrens 		if (zap_leaf_array_equal(zeh, le->le_name_chunk,
413789Sahrens 		    le->le_name_length, name)) {
414789Sahrens 			zeh->zeh_num_integers = le->le_value_length;
415789Sahrens 			zeh->zeh_integer_size = le->le_int_size;
416789Sahrens 			zeh->zeh_cd = le->le_cd;
417789Sahrens 			zeh->zeh_hash = le->le_hash;
418789Sahrens 			zeh->zeh_chunkp = chunkp;
419789Sahrens 			zeh->zeh_found_leaf = l;
420789Sahrens 			return (0);
421789Sahrens 		}
422789Sahrens 	}
423789Sahrens 
424789Sahrens 	if (l->l_next) {
425789Sahrens 		l = l->l_next;
426789Sahrens 		goto again;
427789Sahrens 	}
428789Sahrens 
429789Sahrens 	return (ENOENT);
430789Sahrens }
431789Sahrens 
432789Sahrens /* Return (h1,cd1 >= h2,cd2) */
433*885Sahrens #define	HCD_GTEQ(h1, cd1, h2, cd2) \
434*885Sahrens 	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
435789Sahrens 
436789Sahrens int
437789Sahrens zap_leaf_lookup_closest(zap_leaf_t *l,
438789Sahrens     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
439789Sahrens {
440789Sahrens 	uint16_t chunk;
441789Sahrens 	uint64_t besth = -1ULL;
442789Sahrens 	uint32_t bestcd = ZAP_MAXCD;
443789Sahrens 	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES-1;
444789Sahrens 	uint16_t lh;
445789Sahrens 	struct zap_leaf_entry *le;
446789Sahrens 
447789Sahrens 	zeh->zeh_head_leaf = l;
448789Sahrens 
449789Sahrens again:
450789Sahrens 	ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC);
451789Sahrens 
452789Sahrens 	for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
453789Sahrens 		for (chunk = l->l_phys->l_hash[lh];
454789Sahrens 		    chunk != CHAIN_END; chunk = le->le_next) {
455789Sahrens 			le = &l->l_phys->l_chunk[chunk].l_entry;
456789Sahrens 
457789Sahrens 			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
458789Sahrens 			ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
459789Sahrens 
460*885Sahrens 			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
461*885Sahrens 			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
462789Sahrens 				ASSERT3U(bestlh, >=, lh);
463789Sahrens 				bestlh = lh;
464789Sahrens 				besth = le->le_hash;
465789Sahrens 				bestcd = le->le_cd;
466789Sahrens 
467789Sahrens 				zeh->zeh_num_integers = le->le_value_length;
468789Sahrens 				zeh->zeh_integer_size = le->le_int_size;
469789Sahrens 				zeh->zeh_cd = le->le_cd;
470789Sahrens 				zeh->zeh_hash = le->le_hash;
471789Sahrens 				zeh->zeh_fakechunk = chunk;
472789Sahrens 				zeh->zeh_chunkp = &zeh->zeh_fakechunk;
473789Sahrens 				zeh->zeh_found_leaf = l;
474789Sahrens 			}
475789Sahrens 		}
476789Sahrens 	}
477789Sahrens 
478789Sahrens 	if (l->l_next) {
479789Sahrens 		l = l->l_next;
480789Sahrens 		goto again;
481789Sahrens 	}
482789Sahrens 
483789Sahrens 	return (bestcd == ZAP_MAXCD ? ENOENT : 0);
484789Sahrens }
485789Sahrens 
486789Sahrens int
487789Sahrens zap_entry_read(const zap_entry_handle_t *zeh,
488789Sahrens     uint8_t integer_size, uint64_t num_integers, void *buf)
489789Sahrens {
490789Sahrens 	struct zap_leaf_entry *le;
491789Sahrens 
492789Sahrens 	le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
493789Sahrens 	ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
494789Sahrens 
495789Sahrens 	if (le->le_int_size > integer_size)
496789Sahrens 		return (EINVAL);
497789Sahrens 
498789Sahrens 	zap_leaf_array_read(zeh, le->le_value_chunk, le->le_int_size,
499789Sahrens 	    le->le_value_length, integer_size, num_integers, buf);
500789Sahrens 
501789Sahrens 	if (zeh->zeh_num_integers > num_integers)
502789Sahrens 		return (EOVERFLOW);
503789Sahrens 	return (0);
504789Sahrens 
505789Sahrens }
506789Sahrens 
507789Sahrens int
508789Sahrens zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf)
509789Sahrens {
510789Sahrens 	struct zap_leaf_entry *le;
511789Sahrens 
512789Sahrens 	le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
513789Sahrens 	ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
514789Sahrens 
515789Sahrens 	zap_leaf_array_read(zeh, le->le_name_chunk, 1,
516789Sahrens 	    le->le_name_length, 1, buflen, buf);
517789Sahrens 	if (le->le_name_length > buflen)
518789Sahrens 		return (EOVERFLOW);
519789Sahrens 	return (0);
520789Sahrens }
521789Sahrens 
522789Sahrens int
523789Sahrens zap_entry_update(zap_entry_handle_t *zeh,
524789Sahrens 	uint8_t integer_size, uint64_t num_integers, const void *buf)
525789Sahrens {
526789Sahrens 	int delta_chunks;
527789Sahrens 	struct zap_leaf_entry *le;
528789Sahrens 	le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry;
529789Sahrens 
530789Sahrens 	delta_chunks = NCHUNKS(num_integers * integer_size) -
531789Sahrens 	    NCHUNKS(le->le_value_length * le->le_int_size);
532789Sahrens 
533789Sahrens 	if (zeh->zeh_found_leaf->lh_nfree < delta_chunks)
534789Sahrens 		return (EAGAIN);
535789Sahrens 
536789Sahrens 	/*
537789Sahrens 	 * We should search other chained leaves (via
538789Sahrens 	 * zap_entry_remove,create?) otherwise returning EAGAIN will
539789Sahrens 	 * just send us into an infinite loop if we have to chain
540789Sahrens 	 * another leaf block, rather than being able to split this
541789Sahrens 	 * block.
542789Sahrens 	 */
543789Sahrens 
544789Sahrens 	zap_leaf_array_free(zeh, &le->le_value_chunk);
545789Sahrens 	le->le_value_chunk =
546789Sahrens 	    zap_leaf_array_create(zeh, buf, integer_size, num_integers);
547789Sahrens 	le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ?
548789Sahrens 	    (MAX_ARRAY_BYTES + 1) : (num_integers);
549789Sahrens 	le->le_int_size = integer_size;
550789Sahrens 	return (0);
551789Sahrens }
552789Sahrens 
553789Sahrens void
554789Sahrens zap_entry_remove(zap_entry_handle_t *zeh)
555789Sahrens {
556789Sahrens 	uint16_t entry_chunk;
557789Sahrens 	struct zap_leaf_entry *le;
558789Sahrens 	zap_leaf_t *l = zeh->zeh_found_leaf;
559789Sahrens 
560789Sahrens 	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
561789Sahrens 
562789Sahrens 	entry_chunk = *zeh->zeh_chunkp;
563789Sahrens 	le = &l->l_phys->l_chunk[entry_chunk].l_entry;
564789Sahrens 	ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
565789Sahrens 
566789Sahrens 	zap_leaf_array_free(zeh, &le->le_name_chunk);
567789Sahrens 	zap_leaf_array_free(zeh, &le->le_value_chunk);
568789Sahrens 
569789Sahrens 	*zeh->zeh_chunkp = le->le_next;
570789Sahrens 	zap_leaf_chunk_free(l, entry_chunk);
571789Sahrens 
572789Sahrens 	l->lh_nentries--;
573789Sahrens }
574789Sahrens 
575789Sahrens int
576789Sahrens zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd,
577789Sahrens     uint8_t integer_size, uint64_t num_integers, const void *buf,
578789Sahrens     zap_entry_handle_t *zeh)
579789Sahrens {
580789Sahrens 	uint16_t chunk;
581789Sahrens 	uint16_t *chunkp;
582789Sahrens 	struct zap_leaf_entry *le;
583789Sahrens 	uint64_t namelen, valuelen;
584789Sahrens 	int numchunks;
585789Sahrens 
586789Sahrens 	valuelen = integer_size * num_integers;
587789Sahrens 	namelen = strlen(name) + 1;
588789Sahrens 	ASSERT(namelen >= 2);
589789Sahrens 
590789Sahrens 	zeh->zeh_head_leaf = l;
591789Sahrens 
592789Sahrens 	if (namelen > MAXNAMELEN)
593789Sahrens 		return (ENAMETOOLONG);
594789Sahrens 	/* find the first leaf in the chain that has sufficient free space */
595789Sahrens 	numchunks = 1 + NCHUNKS(namelen) + NCHUNKS(valuelen);
596789Sahrens 	if (numchunks > ZAP_LEAF_NUMCHUNKS)
597789Sahrens 		return (E2BIG);
598789Sahrens 
599789Sahrens 	if (cd == ZAP_MAXCD) {
600789Sahrens 		for (cd = 0; cd < ZAP_MAXCD; cd++) {
601789Sahrens 			zap_leaf_t *ll;
602789Sahrens 			for (ll = l; ll; ll = ll->l_next) {
603789Sahrens 				for (chunk = *LEAF_HASH_ENTPTR(ll, h);
604789Sahrens 				    chunk != CHAIN_END; chunk = le->le_next) {
605789Sahrens 					le = &ll->l_phys->l_chunk
606789Sahrens 					    [chunk].l_entry;
607789Sahrens 					if (le->le_hash == h &&
608789Sahrens 					    le->le_cd == cd) {
609789Sahrens 						break;
610789Sahrens 					}
611789Sahrens 				}
612789Sahrens 				/*
613789Sahrens 				 * if this cd is in use, no need to
614789Sahrens 				 * check more chained leafs
615789Sahrens 				 */
616789Sahrens 				if (chunk != CHAIN_END)
617789Sahrens 					break;
618789Sahrens 			}
619789Sahrens 			/* If this cd is not in use, we are good. */
620789Sahrens 			if (chunk == CHAIN_END)
621789Sahrens 				break;
622789Sahrens 		}
623789Sahrens 		/* If we tried all the cd's, we lose. */
624789Sahrens 		if (cd == ZAP_MAXCD)
625789Sahrens 			return (ENOSPC);
626789Sahrens 	}
627789Sahrens 
628789Sahrens 	for (; l; l = l->l_next)
629789Sahrens 		if (l->lh_nfree >= numchunks)
630789Sahrens 			break;
631789Sahrens 	if (l == NULL)
632789Sahrens 		return (EAGAIN);
633789Sahrens 
634789Sahrens 	zeh->zeh_found_leaf = l;
635789Sahrens 
636789Sahrens 	/* make the entry */
637789Sahrens 	chunk = zap_leaf_chunk_alloc(l);
638789Sahrens 	le = &l->l_phys->l_chunk[chunk].l_entry;
639789Sahrens 	le->le_type = ZAP_LEAF_ENTRY;
640789Sahrens 	le->le_name_chunk = zap_leaf_array_create(zeh, name, 1, namelen);
641789Sahrens 	le->le_name_length = namelen;
642789Sahrens 	le->le_value_chunk =
643789Sahrens 	    zap_leaf_array_create(zeh, buf, integer_size, num_integers);
644789Sahrens 	le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ?
645789Sahrens 	    (MAX_ARRAY_BYTES + 1) : (num_integers);
646789Sahrens 	le->le_int_size = integer_size;
647789Sahrens 	le->le_hash = h;
648789Sahrens 	le->le_cd = cd;
649789Sahrens 
650789Sahrens 	/* link it into the hash chain */
651789Sahrens 	chunkp = LEAF_HASH_ENTPTR(l, h);
652789Sahrens 	le->le_next = *chunkp;
653789Sahrens 	*chunkp = chunk;
654789Sahrens 
655789Sahrens 	l->lh_nentries++;
656789Sahrens 
657789Sahrens 	zeh->zeh_num_integers = num_integers;
658789Sahrens 	zeh->zeh_integer_size = le->le_int_size;
659789Sahrens 	zeh->zeh_cd = le->le_cd;
660789Sahrens 	zeh->zeh_hash = le->le_hash;
661789Sahrens 	zeh->zeh_chunkp = chunkp;
662789Sahrens 
663789Sahrens 	return (0);
664789Sahrens }
665789Sahrens 
666789Sahrens /*
667789Sahrens  * Routines for transferring entries between leafs.
668789Sahrens  */
669789Sahrens 
670789Sahrens static void
671789Sahrens zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
672789Sahrens {
673789Sahrens 	struct zap_leaf_entry *le = &l->l_phys->l_chunk[entry].l_entry;
674789Sahrens 	uint16_t *ptr = LEAF_HASH_ENTPTR(l, le->le_hash);
675789Sahrens 	le->le_next = *ptr;
676789Sahrens 	*ptr = entry;
677789Sahrens }
678789Sahrens 
679789Sahrens static void
680789Sahrens zap_leaf_rehash_entries(zap_leaf_t *l)
681789Sahrens {
682789Sahrens 	int i;
683789Sahrens 
684789Sahrens 	if (l->lh_nentries == 0)
685789Sahrens 		return;
686789Sahrens 
687789Sahrens 	/* break existing hash chains */
688789Sahrens 	zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
689789Sahrens 
690789Sahrens 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
691789Sahrens 		struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry;
692789Sahrens 		if (le->le_type != ZAP_LEAF_ENTRY)
693789Sahrens 			continue;
694789Sahrens 		zap_leaf_rehash_entry(l, i);
695789Sahrens 	}
696789Sahrens }
697789Sahrens 
698789Sahrens static uint16_t
699789Sahrens zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
700789Sahrens {
701789Sahrens 	uint16_t new_chunk;
702789Sahrens 	uint16_t *nchunkp = &new_chunk;
703789Sahrens 
704789Sahrens 	while (chunk != CHAIN_END) {
705789Sahrens 		uint16_t nchunk = zap_leaf_chunk_alloc(nl);
706789Sahrens 		struct zap_leaf_array *nla =
707789Sahrens 		    &nl->l_phys->l_chunk[nchunk].l_array;
708789Sahrens 		struct zap_leaf_array *la =
709789Sahrens 		    &l->l_phys->l_chunk[chunk].l_array;
710789Sahrens 		int nextchunk = la->la_next;
711789Sahrens 
712789Sahrens 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS);
713789Sahrens 		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS);
714789Sahrens 
715789Sahrens 		*nla = *la;
716789Sahrens 
717789Sahrens 		zap_leaf_chunk_free(l, chunk);
718789Sahrens 		chunk = nextchunk;
719789Sahrens 		*nchunkp = nchunk;
720789Sahrens 		nchunkp = &nla->la_next;
721789Sahrens 	}
722789Sahrens 	*nchunkp = CHAIN_END;
723789Sahrens 	return (new_chunk);
724789Sahrens }
725789Sahrens 
726789Sahrens static void
727789Sahrens zap_leaf_transfer_entry(zap_t *zap, zap_leaf_t *l, int entry, zap_leaf_t *nhl,
728789Sahrens     dmu_tx_t *tx)
729789Sahrens {
730789Sahrens 	zap_leaf_t *nl;
731789Sahrens 	struct zap_leaf_entry *le, *nle;
732789Sahrens 	uint16_t chunk, nchunks;
733789Sahrens 
734789Sahrens 	le = &l->l_phys->l_chunk[entry].l_entry;
735789Sahrens 	ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY);
736789Sahrens 
737789Sahrens 	/* find a leaf in the destination leaf chain with enough free space */
738789Sahrens 	nchunks = 1 + NCHUNKS(le->le_name_length) +
739789Sahrens 	    NCHUNKS(le->le_value_length * le->le_int_size);
740789Sahrens 	for (nl = nhl; nl; nl = nl->l_next)
741789Sahrens 		if (nl->lh_nfree >= nchunks)
742789Sahrens 			break;
743789Sahrens 	if (nl == NULL) {
744789Sahrens 		nl = zap_leaf_chainmore(nhl, zap_create_leaf(zap, tx));
745789Sahrens 		dprintf("transfer_entry: chaining leaf %x/%d\n",
746789Sahrens 		    nl->lh_prefix, nl->lh_prefix_len);
747789Sahrens 	}
748789Sahrens 
749789Sahrens 	chunk = zap_leaf_chunk_alloc(nl);
750789Sahrens 	nle = &nl->l_phys->l_chunk[chunk].l_entry;
751789Sahrens 	*nle = *le;
752789Sahrens 
753789Sahrens 	zap_leaf_rehash_entry(nl, chunk);
754789Sahrens 
755789Sahrens 	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
756789Sahrens 	nle->le_value_chunk =
757789Sahrens 	    zap_leaf_transfer_array(l, le->le_value_chunk, nl);
758789Sahrens 
759789Sahrens 	zap_leaf_chunk_free(l, entry);
760789Sahrens 
761789Sahrens 	l->lh_nentries--;
762789Sahrens 	nl->lh_nentries++;
763789Sahrens }
764789Sahrens 
765789Sahrens /*
766789Sahrens  * Transfer entries whose hash bit 'bit' is 1 to nl1, and 0 to nl0.
767789Sahrens  * Ignore leaf chaining in source (l), but chain in destinations.
768789Sahrens  * We'll re-chain all the entries in l as we go along.
769789Sahrens  */
770789Sahrens static void
771789Sahrens zap_leaf_transfer_entries(zap_t *zap, zap_leaf_t *l,
772789Sahrens     zap_leaf_t *nl0, zap_leaf_t *nl1, int bit, dmu_tx_t *tx)
773789Sahrens {
774789Sahrens 	int i;
775789Sahrens 
776789Sahrens 	ASSERT(bit < 64 && bit >= 0);
777789Sahrens 	/* break existing hash chains */
778789Sahrens 	zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash));
779789Sahrens 
780789Sahrens 	if (nl0 != l)
781789Sahrens 		zap_leaf_rehash_entries(nl0);
782789Sahrens 	if (nl1 != nl0)
783789Sahrens 		zap_leaf_rehash_entries(nl1);
784789Sahrens 
785789Sahrens 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) {
786789Sahrens 		struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry;
787789Sahrens 		if (le->le_type != ZAP_LEAF_ENTRY)
788789Sahrens 			continue;
789789Sahrens 
790789Sahrens 		/*
791789Sahrens 		 * We could find entries via hashtable instead. That
792789Sahrens 		 * would be O(hashents+numents) rather than
793789Sahrens 		 * O(numblks+numents), but this accesses memory more
794789Sahrens 		 * sequentially, and when we're called, the block is
795789Sahrens 		 * usually pretty full.
796789Sahrens 		 */
797789Sahrens 
798789Sahrens 		if (le->le_hash & (1ULL << bit)) {
799789Sahrens 			zap_leaf_transfer_entry(zap, l, i, nl1, tx);
800789Sahrens 		} else {
801789Sahrens 			if (nl0 == l)
802789Sahrens 				zap_leaf_rehash_entry(l, i);
803789Sahrens 			else
804789Sahrens 				zap_leaf_transfer_entry(zap, l, i, nl0, tx);
805789Sahrens 		}
806789Sahrens 	}
807789Sahrens 
808789Sahrens }
809789Sahrens 
810789Sahrens /*
811789Sahrens  * nl will contain the entries whose hash prefix ends in 1
812789Sahrens  * handles leaf chaining
813789Sahrens  */
814789Sahrens zap_leaf_t *
815789Sahrens zap_leaf_split(zap_t *zap, zap_leaf_t *hl, dmu_tx_t *tx)
816789Sahrens {
817789Sahrens 	zap_leaf_t *l = hl;
818789Sahrens 	int bit = 64 - 1 - hl->lh_prefix_len;
819789Sahrens 	zap_leaf_t *nl = zap_create_leaf(zap, tx);
820789Sahrens 
821789Sahrens 	/* set new prefix and prefix_len */
822789Sahrens 	hl->lh_prefix <<= 1;
823789Sahrens 	hl->lh_prefix_len++;
824789Sahrens 	nl->lh_prefix = hl->lh_prefix | 1;
825789Sahrens 	nl->lh_prefix_len = hl->lh_prefix_len;
826789Sahrens 
827789Sahrens 	/* transfer odd entries from first leaf in hl chain to nl */
828789Sahrens 	zap_leaf_transfer_entries(zap, hl, hl, nl, bit, tx);
829789Sahrens 
830789Sahrens 	/* take rest of chain off hl */
831789Sahrens 	l = hl->l_next;
832789Sahrens 	hl->l_next = NULL;
833789Sahrens 	hl->lh_next = 0;
834789Sahrens 
835789Sahrens 	/* transfer even entries from hl chain back to hl, odd entries to nl */
836789Sahrens 	while (l) {
837789Sahrens 		zap_leaf_t *next = l->l_next;
838789Sahrens 		zap_leaf_transfer_entries(zap, l, hl, nl, bit, tx);
839789Sahrens 		zap_destroy_leaf(zap, l, tx);
840789Sahrens 		l = next;
841789Sahrens 	}
842789Sahrens 
843789Sahrens 	return (nl);
844789Sahrens }
845789Sahrens 
846789Sahrens void
847789Sahrens zap_stats_leaf(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
848789Sahrens {
849789Sahrens 	int n, nchained = 0;
850789Sahrens 
851789Sahrens 	n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - l->lh_prefix_len;
852789Sahrens 	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
853789Sahrens 	zs->zs_leafs_with_2n_pointers[n]++;
854789Sahrens 
855789Sahrens 	do {
856789Sahrens 		int i;
857789Sahrens 
858789Sahrens 		n = l->lh_nentries/5;
859789Sahrens 		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
860789Sahrens 		zs->zs_blocks_with_n5_entries[n]++;
861789Sahrens 
862789Sahrens 		n = ((1<<ZAP_BLOCK_SHIFT) -
863789Sahrens 		    l->lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
864789Sahrens 		    (1<<ZAP_BLOCK_SHIFT);
865789Sahrens 		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
866789Sahrens 		zs->zs_blocks_n_tenths_full[n]++;
867789Sahrens 
868789Sahrens 		for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++) {
869789Sahrens 			int nentries = 0;
870789Sahrens 			int chunk = l->l_phys->l_hash[i];
871789Sahrens 
872789Sahrens 			while (chunk != CHAIN_END) {
873789Sahrens 				struct zap_leaf_entry *le =
874789Sahrens 				    &l->l_phys->l_chunk[chunk].l_entry;
875789Sahrens 
876789Sahrens 				n = 1 + NCHUNKS(le->le_name_length) +
877789Sahrens 				    NCHUNKS(le->le_value_length *
878789Sahrens 					le->le_int_size);
879789Sahrens 				n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
880789Sahrens 				zs->zs_entries_using_n_chunks[n]++;
881789Sahrens 
882789Sahrens 				chunk = le->le_next;
883789Sahrens 				nentries++;
884789Sahrens 			}
885789Sahrens 
886789Sahrens 			n = nentries;
887789Sahrens 			n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
888789Sahrens 			zs->zs_buckets_with_n_entries[n]++;
889789Sahrens 		}
890789Sahrens 
891789Sahrens 		nchained++;
892789Sahrens 		l = l->l_next;
893789Sahrens 	} while (l);
894789Sahrens 
895789Sahrens 	n = nchained-1;
896789Sahrens 	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
897789Sahrens 	zs->zs_leafs_with_n_chained[n]++;
898789Sahrens }
899