xref: /onnv-gate/usr/src/uts/common/fs/zfs/spa.c (revision 7538:18c2451107fd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65 
66 int zio_taskq_threads = 8;
67 
68 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
69 static boolean_t spa_has_active_shared_spare(spa_t *spa);
70 
71 /*
72  * ==========================================================================
73  * SPA properties routines
74  * ==========================================================================
75  */
76 
77 /*
78  * Add a (source=src, propname=propval) list to an nvlist.
79  */
80 static void
81 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
82     uint64_t intval, zprop_source_t src)
83 {
84 	const char *propname = zpool_prop_to_name(prop);
85 	nvlist_t *propval;
86 
87 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
88 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
89 
90 	if (strval != NULL)
91 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
92 	else
93 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
94 
95 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
96 	nvlist_free(propval);
97 }
98 
99 /*
100  * Get property values from the spa configuration.
101  */
102 static void
103 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
104 {
105 	uint64_t size = spa_get_space(spa);
106 	uint64_t used = spa_get_alloc(spa);
107 	uint64_t cap, version;
108 	zprop_source_t src = ZPROP_SRC_NONE;
109 	spa_config_dirent_t *dp;
110 
111 	/*
112 	 * readonly properties
113 	 */
114 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
115 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
118 
119 	cap = (size == 0) ? 0 : (used * 100 / size);
120 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
121 
122 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
123 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
124 	    spa->spa_root_vdev->vdev_state, src);
125 
126 	/*
127 	 * settable properties that are not stored in the pool property object.
128 	 */
129 	version = spa_version(spa);
130 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
131 		src = ZPROP_SRC_DEFAULT;
132 	else
133 		src = ZPROP_SRC_LOCAL;
134 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
135 
136 	if (spa->spa_root != NULL)
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
138 		    0, ZPROP_SRC_LOCAL);
139 
140 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
141 		if (dp->scd_path == NULL) {
142 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
143 			    "none", 0, ZPROP_SRC_LOCAL);
144 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
145 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
146 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
147 		}
148 	}
149 }
150 
151 /*
152  * Get zpool property values.
153  */
154 int
155 spa_prop_get(spa_t *spa, nvlist_t **nvp)
156 {
157 	zap_cursor_t zc;
158 	zap_attribute_t za;
159 	objset_t *mos = spa->spa_meta_objset;
160 	int err;
161 
162 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
163 
164 	/*
165 	 * Get properties from the spa config.
166 	 */
167 	spa_prop_get_config(spa, nvp);
168 
169 	mutex_enter(&spa->spa_props_lock);
170 	/* If no pool property object, no more prop to get. */
171 	if (spa->spa_pool_props_object == 0) {
172 		mutex_exit(&spa->spa_props_lock);
173 		return (0);
174 	}
175 
176 	/*
177 	 * Get properties from the MOS pool property object.
178 	 */
179 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
180 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
181 	    zap_cursor_advance(&zc)) {
182 		uint64_t intval = 0;
183 		char *strval = NULL;
184 		zprop_source_t src = ZPROP_SRC_DEFAULT;
185 		zpool_prop_t prop;
186 
187 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
188 			continue;
189 
190 		switch (za.za_integer_length) {
191 		case 8:
192 			/* integer property */
193 			if (za.za_first_integer !=
194 			    zpool_prop_default_numeric(prop))
195 				src = ZPROP_SRC_LOCAL;
196 
197 			if (prop == ZPOOL_PROP_BOOTFS) {
198 				dsl_pool_t *dp;
199 				dsl_dataset_t *ds = NULL;
200 
201 				dp = spa_get_dsl(spa);
202 				rw_enter(&dp->dp_config_rwlock, RW_READER);
203 				if (err = dsl_dataset_hold_obj(dp,
204 				    za.za_first_integer, FTAG, &ds)) {
205 					rw_exit(&dp->dp_config_rwlock);
206 					break;
207 				}
208 
209 				strval = kmem_alloc(
210 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
211 				    KM_SLEEP);
212 				dsl_dataset_name(ds, strval);
213 				dsl_dataset_rele(ds, FTAG);
214 				rw_exit(&dp->dp_config_rwlock);
215 			} else {
216 				strval = NULL;
217 				intval = za.za_first_integer;
218 			}
219 
220 			spa_prop_add_list(*nvp, prop, strval, intval, src);
221 
222 			if (strval != NULL)
223 				kmem_free(strval,
224 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
225 
226 			break;
227 
228 		case 1:
229 			/* string property */
230 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
231 			err = zap_lookup(mos, spa->spa_pool_props_object,
232 			    za.za_name, 1, za.za_num_integers, strval);
233 			if (err) {
234 				kmem_free(strval, za.za_num_integers);
235 				break;
236 			}
237 			spa_prop_add_list(*nvp, prop, strval, 0, src);
238 			kmem_free(strval, za.za_num_integers);
239 			break;
240 
241 		default:
242 			break;
243 		}
244 	}
245 	zap_cursor_fini(&zc);
246 	mutex_exit(&spa->spa_props_lock);
247 out:
248 	if (err && err != ENOENT) {
249 		nvlist_free(*nvp);
250 		*nvp = NULL;
251 		return (err);
252 	}
253 
254 	return (0);
255 }
256 
257 /*
258  * Validate the given pool properties nvlist and modify the list
259  * for the property values to be set.
260  */
261 static int
262 spa_prop_validate(spa_t *spa, nvlist_t *props)
263 {
264 	nvpair_t *elem;
265 	int error = 0, reset_bootfs = 0;
266 	uint64_t objnum;
267 
268 	elem = NULL;
269 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
270 		zpool_prop_t prop;
271 		char *propname, *strval;
272 		uint64_t intval;
273 		objset_t *os;
274 		char *slash;
275 
276 		propname = nvpair_name(elem);
277 
278 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
279 			return (EINVAL);
280 
281 		switch (prop) {
282 		case ZPOOL_PROP_VERSION:
283 			error = nvpair_value_uint64(elem, &intval);
284 			if (!error &&
285 			    (intval < spa_version(spa) || intval > SPA_VERSION))
286 				error = EINVAL;
287 			break;
288 
289 		case ZPOOL_PROP_DELEGATION:
290 		case ZPOOL_PROP_AUTOREPLACE:
291 		case ZPOOL_PROP_LISTSNAPS:
292 			error = nvpair_value_uint64(elem, &intval);
293 			if (!error && intval > 1)
294 				error = EINVAL;
295 			break;
296 
297 		case ZPOOL_PROP_BOOTFS:
298 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
299 				error = ENOTSUP;
300 				break;
301 			}
302 
303 			/*
304 			 * Make sure the vdev config is bootable
305 			 */
306 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
307 				error = ENOTSUP;
308 				break;
309 			}
310 
311 			reset_bootfs = 1;
312 
313 			error = nvpair_value_string(elem, &strval);
314 
315 			if (!error) {
316 				uint64_t compress;
317 
318 				if (strval == NULL || strval[0] == '\0') {
319 					objnum = zpool_prop_default_numeric(
320 					    ZPOOL_PROP_BOOTFS);
321 					break;
322 				}
323 
324 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
325 				    DS_MODE_USER | DS_MODE_READONLY, &os))
326 					break;
327 
328 				/* We don't support gzip bootable datasets */
329 				if ((error = dsl_prop_get_integer(strval,
330 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
331 				    &compress, NULL)) == 0 &&
332 				    !BOOTFS_COMPRESS_VALID(compress)) {
333 					error = ENOTSUP;
334 				} else {
335 					objnum = dmu_objset_id(os);
336 				}
337 				dmu_objset_close(os);
338 			}
339 			break;
340 		case ZPOOL_PROP_FAILUREMODE:
341 			error = nvpair_value_uint64(elem, &intval);
342 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
343 			    intval > ZIO_FAILURE_MODE_PANIC))
344 				error = EINVAL;
345 
346 			/*
347 			 * This is a special case which only occurs when
348 			 * the pool has completely failed. This allows
349 			 * the user to change the in-core failmode property
350 			 * without syncing it out to disk (I/Os might
351 			 * currently be blocked). We do this by returning
352 			 * EIO to the caller (spa_prop_set) to trick it
353 			 * into thinking we encountered a property validation
354 			 * error.
355 			 */
356 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
357 				spa->spa_failmode = intval;
358 				error = EIO;
359 			}
360 			break;
361 
362 		case ZPOOL_PROP_CACHEFILE:
363 			if ((error = nvpair_value_string(elem, &strval)) != 0)
364 				break;
365 
366 			if (strval[0] == '\0')
367 				break;
368 
369 			if (strcmp(strval, "none") == 0)
370 				break;
371 
372 			if (strval[0] != '/') {
373 				error = EINVAL;
374 				break;
375 			}
376 
377 			slash = strrchr(strval, '/');
378 			ASSERT(slash != NULL);
379 
380 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
381 			    strcmp(slash, "/..") == 0)
382 				error = EINVAL;
383 			break;
384 		}
385 
386 		if (error)
387 			break;
388 	}
389 
390 	if (!error && reset_bootfs) {
391 		error = nvlist_remove(props,
392 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
393 
394 		if (!error) {
395 			error = nvlist_add_uint64(props,
396 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
397 		}
398 	}
399 
400 	return (error);
401 }
402 
403 int
404 spa_prop_set(spa_t *spa, nvlist_t *nvp)
405 {
406 	int error;
407 
408 	if ((error = spa_prop_validate(spa, nvp)) != 0)
409 		return (error);
410 
411 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
412 	    spa, nvp, 3));
413 }
414 
415 /*
416  * If the bootfs property value is dsobj, clear it.
417  */
418 void
419 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
420 {
421 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
422 		VERIFY(zap_remove(spa->spa_meta_objset,
423 		    spa->spa_pool_props_object,
424 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
425 		spa->spa_bootfs = 0;
426 	}
427 }
428 
429 /*
430  * ==========================================================================
431  * SPA state manipulation (open/create/destroy/import/export)
432  * ==========================================================================
433  */
434 
435 static int
436 spa_error_entry_compare(const void *a, const void *b)
437 {
438 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
439 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
440 	int ret;
441 
442 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
443 	    sizeof (zbookmark_t));
444 
445 	if (ret < 0)
446 		return (-1);
447 	else if (ret > 0)
448 		return (1);
449 	else
450 		return (0);
451 }
452 
453 /*
454  * Utility function which retrieves copies of the current logs and
455  * re-initializes them in the process.
456  */
457 void
458 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
459 {
460 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
461 
462 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
463 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
464 
465 	avl_create(&spa->spa_errlist_scrub,
466 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
467 	    offsetof(spa_error_entry_t, se_avl));
468 	avl_create(&spa->spa_errlist_last,
469 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
470 	    offsetof(spa_error_entry_t, se_avl));
471 }
472 
473 /*
474  * Activate an uninitialized pool.
475  */
476 static void
477 spa_activate(spa_t *spa)
478 {
479 	int t;
480 
481 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
482 
483 	spa->spa_state = POOL_STATE_ACTIVE;
484 
485 	spa->spa_normal_class = metaslab_class_create();
486 	spa->spa_log_class = metaslab_class_create();
487 
488 	for (t = 0; t < ZIO_TYPES; t++) {
489 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
490 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
491 		    TASKQ_PREPOPULATE);
492 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
493 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
494 		    TASKQ_PREPOPULATE);
495 	}
496 
497 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
498 	    offsetof(vdev_t, vdev_dirty_node));
499 	list_create(&spa->spa_zio_list, sizeof (zio_t),
500 	    offsetof(zio_t, zio_link_node));
501 
502 	txg_list_create(&spa->spa_vdev_txg_list,
503 	    offsetof(struct vdev, vdev_txg_node));
504 
505 	avl_create(&spa->spa_errlist_scrub,
506 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
507 	    offsetof(spa_error_entry_t, se_avl));
508 	avl_create(&spa->spa_errlist_last,
509 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
510 	    offsetof(spa_error_entry_t, se_avl));
511 }
512 
513 /*
514  * Opposite of spa_activate().
515  */
516 static void
517 spa_deactivate(spa_t *spa)
518 {
519 	int t;
520 
521 	ASSERT(spa->spa_sync_on == B_FALSE);
522 	ASSERT(spa->spa_dsl_pool == NULL);
523 	ASSERT(spa->spa_root_vdev == NULL);
524 
525 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
526 
527 	txg_list_destroy(&spa->spa_vdev_txg_list);
528 
529 	list_destroy(&spa->spa_dirty_list);
530 	list_destroy(&spa->spa_zio_list);
531 
532 	for (t = 0; t < ZIO_TYPES; t++) {
533 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
534 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
535 		spa->spa_zio_issue_taskq[t] = NULL;
536 		spa->spa_zio_intr_taskq[t] = NULL;
537 	}
538 
539 	metaslab_class_destroy(spa->spa_normal_class);
540 	spa->spa_normal_class = NULL;
541 
542 	metaslab_class_destroy(spa->spa_log_class);
543 	spa->spa_log_class = NULL;
544 
545 	/*
546 	 * If this was part of an import or the open otherwise failed, we may
547 	 * still have errors left in the queues.  Empty them just in case.
548 	 */
549 	spa_errlog_drain(spa);
550 
551 	avl_destroy(&spa->spa_errlist_scrub);
552 	avl_destroy(&spa->spa_errlist_last);
553 
554 	spa->spa_state = POOL_STATE_UNINITIALIZED;
555 }
556 
557 /*
558  * Verify a pool configuration, and construct the vdev tree appropriately.  This
559  * will create all the necessary vdevs in the appropriate layout, with each vdev
560  * in the CLOSED state.  This will prep the pool before open/creation/import.
561  * All vdev validation is done by the vdev_alloc() routine.
562  */
563 static int
564 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
565     uint_t id, int atype)
566 {
567 	nvlist_t **child;
568 	uint_t c, children;
569 	int error;
570 
571 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
572 		return (error);
573 
574 	if ((*vdp)->vdev_ops->vdev_op_leaf)
575 		return (0);
576 
577 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 	    &child, &children) != 0) {
579 		vdev_free(*vdp);
580 		*vdp = NULL;
581 		return (EINVAL);
582 	}
583 
584 	for (c = 0; c < children; c++) {
585 		vdev_t *vd;
586 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
587 		    atype)) != 0) {
588 			vdev_free(*vdp);
589 			*vdp = NULL;
590 			return (error);
591 		}
592 	}
593 
594 	ASSERT(*vdp != NULL);
595 
596 	return (0);
597 }
598 
599 /*
600  * Opposite of spa_load().
601  */
602 static void
603 spa_unload(spa_t *spa)
604 {
605 	int i;
606 
607 	/*
608 	 * Stop async tasks.
609 	 */
610 	spa_async_suspend(spa);
611 
612 	/*
613 	 * Stop syncing.
614 	 */
615 	if (spa->spa_sync_on) {
616 		txg_sync_stop(spa->spa_dsl_pool);
617 		spa->spa_sync_on = B_FALSE;
618 	}
619 
620 	/*
621 	 * Wait for any outstanding prefetch I/O to complete.
622 	 */
623 	spa_config_enter(spa, RW_WRITER, FTAG);
624 	spa_config_exit(spa, FTAG);
625 
626 	/*
627 	 * Drop and purge level 2 cache
628 	 */
629 	spa_l2cache_drop(spa);
630 
631 	/*
632 	 * Close the dsl pool.
633 	 */
634 	if (spa->spa_dsl_pool) {
635 		dsl_pool_close(spa->spa_dsl_pool);
636 		spa->spa_dsl_pool = NULL;
637 	}
638 
639 	/*
640 	 * Close all vdevs.
641 	 */
642 	if (spa->spa_root_vdev)
643 		vdev_free(spa->spa_root_vdev);
644 	ASSERT(spa->spa_root_vdev == NULL);
645 
646 	for (i = 0; i < spa->spa_spares.sav_count; i++)
647 		vdev_free(spa->spa_spares.sav_vdevs[i]);
648 	if (spa->spa_spares.sav_vdevs) {
649 		kmem_free(spa->spa_spares.sav_vdevs,
650 		    spa->spa_spares.sav_count * sizeof (void *));
651 		spa->spa_spares.sav_vdevs = NULL;
652 	}
653 	if (spa->spa_spares.sav_config) {
654 		nvlist_free(spa->spa_spares.sav_config);
655 		spa->spa_spares.sav_config = NULL;
656 	}
657 	spa->spa_spares.sav_count = 0;
658 
659 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
660 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
661 	if (spa->spa_l2cache.sav_vdevs) {
662 		kmem_free(spa->spa_l2cache.sav_vdevs,
663 		    spa->spa_l2cache.sav_count * sizeof (void *));
664 		spa->spa_l2cache.sav_vdevs = NULL;
665 	}
666 	if (spa->spa_l2cache.sav_config) {
667 		nvlist_free(spa->spa_l2cache.sav_config);
668 		spa->spa_l2cache.sav_config = NULL;
669 	}
670 	spa->spa_l2cache.sav_count = 0;
671 
672 	spa->spa_async_suspended = 0;
673 }
674 
675 /*
676  * Load (or re-load) the current list of vdevs describing the active spares for
677  * this pool.  When this is called, we have some form of basic information in
678  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
679  * then re-generate a more complete list including status information.
680  */
681 static void
682 spa_load_spares(spa_t *spa)
683 {
684 	nvlist_t **spares;
685 	uint_t nspares;
686 	int i;
687 	vdev_t *vd, *tvd;
688 
689 	/*
690 	 * First, close and free any existing spare vdevs.
691 	 */
692 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
693 		vd = spa->spa_spares.sav_vdevs[i];
694 
695 		/* Undo the call to spa_activate() below */
696 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
697 		    B_FALSE)) != NULL && tvd->vdev_isspare)
698 			spa_spare_remove(tvd);
699 		vdev_close(vd);
700 		vdev_free(vd);
701 	}
702 
703 	if (spa->spa_spares.sav_vdevs)
704 		kmem_free(spa->spa_spares.sav_vdevs,
705 		    spa->spa_spares.sav_count * sizeof (void *));
706 
707 	if (spa->spa_spares.sav_config == NULL)
708 		nspares = 0;
709 	else
710 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
711 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
712 
713 	spa->spa_spares.sav_count = (int)nspares;
714 	spa->spa_spares.sav_vdevs = NULL;
715 
716 	if (nspares == 0)
717 		return;
718 
719 	/*
720 	 * Construct the array of vdevs, opening them to get status in the
721 	 * process.   For each spare, there is potentially two different vdev_t
722 	 * structures associated with it: one in the list of spares (used only
723 	 * for basic validation purposes) and one in the active vdev
724 	 * configuration (if it's spared in).  During this phase we open and
725 	 * validate each vdev on the spare list.  If the vdev also exists in the
726 	 * active configuration, then we also mark this vdev as an active spare.
727 	 */
728 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
729 	    KM_SLEEP);
730 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
731 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
732 		    VDEV_ALLOC_SPARE) == 0);
733 		ASSERT(vd != NULL);
734 
735 		spa->spa_spares.sav_vdevs[i] = vd;
736 
737 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
738 		    B_FALSE)) != NULL) {
739 			if (!tvd->vdev_isspare)
740 				spa_spare_add(tvd);
741 
742 			/*
743 			 * We only mark the spare active if we were successfully
744 			 * able to load the vdev.  Otherwise, importing a pool
745 			 * with a bad active spare would result in strange
746 			 * behavior, because multiple pool would think the spare
747 			 * is actively in use.
748 			 *
749 			 * There is a vulnerability here to an equally bizarre
750 			 * circumstance, where a dead active spare is later
751 			 * brought back to life (onlined or otherwise).  Given
752 			 * the rarity of this scenario, and the extra complexity
753 			 * it adds, we ignore the possibility.
754 			 */
755 			if (!vdev_is_dead(tvd))
756 				spa_spare_activate(tvd);
757 		}
758 
759 		if (vdev_open(vd) != 0)
760 			continue;
761 
762 		vd->vdev_top = vd;
763 		if (vdev_validate_aux(vd) == 0)
764 			spa_spare_add(vd);
765 	}
766 
767 	/*
768 	 * Recompute the stashed list of spares, with status information
769 	 * this time.
770 	 */
771 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
772 	    DATA_TYPE_NVLIST_ARRAY) == 0);
773 
774 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
775 	    KM_SLEEP);
776 	for (i = 0; i < spa->spa_spares.sav_count; i++)
777 		spares[i] = vdev_config_generate(spa,
778 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
779 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
780 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
781 	for (i = 0; i < spa->spa_spares.sav_count; i++)
782 		nvlist_free(spares[i]);
783 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
784 }
785 
786 /*
787  * Load (or re-load) the current list of vdevs describing the active l2cache for
788  * this pool.  When this is called, we have some form of basic information in
789  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
790  * then re-generate a more complete list including status information.
791  * Devices which are already active have their details maintained, and are
792  * not re-opened.
793  */
794 static void
795 spa_load_l2cache(spa_t *spa)
796 {
797 	nvlist_t **l2cache;
798 	uint_t nl2cache;
799 	int i, j, oldnvdevs;
800 	uint64_t guid, size;
801 	vdev_t *vd, **oldvdevs, **newvdevs;
802 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
803 
804 	if (sav->sav_config != NULL) {
805 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
806 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
807 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
808 	} else {
809 		nl2cache = 0;
810 	}
811 
812 	oldvdevs = sav->sav_vdevs;
813 	oldnvdevs = sav->sav_count;
814 	sav->sav_vdevs = NULL;
815 	sav->sav_count = 0;
816 
817 	/*
818 	 * Process new nvlist of vdevs.
819 	 */
820 	for (i = 0; i < nl2cache; i++) {
821 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
822 		    &guid) == 0);
823 
824 		newvdevs[i] = NULL;
825 		for (j = 0; j < oldnvdevs; j++) {
826 			vd = oldvdevs[j];
827 			if (vd != NULL && guid == vd->vdev_guid) {
828 				/*
829 				 * Retain previous vdev for add/remove ops.
830 				 */
831 				newvdevs[i] = vd;
832 				oldvdevs[j] = NULL;
833 				break;
834 			}
835 		}
836 
837 		if (newvdevs[i] == NULL) {
838 			/*
839 			 * Create new vdev
840 			 */
841 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
842 			    VDEV_ALLOC_L2CACHE) == 0);
843 			ASSERT(vd != NULL);
844 			newvdevs[i] = vd;
845 
846 			/*
847 			 * Commit this vdev as an l2cache device,
848 			 * even if it fails to open.
849 			 */
850 			spa_l2cache_add(vd);
851 
852 			vd->vdev_top = vd;
853 			vd->vdev_aux = sav;
854 
855 			spa_l2cache_activate(vd);
856 
857 			if (vdev_open(vd) != 0)
858 				continue;
859 
860 			(void) vdev_validate_aux(vd);
861 
862 			if (!vdev_is_dead(vd)) {
863 				size = vdev_get_rsize(vd);
864 				l2arc_add_vdev(spa, vd,
865 				    VDEV_LABEL_START_SIZE,
866 				    size - VDEV_LABEL_START_SIZE);
867 			}
868 		}
869 	}
870 
871 	/*
872 	 * Purge vdevs that were dropped
873 	 */
874 	for (i = 0; i < oldnvdevs; i++) {
875 		uint64_t pool;
876 
877 		vd = oldvdevs[i];
878 		if (vd != NULL) {
879 			if (spa_mode & FWRITE &&
880 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
881 			    pool != 0ULL &&
882 			    l2arc_vdev_present(vd)) {
883 				l2arc_remove_vdev(vd);
884 			}
885 			(void) vdev_close(vd);
886 			spa_l2cache_remove(vd);
887 		}
888 	}
889 
890 	if (oldvdevs)
891 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
892 
893 	if (sav->sav_config == NULL)
894 		goto out;
895 
896 	sav->sav_vdevs = newvdevs;
897 	sav->sav_count = (int)nl2cache;
898 
899 	/*
900 	 * Recompute the stashed list of l2cache devices, with status
901 	 * information this time.
902 	 */
903 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
904 	    DATA_TYPE_NVLIST_ARRAY) == 0);
905 
906 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
907 	for (i = 0; i < sav->sav_count; i++)
908 		l2cache[i] = vdev_config_generate(spa,
909 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
910 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
911 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
912 out:
913 	for (i = 0; i < sav->sav_count; i++)
914 		nvlist_free(l2cache[i]);
915 	if (sav->sav_count)
916 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
917 }
918 
919 static int
920 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
921 {
922 	dmu_buf_t *db;
923 	char *packed = NULL;
924 	size_t nvsize = 0;
925 	int error;
926 	*value = NULL;
927 
928 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
929 	nvsize = *(uint64_t *)db->db_data;
930 	dmu_buf_rele(db, FTAG);
931 
932 	packed = kmem_alloc(nvsize, KM_SLEEP);
933 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
934 	if (error == 0)
935 		error = nvlist_unpack(packed, nvsize, value, 0);
936 	kmem_free(packed, nvsize);
937 
938 	return (error);
939 }
940 
941 /*
942  * Checks to see if the given vdev could not be opened, in which case we post a
943  * sysevent to notify the autoreplace code that the device has been removed.
944  */
945 static void
946 spa_check_removed(vdev_t *vd)
947 {
948 	int c;
949 
950 	for (c = 0; c < vd->vdev_children; c++)
951 		spa_check_removed(vd->vdev_child[c]);
952 
953 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
954 		zfs_post_autoreplace(vd->vdev_spa, vd);
955 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
956 	}
957 }
958 
959 /*
960  * Check for missing log devices
961  */
962 int
963 spa_check_logs(spa_t *spa)
964 {
965 	switch (spa->spa_log_state) {
966 	case SPA_LOG_MISSING:
967 		/* need to recheck in case slog has been restored */
968 	case SPA_LOG_UNKNOWN:
969 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
970 		    DS_FIND_CHILDREN)) {
971 			spa->spa_log_state = SPA_LOG_MISSING;
972 			return (1);
973 		}
974 		break;
975 
976 	case SPA_LOG_CLEAR:
977 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
978 		    DS_FIND_CHILDREN);
979 		break;
980 	}
981 	spa->spa_log_state = SPA_LOG_GOOD;
982 	return (0);
983 }
984 
985 /*
986  * Load an existing storage pool, using the pool's builtin spa_config as a
987  * source of configuration information.
988  */
989 static int
990 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
991 {
992 	int error = 0;
993 	nvlist_t *nvroot = NULL;
994 	vdev_t *rvd;
995 	uberblock_t *ub = &spa->spa_uberblock;
996 	uint64_t config_cache_txg = spa->spa_config_txg;
997 	uint64_t pool_guid;
998 	uint64_t version;
999 	zio_t *zio;
1000 	uint64_t autoreplace = 0;
1001 	char *ereport = FM_EREPORT_ZFS_POOL;
1002 
1003 	spa->spa_load_state = state;
1004 
1005 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1006 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1007 		error = EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	/*
1012 	 * Versioning wasn't explicitly added to the label until later, so if
1013 	 * it's not present treat it as the initial version.
1014 	 */
1015 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1016 		version = SPA_VERSION_INITIAL;
1017 
1018 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1019 	    &spa->spa_config_txg);
1020 
1021 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1022 	    spa_guid_exists(pool_guid, 0)) {
1023 		error = EEXIST;
1024 		goto out;
1025 	}
1026 
1027 	spa->spa_load_guid = pool_guid;
1028 
1029 	/*
1030 	 * Parse the configuration into a vdev tree.  We explicitly set the
1031 	 * value that will be returned by spa_version() since parsing the
1032 	 * configuration requires knowing the version number.
1033 	 */
1034 	spa_config_enter(spa, RW_WRITER, FTAG);
1035 	spa->spa_ubsync.ub_version = version;
1036 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1037 	spa_config_exit(spa, FTAG);
1038 
1039 	if (error != 0)
1040 		goto out;
1041 
1042 	ASSERT(spa->spa_root_vdev == rvd);
1043 	ASSERT(spa_guid(spa) == pool_guid);
1044 
1045 	/*
1046 	 * Try to open all vdevs, loading each label in the process.
1047 	 */
1048 	error = vdev_open(rvd);
1049 	if (error != 0)
1050 		goto out;
1051 
1052 	/*
1053 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1054 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1055 	 * flag.
1056 	 */
1057 	spa_config_enter(spa, RW_READER, FTAG);
1058 	error = vdev_validate(rvd);
1059 	spa_config_exit(spa, FTAG);
1060 
1061 	if (error != 0)
1062 		goto out;
1063 
1064 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1065 		error = ENXIO;
1066 		goto out;
1067 	}
1068 
1069 	/*
1070 	 * Find the best uberblock.
1071 	 */
1072 	bzero(ub, sizeof (uberblock_t));
1073 
1074 	zio = zio_root(spa, NULL, NULL,
1075 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1076 	vdev_uberblock_load(zio, rvd, ub);
1077 	error = zio_wait(zio);
1078 
1079 	/*
1080 	 * If we weren't able to find a single valid uberblock, return failure.
1081 	 */
1082 	if (ub->ub_txg == 0) {
1083 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1084 		    VDEV_AUX_CORRUPT_DATA);
1085 		error = ENXIO;
1086 		goto out;
1087 	}
1088 
1089 	/*
1090 	 * If the pool is newer than the code, we can't open it.
1091 	 */
1092 	if (ub->ub_version > SPA_VERSION) {
1093 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1094 		    VDEV_AUX_VERSION_NEWER);
1095 		error = ENOTSUP;
1096 		goto out;
1097 	}
1098 
1099 	/*
1100 	 * If the vdev guid sum doesn't match the uberblock, we have an
1101 	 * incomplete configuration.
1102 	 */
1103 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1104 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1105 		    VDEV_AUX_BAD_GUID_SUM);
1106 		error = ENXIO;
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * Initialize internal SPA structures.
1112 	 */
1113 	spa->spa_state = POOL_STATE_ACTIVE;
1114 	spa->spa_ubsync = spa->spa_uberblock;
1115 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1116 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1117 	if (error) {
1118 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1119 		    VDEV_AUX_CORRUPT_DATA);
1120 		goto out;
1121 	}
1122 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1123 
1124 	if (zap_lookup(spa->spa_meta_objset,
1125 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1126 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1127 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1128 		    VDEV_AUX_CORRUPT_DATA);
1129 		error = EIO;
1130 		goto out;
1131 	}
1132 
1133 	if (!mosconfig) {
1134 		nvlist_t *newconfig;
1135 		uint64_t hostid;
1136 
1137 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1138 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1139 			    VDEV_AUX_CORRUPT_DATA);
1140 			error = EIO;
1141 			goto out;
1142 		}
1143 
1144 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
1145 		    &hostid) == 0) {
1146 			char *hostname;
1147 			unsigned long myhostid = 0;
1148 
1149 			VERIFY(nvlist_lookup_string(newconfig,
1150 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1151 
1152 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1153 			if (hostid != 0 && myhostid != 0 &&
1154 			    (unsigned long)hostid != myhostid) {
1155 				cmn_err(CE_WARN, "pool '%s' could not be "
1156 				    "loaded as it was last accessed by "
1157 				    "another system (host: %s hostid: 0x%lx).  "
1158 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1159 				    spa->spa_name, hostname,
1160 				    (unsigned long)hostid);
1161 				error = EBADF;
1162 				goto out;
1163 			}
1164 		}
1165 
1166 		spa_config_set(spa, newconfig);
1167 		spa_unload(spa);
1168 		spa_deactivate(spa);
1169 		spa_activate(spa);
1170 
1171 		return (spa_load(spa, newconfig, state, B_TRUE));
1172 	}
1173 
1174 	if (zap_lookup(spa->spa_meta_objset,
1175 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1176 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1177 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 		    VDEV_AUX_CORRUPT_DATA);
1179 		error = EIO;
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * Load the bit that tells us to use the new accounting function
1185 	 * (raid-z deflation).  If we have an older pool, this will not
1186 	 * be present.
1187 	 */
1188 	error = zap_lookup(spa->spa_meta_objset,
1189 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1190 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1191 	if (error != 0 && error != ENOENT) {
1192 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1193 		    VDEV_AUX_CORRUPT_DATA);
1194 		error = EIO;
1195 		goto out;
1196 	}
1197 
1198 	/*
1199 	 * Load the persistent error log.  If we have an older pool, this will
1200 	 * not be present.
1201 	 */
1202 	error = zap_lookup(spa->spa_meta_objset,
1203 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1204 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1205 	if (error != 0 && error != ENOENT) {
1206 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 		    VDEV_AUX_CORRUPT_DATA);
1208 		error = EIO;
1209 		goto out;
1210 	}
1211 
1212 	error = zap_lookup(spa->spa_meta_objset,
1213 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1214 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1215 	if (error != 0 && error != ENOENT) {
1216 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1217 		    VDEV_AUX_CORRUPT_DATA);
1218 		error = EIO;
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * Load the history object.  If we have an older pool, this
1224 	 * will not be present.
1225 	 */
1226 	error = zap_lookup(spa->spa_meta_objset,
1227 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1228 	    sizeof (uint64_t), 1, &spa->spa_history);
1229 	if (error != 0 && error != ENOENT) {
1230 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231 		    VDEV_AUX_CORRUPT_DATA);
1232 		error = EIO;
1233 		goto out;
1234 	}
1235 
1236 	/*
1237 	 * Load any hot spares for this pool.
1238 	 */
1239 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1240 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1241 	if (error != 0 && error != ENOENT) {
1242 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243 		    VDEV_AUX_CORRUPT_DATA);
1244 		error = EIO;
1245 		goto out;
1246 	}
1247 	if (error == 0) {
1248 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1249 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1250 		    &spa->spa_spares.sav_config) != 0) {
1251 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252 			    VDEV_AUX_CORRUPT_DATA);
1253 			error = EIO;
1254 			goto out;
1255 		}
1256 
1257 		spa_config_enter(spa, RW_WRITER, FTAG);
1258 		spa_load_spares(spa);
1259 		spa_config_exit(spa, FTAG);
1260 	}
1261 
1262 	/*
1263 	 * Load any level 2 ARC devices for this pool.
1264 	 */
1265 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1266 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1267 	    &spa->spa_l2cache.sav_object);
1268 	if (error != 0 && error != ENOENT) {
1269 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270 		    VDEV_AUX_CORRUPT_DATA);
1271 		error = EIO;
1272 		goto out;
1273 	}
1274 	if (error == 0) {
1275 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1276 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1277 		    &spa->spa_l2cache.sav_config) != 0) {
1278 			vdev_set_state(rvd, B_TRUE,
1279 			    VDEV_STATE_CANT_OPEN,
1280 			    VDEV_AUX_CORRUPT_DATA);
1281 			error = EIO;
1282 			goto out;
1283 		}
1284 
1285 		spa_config_enter(spa, RW_WRITER, FTAG);
1286 		spa_load_l2cache(spa);
1287 		spa_config_exit(spa, FTAG);
1288 	}
1289 
1290 	if (spa_check_logs(spa)) {
1291 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292 		    VDEV_AUX_BAD_LOG);
1293 		error = ENXIO;
1294 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1295 		goto out;
1296 	}
1297 
1298 
1299 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1300 
1301 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1302 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1303 
1304 	if (error && error != ENOENT) {
1305 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1306 		    VDEV_AUX_CORRUPT_DATA);
1307 		error = EIO;
1308 		goto out;
1309 	}
1310 
1311 	if (error == 0) {
1312 		(void) zap_lookup(spa->spa_meta_objset,
1313 		    spa->spa_pool_props_object,
1314 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1315 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1316 		(void) zap_lookup(spa->spa_meta_objset,
1317 		    spa->spa_pool_props_object,
1318 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1319 		    sizeof (uint64_t), 1, &autoreplace);
1320 		(void) zap_lookup(spa->spa_meta_objset,
1321 		    spa->spa_pool_props_object,
1322 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1323 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1324 		(void) zap_lookup(spa->spa_meta_objset,
1325 		    spa->spa_pool_props_object,
1326 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1327 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1328 	}
1329 
1330 	/*
1331 	 * If the 'autoreplace' property is set, then post a resource notifying
1332 	 * the ZFS DE that it should not issue any faults for unopenable
1333 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1334 	 * unopenable vdevs so that the normal autoreplace handler can take
1335 	 * over.
1336 	 */
1337 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1338 		spa_check_removed(spa->spa_root_vdev);
1339 
1340 	/*
1341 	 * Load the vdev state for all toplevel vdevs.
1342 	 */
1343 	vdev_load(rvd);
1344 
1345 	/*
1346 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1347 	 */
1348 	spa_config_enter(spa, RW_WRITER, FTAG);
1349 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1350 	spa_config_exit(spa, FTAG);
1351 
1352 	/*
1353 	 * Check the state of the root vdev.  If it can't be opened, it
1354 	 * indicates one or more toplevel vdevs are faulted.
1355 	 */
1356 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1357 		error = ENXIO;
1358 		goto out;
1359 	}
1360 
1361 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1362 		dmu_tx_t *tx;
1363 		int need_update = B_FALSE;
1364 		int c;
1365 
1366 		/*
1367 		 * Claim log blocks that haven't been committed yet.
1368 		 * This must all happen in a single txg.
1369 		 */
1370 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1371 		    spa_first_txg(spa));
1372 		(void) dmu_objset_find(spa->spa_name,
1373 		    zil_claim, tx, DS_FIND_CHILDREN);
1374 		dmu_tx_commit(tx);
1375 
1376 		spa->spa_sync_on = B_TRUE;
1377 		txg_sync_start(spa->spa_dsl_pool);
1378 
1379 		/*
1380 		 * Wait for all claims to sync.
1381 		 */
1382 		txg_wait_synced(spa->spa_dsl_pool, 0);
1383 
1384 		/*
1385 		 * If the config cache is stale, or we have uninitialized
1386 		 * metaslabs (see spa_vdev_add()), then update the config.
1387 		 */
1388 		if (config_cache_txg != spa->spa_config_txg ||
1389 		    state == SPA_LOAD_IMPORT)
1390 			need_update = B_TRUE;
1391 
1392 		for (c = 0; c < rvd->vdev_children; c++)
1393 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1394 				need_update = B_TRUE;
1395 
1396 		/*
1397 		 * Update the config cache asychronously in case we're the
1398 		 * root pool, in which case the config cache isn't writable yet.
1399 		 */
1400 		if (need_update)
1401 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1402 	}
1403 
1404 	error = 0;
1405 out:
1406 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1407 	if (error && error != EBADF)
1408 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1409 	spa->spa_load_state = SPA_LOAD_NONE;
1410 	spa->spa_ena = 0;
1411 
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Pool Open/Import
1417  *
1418  * The import case is identical to an open except that the configuration is sent
1419  * down from userland, instead of grabbed from the configuration cache.  For the
1420  * case of an open, the pool configuration will exist in the
1421  * POOL_STATE_UNINITIALIZED state.
1422  *
1423  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1424  * the same time open the pool, without having to keep around the spa_t in some
1425  * ambiguous state.
1426  */
1427 static int
1428 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1429 {
1430 	spa_t *spa;
1431 	int error;
1432 	int locked = B_FALSE;
1433 
1434 	*spapp = NULL;
1435 
1436 	/*
1437 	 * As disgusting as this is, we need to support recursive calls to this
1438 	 * function because dsl_dir_open() is called during spa_load(), and ends
1439 	 * up calling spa_open() again.  The real fix is to figure out how to
1440 	 * avoid dsl_dir_open() calling this in the first place.
1441 	 */
1442 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1443 		mutex_enter(&spa_namespace_lock);
1444 		locked = B_TRUE;
1445 	}
1446 
1447 	if ((spa = spa_lookup(pool)) == NULL) {
1448 		if (locked)
1449 			mutex_exit(&spa_namespace_lock);
1450 		return (ENOENT);
1451 	}
1452 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1453 
1454 		spa_activate(spa);
1455 
1456 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1457 
1458 		if (error == EBADF) {
1459 			/*
1460 			 * If vdev_validate() returns failure (indicated by
1461 			 * EBADF), it indicates that one of the vdevs indicates
1462 			 * that the pool has been exported or destroyed.  If
1463 			 * this is the case, the config cache is out of sync and
1464 			 * we should remove the pool from the namespace.
1465 			 */
1466 			spa_unload(spa);
1467 			spa_deactivate(spa);
1468 			spa_config_sync(spa, B_TRUE, B_TRUE);
1469 			spa_remove(spa);
1470 			if (locked)
1471 				mutex_exit(&spa_namespace_lock);
1472 			return (ENOENT);
1473 		}
1474 
1475 		if (error) {
1476 			/*
1477 			 * We can't open the pool, but we still have useful
1478 			 * information: the state of each vdev after the
1479 			 * attempted vdev_open().  Return this to the user.
1480 			 */
1481 			if (config != NULL && spa->spa_root_vdev != NULL) {
1482 				spa_config_enter(spa, RW_READER, FTAG);
1483 				*config = spa_config_generate(spa, NULL, -1ULL,
1484 				    B_TRUE);
1485 				spa_config_exit(spa, FTAG);
1486 			}
1487 			spa_unload(spa);
1488 			spa_deactivate(spa);
1489 			spa->spa_last_open_failed = B_TRUE;
1490 			if (locked)
1491 				mutex_exit(&spa_namespace_lock);
1492 			*spapp = NULL;
1493 			return (error);
1494 		} else {
1495 			spa->spa_last_open_failed = B_FALSE;
1496 		}
1497 	}
1498 
1499 	spa_open_ref(spa, tag);
1500 
1501 	if (locked)
1502 		mutex_exit(&spa_namespace_lock);
1503 
1504 	*spapp = spa;
1505 
1506 	if (config != NULL) {
1507 		spa_config_enter(spa, RW_READER, FTAG);
1508 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1509 		spa_config_exit(spa, FTAG);
1510 	}
1511 
1512 	return (0);
1513 }
1514 
1515 int
1516 spa_open(const char *name, spa_t **spapp, void *tag)
1517 {
1518 	return (spa_open_common(name, spapp, tag, NULL));
1519 }
1520 
1521 /*
1522  * Lookup the given spa_t, incrementing the inject count in the process,
1523  * preventing it from being exported or destroyed.
1524  */
1525 spa_t *
1526 spa_inject_addref(char *name)
1527 {
1528 	spa_t *spa;
1529 
1530 	mutex_enter(&spa_namespace_lock);
1531 	if ((spa = spa_lookup(name)) == NULL) {
1532 		mutex_exit(&spa_namespace_lock);
1533 		return (NULL);
1534 	}
1535 	spa->spa_inject_ref++;
1536 	mutex_exit(&spa_namespace_lock);
1537 
1538 	return (spa);
1539 }
1540 
1541 void
1542 spa_inject_delref(spa_t *spa)
1543 {
1544 	mutex_enter(&spa_namespace_lock);
1545 	spa->spa_inject_ref--;
1546 	mutex_exit(&spa_namespace_lock);
1547 }
1548 
1549 /*
1550  * Add spares device information to the nvlist.
1551  */
1552 static void
1553 spa_add_spares(spa_t *spa, nvlist_t *config)
1554 {
1555 	nvlist_t **spares;
1556 	uint_t i, nspares;
1557 	nvlist_t *nvroot;
1558 	uint64_t guid;
1559 	vdev_stat_t *vs;
1560 	uint_t vsc;
1561 	uint64_t pool;
1562 
1563 	if (spa->spa_spares.sav_count == 0)
1564 		return;
1565 
1566 	VERIFY(nvlist_lookup_nvlist(config,
1567 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1568 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1569 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1570 	if (nspares != 0) {
1571 		VERIFY(nvlist_add_nvlist_array(nvroot,
1572 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1573 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1574 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1575 
1576 		/*
1577 		 * Go through and find any spares which have since been
1578 		 * repurposed as an active spare.  If this is the case, update
1579 		 * their status appropriately.
1580 		 */
1581 		for (i = 0; i < nspares; i++) {
1582 			VERIFY(nvlist_lookup_uint64(spares[i],
1583 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1584 			if (spa_spare_exists(guid, &pool, NULL) &&
1585 			    pool != 0ULL) {
1586 				VERIFY(nvlist_lookup_uint64_array(
1587 				    spares[i], ZPOOL_CONFIG_STATS,
1588 				    (uint64_t **)&vs, &vsc) == 0);
1589 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1590 				vs->vs_aux = VDEV_AUX_SPARED;
1591 			}
1592 		}
1593 	}
1594 }
1595 
1596 /*
1597  * Add l2cache device information to the nvlist, including vdev stats.
1598  */
1599 static void
1600 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1601 {
1602 	nvlist_t **l2cache;
1603 	uint_t i, j, nl2cache;
1604 	nvlist_t *nvroot;
1605 	uint64_t guid;
1606 	vdev_t *vd;
1607 	vdev_stat_t *vs;
1608 	uint_t vsc;
1609 
1610 	if (spa->spa_l2cache.sav_count == 0)
1611 		return;
1612 
1613 	spa_config_enter(spa, RW_READER, FTAG);
1614 
1615 	VERIFY(nvlist_lookup_nvlist(config,
1616 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1617 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1618 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1619 	if (nl2cache != 0) {
1620 		VERIFY(nvlist_add_nvlist_array(nvroot,
1621 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1622 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1623 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1624 
1625 		/*
1626 		 * Update level 2 cache device stats.
1627 		 */
1628 
1629 		for (i = 0; i < nl2cache; i++) {
1630 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1631 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1632 
1633 			vd = NULL;
1634 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1635 				if (guid ==
1636 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1637 					vd = spa->spa_l2cache.sav_vdevs[j];
1638 					break;
1639 				}
1640 			}
1641 			ASSERT(vd != NULL);
1642 
1643 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1644 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1645 			vdev_get_stats(vd, vs);
1646 		}
1647 	}
1648 
1649 	spa_config_exit(spa, FTAG);
1650 }
1651 
1652 int
1653 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1654 {
1655 	int error;
1656 	spa_t *spa;
1657 
1658 	*config = NULL;
1659 	error = spa_open_common(name, &spa, FTAG, config);
1660 
1661 	if (spa && *config != NULL) {
1662 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1663 		    spa_get_errlog_size(spa)) == 0);
1664 
1665 		spa_add_spares(spa, *config);
1666 		spa_add_l2cache(spa, *config);
1667 	}
1668 
1669 	/*
1670 	 * We want to get the alternate root even for faulted pools, so we cheat
1671 	 * and call spa_lookup() directly.
1672 	 */
1673 	if (altroot) {
1674 		if (spa == NULL) {
1675 			mutex_enter(&spa_namespace_lock);
1676 			spa = spa_lookup(name);
1677 			if (spa)
1678 				spa_altroot(spa, altroot, buflen);
1679 			else
1680 				altroot[0] = '\0';
1681 			spa = NULL;
1682 			mutex_exit(&spa_namespace_lock);
1683 		} else {
1684 			spa_altroot(spa, altroot, buflen);
1685 		}
1686 	}
1687 
1688 	if (spa != NULL)
1689 		spa_close(spa, FTAG);
1690 
1691 	return (error);
1692 }
1693 
1694 /*
1695  * Validate that the auxiliary device array is well formed.  We must have an
1696  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1697  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1698  * specified, as long as they are well-formed.
1699  */
1700 static int
1701 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1702     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1703     vdev_labeltype_t label)
1704 {
1705 	nvlist_t **dev;
1706 	uint_t i, ndev;
1707 	vdev_t *vd;
1708 	int error;
1709 
1710 	/*
1711 	 * It's acceptable to have no devs specified.
1712 	 */
1713 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1714 		return (0);
1715 
1716 	if (ndev == 0)
1717 		return (EINVAL);
1718 
1719 	/*
1720 	 * Make sure the pool is formatted with a version that supports this
1721 	 * device type.
1722 	 */
1723 	if (spa_version(spa) < version)
1724 		return (ENOTSUP);
1725 
1726 	/*
1727 	 * Set the pending device list so we correctly handle device in-use
1728 	 * checking.
1729 	 */
1730 	sav->sav_pending = dev;
1731 	sav->sav_npending = ndev;
1732 
1733 	for (i = 0; i < ndev; i++) {
1734 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1735 		    mode)) != 0)
1736 			goto out;
1737 
1738 		if (!vd->vdev_ops->vdev_op_leaf) {
1739 			vdev_free(vd);
1740 			error = EINVAL;
1741 			goto out;
1742 		}
1743 
1744 		/*
1745 		 * The L2ARC currently only supports disk devices.
1746 		 */
1747 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1748 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1749 			error = ENOTBLK;
1750 			goto out;
1751 		}
1752 
1753 		vd->vdev_top = vd;
1754 
1755 		if ((error = vdev_open(vd)) == 0 &&
1756 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1757 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1758 			    vd->vdev_guid) == 0);
1759 		}
1760 
1761 		vdev_free(vd);
1762 
1763 		if (error &&
1764 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1765 			goto out;
1766 		else
1767 			error = 0;
1768 	}
1769 
1770 out:
1771 	sav->sav_pending = NULL;
1772 	sav->sav_npending = 0;
1773 	return (error);
1774 }
1775 
1776 static int
1777 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1778 {
1779 	int error;
1780 
1781 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1782 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1783 	    VDEV_LABEL_SPARE)) != 0) {
1784 		return (error);
1785 	}
1786 
1787 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1788 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1789 	    VDEV_LABEL_L2CACHE));
1790 }
1791 
1792 static void
1793 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1794     const char *config)
1795 {
1796 	int i;
1797 
1798 	if (sav->sav_config != NULL) {
1799 		nvlist_t **olddevs;
1800 		uint_t oldndevs;
1801 		nvlist_t **newdevs;
1802 
1803 		/*
1804 		 * Generate new dev list by concatentating with the
1805 		 * current dev list.
1806 		 */
1807 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1808 		    &olddevs, &oldndevs) == 0);
1809 
1810 		newdevs = kmem_alloc(sizeof (void *) *
1811 		    (ndevs + oldndevs), KM_SLEEP);
1812 		for (i = 0; i < oldndevs; i++)
1813 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1814 			    KM_SLEEP) == 0);
1815 		for (i = 0; i < ndevs; i++)
1816 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1817 			    KM_SLEEP) == 0);
1818 
1819 		VERIFY(nvlist_remove(sav->sav_config, config,
1820 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1821 
1822 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1823 		    config, newdevs, ndevs + oldndevs) == 0);
1824 		for (i = 0; i < oldndevs + ndevs; i++)
1825 			nvlist_free(newdevs[i]);
1826 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1827 	} else {
1828 		/*
1829 		 * Generate a new dev list.
1830 		 */
1831 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1832 		    KM_SLEEP) == 0);
1833 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1834 		    devs, ndevs) == 0);
1835 	}
1836 }
1837 
1838 /*
1839  * Stop and drop level 2 ARC devices
1840  */
1841 void
1842 spa_l2cache_drop(spa_t *spa)
1843 {
1844 	vdev_t *vd;
1845 	int i;
1846 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1847 
1848 	for (i = 0; i < sav->sav_count; i++) {
1849 		uint64_t pool;
1850 
1851 		vd = sav->sav_vdevs[i];
1852 		ASSERT(vd != NULL);
1853 
1854 		if (spa_mode & FWRITE &&
1855 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1856 		    l2arc_vdev_present(vd)) {
1857 			l2arc_remove_vdev(vd);
1858 		}
1859 		if (vd->vdev_isl2cache)
1860 			spa_l2cache_remove(vd);
1861 		vdev_clear_stats(vd);
1862 		(void) vdev_close(vd);
1863 	}
1864 }
1865 
1866 /*
1867  * Pool Creation
1868  */
1869 int
1870 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1871     const char *history_str, nvlist_t *zplprops)
1872 {
1873 	spa_t *spa;
1874 	char *altroot = NULL;
1875 	vdev_t *rvd;
1876 	dsl_pool_t *dp;
1877 	dmu_tx_t *tx;
1878 	int c, error = 0;
1879 	uint64_t txg = TXG_INITIAL;
1880 	nvlist_t **spares, **l2cache;
1881 	uint_t nspares, nl2cache;
1882 	uint64_t version;
1883 
1884 	/*
1885 	 * If this pool already exists, return failure.
1886 	 */
1887 	mutex_enter(&spa_namespace_lock);
1888 	if (spa_lookup(pool) != NULL) {
1889 		mutex_exit(&spa_namespace_lock);
1890 		return (EEXIST);
1891 	}
1892 
1893 	/*
1894 	 * Allocate a new spa_t structure.
1895 	 */
1896 	(void) nvlist_lookup_string(props,
1897 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1898 	spa = spa_add(pool, altroot);
1899 	spa_activate(spa);
1900 
1901 	spa->spa_uberblock.ub_txg = txg - 1;
1902 
1903 	if (props && (error = spa_prop_validate(spa, props))) {
1904 		spa_unload(spa);
1905 		spa_deactivate(spa);
1906 		spa_remove(spa);
1907 		mutex_exit(&spa_namespace_lock);
1908 		return (error);
1909 	}
1910 
1911 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1912 	    &version) != 0)
1913 		version = SPA_VERSION;
1914 	ASSERT(version <= SPA_VERSION);
1915 	spa->spa_uberblock.ub_version = version;
1916 	spa->spa_ubsync = spa->spa_uberblock;
1917 
1918 	/*
1919 	 * Create the root vdev.
1920 	 */
1921 	spa_config_enter(spa, RW_WRITER, FTAG);
1922 
1923 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1924 
1925 	ASSERT(error != 0 || rvd != NULL);
1926 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1927 
1928 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1929 		error = EINVAL;
1930 
1931 	if (error == 0 &&
1932 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1933 	    (error = spa_validate_aux(spa, nvroot, txg,
1934 	    VDEV_ALLOC_ADD)) == 0) {
1935 		for (c = 0; c < rvd->vdev_children; c++)
1936 			vdev_init(rvd->vdev_child[c], txg);
1937 		vdev_config_dirty(rvd);
1938 	}
1939 
1940 	spa_config_exit(spa, FTAG);
1941 
1942 	if (error != 0) {
1943 		spa_unload(spa);
1944 		spa_deactivate(spa);
1945 		spa_remove(spa);
1946 		mutex_exit(&spa_namespace_lock);
1947 		return (error);
1948 	}
1949 
1950 	/*
1951 	 * Get the list of spares, if specified.
1952 	 */
1953 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1954 	    &spares, &nspares) == 0) {
1955 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1956 		    KM_SLEEP) == 0);
1957 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1958 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1959 		spa_config_enter(spa, RW_WRITER, FTAG);
1960 		spa_load_spares(spa);
1961 		spa_config_exit(spa, FTAG);
1962 		spa->spa_spares.sav_sync = B_TRUE;
1963 	}
1964 
1965 	/*
1966 	 * Get the list of level 2 cache devices, if specified.
1967 	 */
1968 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1969 	    &l2cache, &nl2cache) == 0) {
1970 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1971 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1972 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1973 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1974 		spa_config_enter(spa, RW_WRITER, FTAG);
1975 		spa_load_l2cache(spa);
1976 		spa_config_exit(spa, FTAG);
1977 		spa->spa_l2cache.sav_sync = B_TRUE;
1978 	}
1979 
1980 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
1981 	spa->spa_meta_objset = dp->dp_meta_objset;
1982 
1983 	tx = dmu_tx_create_assigned(dp, txg);
1984 
1985 	/*
1986 	 * Create the pool config object.
1987 	 */
1988 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1989 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
1990 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1991 
1992 	if (zap_add(spa->spa_meta_objset,
1993 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1994 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1995 		cmn_err(CE_PANIC, "failed to add pool config");
1996 	}
1997 
1998 	/* Newly created pools with the right version are always deflated. */
1999 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2000 		spa->spa_deflate = TRUE;
2001 		if (zap_add(spa->spa_meta_objset,
2002 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2003 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2004 			cmn_err(CE_PANIC, "failed to add deflate");
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * Create the deferred-free bplist object.  Turn off compression
2010 	 * because sync-to-convergence takes longer if the blocksize
2011 	 * keeps changing.
2012 	 */
2013 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2014 	    1 << 14, tx);
2015 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2016 	    ZIO_COMPRESS_OFF, tx);
2017 
2018 	if (zap_add(spa->spa_meta_objset,
2019 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2020 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2021 		cmn_err(CE_PANIC, "failed to add bplist");
2022 	}
2023 
2024 	/*
2025 	 * Create the pool's history object.
2026 	 */
2027 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2028 		spa_history_create_obj(spa, tx);
2029 
2030 	/*
2031 	 * Set pool properties.
2032 	 */
2033 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2034 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2035 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2036 	if (props)
2037 		spa_sync_props(spa, props, CRED(), tx);
2038 
2039 	dmu_tx_commit(tx);
2040 
2041 	spa->spa_sync_on = B_TRUE;
2042 	txg_sync_start(spa->spa_dsl_pool);
2043 
2044 	/*
2045 	 * We explicitly wait for the first transaction to complete so that our
2046 	 * bean counters are appropriately updated.
2047 	 */
2048 	txg_wait_synced(spa->spa_dsl_pool, txg);
2049 
2050 	spa_config_sync(spa, B_FALSE, B_TRUE);
2051 
2052 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2053 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2054 
2055 	mutex_exit(&spa_namespace_lock);
2056 
2057 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2058 
2059 	return (0);
2060 }
2061 
2062 /*
2063  * Import the given pool into the system.  We set up the necessary spa_t and
2064  * then call spa_load() to do the dirty work.
2065  */
2066 static int
2067 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2068     boolean_t isroot, boolean_t allowfaulted)
2069 {
2070 	spa_t *spa;
2071 	char *altroot = NULL;
2072 	int error, loaderr;
2073 	nvlist_t *nvroot;
2074 	nvlist_t **spares, **l2cache;
2075 	uint_t nspares, nl2cache;
2076 
2077 	/*
2078 	 * If a pool with this name exists, return failure.
2079 	 */
2080 	mutex_enter(&spa_namespace_lock);
2081 	if (spa_lookup(pool) != NULL) {
2082 		mutex_exit(&spa_namespace_lock);
2083 		return (EEXIST);
2084 	}
2085 
2086 	/*
2087 	 * Create and initialize the spa structure.
2088 	 */
2089 	(void) nvlist_lookup_string(props,
2090 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2091 	spa = spa_add(pool, altroot);
2092 	spa_activate(spa);
2093 
2094 	if (allowfaulted)
2095 		spa->spa_import_faulted = B_TRUE;
2096 	spa->spa_is_root = isroot;
2097 
2098 	/*
2099 	 * Pass off the heavy lifting to spa_load().
2100 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2101 	 * the user-supplied config is actually the one to trust when
2102 	 * doing an import.
2103 	 */
2104 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2105 
2106 	spa_config_enter(spa, RW_WRITER, FTAG);
2107 	/*
2108 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2109 	 * and conflicts with spa_has_spare().
2110 	 */
2111 	if (!isroot && spa->spa_spares.sav_config) {
2112 		nvlist_free(spa->spa_spares.sav_config);
2113 		spa->spa_spares.sav_config = NULL;
2114 		spa_load_spares(spa);
2115 	}
2116 	if (!isroot && spa->spa_l2cache.sav_config) {
2117 		nvlist_free(spa->spa_l2cache.sav_config);
2118 		spa->spa_l2cache.sav_config = NULL;
2119 		spa_load_l2cache(spa);
2120 	}
2121 
2122 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2123 	    &nvroot) == 0);
2124 	if (error == 0)
2125 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2126 	if (error == 0)
2127 		error = spa_validate_aux(spa, nvroot, -1ULL,
2128 		    VDEV_ALLOC_L2CACHE);
2129 	spa_config_exit(spa, FTAG);
2130 
2131 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2132 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2133 			/*
2134 			 * If we failed to load the pool, but 'allowfaulted' is
2135 			 * set, then manually set the config as if the config
2136 			 * passed in was specified in the cache file.
2137 			 */
2138 			error = 0;
2139 			spa->spa_import_faulted = B_FALSE;
2140 			if (spa->spa_config == NULL) {
2141 				spa_config_enter(spa, RW_READER, FTAG);
2142 				spa->spa_config = spa_config_generate(spa,
2143 				    NULL, -1ULL, B_TRUE);
2144 				spa_config_exit(spa, FTAG);
2145 			}
2146 			spa_unload(spa);
2147 			spa_deactivate(spa);
2148 			spa_config_sync(spa, B_FALSE, B_TRUE);
2149 		} else {
2150 			spa_unload(spa);
2151 			spa_deactivate(spa);
2152 			spa_remove(spa);
2153 		}
2154 		mutex_exit(&spa_namespace_lock);
2155 		return (error);
2156 	}
2157 
2158 	/*
2159 	 * Override any spares and level 2 cache devices as specified by
2160 	 * the user, as these may have correct device names/devids, etc.
2161 	 */
2162 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2163 	    &spares, &nspares) == 0) {
2164 		if (spa->spa_spares.sav_config)
2165 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2166 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2167 		else
2168 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2169 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2170 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2171 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2172 		spa_config_enter(spa, RW_WRITER, FTAG);
2173 		spa_load_spares(spa);
2174 		spa_config_exit(spa, FTAG);
2175 		spa->spa_spares.sav_sync = B_TRUE;
2176 	}
2177 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2178 	    &l2cache, &nl2cache) == 0) {
2179 		if (spa->spa_l2cache.sav_config)
2180 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2181 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2182 		else
2183 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2184 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2185 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2186 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2187 		spa_config_enter(spa, RW_WRITER, FTAG);
2188 		spa_load_l2cache(spa);
2189 		spa_config_exit(spa, FTAG);
2190 		spa->spa_l2cache.sav_sync = B_TRUE;
2191 	}
2192 
2193 	if (spa_mode & FWRITE) {
2194 		/*
2195 		 * Update the config cache to include the newly-imported pool.
2196 		 */
2197 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2198 	}
2199 
2200 	spa->spa_import_faulted = B_FALSE;
2201 	mutex_exit(&spa_namespace_lock);
2202 
2203 	return (0);
2204 }
2205 
2206 #ifdef _KERNEL
2207 /*
2208  * Build a "root" vdev for a top level vdev read in from a rootpool
2209  * device label.
2210  */
2211 static void
2212 spa_build_rootpool_config(nvlist_t *config)
2213 {
2214 	nvlist_t *nvtop, *nvroot;
2215 	uint64_t pgid;
2216 
2217 	/*
2218 	 * Add this top-level vdev to the child array.
2219 	 */
2220 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2221 	    == 0);
2222 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2223 	    == 0);
2224 
2225 	/*
2226 	 * Put this pool's top-level vdevs into a root vdev.
2227 	 */
2228 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2229 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2230 	    == 0);
2231 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2232 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2233 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2234 	    &nvtop, 1) == 0);
2235 
2236 	/*
2237 	 * Replace the existing vdev_tree with the new root vdev in
2238 	 * this pool's configuration (remove the old, add the new).
2239 	 */
2240 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2241 	nvlist_free(nvroot);
2242 }
2243 
2244 /*
2245  * Get the root pool information from the root disk, then import the root pool
2246  * during the system boot up time.
2247  */
2248 extern nvlist_t *vdev_disk_read_rootlabel(char *, char *);
2249 
2250 int
2251 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2252     uint64_t *besttxg)
2253 {
2254 	nvlist_t *config;
2255 	uint64_t txg;
2256 
2257 	if ((config = vdev_disk_read_rootlabel(devpath, devid)) == NULL)
2258 		return (-1);
2259 
2260 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2261 
2262 	if (bestconf != NULL)
2263 		*bestconf = config;
2264 	*besttxg = txg;
2265 	return (0);
2266 }
2267 
2268 boolean_t
2269 spa_rootdev_validate(nvlist_t *nv)
2270 {
2271 	uint64_t ival;
2272 
2273 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2274 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2275 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2276 		return (B_FALSE);
2277 
2278 	return (B_TRUE);
2279 }
2280 
2281 
2282 /*
2283  * Given the boot device's physical path or devid, check if the device
2284  * is in a valid state.  If so, return the configuration from the vdev
2285  * label.
2286  */
2287 int
2288 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2289 {
2290 	nvlist_t *conf = NULL;
2291 	uint64_t txg = 0;
2292 	nvlist_t *nvtop, **child;
2293 	char *type;
2294 	char *bootpath = NULL;
2295 	uint_t children, c;
2296 	char *tmp;
2297 
2298 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2299 		*tmp = '\0';
2300 	if (spa_check_rootconf(devpath, devid, &conf, &txg) < 0) {
2301 		cmn_err(CE_NOTE, "error reading device label");
2302 		nvlist_free(conf);
2303 		return (EINVAL);
2304 	}
2305 	if (txg == 0) {
2306 		cmn_err(CE_NOTE, "this device is detached");
2307 		nvlist_free(conf);
2308 		return (EINVAL);
2309 	}
2310 
2311 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2312 	    &nvtop) == 0);
2313 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2314 
2315 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2316 		if (spa_rootdev_validate(nvtop)) {
2317 			goto out;
2318 		} else {
2319 			nvlist_free(conf);
2320 			return (EINVAL);
2321 		}
2322 	}
2323 
2324 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2325 
2326 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2327 	    &child, &children) == 0);
2328 
2329 	/*
2330 	 * Go thru vdevs in the mirror to see if the given device
2331 	 * has the most recent txg. Only the device with the most
2332 	 * recent txg has valid information and should be booted.
2333 	 */
2334 	for (c = 0; c < children; c++) {
2335 		char *cdevid, *cpath;
2336 		uint64_t tmptxg;
2337 
2338 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2339 		    &cpath) != 0)
2340 			return (EINVAL);
2341 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2342 		    &cdevid) != 0)
2343 			return (EINVAL);
2344 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2345 		    &tmptxg) == 0) && (tmptxg > txg)) {
2346 			txg = tmptxg;
2347 			VERIFY(nvlist_lookup_string(child[c],
2348 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2349 		}
2350 	}
2351 
2352 	/* Does the best device match the one we've booted from? */
2353 	if (bootpath) {
2354 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2355 		return (EINVAL);
2356 	}
2357 out:
2358 	*bestconf = conf;
2359 	return (0);
2360 }
2361 
2362 /*
2363  * Import a root pool.
2364  *
2365  * For x86. devpath_list will consist of devid and/or physpath name of
2366  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2367  * The GRUB "findroot" command will return the vdev we should boot.
2368  *
2369  * For Sparc, devpath_list consists the physpath name of the booting device
2370  * no matter the rootpool is a single device pool or a mirrored pool.
2371  * e.g.
2372  *	"/pci@1f,0/ide@d/disk@0,0:a"
2373  */
2374 int
2375 spa_import_rootpool(char *devpath, char *devid)
2376 {
2377 	nvlist_t *conf = NULL;
2378 	char *pname;
2379 	int error;
2380 
2381 	/*
2382 	 * Get the vdev pathname and configuation from the most
2383 	 * recently updated vdev (highest txg).
2384 	 */
2385 	if (error = spa_get_rootconf(devpath, devid, &conf))
2386 		goto msg_out;
2387 
2388 	/*
2389 	 * Add type "root" vdev to the config.
2390 	 */
2391 	spa_build_rootpool_config(conf);
2392 
2393 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2394 
2395 	/*
2396 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2397 	 * instead of spa_import().  This prevents us from marking vdevs as
2398 	 * persistently unavailable, and generates FMA ereports as if it were a
2399 	 * pool open, not import.
2400 	 */
2401 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2402 	if (error == EEXIST)
2403 		error = 0;
2404 
2405 	nvlist_free(conf);
2406 	return (error);
2407 
2408 msg_out:
2409 	cmn_err(CE_NOTE, "\n"
2410 	    "  ***************************************************  \n"
2411 	    "  *  This device is not bootable!                   *  \n"
2412 	    "  *  It is either offlined or detached or faulted.  *  \n"
2413 	    "  *  Please try to boot from a different device.    *  \n"
2414 	    "  ***************************************************  ");
2415 
2416 	return (error);
2417 }
2418 #endif
2419 
2420 /*
2421  * Import a non-root pool into the system.
2422  */
2423 int
2424 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2425 {
2426 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2427 }
2428 
2429 int
2430 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2431 {
2432 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2433 }
2434 
2435 
2436 /*
2437  * This (illegal) pool name is used when temporarily importing a spa_t in order
2438  * to get the vdev stats associated with the imported devices.
2439  */
2440 #define	TRYIMPORT_NAME	"$import"
2441 
2442 nvlist_t *
2443 spa_tryimport(nvlist_t *tryconfig)
2444 {
2445 	nvlist_t *config = NULL;
2446 	char *poolname;
2447 	spa_t *spa;
2448 	uint64_t state;
2449 
2450 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2451 		return (NULL);
2452 
2453 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2454 		return (NULL);
2455 
2456 	/*
2457 	 * Create and initialize the spa structure.
2458 	 */
2459 	mutex_enter(&spa_namespace_lock);
2460 	spa = spa_add(TRYIMPORT_NAME, NULL);
2461 	spa_activate(spa);
2462 
2463 	/*
2464 	 * Pass off the heavy lifting to spa_load().
2465 	 * Pass TRUE for mosconfig because the user-supplied config
2466 	 * is actually the one to trust when doing an import.
2467 	 */
2468 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2469 
2470 	/*
2471 	 * If 'tryconfig' was at least parsable, return the current config.
2472 	 */
2473 	if (spa->spa_root_vdev != NULL) {
2474 		spa_config_enter(spa, RW_READER, FTAG);
2475 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2476 		spa_config_exit(spa, FTAG);
2477 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2478 		    poolname) == 0);
2479 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2480 		    state) == 0);
2481 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2482 		    spa->spa_uberblock.ub_timestamp) == 0);
2483 
2484 		/*
2485 		 * If the bootfs property exists on this pool then we
2486 		 * copy it out so that external consumers can tell which
2487 		 * pools are bootable.
2488 		 */
2489 		if (spa->spa_bootfs) {
2490 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2491 
2492 			/*
2493 			 * We have to play games with the name since the
2494 			 * pool was opened as TRYIMPORT_NAME.
2495 			 */
2496 			if (dsl_dsobj_to_dsname(spa->spa_name,
2497 			    spa->spa_bootfs, tmpname) == 0) {
2498 				char *cp;
2499 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2500 
2501 				cp = strchr(tmpname, '/');
2502 				if (cp == NULL) {
2503 					(void) strlcpy(dsname, tmpname,
2504 					    MAXPATHLEN);
2505 				} else {
2506 					(void) snprintf(dsname, MAXPATHLEN,
2507 					    "%s/%s", poolname, ++cp);
2508 				}
2509 				VERIFY(nvlist_add_string(config,
2510 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2511 				kmem_free(dsname, MAXPATHLEN);
2512 			}
2513 			kmem_free(tmpname, MAXPATHLEN);
2514 		}
2515 
2516 		/*
2517 		 * Add the list of hot spares and level 2 cache devices.
2518 		 */
2519 		spa_add_spares(spa, config);
2520 		spa_add_l2cache(spa, config);
2521 	}
2522 
2523 	spa_unload(spa);
2524 	spa_deactivate(spa);
2525 	spa_remove(spa);
2526 	mutex_exit(&spa_namespace_lock);
2527 
2528 	return (config);
2529 }
2530 
2531 /*
2532  * Pool export/destroy
2533  *
2534  * The act of destroying or exporting a pool is very simple.  We make sure there
2535  * is no more pending I/O and any references to the pool are gone.  Then, we
2536  * update the pool state and sync all the labels to disk, removing the
2537  * configuration from the cache afterwards.
2538  */
2539 static int
2540 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2541     boolean_t force)
2542 {
2543 	spa_t *spa;
2544 
2545 	if (oldconfig)
2546 		*oldconfig = NULL;
2547 
2548 	if (!(spa_mode & FWRITE))
2549 		return (EROFS);
2550 
2551 	mutex_enter(&spa_namespace_lock);
2552 	if ((spa = spa_lookup(pool)) == NULL) {
2553 		mutex_exit(&spa_namespace_lock);
2554 		return (ENOENT);
2555 	}
2556 
2557 	/*
2558 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2559 	 * reacquire the namespace lock, and see if we can export.
2560 	 */
2561 	spa_open_ref(spa, FTAG);
2562 	mutex_exit(&spa_namespace_lock);
2563 	spa_async_suspend(spa);
2564 	mutex_enter(&spa_namespace_lock);
2565 	spa_close(spa, FTAG);
2566 
2567 	/*
2568 	 * The pool will be in core if it's openable,
2569 	 * in which case we can modify its state.
2570 	 */
2571 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2572 		/*
2573 		 * Objsets may be open only because they're dirty, so we
2574 		 * have to force it to sync before checking spa_refcnt.
2575 		 */
2576 		txg_wait_synced(spa->spa_dsl_pool, 0);
2577 
2578 		/*
2579 		 * A pool cannot be exported or destroyed if there are active
2580 		 * references.  If we are resetting a pool, allow references by
2581 		 * fault injection handlers.
2582 		 */
2583 		if (!spa_refcount_zero(spa) ||
2584 		    (spa->spa_inject_ref != 0 &&
2585 		    new_state != POOL_STATE_UNINITIALIZED)) {
2586 			spa_async_resume(spa);
2587 			mutex_exit(&spa_namespace_lock);
2588 			return (EBUSY);
2589 		}
2590 
2591 		/*
2592 		 * A pool cannot be exported if it has an active shared spare.
2593 		 * This is to prevent other pools stealing the active spare
2594 		 * from an exported pool. At user's own will, such pool can
2595 		 * be forcedly exported.
2596 		 */
2597 		if (!force && new_state == POOL_STATE_EXPORTED &&
2598 		    spa_has_active_shared_spare(spa)) {
2599 			spa_async_resume(spa);
2600 			mutex_exit(&spa_namespace_lock);
2601 			return (EXDEV);
2602 		}
2603 
2604 		/*
2605 		 * We want this to be reflected on every label,
2606 		 * so mark them all dirty.  spa_unload() will do the
2607 		 * final sync that pushes these changes out.
2608 		 */
2609 		if (new_state != POOL_STATE_UNINITIALIZED) {
2610 			spa_config_enter(spa, RW_WRITER, FTAG);
2611 			spa->spa_state = new_state;
2612 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2613 			vdev_config_dirty(spa->spa_root_vdev);
2614 			spa_config_exit(spa, FTAG);
2615 		}
2616 	}
2617 
2618 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2619 
2620 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2621 		spa_unload(spa);
2622 		spa_deactivate(spa);
2623 	}
2624 
2625 	if (oldconfig && spa->spa_config)
2626 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2627 
2628 	if (new_state != POOL_STATE_UNINITIALIZED) {
2629 		spa_config_sync(spa, B_TRUE, B_TRUE);
2630 		spa_remove(spa);
2631 	}
2632 	mutex_exit(&spa_namespace_lock);
2633 
2634 	return (0);
2635 }
2636 
2637 /*
2638  * Destroy a storage pool.
2639  */
2640 int
2641 spa_destroy(char *pool)
2642 {
2643 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2644 }
2645 
2646 /*
2647  * Export a storage pool.
2648  */
2649 int
2650 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2651 {
2652 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2653 }
2654 
2655 /*
2656  * Similar to spa_export(), this unloads the spa_t without actually removing it
2657  * from the namespace in any way.
2658  */
2659 int
2660 spa_reset(char *pool)
2661 {
2662 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2663 	    B_FALSE));
2664 }
2665 
2666 /*
2667  * ==========================================================================
2668  * Device manipulation
2669  * ==========================================================================
2670  */
2671 
2672 /*
2673  * Add a device to a storage pool.
2674  */
2675 int
2676 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2677 {
2678 	uint64_t txg;
2679 	int c, error;
2680 	vdev_t *rvd = spa->spa_root_vdev;
2681 	vdev_t *vd, *tvd;
2682 	nvlist_t **spares, **l2cache;
2683 	uint_t nspares, nl2cache;
2684 
2685 	txg = spa_vdev_enter(spa);
2686 
2687 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2688 	    VDEV_ALLOC_ADD)) != 0)
2689 		return (spa_vdev_exit(spa, NULL, txg, error));
2690 
2691 	spa->spa_pending_vdev = vd;
2692 
2693 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2694 	    &nspares) != 0)
2695 		nspares = 0;
2696 
2697 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2698 	    &nl2cache) != 0)
2699 		nl2cache = 0;
2700 
2701 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2702 		spa->spa_pending_vdev = NULL;
2703 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2704 	}
2705 
2706 	if (vd->vdev_children != 0) {
2707 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2708 			spa->spa_pending_vdev = NULL;
2709 			return (spa_vdev_exit(spa, vd, txg, error));
2710 		}
2711 	}
2712 
2713 	/*
2714 	 * We must validate the spares and l2cache devices after checking the
2715 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2716 	 */
2717 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2718 		spa->spa_pending_vdev = NULL;
2719 		return (spa_vdev_exit(spa, vd, txg, error));
2720 	}
2721 
2722 	spa->spa_pending_vdev = NULL;
2723 
2724 	/*
2725 	 * Transfer each new top-level vdev from vd to rvd.
2726 	 */
2727 	for (c = 0; c < vd->vdev_children; c++) {
2728 		tvd = vd->vdev_child[c];
2729 		vdev_remove_child(vd, tvd);
2730 		tvd->vdev_id = rvd->vdev_children;
2731 		vdev_add_child(rvd, tvd);
2732 		vdev_config_dirty(tvd);
2733 	}
2734 
2735 	if (nspares != 0) {
2736 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2737 		    ZPOOL_CONFIG_SPARES);
2738 		spa_load_spares(spa);
2739 		spa->spa_spares.sav_sync = B_TRUE;
2740 	}
2741 
2742 	if (nl2cache != 0) {
2743 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2744 		    ZPOOL_CONFIG_L2CACHE);
2745 		spa_load_l2cache(spa);
2746 		spa->spa_l2cache.sav_sync = B_TRUE;
2747 	}
2748 
2749 	/*
2750 	 * We have to be careful when adding new vdevs to an existing pool.
2751 	 * If other threads start allocating from these vdevs before we
2752 	 * sync the config cache, and we lose power, then upon reboot we may
2753 	 * fail to open the pool because there are DVAs that the config cache
2754 	 * can't translate.  Therefore, we first add the vdevs without
2755 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2756 	 * and then let spa_config_update() initialize the new metaslabs.
2757 	 *
2758 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2759 	 * if we lose power at any point in this sequence, the remaining
2760 	 * steps will be completed the next time we load the pool.
2761 	 */
2762 	(void) spa_vdev_exit(spa, vd, txg, 0);
2763 
2764 	mutex_enter(&spa_namespace_lock);
2765 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2766 	mutex_exit(&spa_namespace_lock);
2767 
2768 	return (0);
2769 }
2770 
2771 /*
2772  * Attach a device to a mirror.  The arguments are the path to any device
2773  * in the mirror, and the nvroot for the new device.  If the path specifies
2774  * a device that is not mirrored, we automatically insert the mirror vdev.
2775  *
2776  * If 'replacing' is specified, the new device is intended to replace the
2777  * existing device; in this case the two devices are made into their own
2778  * mirror using the 'replacing' vdev, which is functionally identical to
2779  * the mirror vdev (it actually reuses all the same ops) but has a few
2780  * extra rules: you can't attach to it after it's been created, and upon
2781  * completion of resilvering, the first disk (the one being replaced)
2782  * is automatically detached.
2783  */
2784 int
2785 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2786 {
2787 	uint64_t txg, open_txg;
2788 	vdev_t *rvd = spa->spa_root_vdev;
2789 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2790 	vdev_ops_t *pvops;
2791 	dmu_tx_t *tx;
2792 	char *oldvdpath, *newvdpath;
2793 	int newvd_isspare;
2794 	int error;
2795 
2796 	txg = spa_vdev_enter(spa);
2797 
2798 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2799 
2800 	if (oldvd == NULL)
2801 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2802 
2803 	if (!oldvd->vdev_ops->vdev_op_leaf)
2804 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2805 
2806 	pvd = oldvd->vdev_parent;
2807 
2808 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2809 	    VDEV_ALLOC_ADD)) != 0)
2810 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2811 
2812 	if (newrootvd->vdev_children != 1)
2813 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2814 
2815 	newvd = newrootvd->vdev_child[0];
2816 
2817 	if (!newvd->vdev_ops->vdev_op_leaf)
2818 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2819 
2820 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2821 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2822 
2823 	/*
2824 	 * Spares can't replace logs
2825 	 */
2826 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2827 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2828 
2829 	if (!replacing) {
2830 		/*
2831 		 * For attach, the only allowable parent is a mirror or the root
2832 		 * vdev.
2833 		 */
2834 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2835 		    pvd->vdev_ops != &vdev_root_ops)
2836 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2837 
2838 		pvops = &vdev_mirror_ops;
2839 	} else {
2840 		/*
2841 		 * Active hot spares can only be replaced by inactive hot
2842 		 * spares.
2843 		 */
2844 		if (pvd->vdev_ops == &vdev_spare_ops &&
2845 		    pvd->vdev_child[1] == oldvd &&
2846 		    !spa_has_spare(spa, newvd->vdev_guid))
2847 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2848 
2849 		/*
2850 		 * If the source is a hot spare, and the parent isn't already a
2851 		 * spare, then we want to create a new hot spare.  Otherwise, we
2852 		 * want to create a replacing vdev.  The user is not allowed to
2853 		 * attach to a spared vdev child unless the 'isspare' state is
2854 		 * the same (spare replaces spare, non-spare replaces
2855 		 * non-spare).
2856 		 */
2857 		if (pvd->vdev_ops == &vdev_replacing_ops)
2858 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2859 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2860 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2861 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2862 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2863 		    newvd->vdev_isspare)
2864 			pvops = &vdev_spare_ops;
2865 		else
2866 			pvops = &vdev_replacing_ops;
2867 	}
2868 
2869 	/*
2870 	 * Compare the new device size with the replaceable/attachable
2871 	 * device size.
2872 	 */
2873 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2874 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2875 
2876 	/*
2877 	 * The new device cannot have a higher alignment requirement
2878 	 * than the top-level vdev.
2879 	 */
2880 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2881 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2882 
2883 	/*
2884 	 * If this is an in-place replacement, update oldvd's path and devid
2885 	 * to make it distinguishable from newvd, and unopenable from now on.
2886 	 */
2887 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2888 		spa_strfree(oldvd->vdev_path);
2889 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2890 		    KM_SLEEP);
2891 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2892 		    newvd->vdev_path, "old");
2893 		if (oldvd->vdev_devid != NULL) {
2894 			spa_strfree(oldvd->vdev_devid);
2895 			oldvd->vdev_devid = NULL;
2896 		}
2897 	}
2898 
2899 	/*
2900 	 * If the parent is not a mirror, or if we're replacing, insert the new
2901 	 * mirror/replacing/spare vdev above oldvd.
2902 	 */
2903 	if (pvd->vdev_ops != pvops)
2904 		pvd = vdev_add_parent(oldvd, pvops);
2905 
2906 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2907 	ASSERT(pvd->vdev_ops == pvops);
2908 	ASSERT(oldvd->vdev_parent == pvd);
2909 
2910 	/*
2911 	 * Extract the new device from its root and add it to pvd.
2912 	 */
2913 	vdev_remove_child(newrootvd, newvd);
2914 	newvd->vdev_id = pvd->vdev_children;
2915 	vdev_add_child(pvd, newvd);
2916 
2917 	/*
2918 	 * If newvd is smaller than oldvd, but larger than its rsize,
2919 	 * the addition of newvd may have decreased our parent's asize.
2920 	 */
2921 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2922 
2923 	tvd = newvd->vdev_top;
2924 	ASSERT(pvd->vdev_top == tvd);
2925 	ASSERT(tvd->vdev_parent == rvd);
2926 
2927 	vdev_config_dirty(tvd);
2928 
2929 	/*
2930 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2931 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2932 	 */
2933 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2934 
2935 	mutex_enter(&newvd->vdev_dtl_lock);
2936 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2937 	    open_txg - TXG_INITIAL + 1);
2938 	mutex_exit(&newvd->vdev_dtl_lock);
2939 
2940 	if (newvd->vdev_isspare)
2941 		spa_spare_activate(newvd);
2942 	oldvdpath = spa_strdup(vdev_description(oldvd));
2943 	newvdpath = spa_strdup(vdev_description(newvd));
2944 	newvd_isspare = newvd->vdev_isspare;
2945 
2946 	/*
2947 	 * Mark newvd's DTL dirty in this txg.
2948 	 */
2949 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2950 
2951 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2952 
2953 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2954 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
2955 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
2956 		    CRED(),  "%s vdev=%s %s vdev=%s",
2957 		    replacing && newvd_isspare ? "spare in" :
2958 		    replacing ? "replace" : "attach", newvdpath,
2959 		    replacing ? "for" : "to", oldvdpath);
2960 		dmu_tx_commit(tx);
2961 	} else {
2962 		dmu_tx_abort(tx);
2963 	}
2964 
2965 	spa_strfree(oldvdpath);
2966 	spa_strfree(newvdpath);
2967 
2968 	/*
2969 	 * Kick off a resilver to update newvd.
2970 	 */
2971 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2972 
2973 	return (0);
2974 }
2975 
2976 /*
2977  * Detach a device from a mirror or replacing vdev.
2978  * If 'replace_done' is specified, only detach if the parent
2979  * is a replacing vdev.
2980  */
2981 int
2982 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2983 {
2984 	uint64_t txg;
2985 	int c, t, error;
2986 	vdev_t *rvd = spa->spa_root_vdev;
2987 	vdev_t *vd, *pvd, *cvd, *tvd;
2988 	boolean_t unspare = B_FALSE;
2989 	uint64_t unspare_guid;
2990 	size_t len;
2991 
2992 	txg = spa_vdev_enter(spa);
2993 
2994 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2995 
2996 	if (vd == NULL)
2997 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2998 
2999 	if (!vd->vdev_ops->vdev_op_leaf)
3000 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3001 
3002 	pvd = vd->vdev_parent;
3003 
3004 	/*
3005 	 * If replace_done is specified, only remove this device if it's
3006 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3007 	 * disk can be removed.
3008 	 */
3009 	if (replace_done) {
3010 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3011 			if (vd->vdev_id != 0)
3012 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3013 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3014 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3015 		}
3016 	}
3017 
3018 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3019 	    spa_version(spa) >= SPA_VERSION_SPARES);
3020 
3021 	/*
3022 	 * Only mirror, replacing, and spare vdevs support detach.
3023 	 */
3024 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3025 	    pvd->vdev_ops != &vdev_mirror_ops &&
3026 	    pvd->vdev_ops != &vdev_spare_ops)
3027 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3028 
3029 	/*
3030 	 * If there's only one replica, you can't detach it.
3031 	 */
3032 	if (pvd->vdev_children <= 1)
3033 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3034 
3035 	/*
3036 	 * If all siblings have non-empty DTLs, this device may have the only
3037 	 * valid copy of the data, which means we cannot safely detach it.
3038 	 *
3039 	 * XXX -- as in the vdev_offline() case, we really want a more
3040 	 * precise DTL check.
3041 	 */
3042 	for (c = 0; c < pvd->vdev_children; c++) {
3043 		uint64_t dirty;
3044 
3045 		cvd = pvd->vdev_child[c];
3046 		if (cvd == vd)
3047 			continue;
3048 		if (vdev_is_dead(cvd))
3049 			continue;
3050 		mutex_enter(&cvd->vdev_dtl_lock);
3051 		dirty = cvd->vdev_dtl_map.sm_space |
3052 		    cvd->vdev_dtl_scrub.sm_space;
3053 		mutex_exit(&cvd->vdev_dtl_lock);
3054 		if (!dirty)
3055 			break;
3056 	}
3057 
3058 	/*
3059 	 * If we are a replacing or spare vdev, then we can always detach the
3060 	 * latter child, as that is how one cancels the operation.
3061 	 */
3062 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
3063 	    c == pvd->vdev_children)
3064 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3065 
3066 	/*
3067 	 * If we are detaching the second disk from a replacing vdev, then
3068 	 * check to see if we changed the original vdev's path to have "/old"
3069 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3070 	 */
3071 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3072 	    pvd->vdev_child[0]->vdev_path != NULL &&
3073 	    pvd->vdev_child[1]->vdev_path != NULL) {
3074 		ASSERT(pvd->vdev_child[1] == vd);
3075 		cvd = pvd->vdev_child[0];
3076 		len = strlen(vd->vdev_path);
3077 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3078 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3079 			spa_strfree(cvd->vdev_path);
3080 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3081 		}
3082 	}
3083 
3084 	/*
3085 	 * If we are detaching the original disk from a spare, then it implies
3086 	 * that the spare should become a real disk, and be removed from the
3087 	 * active spare list for the pool.
3088 	 */
3089 	if (pvd->vdev_ops == &vdev_spare_ops &&
3090 	    vd->vdev_id == 0)
3091 		unspare = B_TRUE;
3092 
3093 	/*
3094 	 * Erase the disk labels so the disk can be used for other things.
3095 	 * This must be done after all other error cases are handled,
3096 	 * but before we disembowel vd (so we can still do I/O to it).
3097 	 * But if we can't do it, don't treat the error as fatal --
3098 	 * it may be that the unwritability of the disk is the reason
3099 	 * it's being detached!
3100 	 */
3101 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3102 
3103 	/*
3104 	 * Remove vd from its parent and compact the parent's children.
3105 	 */
3106 	vdev_remove_child(pvd, vd);
3107 	vdev_compact_children(pvd);
3108 
3109 	/*
3110 	 * Remember one of the remaining children so we can get tvd below.
3111 	 */
3112 	cvd = pvd->vdev_child[0];
3113 
3114 	/*
3115 	 * If we need to remove the remaining child from the list of hot spares,
3116 	 * do it now, marking the vdev as no longer a spare in the process.  We
3117 	 * must do this before vdev_remove_parent(), because that can change the
3118 	 * GUID if it creates a new toplevel GUID.
3119 	 */
3120 	if (unspare) {
3121 		ASSERT(cvd->vdev_isspare);
3122 		spa_spare_remove(cvd);
3123 		unspare_guid = cvd->vdev_guid;
3124 	}
3125 
3126 	/*
3127 	 * If the parent mirror/replacing vdev only has one child,
3128 	 * the parent is no longer needed.  Remove it from the tree.
3129 	 */
3130 	if (pvd->vdev_children == 1)
3131 		vdev_remove_parent(cvd);
3132 
3133 	/*
3134 	 * We don't set tvd until now because the parent we just removed
3135 	 * may have been the previous top-level vdev.
3136 	 */
3137 	tvd = cvd->vdev_top;
3138 	ASSERT(tvd->vdev_parent == rvd);
3139 
3140 	/*
3141 	 * Reevaluate the parent vdev state.
3142 	 */
3143 	vdev_propagate_state(cvd);
3144 
3145 	/*
3146 	 * If the device we just detached was smaller than the others, it may be
3147 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3148 	 * can't fail because the existing metaslabs are already in core, so
3149 	 * there's nothing to read from disk.
3150 	 */
3151 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3152 
3153 	vdev_config_dirty(tvd);
3154 
3155 	/*
3156 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3157 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3158 	 * But first make sure we're not on any *other* txg's DTL list, to
3159 	 * prevent vd from being accessed after it's freed.
3160 	 */
3161 	for (t = 0; t < TXG_SIZE; t++)
3162 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3163 	vd->vdev_detached = B_TRUE;
3164 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3165 
3166 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3167 
3168 	error = spa_vdev_exit(spa, vd, txg, 0);
3169 
3170 	/*
3171 	 * If this was the removal of the original device in a hot spare vdev,
3172 	 * then we want to go through and remove the device from the hot spare
3173 	 * list of every other pool.
3174 	 */
3175 	if (unspare) {
3176 		spa = NULL;
3177 		mutex_enter(&spa_namespace_lock);
3178 		while ((spa = spa_next(spa)) != NULL) {
3179 			if (spa->spa_state != POOL_STATE_ACTIVE)
3180 				continue;
3181 
3182 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3183 		}
3184 		mutex_exit(&spa_namespace_lock);
3185 	}
3186 
3187 	return (error);
3188 }
3189 
3190 /*
3191  * Remove a spares vdev from the nvlist config.
3192  */
3193 static int
3194 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3195     nvlist_t **spares, int nspares, vdev_t *vd)
3196 {
3197 	nvlist_t *nv, **newspares;
3198 	int i, j;
3199 
3200 	nv = NULL;
3201 	for (i = 0; i < nspares; i++) {
3202 		uint64_t theguid;
3203 
3204 		VERIFY(nvlist_lookup_uint64(spares[i],
3205 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3206 		if (theguid == guid) {
3207 			nv = spares[i];
3208 			break;
3209 		}
3210 	}
3211 
3212 	/*
3213 	 * Only remove the hot spare if it's not currently in use in this pool.
3214 	 */
3215 	if (nv == NULL && vd == NULL)
3216 		return (ENOENT);
3217 
3218 	if (nv == NULL && vd != NULL)
3219 		return (ENOTSUP);
3220 
3221 	if (!unspare && nv != NULL && vd != NULL)
3222 		return (EBUSY);
3223 
3224 	if (nspares == 1) {
3225 		newspares = NULL;
3226 	} else {
3227 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3228 		    KM_SLEEP);
3229 		for (i = 0, j = 0; i < nspares; i++) {
3230 			if (spares[i] != nv)
3231 				VERIFY(nvlist_dup(spares[i],
3232 				    &newspares[j++], KM_SLEEP) == 0);
3233 		}
3234 	}
3235 
3236 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3237 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3238 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3239 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3240 	for (i = 0; i < nspares - 1; i++)
3241 		nvlist_free(newspares[i]);
3242 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3243 
3244 	return (0);
3245 }
3246 
3247 /*
3248  * Remove an l2cache vdev from the nvlist config.
3249  */
3250 static int
3251 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3252     int nl2cache, vdev_t *vd)
3253 {
3254 	nvlist_t *nv, **newl2cache;
3255 	int i, j;
3256 
3257 	nv = NULL;
3258 	for (i = 0; i < nl2cache; i++) {
3259 		uint64_t theguid;
3260 
3261 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3262 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3263 		if (theguid == guid) {
3264 			nv = l2cache[i];
3265 			break;
3266 		}
3267 	}
3268 
3269 	if (vd == NULL) {
3270 		for (i = 0; i < nl2cache; i++) {
3271 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3272 				vd = sav->sav_vdevs[i];
3273 				break;
3274 			}
3275 		}
3276 	}
3277 
3278 	if (nv == NULL && vd == NULL)
3279 		return (ENOENT);
3280 
3281 	if (nv == NULL && vd != NULL)
3282 		return (ENOTSUP);
3283 
3284 	if (nl2cache == 1) {
3285 		newl2cache = NULL;
3286 	} else {
3287 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3288 		    KM_SLEEP);
3289 		for (i = 0, j = 0; i < nl2cache; i++) {
3290 			if (l2cache[i] != nv)
3291 				VERIFY(nvlist_dup(l2cache[i],
3292 				    &newl2cache[j++], KM_SLEEP) == 0);
3293 		}
3294 	}
3295 
3296 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3297 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3298 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3299 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3300 	for (i = 0; i < nl2cache - 1; i++)
3301 		nvlist_free(newl2cache[i]);
3302 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3303 
3304 	return (0);
3305 }
3306 
3307 /*
3308  * Remove a device from the pool.  Currently, this supports removing only hot
3309  * spares and level 2 ARC devices.
3310  */
3311 int
3312 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3313 {
3314 	vdev_t *vd;
3315 	nvlist_t **spares, **l2cache;
3316 	uint_t nspares, nl2cache;
3317 	int error = 0;
3318 
3319 	spa_config_enter(spa, RW_WRITER, FTAG);
3320 
3321 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3322 
3323 	if (spa->spa_spares.sav_vdevs != NULL &&
3324 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3325 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3326 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3327 		    spares, nspares, vd)) != 0)
3328 			goto cache;
3329 		spa_load_spares(spa);
3330 		spa->spa_spares.sav_sync = B_TRUE;
3331 		goto out;
3332 	}
3333 
3334 cache:
3335 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3336 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3337 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3338 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3339 		    l2cache, nl2cache, vd)) != 0)
3340 			goto out;
3341 		spa_load_l2cache(spa);
3342 		spa->spa_l2cache.sav_sync = B_TRUE;
3343 	}
3344 
3345 out:
3346 	spa_config_exit(spa, FTAG);
3347 	return (error);
3348 }
3349 
3350 /*
3351  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3352  * current spared, so we can detach it.
3353  */
3354 static vdev_t *
3355 spa_vdev_resilver_done_hunt(vdev_t *vd)
3356 {
3357 	vdev_t *newvd, *oldvd;
3358 	int c;
3359 
3360 	for (c = 0; c < vd->vdev_children; c++) {
3361 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3362 		if (oldvd != NULL)
3363 			return (oldvd);
3364 	}
3365 
3366 	/*
3367 	 * Check for a completed replacement.
3368 	 */
3369 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3370 		oldvd = vd->vdev_child[0];
3371 		newvd = vd->vdev_child[1];
3372 
3373 		mutex_enter(&newvd->vdev_dtl_lock);
3374 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3375 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3376 			mutex_exit(&newvd->vdev_dtl_lock);
3377 			return (oldvd);
3378 		}
3379 		mutex_exit(&newvd->vdev_dtl_lock);
3380 	}
3381 
3382 	/*
3383 	 * Check for a completed resilver with the 'unspare' flag set.
3384 	 */
3385 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3386 		newvd = vd->vdev_child[0];
3387 		oldvd = vd->vdev_child[1];
3388 
3389 		mutex_enter(&newvd->vdev_dtl_lock);
3390 		if (newvd->vdev_unspare &&
3391 		    newvd->vdev_dtl_map.sm_space == 0 &&
3392 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3393 			newvd->vdev_unspare = 0;
3394 			mutex_exit(&newvd->vdev_dtl_lock);
3395 			return (oldvd);
3396 		}
3397 		mutex_exit(&newvd->vdev_dtl_lock);
3398 	}
3399 
3400 	return (NULL);
3401 }
3402 
3403 static void
3404 spa_vdev_resilver_done(spa_t *spa)
3405 {
3406 	vdev_t *vd;
3407 	vdev_t *pvd;
3408 	uint64_t guid;
3409 	uint64_t pguid = 0;
3410 
3411 	spa_config_enter(spa, RW_READER, FTAG);
3412 
3413 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3414 		guid = vd->vdev_guid;
3415 		/*
3416 		 * If we have just finished replacing a hot spared device, then
3417 		 * we need to detach the parent's first child (the original hot
3418 		 * spare) as well.
3419 		 */
3420 		pvd = vd->vdev_parent;
3421 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3422 		    pvd->vdev_id == 0) {
3423 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3424 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3425 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3426 		}
3427 		spa_config_exit(spa, FTAG);
3428 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3429 			return;
3430 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3431 			return;
3432 		spa_config_enter(spa, RW_READER, FTAG);
3433 	}
3434 
3435 	spa_config_exit(spa, FTAG);
3436 }
3437 
3438 /*
3439  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3440  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3441  */
3442 int
3443 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3444 {
3445 	vdev_t *vd;
3446 	uint64_t txg;
3447 
3448 	txg = spa_vdev_enter(spa);
3449 
3450 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3451 		/*
3452 		 * Determine if this is a reference to a hot spare device.  If
3453 		 * it is, update the path manually as there is no associated
3454 		 * vdev_t that can be synced to disk.
3455 		 */
3456 		nvlist_t **spares;
3457 		uint_t i, nspares;
3458 
3459 		if (spa->spa_spares.sav_config != NULL) {
3460 			VERIFY(nvlist_lookup_nvlist_array(
3461 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3462 			    &spares, &nspares) == 0);
3463 			for (i = 0; i < nspares; i++) {
3464 				uint64_t theguid;
3465 				VERIFY(nvlist_lookup_uint64(spares[i],
3466 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3467 				if (theguid == guid) {
3468 					VERIFY(nvlist_add_string(spares[i],
3469 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3470 					spa_load_spares(spa);
3471 					spa->spa_spares.sav_sync = B_TRUE;
3472 					return (spa_vdev_exit(spa, NULL, txg,
3473 					    0));
3474 				}
3475 			}
3476 		}
3477 
3478 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3479 	}
3480 
3481 	if (!vd->vdev_ops->vdev_op_leaf)
3482 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3483 
3484 	spa_strfree(vd->vdev_path);
3485 	vd->vdev_path = spa_strdup(newpath);
3486 
3487 	vdev_config_dirty(vd->vdev_top);
3488 
3489 	return (spa_vdev_exit(spa, NULL, txg, 0));
3490 }
3491 
3492 /*
3493  * ==========================================================================
3494  * SPA Scrubbing
3495  * ==========================================================================
3496  */
3497 
3498 int
3499 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3500 {
3501 	ASSERT(!spa_config_held(spa, RW_WRITER));
3502 
3503 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3504 		return (ENOTSUP);
3505 
3506 	/*
3507 	 * If a resilver was requested, but there is no DTL on a
3508 	 * writeable leaf device, we have nothing to do.
3509 	 */
3510 	if (type == POOL_SCRUB_RESILVER &&
3511 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3512 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3513 		return (0);
3514 	}
3515 
3516 	if (type == POOL_SCRUB_EVERYTHING &&
3517 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3518 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3519 		return (EBUSY);
3520 
3521 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3522 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3523 	} else if (type == POOL_SCRUB_NONE) {
3524 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3525 	} else {
3526 		return (EINVAL);
3527 	}
3528 }
3529 
3530 /*
3531  * ==========================================================================
3532  * SPA async task processing
3533  * ==========================================================================
3534  */
3535 
3536 static void
3537 spa_async_remove(spa_t *spa, vdev_t *vd)
3538 {
3539 	int c;
3540 
3541 	if (vd->vdev_remove_wanted) {
3542 		vd->vdev_remove_wanted = 0;
3543 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3544 		vdev_clear(spa, vd, B_TRUE);
3545 		vdev_config_dirty(vd->vdev_top);
3546 	}
3547 
3548 	for (c = 0; c < vd->vdev_children; c++)
3549 		spa_async_remove(spa, vd->vdev_child[c]);
3550 }
3551 
3552 static void
3553 spa_async_thread(spa_t *spa)
3554 {
3555 	int tasks, i;
3556 	uint64_t txg;
3557 
3558 	ASSERT(spa->spa_sync_on);
3559 
3560 	mutex_enter(&spa->spa_async_lock);
3561 	tasks = spa->spa_async_tasks;
3562 	spa->spa_async_tasks = 0;
3563 	mutex_exit(&spa->spa_async_lock);
3564 
3565 	/*
3566 	 * See if the config needs to be updated.
3567 	 */
3568 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3569 		mutex_enter(&spa_namespace_lock);
3570 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3571 		mutex_exit(&spa_namespace_lock);
3572 	}
3573 
3574 	/*
3575 	 * See if any devices need to be marked REMOVED.
3576 	 *
3577 	 * XXX - We avoid doing this when we are in
3578 	 * I/O failure state since spa_vdev_enter() grabs
3579 	 * the namespace lock and would not be able to obtain
3580 	 * the writer config lock.
3581 	 */
3582 	if (tasks & SPA_ASYNC_REMOVE &&
3583 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3584 		txg = spa_vdev_enter(spa);
3585 		spa_async_remove(spa, spa->spa_root_vdev);
3586 		for (i = 0; i < spa->spa_l2cache.sav_count; i++)
3587 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3588 		for (i = 0; i < spa->spa_spares.sav_count; i++)
3589 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3590 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3591 	}
3592 
3593 	/*
3594 	 * If any devices are done replacing, detach them.
3595 	 */
3596 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3597 		spa_vdev_resilver_done(spa);
3598 
3599 	/*
3600 	 * Kick off a resilver.
3601 	 */
3602 	if (tasks & SPA_ASYNC_RESILVER)
3603 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3604 
3605 	/*
3606 	 * Let the world know that we're done.
3607 	 */
3608 	mutex_enter(&spa->spa_async_lock);
3609 	spa->spa_async_thread = NULL;
3610 	cv_broadcast(&spa->spa_async_cv);
3611 	mutex_exit(&spa->spa_async_lock);
3612 	thread_exit();
3613 }
3614 
3615 void
3616 spa_async_suspend(spa_t *spa)
3617 {
3618 	mutex_enter(&spa->spa_async_lock);
3619 	spa->spa_async_suspended++;
3620 	while (spa->spa_async_thread != NULL)
3621 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3622 	mutex_exit(&spa->spa_async_lock);
3623 }
3624 
3625 void
3626 spa_async_resume(spa_t *spa)
3627 {
3628 	mutex_enter(&spa->spa_async_lock);
3629 	ASSERT(spa->spa_async_suspended != 0);
3630 	spa->spa_async_suspended--;
3631 	mutex_exit(&spa->spa_async_lock);
3632 }
3633 
3634 static void
3635 spa_async_dispatch(spa_t *spa)
3636 {
3637 	mutex_enter(&spa->spa_async_lock);
3638 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3639 	    spa->spa_async_thread == NULL &&
3640 	    rootdir != NULL && !vn_is_readonly(rootdir))
3641 		spa->spa_async_thread = thread_create(NULL, 0,
3642 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3643 	mutex_exit(&spa->spa_async_lock);
3644 }
3645 
3646 void
3647 spa_async_request(spa_t *spa, int task)
3648 {
3649 	mutex_enter(&spa->spa_async_lock);
3650 	spa->spa_async_tasks |= task;
3651 	mutex_exit(&spa->spa_async_lock);
3652 }
3653 
3654 /*
3655  * ==========================================================================
3656  * SPA syncing routines
3657  * ==========================================================================
3658  */
3659 
3660 static void
3661 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3662 {
3663 	bplist_t *bpl = &spa->spa_sync_bplist;
3664 	dmu_tx_t *tx;
3665 	blkptr_t blk;
3666 	uint64_t itor = 0;
3667 	zio_t *zio;
3668 	int error;
3669 	uint8_t c = 1;
3670 
3671 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3672 
3673 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3674 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3675 
3676 	error = zio_wait(zio);
3677 	ASSERT3U(error, ==, 0);
3678 
3679 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3680 	bplist_vacate(bpl, tx);
3681 
3682 	/*
3683 	 * Pre-dirty the first block so we sync to convergence faster.
3684 	 * (Usually only the first block is needed.)
3685 	 */
3686 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3687 	dmu_tx_commit(tx);
3688 }
3689 
3690 static void
3691 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3692 {
3693 	char *packed = NULL;
3694 	size_t bufsize;
3695 	size_t nvsize = 0;
3696 	dmu_buf_t *db;
3697 
3698 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3699 
3700 	/*
3701 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3702 	 * information.  This avoids the dbuf_will_dirty() path and
3703 	 * saves us a pre-read to get data we don't actually care about.
3704 	 */
3705 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3706 	packed = kmem_alloc(bufsize, KM_SLEEP);
3707 
3708 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3709 	    KM_SLEEP) == 0);
3710 	bzero(packed + nvsize, bufsize - nvsize);
3711 
3712 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3713 
3714 	kmem_free(packed, bufsize);
3715 
3716 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3717 	dmu_buf_will_dirty(db, tx);
3718 	*(uint64_t *)db->db_data = nvsize;
3719 	dmu_buf_rele(db, FTAG);
3720 }
3721 
3722 static void
3723 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3724     const char *config, const char *entry)
3725 {
3726 	nvlist_t *nvroot;
3727 	nvlist_t **list;
3728 	int i;
3729 
3730 	if (!sav->sav_sync)
3731 		return;
3732 
3733 	/*
3734 	 * Update the MOS nvlist describing the list of available devices.
3735 	 * spa_validate_aux() will have already made sure this nvlist is
3736 	 * valid and the vdevs are labeled appropriately.
3737 	 */
3738 	if (sav->sav_object == 0) {
3739 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3740 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3741 		    sizeof (uint64_t), tx);
3742 		VERIFY(zap_update(spa->spa_meta_objset,
3743 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3744 		    &sav->sav_object, tx) == 0);
3745 	}
3746 
3747 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3748 	if (sav->sav_count == 0) {
3749 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3750 	} else {
3751 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3752 		for (i = 0; i < sav->sav_count; i++)
3753 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3754 			    B_FALSE, B_FALSE, B_TRUE);
3755 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3756 		    sav->sav_count) == 0);
3757 		for (i = 0; i < sav->sav_count; i++)
3758 			nvlist_free(list[i]);
3759 		kmem_free(list, sav->sav_count * sizeof (void *));
3760 	}
3761 
3762 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3763 	nvlist_free(nvroot);
3764 
3765 	sav->sav_sync = B_FALSE;
3766 }
3767 
3768 static void
3769 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3770 {
3771 	nvlist_t *config;
3772 
3773 	if (list_is_empty(&spa->spa_dirty_list))
3774 		return;
3775 
3776 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3777 
3778 	if (spa->spa_config_syncing)
3779 		nvlist_free(spa->spa_config_syncing);
3780 	spa->spa_config_syncing = config;
3781 
3782 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3783 }
3784 
3785 /*
3786  * Set zpool properties.
3787  */
3788 static void
3789 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3790 {
3791 	spa_t *spa = arg1;
3792 	objset_t *mos = spa->spa_meta_objset;
3793 	nvlist_t *nvp = arg2;
3794 	nvpair_t *elem;
3795 	uint64_t intval;
3796 	char *strval;
3797 	zpool_prop_t prop;
3798 	const char *propname;
3799 	zprop_type_t proptype;
3800 	spa_config_dirent_t *dp;
3801 
3802 	elem = NULL;
3803 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3804 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3805 		case ZPOOL_PROP_VERSION:
3806 			/*
3807 			 * Only set version for non-zpool-creation cases
3808 			 * (set/import). spa_create() needs special care
3809 			 * for version setting.
3810 			 */
3811 			if (tx->tx_txg != TXG_INITIAL) {
3812 				VERIFY(nvpair_value_uint64(elem,
3813 				    &intval) == 0);
3814 				ASSERT(intval <= SPA_VERSION);
3815 				ASSERT(intval >= spa_version(spa));
3816 				spa->spa_uberblock.ub_version = intval;
3817 				vdev_config_dirty(spa->spa_root_vdev);
3818 			}
3819 			break;
3820 
3821 		case ZPOOL_PROP_ALTROOT:
3822 			/*
3823 			 * 'altroot' is a non-persistent property. It should
3824 			 * have been set temporarily at creation or import time.
3825 			 */
3826 			ASSERT(spa->spa_root != NULL);
3827 			break;
3828 
3829 		case ZPOOL_PROP_CACHEFILE:
3830 			/*
3831 			 * 'cachefile' is a non-persistent property, but note
3832 			 * an async request that the config cache needs to be
3833 			 * udpated.
3834 			 */
3835 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3836 
3837 			dp = kmem_alloc(sizeof (spa_config_dirent_t),
3838 			    KM_SLEEP);
3839 
3840 			if (strval[0] == '\0')
3841 				dp->scd_path = spa_strdup(spa_config_path);
3842 			else if (strcmp(strval, "none") == 0)
3843 				dp->scd_path = NULL;
3844 			else
3845 				dp->scd_path = spa_strdup(strval);
3846 
3847 			list_insert_head(&spa->spa_config_list, dp);
3848 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3849 			break;
3850 		default:
3851 			/*
3852 			 * Set pool property values in the poolprops mos object.
3853 			 */
3854 			mutex_enter(&spa->spa_props_lock);
3855 			if (spa->spa_pool_props_object == 0) {
3856 				objset_t *mos = spa->spa_meta_objset;
3857 
3858 				VERIFY((spa->spa_pool_props_object =
3859 				    zap_create(mos, DMU_OT_POOL_PROPS,
3860 				    DMU_OT_NONE, 0, tx)) > 0);
3861 
3862 				VERIFY(zap_update(mos,
3863 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3864 				    8, 1, &spa->spa_pool_props_object, tx)
3865 				    == 0);
3866 			}
3867 			mutex_exit(&spa->spa_props_lock);
3868 
3869 			/* normalize the property name */
3870 			propname = zpool_prop_to_name(prop);
3871 			proptype = zpool_prop_get_type(prop);
3872 
3873 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3874 				ASSERT(proptype == PROP_TYPE_STRING);
3875 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3876 				VERIFY(zap_update(mos,
3877 				    spa->spa_pool_props_object, propname,
3878 				    1, strlen(strval) + 1, strval, tx) == 0);
3879 
3880 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3881 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3882 
3883 				if (proptype == PROP_TYPE_INDEX) {
3884 					const char *unused;
3885 					VERIFY(zpool_prop_index_to_string(
3886 					    prop, intval, &unused) == 0);
3887 				}
3888 				VERIFY(zap_update(mos,
3889 				    spa->spa_pool_props_object, propname,
3890 				    8, 1, &intval, tx) == 0);
3891 			} else {
3892 				ASSERT(0); /* not allowed */
3893 			}
3894 
3895 			switch (prop) {
3896 			case ZPOOL_PROP_DELEGATION:
3897 				spa->spa_delegation = intval;
3898 				break;
3899 			case ZPOOL_PROP_BOOTFS:
3900 				spa->spa_bootfs = intval;
3901 				break;
3902 			case ZPOOL_PROP_FAILUREMODE:
3903 				spa->spa_failmode = intval;
3904 				break;
3905 			default:
3906 				break;
3907 			}
3908 		}
3909 
3910 		/* log internal history if this is not a zpool create */
3911 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3912 		    tx->tx_txg != TXG_INITIAL) {
3913 			spa_history_internal_log(LOG_POOL_PROPSET,
3914 			    spa, tx, cr, "%s %lld %s",
3915 			    nvpair_name(elem), intval, spa->spa_name);
3916 		}
3917 	}
3918 }
3919 
3920 /*
3921  * Sync the specified transaction group.  New blocks may be dirtied as
3922  * part of the process, so we iterate until it converges.
3923  */
3924 void
3925 spa_sync(spa_t *spa, uint64_t txg)
3926 {
3927 	dsl_pool_t *dp = spa->spa_dsl_pool;
3928 	objset_t *mos = spa->spa_meta_objset;
3929 	bplist_t *bpl = &spa->spa_sync_bplist;
3930 	vdev_t *rvd = spa->spa_root_vdev;
3931 	vdev_t *vd;
3932 	dmu_tx_t *tx;
3933 	int dirty_vdevs;
3934 
3935 	/*
3936 	 * Lock out configuration changes.
3937 	 */
3938 	spa_config_enter(spa, RW_READER, FTAG);
3939 
3940 	spa->spa_syncing_txg = txg;
3941 	spa->spa_sync_pass = 0;
3942 
3943 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3944 
3945 	tx = dmu_tx_create_assigned(dp, txg);
3946 
3947 	/*
3948 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3949 	 * set spa_deflate if we have no raid-z vdevs.
3950 	 */
3951 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3952 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3953 		int i;
3954 
3955 		for (i = 0; i < rvd->vdev_children; i++) {
3956 			vd = rvd->vdev_child[i];
3957 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3958 				break;
3959 		}
3960 		if (i == rvd->vdev_children) {
3961 			spa->spa_deflate = TRUE;
3962 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3963 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3964 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3965 		}
3966 	}
3967 
3968 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3969 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3970 		dsl_pool_create_origin(dp, tx);
3971 
3972 		/* Keeping the origin open increases spa_minref */
3973 		spa->spa_minref += 3;
3974 	}
3975 
3976 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3977 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3978 		dsl_pool_upgrade_clones(dp, tx);
3979 	}
3980 
3981 	/*
3982 	 * If anything has changed in this txg, push the deferred frees
3983 	 * from the previous txg.  If not, leave them alone so that we
3984 	 * don't generate work on an otherwise idle system.
3985 	 */
3986 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3987 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3988 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3989 		spa_sync_deferred_frees(spa, txg);
3990 
3991 	/*
3992 	 * Iterate to convergence.
3993 	 */
3994 	do {
3995 		spa->spa_sync_pass++;
3996 
3997 		spa_sync_config_object(spa, tx);
3998 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
3999 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4000 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4001 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4002 		spa_errlog_sync(spa, txg);
4003 		dsl_pool_sync(dp, txg);
4004 
4005 		dirty_vdevs = 0;
4006 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4007 			vdev_sync(vd, txg);
4008 			dirty_vdevs++;
4009 		}
4010 
4011 		bplist_sync(bpl, tx);
4012 	} while (dirty_vdevs);
4013 
4014 	bplist_close(bpl);
4015 
4016 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4017 
4018 	/*
4019 	 * Rewrite the vdev configuration (which includes the uberblock)
4020 	 * to commit the transaction group.
4021 	 *
4022 	 * If there are no dirty vdevs, we sync the uberblock to a few
4023 	 * random top-level vdevs that are known to be visible in the
4024 	 * config cache (see spa_vdev_add() for details).  If there *are*
4025 	 * dirty vdevs -- or if the sync to our random subset fails --
4026 	 * then sync the uberblock to all vdevs.
4027 	 */
4028 	if (list_is_empty(&spa->spa_dirty_list)) {
4029 		vdev_t *svd[SPA_DVAS_PER_BP];
4030 		int svdcount = 0;
4031 		int children = rvd->vdev_children;
4032 		int c0 = spa_get_random(children);
4033 		int c;
4034 
4035 		for (c = 0; c < children; c++) {
4036 			vd = rvd->vdev_child[(c0 + c) % children];
4037 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4038 				continue;
4039 			svd[svdcount++] = vd;
4040 			if (svdcount == SPA_DVAS_PER_BP)
4041 				break;
4042 		}
4043 		vdev_config_sync(svd, svdcount, txg);
4044 	} else {
4045 		vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg);
4046 	}
4047 	dmu_tx_commit(tx);
4048 
4049 	/*
4050 	 * Clear the dirty config list.
4051 	 */
4052 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
4053 		vdev_config_clean(vd);
4054 
4055 	/*
4056 	 * Now that the new config has synced transactionally,
4057 	 * let it become visible to the config cache.
4058 	 */
4059 	if (spa->spa_config_syncing != NULL) {
4060 		spa_config_set(spa, spa->spa_config_syncing);
4061 		spa->spa_config_txg = txg;
4062 		spa->spa_config_syncing = NULL;
4063 	}
4064 
4065 	spa->spa_traverse_wanted = B_TRUE;
4066 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4067 	spa->spa_traverse_wanted = B_FALSE;
4068 	spa->spa_ubsync = spa->spa_uberblock;
4069 	rw_exit(&spa->spa_traverse_lock);
4070 
4071 	/*
4072 	 * Clean up the ZIL records for the synced txg.
4073 	 */
4074 	dsl_pool_zil_clean(dp);
4075 
4076 	/*
4077 	 * Update usable space statistics.
4078 	 */
4079 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4080 		vdev_sync_done(vd, txg);
4081 
4082 	/*
4083 	 * It had better be the case that we didn't dirty anything
4084 	 * since vdev_config_sync().
4085 	 */
4086 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4087 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4088 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4089 	ASSERT(bpl->bpl_queue == NULL);
4090 
4091 	spa_config_exit(spa, FTAG);
4092 
4093 	/*
4094 	 * If any async tasks have been requested, kick them off.
4095 	 */
4096 	spa_async_dispatch(spa);
4097 }
4098 
4099 /*
4100  * Sync all pools.  We don't want to hold the namespace lock across these
4101  * operations, so we take a reference on the spa_t and drop the lock during the
4102  * sync.
4103  */
4104 void
4105 spa_sync_allpools(void)
4106 {
4107 	spa_t *spa = NULL;
4108 	mutex_enter(&spa_namespace_lock);
4109 	while ((spa = spa_next(spa)) != NULL) {
4110 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4111 			continue;
4112 		spa_open_ref(spa, FTAG);
4113 		mutex_exit(&spa_namespace_lock);
4114 		txg_wait_synced(spa_get_dsl(spa), 0);
4115 		mutex_enter(&spa_namespace_lock);
4116 		spa_close(spa, FTAG);
4117 	}
4118 	mutex_exit(&spa_namespace_lock);
4119 }
4120 
4121 /*
4122  * ==========================================================================
4123  * Miscellaneous routines
4124  * ==========================================================================
4125  */
4126 
4127 /*
4128  * Remove all pools in the system.
4129  */
4130 void
4131 spa_evict_all(void)
4132 {
4133 	spa_t *spa;
4134 
4135 	/*
4136 	 * Remove all cached state.  All pools should be closed now,
4137 	 * so every spa in the AVL tree should be unreferenced.
4138 	 */
4139 	mutex_enter(&spa_namespace_lock);
4140 	while ((spa = spa_next(NULL)) != NULL) {
4141 		/*
4142 		 * Stop async tasks.  The async thread may need to detach
4143 		 * a device that's been replaced, which requires grabbing
4144 		 * spa_namespace_lock, so we must drop it here.
4145 		 */
4146 		spa_open_ref(spa, FTAG);
4147 		mutex_exit(&spa_namespace_lock);
4148 		spa_async_suspend(spa);
4149 		mutex_enter(&spa_namespace_lock);
4150 		spa_close(spa, FTAG);
4151 
4152 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4153 			spa_unload(spa);
4154 			spa_deactivate(spa);
4155 		}
4156 		spa_remove(spa);
4157 	}
4158 	mutex_exit(&spa_namespace_lock);
4159 }
4160 
4161 vdev_t *
4162 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4163 {
4164 	vdev_t *vd;
4165 	int i;
4166 
4167 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4168 		return (vd);
4169 
4170 	if (l2cache) {
4171 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4172 			vd = spa->spa_l2cache.sav_vdevs[i];
4173 			if (vd->vdev_guid == guid)
4174 				return (vd);
4175 		}
4176 	}
4177 
4178 	return (NULL);
4179 }
4180 
4181 void
4182 spa_upgrade(spa_t *spa, uint64_t version)
4183 {
4184 	spa_config_enter(spa, RW_WRITER, FTAG);
4185 
4186 	/*
4187 	 * This should only be called for a non-faulted pool, and since a
4188 	 * future version would result in an unopenable pool, this shouldn't be
4189 	 * possible.
4190 	 */
4191 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4192 	ASSERT(version >= spa->spa_uberblock.ub_version);
4193 
4194 	spa->spa_uberblock.ub_version = version;
4195 	vdev_config_dirty(spa->spa_root_vdev);
4196 
4197 	spa_config_exit(spa, FTAG);
4198 
4199 	txg_wait_synced(spa_get_dsl(spa), 0);
4200 }
4201 
4202 boolean_t
4203 spa_has_spare(spa_t *spa, uint64_t guid)
4204 {
4205 	int i;
4206 	uint64_t spareguid;
4207 	spa_aux_vdev_t *sav = &spa->spa_spares;
4208 
4209 	for (i = 0; i < sav->sav_count; i++)
4210 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4211 			return (B_TRUE);
4212 
4213 	for (i = 0; i < sav->sav_npending; i++) {
4214 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4215 		    &spareguid) == 0 && spareguid == guid)
4216 			return (B_TRUE);
4217 	}
4218 
4219 	return (B_FALSE);
4220 }
4221 
4222 /*
4223  * Check if a pool has an active shared spare device.
4224  * Note: reference count of an active spare is 2, as a spare and as a replace
4225  */
4226 static boolean_t
4227 spa_has_active_shared_spare(spa_t *spa)
4228 {
4229 	int i, refcnt;
4230 	uint64_t pool;
4231 	spa_aux_vdev_t *sav = &spa->spa_spares;
4232 
4233 	for (i = 0; i < sav->sav_count; i++) {
4234 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4235 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4236 		    refcnt > 2)
4237 			return (B_TRUE);
4238 	}
4239 
4240 	return (B_FALSE);
4241 }
4242 
4243 /*
4244  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4245  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4246  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4247  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4248  * or zdb as real changes.
4249  */
4250 void
4251 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4252 {
4253 #ifdef _KERNEL
4254 	sysevent_t		*ev;
4255 	sysevent_attr_list_t	*attr = NULL;
4256 	sysevent_value_t	value;
4257 	sysevent_id_t		eid;
4258 
4259 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4260 	    SE_SLEEP);
4261 
4262 	value.value_type = SE_DATA_TYPE_STRING;
4263 	value.value.sv_string = spa_name(spa);
4264 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4265 		goto done;
4266 
4267 	value.value_type = SE_DATA_TYPE_UINT64;
4268 	value.value.sv_uint64 = spa_guid(spa);
4269 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4270 		goto done;
4271 
4272 	if (vd) {
4273 		value.value_type = SE_DATA_TYPE_UINT64;
4274 		value.value.sv_uint64 = vd->vdev_guid;
4275 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4276 		    SE_SLEEP) != 0)
4277 			goto done;
4278 
4279 		if (vd->vdev_path) {
4280 			value.value_type = SE_DATA_TYPE_STRING;
4281 			value.value.sv_string = vd->vdev_path;
4282 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4283 			    &value, SE_SLEEP) != 0)
4284 				goto done;
4285 		}
4286 	}
4287 
4288 	if (sysevent_attach_attributes(ev, attr) != 0)
4289 		goto done;
4290 	attr = NULL;
4291 
4292 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4293 
4294 done:
4295 	if (attr)
4296 		sysevent_free_attr(attr);
4297 	sysevent_free(ev);
4298 #endif
4299 }
4300