1789Sahrens /* 2789Sahrens * CDDL HEADER START 3789Sahrens * 4789Sahrens * The contents of this file are subject to the terms of the 5789Sahrens * Common Development and Distribution License, Version 1.0 only 6789Sahrens * (the "License"). You may not use this file except in compliance 7789Sahrens * with the License. 8789Sahrens * 9789Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10789Sahrens * or http://www.opensolaris.org/os/licensing. 11789Sahrens * See the License for the specific language governing permissions 12789Sahrens * and limitations under the License. 13789Sahrens * 14789Sahrens * When distributing Covered Code, include this CDDL HEADER in each 15789Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16789Sahrens * If applicable, add the following below this CDDL HEADER, with the 17789Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 18789Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 19789Sahrens * 20789Sahrens * CDDL HEADER END 21789Sahrens */ 22789Sahrens /* 23789Sahrens * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24789Sahrens * Use is subject to license terms. 25789Sahrens */ 26789Sahrens 27789Sahrens #pragma ident "%Z%%M% %I% %E% SMI" 28789Sahrens 29789Sahrens /* 30789Sahrens * DVA-based Adjustable Relpacement Cache 31789Sahrens * 32789Sahrens * While much of the theory of operation and algorithms used here 33789Sahrens * are based on the self-tuning, low overhead replacement cache 34789Sahrens * presented by Megiddo and Modha at FAST 2003, there are some 35789Sahrens * significant differences: 36789Sahrens * 37789Sahrens * 1. The Megiddo and Modha model assumes any page is evictable. 38789Sahrens * Pages in its cache cannot be "locked" into memory. This makes 39789Sahrens * the eviction algorithm simple: evict the last page in the list. 40789Sahrens * This also make the performance characteristics easy to reason 41789Sahrens * about. Our cache is not so simple. At any given moment, some 42789Sahrens * subset of the blocks in the cache are un-evictable because we 43789Sahrens * have handed out a reference to them. Blocks are only evictable 44789Sahrens * when there are no external references active. This makes 45789Sahrens * eviction far more problematic: we choose to evict the evictable 46789Sahrens * blocks that are the "lowest" in the list. 47789Sahrens * 48789Sahrens * There are times when it is not possible to evict the requested 49789Sahrens * space. In these circumstances we are unable to adjust the cache 50789Sahrens * size. To prevent the cache growing unbounded at these times we 51789Sahrens * implement a "cache throttle" that slowes the flow of new data 52789Sahrens * into the cache until we can make space avaiable. 53789Sahrens * 54789Sahrens * 2. The Megiddo and Modha model assumes a fixed cache size. 55789Sahrens * Pages are evicted when the cache is full and there is a cache 56789Sahrens * miss. Our model has a variable sized cache. It grows with 57789Sahrens * high use, but also tries to react to memory preasure from the 58789Sahrens * operating system: decreasing its size when system memory is 59789Sahrens * tight. 60789Sahrens * 61789Sahrens * 3. The Megiddo and Modha model assumes a fixed page size. All 62789Sahrens * elements of the cache are therefor exactly the same size. So 63789Sahrens * when adjusting the cache size following a cache miss, its simply 64789Sahrens * a matter of choosing a single page to evict. In our model, we 65789Sahrens * have variable sized cache blocks (rangeing from 512 bytes to 66789Sahrens * 128K bytes). We therefor choose a set of blocks to evict to make 67789Sahrens * space for a cache miss that approximates as closely as possible 68789Sahrens * the space used by the new block. 69789Sahrens * 70789Sahrens * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71789Sahrens * by N. Megiddo & D. Modha, FAST 2003 72789Sahrens */ 73789Sahrens 74789Sahrens /* 75789Sahrens * The locking model: 76789Sahrens * 77789Sahrens * A new reference to a cache buffer can be obtained in two 78789Sahrens * ways: 1) via a hash table lookup using the DVA as a key, 79789Sahrens * or 2) via one of the ARC lists. The arc_read() inerface 80789Sahrens * uses method 1, while the internal arc algorithms for 81789Sahrens * adjusting the cache use method 2. We therefor provide two 82789Sahrens * types of locks: 1) the hash table lock array, and 2) the 83789Sahrens * arc list locks. 84789Sahrens * 85789Sahrens * Buffers do not have their own mutexs, rather they rely on the 86789Sahrens * hash table mutexs for the bulk of their protection (i.e. most 87789Sahrens * fields in the arc_buf_hdr_t are protected by these mutexs). 88789Sahrens * 89789Sahrens * buf_hash_find() returns the appropriate mutex (held) when it 90789Sahrens * locates the requested buffer in the hash table. It returns 91789Sahrens * NULL for the mutex if the buffer was not in the table. 92789Sahrens * 93789Sahrens * buf_hash_remove() expects the appropriate hash mutex to be 94789Sahrens * already held before it is invoked. 95789Sahrens * 96789Sahrens * Each arc state also has a mutex which is used to protect the 97789Sahrens * buffer list associated with the state. When attempting to 98789Sahrens * obtain a hash table lock while holding an arc list lock you 99789Sahrens * must use: mutex_tryenter() to avoid deadlock. Also note that 100789Sahrens * the "top" state mutex must be held before the "bot" state mutex. 101789Sahrens * 102789Sahrens * Note that the majority of the performance stats are manipulated 103789Sahrens * with atomic operations. 104789Sahrens */ 105789Sahrens 106789Sahrens #include <sys/spa.h> 107789Sahrens #include <sys/zio.h> 108789Sahrens #include <sys/zfs_context.h> 109789Sahrens #include <sys/arc.h> 110789Sahrens #include <sys/refcount.h> 111789Sahrens #ifdef _KERNEL 112789Sahrens #include <sys/vmsystm.h> 113789Sahrens #include <vm/anon.h> 114789Sahrens #include <sys/fs/swapnode.h> 115789Sahrens #endif 116789Sahrens #include <sys/callb.h> 117789Sahrens 118789Sahrens static kmutex_t arc_reclaim_thr_lock; 119789Sahrens static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 120789Sahrens static uint8_t arc_thread_exit; 121789Sahrens 122789Sahrens typedef enum arc_reclaim_strategy { 123789Sahrens ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 124789Sahrens ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 125789Sahrens } arc_reclaim_strategy_t; 126789Sahrens 127789Sahrens /* number of seconds before growing cache again */ 128789Sahrens static int arc_grow_retry = 60; 129789Sahrens 130789Sahrens static kmutex_t arc_reclaim_lock; 131789Sahrens static int arc_dead; 132789Sahrens 133789Sahrens /* 134789Sahrens * Note that buffers can be on one of 5 states: 135789Sahrens * ARC_anon - anonymous (discussed below) 136789Sahrens * ARC_mru_top - recently used, currently cached 137789Sahrens * ARC_mru_bot - recentely used, no longer in cache 138789Sahrens * ARC_mfu_top - frequently used, currently cached 139789Sahrens * ARC_mfu_bot - frequently used, no longer in cache 140789Sahrens * When there are no active references to the buffer, they 141789Sahrens * are linked onto one of the lists in arc. These are the 142789Sahrens * only buffers that can be evicted or deleted. 143789Sahrens * 144789Sahrens * Anonymous buffers are buffers that are not associated with 145789Sahrens * a DVA. These are buffers that hold dirty block copies 146789Sahrens * before they are written to stable storage. By definition, 147789Sahrens * they are "ref'd" and are considered part of arc_mru_top 148789Sahrens * that cannot be freed. Generally, they will aquire a DVA 149789Sahrens * as they are written and migrate onto the arc_mru_top list. 150789Sahrens */ 151789Sahrens 152789Sahrens typedef struct arc_state { 153789Sahrens list_t list; /* linked list of evictable buffer in state */ 154789Sahrens uint64_t lsize; /* total size of buffers in the linked list */ 155789Sahrens uint64_t size; /* total size of all buffers in this state */ 156789Sahrens uint64_t hits; 157789Sahrens kmutex_t mtx; 158789Sahrens } arc_state_t; 159789Sahrens 160789Sahrens /* The 5 states: */ 161789Sahrens static arc_state_t ARC_anon; 162789Sahrens static arc_state_t ARC_mru_top; 163789Sahrens static arc_state_t ARC_mru_bot; 164789Sahrens static arc_state_t ARC_mfu_top; 165789Sahrens static arc_state_t ARC_mfu_bot; 166789Sahrens 167789Sahrens static struct arc { 168789Sahrens arc_state_t *anon; 169789Sahrens arc_state_t *mru_top; 170789Sahrens arc_state_t *mru_bot; 171789Sahrens arc_state_t *mfu_top; 172789Sahrens arc_state_t *mfu_bot; 173789Sahrens uint64_t size; /* Actual total arc size */ 174789Sahrens uint64_t p; /* Target size (in bytes) of mru_top */ 175789Sahrens uint64_t c; /* Target size of cache (in bytes) */ 176789Sahrens uint64_t c_min; /* Minimum target cache size */ 177789Sahrens uint64_t c_max; /* Maximum target cache size */ 178789Sahrens uint64_t incr; /* Size by which to increment arc.c */ 179789Sahrens int64_t size_check; 180789Sahrens 181789Sahrens /* performance stats */ 182789Sahrens uint64_t hits; 183789Sahrens uint64_t misses; 184789Sahrens uint64_t deleted; 185789Sahrens uint64_t skipped; 186789Sahrens uint64_t hash_elements; 187789Sahrens uint64_t hash_elements_max; 188789Sahrens uint64_t hash_collisions; 189789Sahrens uint64_t hash_chains; 190789Sahrens uint32_t hash_chain_max; 191789Sahrens 192789Sahrens int no_grow; /* Don't try to grow cache size */ 193789Sahrens } arc; 194789Sahrens 195789Sahrens /* Default amount to grow arc.incr */ 196789Sahrens static int64_t arc_incr_size = 1024; 197789Sahrens 198789Sahrens /* > 0 ==> time to increment arc.c */ 199789Sahrens static int64_t arc_size_check_default = -1000; 200789Sahrens 201789Sahrens static uint64_t arc_tempreserve; 202789Sahrens 203789Sahrens typedef struct arc_callback arc_callback_t; 204789Sahrens 205789Sahrens struct arc_callback { 206789Sahrens arc_done_func_t *acb_done; 207789Sahrens void *acb_private; 208789Sahrens arc_byteswap_func_t *acb_byteswap; 209789Sahrens arc_buf_t *acb_buf; 210789Sahrens zio_t *acb_zio_dummy; 211789Sahrens arc_callback_t *acb_next; 212789Sahrens }; 213789Sahrens 214789Sahrens struct arc_buf_hdr { 215789Sahrens /* immutable */ 216789Sahrens uint64_t b_size; 217789Sahrens spa_t *b_spa; 218789Sahrens 219789Sahrens /* protected by hash lock */ 220789Sahrens dva_t b_dva; 221789Sahrens uint64_t b_birth; 222789Sahrens uint64_t b_cksum0; 223789Sahrens 224789Sahrens arc_buf_hdr_t *b_hash_next; 225789Sahrens arc_buf_t *b_buf; 226789Sahrens uint32_t b_flags; 227789Sahrens 228789Sahrens kcondvar_t b_cv; 229789Sahrens arc_callback_t *b_acb; 230789Sahrens 231789Sahrens /* protected by arc state mutex */ 232789Sahrens arc_state_t *b_state; 233789Sahrens list_node_t b_arc_node; 234789Sahrens 235789Sahrens /* updated atomically */ 236789Sahrens clock_t b_arc_access; 237789Sahrens 238789Sahrens /* self protecting */ 239789Sahrens refcount_t b_refcnt; 240789Sahrens }; 241789Sahrens 242789Sahrens /* 243789Sahrens * Private ARC flags. These flags are private ARC only flags that will show up 244789Sahrens * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 245789Sahrens * be passed in as arc_flags in things like arc_read. However, these flags 246789Sahrens * should never be passed and should only be set by ARC code. When adding new 247789Sahrens * public flags, make sure not to smash the private ones. 248789Sahrens */ 249789Sahrens 250789Sahrens #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 251789Sahrens #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 252789Sahrens #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 253789Sahrens 254789Sahrens #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 255789Sahrens #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 256789Sahrens #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 257789Sahrens 258789Sahrens /* 259789Sahrens * Hash table routines 260789Sahrens */ 261789Sahrens 262789Sahrens #define HT_LOCK_PAD 64 263789Sahrens 264789Sahrens struct ht_lock { 265789Sahrens kmutex_t ht_lock; 266789Sahrens #ifdef _KERNEL 267789Sahrens unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 268789Sahrens #endif 269789Sahrens }; 270789Sahrens 271789Sahrens #define BUF_LOCKS 256 272789Sahrens typedef struct buf_hash_table { 273789Sahrens uint64_t ht_mask; 274789Sahrens arc_buf_hdr_t **ht_table; 275789Sahrens struct ht_lock ht_locks[BUF_LOCKS]; 276789Sahrens } buf_hash_table_t; 277789Sahrens 278789Sahrens static buf_hash_table_t buf_hash_table; 279789Sahrens 280789Sahrens #define BUF_HASH_INDEX(spa, dva, birth) \ 281789Sahrens (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 282789Sahrens #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 283789Sahrens #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 284789Sahrens #define HDR_LOCK(buf) \ 285789Sahrens (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 286789Sahrens 287789Sahrens uint64_t zfs_crc64_table[256]; 288789Sahrens 289789Sahrens static uint64_t 290789Sahrens buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 291789Sahrens { 292789Sahrens uintptr_t spav = (uintptr_t)spa; 293789Sahrens uint8_t *vdva = (uint8_t *)dva; 294789Sahrens uint64_t crc = -1ULL; 295789Sahrens int i; 296789Sahrens 297789Sahrens ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 298789Sahrens 299789Sahrens for (i = 0; i < sizeof (dva_t); i++) 300789Sahrens crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 301789Sahrens 302789Sahrens crc ^= (spav>>8) ^ birth; 303789Sahrens 304789Sahrens return (crc); 305789Sahrens } 306789Sahrens 307789Sahrens #define BUF_EMPTY(buf) \ 308789Sahrens ((buf)->b_dva.dva_word[0] == 0 && \ 309789Sahrens (buf)->b_dva.dva_word[1] == 0 && \ 310789Sahrens (buf)->b_birth == 0) 311789Sahrens 312789Sahrens #define BUF_EQUAL(spa, dva, birth, buf) \ 313789Sahrens ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 314789Sahrens ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 315789Sahrens ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 316789Sahrens 317789Sahrens static arc_buf_hdr_t * 318789Sahrens buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 319789Sahrens { 320789Sahrens uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 321789Sahrens kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 322789Sahrens arc_buf_hdr_t *buf; 323789Sahrens 324789Sahrens mutex_enter(hash_lock); 325789Sahrens for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 326789Sahrens buf = buf->b_hash_next) { 327789Sahrens if (BUF_EQUAL(spa, dva, birth, buf)) { 328789Sahrens *lockp = hash_lock; 329789Sahrens return (buf); 330789Sahrens } 331789Sahrens } 332789Sahrens mutex_exit(hash_lock); 333789Sahrens *lockp = NULL; 334789Sahrens return (NULL); 335789Sahrens } 336789Sahrens 337789Sahrens /* 338789Sahrens * Insert an entry into the hash table. If there is already an element 339789Sahrens * equal to elem in the hash table, then the already existing element 340789Sahrens * will be returned and the new element will not be inserted. 341789Sahrens * Otherwise returns NULL. 342789Sahrens */ 343789Sahrens static arc_buf_hdr_t *fbufs[4]; /* XXX to find 6341326 */ 344789Sahrens static kthread_t *fbufs_lastthread; 345789Sahrens static arc_buf_hdr_t * 346789Sahrens buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 347789Sahrens { 348789Sahrens uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 349789Sahrens kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 350789Sahrens arc_buf_hdr_t *fbuf; 351789Sahrens uint32_t max, i; 352789Sahrens 353789Sahrens fbufs_lastthread = curthread; 354789Sahrens *lockp = hash_lock; 355789Sahrens mutex_enter(hash_lock); 356789Sahrens for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 357789Sahrens fbuf = fbuf->b_hash_next, i++) { 358789Sahrens if (i < sizeof (fbufs) / sizeof (fbufs[0])) 359789Sahrens fbufs[i] = fbuf; 360789Sahrens if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 361789Sahrens return (fbuf); 362789Sahrens } 363789Sahrens 364789Sahrens buf->b_hash_next = buf_hash_table.ht_table[idx]; 365789Sahrens buf_hash_table.ht_table[idx] = buf; 366789Sahrens 367789Sahrens /* collect some hash table performance data */ 368789Sahrens if (i > 0) { 369789Sahrens atomic_add_64(&arc.hash_collisions, 1); 370789Sahrens if (i == 1) 371789Sahrens atomic_add_64(&arc.hash_chains, 1); 372789Sahrens } 373789Sahrens while (i > (max = arc.hash_chain_max) && 374789Sahrens max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 375789Sahrens continue; 376789Sahrens } 377789Sahrens atomic_add_64(&arc.hash_elements, 1); 378789Sahrens if (arc.hash_elements > arc.hash_elements_max) 379789Sahrens atomic_add_64(&arc.hash_elements_max, 1); 380789Sahrens 381789Sahrens return (NULL); 382789Sahrens } 383789Sahrens 384789Sahrens static void 385789Sahrens buf_hash_remove(arc_buf_hdr_t *buf) 386789Sahrens { 387789Sahrens arc_buf_hdr_t *fbuf, **bufp; 388789Sahrens uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 389789Sahrens 390789Sahrens ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 391789Sahrens 392789Sahrens bufp = &buf_hash_table.ht_table[idx]; 393789Sahrens while ((fbuf = *bufp) != buf) { 394789Sahrens ASSERT(fbuf != NULL); 395789Sahrens bufp = &fbuf->b_hash_next; 396789Sahrens } 397789Sahrens *bufp = buf->b_hash_next; 398789Sahrens buf->b_hash_next = NULL; 399789Sahrens 400789Sahrens /* collect some hash table performance data */ 401789Sahrens atomic_add_64(&arc.hash_elements, -1); 402789Sahrens if (buf_hash_table.ht_table[idx] && 403789Sahrens buf_hash_table.ht_table[idx]->b_hash_next == NULL) 404789Sahrens atomic_add_64(&arc.hash_chains, -1); 405789Sahrens } 406789Sahrens 407789Sahrens /* 408789Sahrens * Global data structures and functions for the buf kmem cache. 409789Sahrens */ 410789Sahrens static kmem_cache_t *hdr_cache; 411789Sahrens static kmem_cache_t *buf_cache; 412789Sahrens 413789Sahrens static void 414789Sahrens buf_fini(void) 415789Sahrens { 416789Sahrens int i; 417789Sahrens 418789Sahrens kmem_free(buf_hash_table.ht_table, 419789Sahrens (buf_hash_table.ht_mask + 1) * sizeof (void *)); 420789Sahrens for (i = 0; i < BUF_LOCKS; i++) 421789Sahrens mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 422789Sahrens kmem_cache_destroy(hdr_cache); 423789Sahrens kmem_cache_destroy(buf_cache); 424789Sahrens } 425789Sahrens 426789Sahrens /* 427789Sahrens * Constructor callback - called when the cache is empty 428789Sahrens * and a new buf is requested. 429789Sahrens */ 430789Sahrens /* ARGSUSED */ 431789Sahrens static int 432789Sahrens hdr_cons(void *vbuf, void *unused, int kmflag) 433789Sahrens { 434789Sahrens arc_buf_hdr_t *buf = vbuf; 435789Sahrens 436789Sahrens bzero(buf, sizeof (arc_buf_hdr_t)); 437789Sahrens refcount_create(&buf->b_refcnt); 438789Sahrens cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 439789Sahrens return (0); 440789Sahrens } 441789Sahrens 442789Sahrens /* 443789Sahrens * Destructor callback - called when a cached buf is 444789Sahrens * no longer required. 445789Sahrens */ 446789Sahrens /* ARGSUSED */ 447789Sahrens static void 448789Sahrens hdr_dest(void *vbuf, void *unused) 449789Sahrens { 450789Sahrens arc_buf_hdr_t *buf = vbuf; 451789Sahrens 452789Sahrens refcount_destroy(&buf->b_refcnt); 453789Sahrens cv_destroy(&buf->b_cv); 454789Sahrens } 455789Sahrens 456789Sahrens void arc_kmem_reclaim(void); 457789Sahrens 458789Sahrens /* 459789Sahrens * Reclaim callback -- invoked when memory is low. 460789Sahrens */ 461789Sahrens /* ARGSUSED */ 462789Sahrens static void 463789Sahrens hdr_recl(void *unused) 464789Sahrens { 465789Sahrens dprintf("hdr_recl called\n"); 466789Sahrens arc_kmem_reclaim(); 467789Sahrens } 468789Sahrens 469789Sahrens static void 470789Sahrens buf_init(void) 471789Sahrens { 472789Sahrens uint64_t *ct; 473789Sahrens uint64_t hsize = 1ULL << 10; 474789Sahrens int i, j; 475789Sahrens 476789Sahrens /* 477789Sahrens * The hash table is big enough to fill all of physical memory 478789Sahrens * with an average 4k block size. The table will take up 479789Sahrens * totalmem*sizeof(void*)/4k bytes (eg. 2MB/GB with 8-byte 480789Sahrens * pointers). 481789Sahrens */ 482789Sahrens while (hsize * 4096 < physmem * PAGESIZE) 483789Sahrens hsize <<= 1; 484789Sahrens 485789Sahrens buf_hash_table.ht_mask = hsize - 1; 486789Sahrens buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 487789Sahrens 488789Sahrens hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 489789Sahrens 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 490789Sahrens buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 491789Sahrens 0, NULL, NULL, NULL, NULL, NULL, 0); 492789Sahrens 493789Sahrens for (i = 0; i < 256; i++) 494789Sahrens for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 495789Sahrens *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 496789Sahrens 497789Sahrens for (i = 0; i < BUF_LOCKS; i++) { 498789Sahrens mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 499789Sahrens NULL, MUTEX_DEFAULT, NULL); 500789Sahrens } 501789Sahrens } 502789Sahrens 503789Sahrens #define ARC_MINTIME (hz>>4) /* 62 ms */ 504789Sahrens 505789Sahrens #define ARC_TAG (void *)0x05201962 506789Sahrens 507789Sahrens static void 508789Sahrens add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 509789Sahrens { 510789Sahrens ASSERT(MUTEX_HELD(hash_lock)); 511789Sahrens 512789Sahrens if ((refcount_add(&ab->b_refcnt, tag) == 1) && 513789Sahrens (ab->b_state != arc.anon)) { 514789Sahrens 515789Sahrens ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 516789Sahrens mutex_enter(&ab->b_state->mtx); 517789Sahrens ASSERT(!refcount_is_zero(&ab->b_refcnt)); 518789Sahrens ASSERT(list_link_active(&ab->b_arc_node)); 519789Sahrens list_remove(&ab->b_state->list, ab); 520789Sahrens ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 521789Sahrens ab->b_state->lsize -= ab->b_size; 522789Sahrens mutex_exit(&ab->b_state->mtx); 523789Sahrens } 524789Sahrens } 525789Sahrens 526789Sahrens static int 527789Sahrens remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 528789Sahrens { 529789Sahrens int cnt; 530789Sahrens 531789Sahrens ASSERT(MUTEX_HELD(hash_lock)); 532789Sahrens 533789Sahrens if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 534789Sahrens (ab->b_state != arc.anon)) { 535789Sahrens 536789Sahrens ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 537789Sahrens mutex_enter(&ab->b_state->mtx); 538789Sahrens ASSERT(!list_link_active(&ab->b_arc_node)); 539789Sahrens list_insert_head(&ab->b_state->list, ab); 540789Sahrens ASSERT(ab->b_buf != NULL); 541789Sahrens ab->b_state->lsize += ab->b_size; 542789Sahrens mutex_exit(&ab->b_state->mtx); 543789Sahrens } 544789Sahrens return (cnt); 545789Sahrens } 546789Sahrens 547789Sahrens /* 548789Sahrens * Move the supplied buffer to the indicated state. The mutex 549789Sahrens * for the buffer must be held by the caller. 550789Sahrens */ 551789Sahrens static void 552789Sahrens arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, 553789Sahrens kmutex_t *hash_lock) 554789Sahrens { 555789Sahrens arc_buf_t *buf; 556789Sahrens 557789Sahrens ASSERT(MUTEX_HELD(hash_lock)); 558789Sahrens 559789Sahrens /* 560789Sahrens * If this buffer is evictable, transfer it from the 561789Sahrens * old state list to the new state list. 562789Sahrens */ 563789Sahrens if (refcount_is_zero(&ab->b_refcnt)) { 564789Sahrens if (ab->b_state != arc.anon) { 565789Sahrens int drop_mutex = FALSE; 566789Sahrens 567789Sahrens if (!MUTEX_HELD(&ab->b_state->mtx)) { 568789Sahrens mutex_enter(&ab->b_state->mtx); 569789Sahrens drop_mutex = TRUE; 570789Sahrens } 571789Sahrens ASSERT(list_link_active(&ab->b_arc_node)); 572789Sahrens list_remove(&ab->b_state->list, ab); 573789Sahrens ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 574789Sahrens ab->b_state->lsize -= ab->b_size; 575789Sahrens if (drop_mutex) 576789Sahrens mutex_exit(&ab->b_state->mtx); 577789Sahrens } 578789Sahrens if (new_state != arc.anon) { 579789Sahrens int drop_mutex = FALSE; 580789Sahrens 581789Sahrens if (!MUTEX_HELD(&new_state->mtx)) { 582789Sahrens mutex_enter(&new_state->mtx); 583789Sahrens drop_mutex = TRUE; 584789Sahrens } 585789Sahrens list_insert_head(&new_state->list, ab); 586789Sahrens ASSERT(ab->b_buf != NULL); 587789Sahrens new_state->lsize += ab->b_size; 588789Sahrens if (drop_mutex) 589789Sahrens mutex_exit(&new_state->mtx); 590789Sahrens } 591789Sahrens } 592789Sahrens 593789Sahrens ASSERT(!BUF_EMPTY(ab)); 594789Sahrens if (new_state == arc.anon && ab->b_state != arc.anon) { 595789Sahrens buf_hash_remove(ab); 596789Sahrens } 597789Sahrens 598789Sahrens /* 599789Sahrens * If this buffer isn't being transferred to the MRU-top 600789Sahrens * state, it's safe to clear its prefetch flag 601789Sahrens */ 602789Sahrens if ((new_state != arc.mru_top) && (new_state != arc.mru_bot)) { 603789Sahrens ab->b_flags &= ~ARC_PREFETCH; 604789Sahrens } 605789Sahrens 606789Sahrens buf = ab->b_buf; 607789Sahrens if (buf == NULL) { 608789Sahrens ASSERT3U(ab->b_state->size, >=, ab->b_size); 609789Sahrens atomic_add_64(&ab->b_state->size, -ab->b_size); 610789Sahrens /* we should only be here if we are deleting state */ 611789Sahrens ASSERT(new_state == arc.anon && 612789Sahrens (ab->b_state == arc.mru_bot || ab->b_state == arc.mfu_bot)); 613789Sahrens } else while (buf) { 614789Sahrens ASSERT3U(ab->b_state->size, >=, ab->b_size); 615789Sahrens atomic_add_64(&ab->b_state->size, -ab->b_size); 616789Sahrens atomic_add_64(&new_state->size, ab->b_size); 617789Sahrens buf = buf->b_next; 618789Sahrens } 619789Sahrens ab->b_state = new_state; 620789Sahrens } 621789Sahrens 622789Sahrens arc_buf_t * 623789Sahrens arc_buf_alloc(spa_t *spa, int size, void *tag) 624789Sahrens { 625789Sahrens arc_buf_hdr_t *hdr; 626789Sahrens arc_buf_t *buf; 627789Sahrens 628789Sahrens ASSERT3U(size, >, 0); 629789Sahrens hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 630789Sahrens ASSERT(BUF_EMPTY(hdr)); 631789Sahrens hdr->b_size = size; 632789Sahrens hdr->b_spa = spa; 633789Sahrens hdr->b_state = arc.anon; 634789Sahrens hdr->b_arc_access = 0; 635789Sahrens buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 636789Sahrens buf->b_hdr = hdr; 637789Sahrens buf->b_next = NULL; 638789Sahrens buf->b_data = zio_buf_alloc(size); 639789Sahrens hdr->b_buf = buf; 640789Sahrens hdr->b_flags = 0; 641789Sahrens ASSERT(refcount_is_zero(&hdr->b_refcnt)); 642789Sahrens (void) refcount_add(&hdr->b_refcnt, tag); 643789Sahrens 644789Sahrens atomic_add_64(&arc.size, size); 645789Sahrens atomic_add_64(&arc.anon->size, size); 646789Sahrens 647789Sahrens return (buf); 648789Sahrens } 649789Sahrens 650789Sahrens static void 651789Sahrens arc_hdr_free(arc_buf_hdr_t *hdr) 652789Sahrens { 653789Sahrens ASSERT(refcount_is_zero(&hdr->b_refcnt)); 654789Sahrens ASSERT3P(hdr->b_state, ==, arc.anon); 655789Sahrens 656789Sahrens if (!BUF_EMPTY(hdr)) { 657789Sahrens /* 658789Sahrens * We can be called with an arc state lock held, 659789Sahrens * so we can't hold a hash lock here. 660789Sahrens * ASSERT(not in hash table) 661789Sahrens */ 662789Sahrens ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 663789Sahrens bzero(&hdr->b_dva, sizeof (dva_t)); 664789Sahrens hdr->b_birth = 0; 665789Sahrens hdr->b_cksum0 = 0; 666789Sahrens } 667789Sahrens if (hdr->b_buf) { 668789Sahrens arc_buf_t *buf = hdr->b_buf; 669789Sahrens 670789Sahrens ASSERT3U(hdr->b_size, >, 0); 671789Sahrens zio_buf_free(buf->b_data, hdr->b_size); 672789Sahrens atomic_add_64(&arc.size, -hdr->b_size); 673789Sahrens ASSERT3U(arc.anon->size, >=, hdr->b_size); 674789Sahrens atomic_add_64(&arc.anon->size, -hdr->b_size); 675789Sahrens ASSERT3P(buf->b_next, ==, NULL); 676789Sahrens kmem_cache_free(buf_cache, buf); 677789Sahrens hdr->b_buf = NULL; 678789Sahrens } 679789Sahrens ASSERT(!list_link_active(&hdr->b_arc_node)); 680789Sahrens ASSERT3P(hdr->b_hash_next, ==, NULL); 681789Sahrens ASSERT3P(hdr->b_acb, ==, NULL); 682789Sahrens kmem_cache_free(hdr_cache, hdr); 683789Sahrens } 684789Sahrens 685789Sahrens void 686789Sahrens arc_buf_free(arc_buf_t *buf, void *tag) 687789Sahrens { 688789Sahrens arc_buf_hdr_t *hdr = buf->b_hdr; 689789Sahrens kmutex_t *hash_lock = HDR_LOCK(hdr); 690789Sahrens int freeable; 691789Sahrens 692789Sahrens mutex_enter(hash_lock); 693789Sahrens if (remove_reference(hdr, hash_lock, tag) > 0) { 694789Sahrens arc_buf_t **bufp = &hdr->b_buf; 695789Sahrens arc_state_t *state = hdr->b_state; 696789Sahrens uint64_t size = hdr->b_size; 697789Sahrens 698789Sahrens ASSERT(hdr->b_state != arc.anon || HDR_IO_ERROR(hdr)); 699789Sahrens while (*bufp != buf) { 700789Sahrens ASSERT(*bufp); 701789Sahrens bufp = &(*bufp)->b_next; 702789Sahrens } 703789Sahrens *bufp = buf->b_next; 704789Sahrens mutex_exit(hash_lock); 705789Sahrens zio_buf_free(buf->b_data, size); 706789Sahrens atomic_add_64(&arc.size, -size); 707789Sahrens kmem_cache_free(buf_cache, buf); 708789Sahrens ASSERT3U(state->size, >=, size); 709789Sahrens atomic_add_64(&state->size, -size); 710789Sahrens return; 711789Sahrens } 712789Sahrens 713789Sahrens /* don't free buffers that are in the middle of an async write */ 714789Sahrens freeable = (hdr->b_state == arc.anon && hdr->b_acb == NULL); 715789Sahrens mutex_exit(hash_lock); 716789Sahrens 717789Sahrens if (freeable) 718789Sahrens arc_hdr_free(hdr); 719789Sahrens } 720789Sahrens 721789Sahrens int 722789Sahrens arc_buf_size(arc_buf_t *buf) 723789Sahrens { 724789Sahrens return (buf->b_hdr->b_size); 725789Sahrens } 726789Sahrens 727789Sahrens /* 728789Sahrens * Evict buffers from list until we've removed the specified number of 729789Sahrens * bytes. Move the removed buffers to the appropriate evict state. 730789Sahrens */ 731789Sahrens static uint64_t 732789Sahrens arc_evict_state(arc_state_t *state, int64_t bytes) 733789Sahrens { 734789Sahrens arc_state_t *evicted_state; 735789Sahrens uint64_t bytes_evicted = 0; 736789Sahrens arc_buf_hdr_t *ab, *ab_prev; 737789Sahrens kmutex_t *hash_lock; 738789Sahrens 739789Sahrens ASSERT(state == arc.mru_top || state == arc.mfu_top); 740789Sahrens 741789Sahrens if (state == arc.mru_top) 742789Sahrens evicted_state = arc.mru_bot; 743789Sahrens else 744789Sahrens evicted_state = arc.mfu_bot; 745789Sahrens 746789Sahrens mutex_enter(&state->mtx); 747789Sahrens mutex_enter(&evicted_state->mtx); 748789Sahrens 749789Sahrens for (ab = list_tail(&state->list); ab; ab = ab_prev) { 750789Sahrens ab_prev = list_prev(&state->list, ab); 751789Sahrens hash_lock = HDR_LOCK(ab); 752789Sahrens if (mutex_tryenter(hash_lock)) { 753789Sahrens ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 754789Sahrens arc_change_state(evicted_state, ab, hash_lock); 755789Sahrens zio_buf_free(ab->b_buf->b_data, ab->b_size); 756789Sahrens atomic_add_64(&arc.size, -ab->b_size); 757789Sahrens ASSERT3P(ab->b_buf->b_next, ==, NULL); 758789Sahrens kmem_cache_free(buf_cache, ab->b_buf); 759789Sahrens ab->b_buf = NULL; 760789Sahrens DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 761789Sahrens bytes_evicted += ab->b_size; 762789Sahrens mutex_exit(hash_lock); 763789Sahrens if (bytes_evicted >= bytes) 764789Sahrens break; 765789Sahrens } else { 766789Sahrens atomic_add_64(&arc.skipped, 1); 767789Sahrens } 768789Sahrens } 769789Sahrens mutex_exit(&evicted_state->mtx); 770789Sahrens mutex_exit(&state->mtx); 771789Sahrens 772789Sahrens if (bytes_evicted < bytes) 773789Sahrens dprintf("only evicted %lld bytes from %x", 774789Sahrens (longlong_t)bytes_evicted, state); 775789Sahrens 776789Sahrens return (bytes_evicted); 777789Sahrens } 778789Sahrens 779789Sahrens /* 780789Sahrens * Remove buffers from list until we've removed the specified number of 781789Sahrens * bytes. Destroy the buffers that are removed. 782789Sahrens */ 783789Sahrens static void 784789Sahrens arc_delete_state(arc_state_t *state, int64_t bytes) 785789Sahrens { 786789Sahrens uint_t bufs_skipped = 0; 787789Sahrens uint64_t bytes_deleted = 0; 788789Sahrens arc_buf_hdr_t *ab, *ab_prev; 789789Sahrens kmutex_t *hash_lock; 790789Sahrens 791789Sahrens top: 792789Sahrens mutex_enter(&state->mtx); 793789Sahrens for (ab = list_tail(&state->list); ab; ab = ab_prev) { 794789Sahrens ab_prev = list_prev(&state->list, ab); 795789Sahrens hash_lock = HDR_LOCK(ab); 796789Sahrens if (mutex_tryenter(hash_lock)) { 797789Sahrens arc_change_state(arc.anon, ab, hash_lock); 798789Sahrens mutex_exit(hash_lock); 799789Sahrens atomic_add_64(&arc.deleted, 1); 800789Sahrens DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 801789Sahrens bytes_deleted += ab->b_size; 802789Sahrens arc_hdr_free(ab); 803789Sahrens if (bytes >= 0 && bytes_deleted >= bytes) 804789Sahrens break; 805789Sahrens } else { 806789Sahrens if (bytes < 0) { 807789Sahrens mutex_exit(&state->mtx); 808789Sahrens mutex_enter(hash_lock); 809789Sahrens mutex_exit(hash_lock); 810789Sahrens goto top; 811789Sahrens } 812789Sahrens bufs_skipped += 1; 813789Sahrens } 814789Sahrens } 815789Sahrens mutex_exit(&state->mtx); 816789Sahrens 817789Sahrens if (bufs_skipped) { 818789Sahrens atomic_add_64(&arc.skipped, bufs_skipped); 819789Sahrens ASSERT(bytes >= 0); 820789Sahrens } 821789Sahrens 822789Sahrens if (bytes_deleted < bytes) 823789Sahrens dprintf("only deleted %lld bytes from %p", 824789Sahrens (longlong_t)bytes_deleted, state); 825789Sahrens } 826789Sahrens 827789Sahrens static void 828789Sahrens arc_adjust(void) 829789Sahrens { 830789Sahrens int64_t top_sz, mru_over, arc_over; 831789Sahrens 832789Sahrens top_sz = arc.anon->size + arc.mru_top->size; 833789Sahrens 834789Sahrens if (top_sz > arc.p && arc.mru_top->lsize > 0) { 835789Sahrens int64_t toevict = MIN(arc.mru_top->lsize, top_sz-arc.p); 836789Sahrens (void) arc_evict_state(arc.mru_top, toevict); 837789Sahrens top_sz = arc.anon->size + arc.mru_top->size; 838789Sahrens } 839789Sahrens 840789Sahrens mru_over = top_sz + arc.mru_bot->size - arc.c; 841789Sahrens 842789Sahrens if (mru_over > 0) { 843789Sahrens if (arc.mru_bot->lsize > 0) { 844789Sahrens int64_t todelete = MIN(arc.mru_bot->lsize, mru_over); 845789Sahrens arc_delete_state(arc.mru_bot, todelete); 846789Sahrens } 847789Sahrens } 848789Sahrens 849789Sahrens if ((arc_over = arc.size - arc.c) > 0) { 850789Sahrens int64_t table_over; 851789Sahrens 852789Sahrens if (arc.mfu_top->lsize > 0) { 853789Sahrens int64_t toevict = MIN(arc.mfu_top->lsize, arc_over); 854789Sahrens (void) arc_evict_state(arc.mfu_top, toevict); 855789Sahrens } 856789Sahrens 857789Sahrens table_over = arc.size + arc.mru_bot->lsize + arc.mfu_bot->lsize 858789Sahrens - arc.c*2; 859789Sahrens 860789Sahrens if (table_over > 0 && arc.mfu_bot->lsize > 0) { 861789Sahrens int64_t todelete = MIN(arc.mfu_bot->lsize, table_over); 862789Sahrens arc_delete_state(arc.mfu_bot, todelete); 863789Sahrens } 864789Sahrens } 865789Sahrens } 866789Sahrens 867789Sahrens /* 868789Sahrens * Flush all *evictable* data from the cache. 869789Sahrens * NOTE: this will not touch "active" (i.e. referenced) data. 870789Sahrens */ 871789Sahrens void 872789Sahrens arc_flush(void) 873789Sahrens { 874789Sahrens arc_delete_state(arc.mru_top, -1); 875789Sahrens arc_delete_state(arc.mfu_top, -1); 876789Sahrens 877789Sahrens arc_delete_state(arc.mru_bot, -1); 878789Sahrens arc_delete_state(arc.mfu_bot, -1); 879789Sahrens } 880789Sahrens 881789Sahrens void 882789Sahrens arc_kmem_reclaim(void) 883789Sahrens { 884789Sahrens /* Remove 6.25% */ 885789Sahrens /* 886789Sahrens * We need arc_reclaim_lock because we don't want multiple 887789Sahrens * threads trying to reclaim concurrently. 888789Sahrens */ 889789Sahrens 890789Sahrens /* 891789Sahrens * umem calls the reclaim func when we destroy the buf cache, 892789Sahrens * which is after we do arc_fini(). So we set a flag to prevent 893789Sahrens * accessing the destroyed mutexes and lists. 894789Sahrens */ 895789Sahrens if (arc_dead) 896789Sahrens return; 897789Sahrens 898789Sahrens mutex_enter(&arc_reclaim_lock); 899789Sahrens 900789Sahrens atomic_add_64(&arc.c, -(arc.c >> 4)); 901789Sahrens if (arc.c < arc.c_min) 902789Sahrens arc.c = arc.c_min; 903789Sahrens atomic_add_64(&arc.p, -(arc.p >> 4)); 904789Sahrens 905789Sahrens arc_adjust(); 906789Sahrens 907789Sahrens /* Cool it for a while */ 908789Sahrens arc.incr = 0; 909789Sahrens arc.size_check = arc_size_check_default << 3; 910789Sahrens 911789Sahrens mutex_exit(&arc_reclaim_lock); 912789Sahrens } 913789Sahrens 914789Sahrens static int 915789Sahrens arc_reclaim_needed(void) 916789Sahrens { 917789Sahrens uint64_t extra; 918789Sahrens 919789Sahrens #ifdef _KERNEL 920789Sahrens /* 921789Sahrens * take 'desfree' extra pages, so we reclaim sooner, rather than later 922789Sahrens */ 923789Sahrens extra = desfree; 924789Sahrens 925789Sahrens /* 926789Sahrens * check that we're out of range of the pageout scanner. It starts to 927789Sahrens * schedule paging if freemem is less than lotsfree and needfree. 928789Sahrens * lotsfree is the high-water mark for pageout, and needfree is the 929789Sahrens * number of needed free pages. We add extra pages here to make sure 930789Sahrens * the scanner doesn't start up while we're freeing memory. 931789Sahrens */ 932789Sahrens if (freemem < lotsfree + needfree + extra) 933789Sahrens return (1); 934789Sahrens 935789Sahrens /* 936789Sahrens * check to make sure that swapfs has enough space so that anon 937789Sahrens * reservations can still succeeed. anon_resvmem() checks that the 938789Sahrens * availrmem is greater than swapfs_minfree, and the number of reserved 939789Sahrens * swap pages. We also add a bit of extra here just to prevent 940789Sahrens * circumstances from getting really dire. 941789Sahrens */ 942789Sahrens if (availrmem < swapfs_minfree + swapfs_reserve + extra) 943789Sahrens return (1); 944789Sahrens 945789Sahrens /* 946789Sahrens * If we're on an i386 platform, it's possible that we'll exhaust the 947789Sahrens * kernel heap space before we ever run out of available physical 948789Sahrens * memory. Most checks of the size of the heap_area compare against 949789Sahrens * tune.t_minarmem, which is the minimum available real memory that we 950789Sahrens * can have in the system. However, this is generally fixed at 25 pages 951789Sahrens * which is so low that it's useless. In this comparison, we seek to 952789Sahrens * calculate the total heap-size, and reclaim if more than 3/4ths of the 953789Sahrens * heap is allocated. (Or, in the caclulation, if less than 1/4th is 954789Sahrens * free) 955789Sahrens */ 956789Sahrens #if defined(__i386) 957789Sahrens if (btop(vmem_size(heap_arena, VMEM_FREE)) < 958789Sahrens (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 959789Sahrens return (1); 960789Sahrens #endif 961789Sahrens 962789Sahrens #else 963789Sahrens if (spa_get_random(100) == 0) 964789Sahrens return (1); 965789Sahrens #endif 966789Sahrens return (0); 967789Sahrens } 968789Sahrens 969789Sahrens static void 970789Sahrens arc_kmem_reap_now(arc_reclaim_strategy_t strat) 971789Sahrens { 972789Sahrens size_t i; 973789Sahrens kmem_cache_t *prev_cache = NULL; 974789Sahrens extern kmem_cache_t *zio_buf_cache[]; 975789Sahrens 976789Sahrens /* 977789Sahrens * an agressive reclamation will shrink the cache size as well as reap 978789Sahrens * free kmem buffers. The arc_kmem_reclaim function is called when the 979789Sahrens * header-cache is reaped, so we only reap the header cache if we're 980789Sahrens * performing an agressive reclaim. If we're not, just clean the kmem 981789Sahrens * buffer caches. 982789Sahrens */ 983789Sahrens if (strat == ARC_RECLAIM_AGGR) 984789Sahrens kmem_cache_reap_now(hdr_cache); 985789Sahrens 986789Sahrens kmem_cache_reap_now(buf_cache); 987789Sahrens 988789Sahrens for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 989789Sahrens if (zio_buf_cache[i] != prev_cache) { 990789Sahrens prev_cache = zio_buf_cache[i]; 991789Sahrens kmem_cache_reap_now(zio_buf_cache[i]); 992789Sahrens } 993789Sahrens } 994789Sahrens } 995789Sahrens 996789Sahrens static void 997789Sahrens arc_reclaim_thread(void) 998789Sahrens { 999789Sahrens clock_t growtime = 0; 1000789Sahrens arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1001789Sahrens callb_cpr_t cpr; 1002789Sahrens 1003789Sahrens CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1004789Sahrens 1005789Sahrens mutex_enter(&arc_reclaim_thr_lock); 1006789Sahrens while (arc_thread_exit == 0) { 1007789Sahrens if (arc_reclaim_needed()) { 1008789Sahrens 1009789Sahrens if (arc.no_grow) { 1010789Sahrens if (last_reclaim == ARC_RECLAIM_CONS) { 1011789Sahrens last_reclaim = ARC_RECLAIM_AGGR; 1012789Sahrens } else { 1013789Sahrens last_reclaim = ARC_RECLAIM_CONS; 1014789Sahrens } 1015789Sahrens } else { 1016789Sahrens arc.no_grow = TRUE; 1017789Sahrens last_reclaim = ARC_RECLAIM_AGGR; 1018789Sahrens membar_producer(); 1019789Sahrens } 1020789Sahrens 1021789Sahrens /* reset the growth delay for every reclaim */ 1022789Sahrens growtime = lbolt + (arc_grow_retry * hz); 1023789Sahrens 1024789Sahrens arc_kmem_reap_now(last_reclaim); 1025789Sahrens 1026789Sahrens } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1027789Sahrens arc.no_grow = FALSE; 1028789Sahrens } 1029789Sahrens 1030789Sahrens /* block until needed, or one second, whichever is shorter */ 1031789Sahrens CALLB_CPR_SAFE_BEGIN(&cpr); 1032789Sahrens (void) cv_timedwait(&arc_reclaim_thr_cv, 1033789Sahrens &arc_reclaim_thr_lock, (lbolt + hz)); 1034789Sahrens CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1035789Sahrens } 1036789Sahrens 1037789Sahrens arc_thread_exit = 0; 1038789Sahrens cv_broadcast(&arc_reclaim_thr_cv); 1039789Sahrens CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1040789Sahrens thread_exit(); 1041789Sahrens } 1042789Sahrens 1043789Sahrens static void 1044789Sahrens arc_try_grow(int64_t bytes) 1045789Sahrens { 1046789Sahrens /* 1047789Sahrens * If we're within (2 * maxblocksize) bytes of the target 1048789Sahrens * cache size, increment the target cache size 1049789Sahrens */ 1050789Sahrens atomic_add_64((uint64_t *)&arc.size_check, 1); 1051789Sahrens 1052789Sahrens if (arc_reclaim_needed()) { 1053789Sahrens cv_signal(&arc_reclaim_thr_cv); 1054789Sahrens return; 1055789Sahrens } 1056789Sahrens 1057789Sahrens if (arc.no_grow) 1058789Sahrens return; 1059789Sahrens 1060789Sahrens /* 1061789Sahrens * return true if we successfully grow, or if there's enough space that 1062789Sahrens * we don't have to grow. Above, we return false if we can't grow, or 1063789Sahrens * if we shouldn't because a reclaim is in progress. 1064789Sahrens */ 1065789Sahrens if ((arc.c - arc.size) <= (2ULL << SPA_MAXBLOCKSHIFT)) { 1066789Sahrens if (arc.size_check > 0) { 1067789Sahrens arc.size_check = arc_size_check_default; 1068789Sahrens atomic_add_64(&arc.incr, arc_incr_size); 1069789Sahrens } 1070789Sahrens atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1071789Sahrens if (arc.c > arc.c_max) 1072789Sahrens arc.c = arc.c_max; 1073789Sahrens else 1074789Sahrens atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1075789Sahrens } else if (arc.size > arc.c) { 1076789Sahrens if (arc.size_check > 0) { 1077789Sahrens arc.size_check = arc_size_check_default; 1078789Sahrens atomic_add_64(&arc.incr, arc_incr_size); 1079789Sahrens } 1080789Sahrens atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1081789Sahrens if (arc.c > arc.c_max) 1082789Sahrens arc.c = arc.c_max; 1083789Sahrens else 1084789Sahrens atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1085789Sahrens } 1086789Sahrens } 1087789Sahrens 1088789Sahrens /* 1089789Sahrens * check if the cache has reached its limits and eviction is required prior to 1090789Sahrens * insert. In this situation, we want to evict if no_grow is set Otherwise, the 1091789Sahrens * cache is either big enough that we can insert, or a arc_try_grow will result 1092789Sahrens * in more space being made available. 1093789Sahrens */ 1094789Sahrens 1095789Sahrens static int 1096789Sahrens arc_evict_needed() 1097789Sahrens { 1098789Sahrens 1099789Sahrens if (arc_reclaim_needed()) 1100789Sahrens return (1); 1101789Sahrens 1102789Sahrens if (arc.no_grow || (arc.c > arc.c_max) || (arc.size > arc.c)) 1103789Sahrens return (1); 1104789Sahrens 1105789Sahrens return (0); 1106789Sahrens } 1107789Sahrens 1108789Sahrens /* 1109789Sahrens * The state, supplied as the first argument, is going to have something 1110789Sahrens * inserted on its behalf. So, determine which cache must be victimized to 1111789Sahrens * satisfy an insertion for this state. We have the following cases: 1112789Sahrens * 1113789Sahrens * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru_top) -> 1114789Sahrens * In this situation if we're out of space, but the resident size of the MFU is 1115789Sahrens * under the limit, victimize the MFU cache to satisfy this insertion request. 1116789Sahrens * 1117789Sahrens * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru_top) -> 1118789Sahrens * Here, we've used up all of the available space for the MRU, so we need to 1119789Sahrens * evict from our own cache instead. Evict from the set of resident MRU 1120789Sahrens * entries. 1121789Sahrens * 1122789Sahrens * 3. Insert for MFU (c - p) > sizeof(arc.mfu_top) -> 1123789Sahrens * c minus p represents the MFU space in the cache, since p is the size of the 1124789Sahrens * cache that is dedicated to the MRU. In this situation there's still space on 1125789Sahrens * the MFU side, so the MRU side needs to be victimized. 1126789Sahrens * 1127789Sahrens * 4. Insert for MFU (c - p) < sizeof(arc.mfu_top) -> 1128789Sahrens * MFU's resident set is consuming more space than it has been allotted. In 1129789Sahrens * this situation, we must victimize our own cache, the MFU, for this insertion. 1130789Sahrens */ 1131789Sahrens static void 1132789Sahrens arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1133789Sahrens { 1134789Sahrens uint64_t mru_used; 1135789Sahrens uint64_t mfu_space; 1136789Sahrens uint64_t evicted; 1137789Sahrens 1138789Sahrens ASSERT(state == arc.mru_top || state == arc.mfu_top); 1139789Sahrens 1140789Sahrens if (state == arc.mru_top) { 1141789Sahrens mru_used = arc.anon->size + arc.mru_top->size; 1142789Sahrens if (arc.p > mru_used) { 1143789Sahrens /* case 1 */ 1144789Sahrens evicted = arc_evict_state(arc.mfu_top, bytes); 1145789Sahrens if (evicted < bytes) { 1146789Sahrens arc_adjust(); 1147789Sahrens } 1148789Sahrens } else { 1149789Sahrens /* case 2 */ 1150789Sahrens evicted = arc_evict_state(arc.mru_top, bytes); 1151789Sahrens if (evicted < bytes) { 1152789Sahrens arc_adjust(); 1153789Sahrens } 1154789Sahrens } 1155789Sahrens } else { 1156789Sahrens /* MFU_top case */ 1157789Sahrens mfu_space = arc.c - arc.p; 1158789Sahrens if (mfu_space > arc.mfu_top->size) { 1159789Sahrens /* case 3 */ 1160789Sahrens evicted = arc_evict_state(arc.mru_top, bytes); 1161789Sahrens if (evicted < bytes) { 1162789Sahrens arc_adjust(); 1163789Sahrens } 1164789Sahrens } else { 1165789Sahrens /* case 4 */ 1166789Sahrens evicted = arc_evict_state(arc.mfu_top, bytes); 1167789Sahrens if (evicted < bytes) { 1168789Sahrens arc_adjust(); 1169789Sahrens } 1170789Sahrens } 1171789Sahrens } 1172789Sahrens } 1173789Sahrens 1174789Sahrens /* 1175789Sahrens * This routine is called whenever a buffer is accessed. 1176789Sahrens */ 1177789Sahrens static void 1178789Sahrens arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1179789Sahrens { 1180789Sahrens int blksz, mult; 1181789Sahrens 1182789Sahrens ASSERT(MUTEX_HELD(hash_lock)); 1183789Sahrens 1184789Sahrens blksz = buf->b_size; 1185789Sahrens 1186789Sahrens if (buf->b_state == arc.anon) { 1187789Sahrens /* 1188789Sahrens * This buffer is not in the cache, and does not 1189789Sahrens * appear in our "ghost" list. Add the new buffer 1190789Sahrens * to the MRU state. 1191789Sahrens */ 1192789Sahrens 1193789Sahrens arc_try_grow(blksz); 1194789Sahrens if (arc_evict_needed()) { 1195789Sahrens arc_evict_for_state(arc.mru_top, blksz); 1196789Sahrens } 1197789Sahrens 1198789Sahrens ASSERT(buf->b_arc_access == 0); 1199789Sahrens buf->b_arc_access = lbolt; 1200789Sahrens DTRACE_PROBE1(new_state__mru_top, arc_buf_hdr_t *, 1201789Sahrens buf); 1202789Sahrens arc_change_state(arc.mru_top, buf, hash_lock); 1203789Sahrens 1204789Sahrens /* 1205789Sahrens * If we are using less than 2/3 of our total target 1206789Sahrens * cache size, bump up the target size for the MRU 1207789Sahrens * list. 1208789Sahrens */ 1209789Sahrens if (arc.size < arc.c*2/3) { 1210789Sahrens arc.p = arc.anon->size + arc.mru_top->size + arc.c/6; 1211789Sahrens } 1212789Sahrens 1213789Sahrens } else if (buf->b_state == arc.mru_top) { 1214789Sahrens /* 1215789Sahrens * If this buffer is in the MRU-top state and has the prefetch 1216789Sahrens * flag, the first read was actually part of a prefetch. In 1217789Sahrens * this situation, we simply want to clear the flag and return. 1218789Sahrens * A subsequent access should bump this into the MFU state. 1219789Sahrens */ 1220789Sahrens if ((buf->b_flags & ARC_PREFETCH) != 0) { 1221789Sahrens buf->b_flags &= ~ARC_PREFETCH; 1222789Sahrens atomic_add_64(&arc.mru_top->hits, 1); 1223789Sahrens return; 1224789Sahrens } 1225789Sahrens 1226789Sahrens /* 1227789Sahrens * This buffer has been "accessed" only once so far, 1228789Sahrens * but it is still in the cache. Move it to the MFU 1229789Sahrens * state. 1230789Sahrens */ 1231789Sahrens if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1232789Sahrens /* 1233789Sahrens * More than 125ms have passed since we 1234789Sahrens * instantiated this buffer. Move it to the 1235789Sahrens * most frequently used state. 1236789Sahrens */ 1237789Sahrens buf->b_arc_access = lbolt; 1238789Sahrens DTRACE_PROBE1(new_state__mfu_top, 1239789Sahrens arc_buf_hdr_t *, buf); 1240789Sahrens arc_change_state(arc.mfu_top, buf, hash_lock); 1241789Sahrens } 1242789Sahrens atomic_add_64(&arc.mru_top->hits, 1); 1243789Sahrens } else if (buf->b_state == arc.mru_bot) { 1244789Sahrens arc_state_t *new_state; 1245789Sahrens /* 1246789Sahrens * This buffer has been "accessed" recently, but 1247789Sahrens * was evicted from the cache. Move it to the 1248789Sahrens * MFU state. 1249789Sahrens */ 1250789Sahrens 1251789Sahrens if (buf->b_flags & ARC_PREFETCH) { 1252789Sahrens new_state = arc.mru_top; 1253789Sahrens DTRACE_PROBE1(new_state__mru_top, 1254789Sahrens arc_buf_hdr_t *, buf); 1255789Sahrens } else { 1256789Sahrens new_state = arc.mfu_top; 1257789Sahrens DTRACE_PROBE1(new_state__mfu_top, 1258789Sahrens arc_buf_hdr_t *, buf); 1259789Sahrens } 1260789Sahrens 1261789Sahrens arc_try_grow(blksz); 1262789Sahrens if (arc_evict_needed()) { 1263789Sahrens arc_evict_for_state(new_state, blksz); 1264789Sahrens } 1265789Sahrens 1266789Sahrens /* Bump up the target size of the MRU list */ 1267789Sahrens mult = ((arc.mru_bot->size >= arc.mfu_bot->size) ? 1268789Sahrens 1 : (arc.mfu_bot->size/arc.mru_bot->size)); 1269789Sahrens arc.p = MIN(arc.c, arc.p + blksz * mult); 1270789Sahrens 1271789Sahrens buf->b_arc_access = lbolt; 1272789Sahrens arc_change_state(new_state, buf, hash_lock); 1273789Sahrens 1274789Sahrens atomic_add_64(&arc.mru_bot->hits, 1); 1275789Sahrens } else if (buf->b_state == arc.mfu_top) { 1276789Sahrens /* 1277789Sahrens * This buffer has been accessed more than once and is 1278789Sahrens * still in the cache. Keep it in the MFU state. 1279789Sahrens * 1280789Sahrens * NOTE: the add_reference() that occurred when we did 1281789Sahrens * the arc_read() should have kicked this off the list, 1282789Sahrens * so even if it was a prefetch, it will be put back at 1283789Sahrens * the head of the list when we remove_reference(). 1284789Sahrens */ 1285789Sahrens atomic_add_64(&arc.mfu_top->hits, 1); 1286789Sahrens } else if (buf->b_state == arc.mfu_bot) { 1287789Sahrens /* 1288789Sahrens * This buffer has been accessed more than once but has 1289789Sahrens * been evicted from the cache. Move it back to the 1290789Sahrens * MFU state. 1291789Sahrens */ 1292789Sahrens 1293789Sahrens arc_try_grow(blksz); 1294789Sahrens if (arc_evict_needed()) { 1295789Sahrens arc_evict_for_state(arc.mfu_top, blksz); 1296789Sahrens } 1297789Sahrens 1298789Sahrens /* Bump up the target size for the MFU list */ 1299789Sahrens mult = ((arc.mfu_bot->size >= arc.mru_bot->size) ? 1300789Sahrens 1 : (arc.mru_bot->size/arc.mfu_bot->size)); 1301789Sahrens arc.p = MAX(0, (int64_t)arc.p - blksz * mult); 1302789Sahrens 1303789Sahrens buf->b_arc_access = lbolt; 1304789Sahrens DTRACE_PROBE1(new_state__mfu_top, 1305789Sahrens arc_buf_hdr_t *, buf); 1306789Sahrens arc_change_state(arc.mfu_top, buf, hash_lock); 1307789Sahrens 1308789Sahrens atomic_add_64(&arc.mfu_bot->hits, 1); 1309789Sahrens } else { 1310789Sahrens ASSERT(!"invalid arc state"); 1311789Sahrens } 1312789Sahrens 1313789Sahrens } 1314789Sahrens 1315789Sahrens /* a generic arc_done_func_t which you can use */ 1316789Sahrens /* ARGSUSED */ 1317789Sahrens void 1318789Sahrens arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1319789Sahrens { 1320789Sahrens bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1321789Sahrens arc_buf_free(buf, arg); 1322789Sahrens } 1323789Sahrens 1324789Sahrens /* a generic arc_done_func_t which you can use */ 1325789Sahrens void 1326789Sahrens arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1327789Sahrens { 1328789Sahrens arc_buf_t **bufp = arg; 1329789Sahrens if (zio && zio->io_error) { 1330789Sahrens arc_buf_free(buf, arg); 1331789Sahrens *bufp = NULL; 1332789Sahrens } else { 1333789Sahrens *bufp = buf; 1334789Sahrens } 1335789Sahrens } 1336789Sahrens 1337789Sahrens static void 1338789Sahrens arc_read_done(zio_t *zio) 1339789Sahrens { 1340789Sahrens arc_buf_hdr_t *hdr; 1341789Sahrens arc_buf_t *buf; 1342789Sahrens arc_buf_t *abuf; /* buffer we're assigning to callback */ 1343789Sahrens kmutex_t *hash_lock; 1344789Sahrens arc_callback_t *callback_list, *acb; 1345789Sahrens int freeable = FALSE; 1346789Sahrens 1347789Sahrens buf = zio->io_private; 1348789Sahrens hdr = buf->b_hdr; 1349789Sahrens 1350789Sahrens if (!HDR_FREED_IN_READ(hdr)) { 1351789Sahrens arc_buf_hdr_t *found; 1352789Sahrens 1353789Sahrens found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1354789Sahrens &hash_lock); 1355789Sahrens 1356789Sahrens /* 1357789Sahrens * Buffer was inserted into hash-table and removed from lists 1358789Sahrens * prior to starting I/O. We should find this header, since 1359789Sahrens * it's in the hash table, and it should be legit since it's 1360789Sahrens * not possible to evict it during the I/O. 1361789Sahrens */ 1362789Sahrens 1363789Sahrens ASSERT(found); 1364789Sahrens ASSERT(DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))); 1365789Sahrens } 1366789Sahrens 1367789Sahrens /* byteswap if necessary */ 1368789Sahrens callback_list = hdr->b_acb; 1369789Sahrens ASSERT(callback_list != NULL); 1370789Sahrens if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1371789Sahrens callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1372789Sahrens 1373789Sahrens /* create copies of the data buffer for the callers */ 1374789Sahrens abuf = buf; 1375789Sahrens for (acb = callback_list; acb; acb = acb->acb_next) { 1376789Sahrens if (acb->acb_done) { 1377789Sahrens if (abuf == NULL) { 1378789Sahrens abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1379789Sahrens abuf->b_data = zio_buf_alloc(hdr->b_size); 1380789Sahrens atomic_add_64(&arc.size, hdr->b_size); 1381789Sahrens bcopy(buf->b_data, abuf->b_data, hdr->b_size); 1382789Sahrens abuf->b_hdr = hdr; 1383789Sahrens abuf->b_next = hdr->b_buf; 1384789Sahrens hdr->b_buf = abuf; 1385789Sahrens atomic_add_64(&hdr->b_state->size, hdr->b_size); 1386789Sahrens } 1387789Sahrens acb->acb_buf = abuf; 1388789Sahrens abuf = NULL; 1389789Sahrens } else { 1390789Sahrens /* 1391789Sahrens * The caller did not provide a callback function. 1392789Sahrens * In this case, we should just remove the reference. 1393789Sahrens */ 1394789Sahrens if (HDR_FREED_IN_READ(hdr)) { 1395789Sahrens ASSERT3P(hdr->b_state, ==, arc.anon); 1396789Sahrens (void) refcount_remove(&hdr->b_refcnt, 1397789Sahrens acb->acb_private); 1398789Sahrens } else { 1399789Sahrens (void) remove_reference(hdr, hash_lock, 1400789Sahrens acb->acb_private); 1401789Sahrens } 1402789Sahrens } 1403789Sahrens } 1404789Sahrens hdr->b_acb = NULL; 1405789Sahrens hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1406789Sahrens 1407789Sahrens ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1408789Sahrens 1409789Sahrens if (zio->io_error != 0) { 1410789Sahrens hdr->b_flags |= ARC_IO_ERROR; 1411789Sahrens if (hdr->b_state != arc.anon) 1412789Sahrens arc_change_state(arc.anon, hdr, hash_lock); 1413789Sahrens freeable = refcount_is_zero(&hdr->b_refcnt); 1414789Sahrens } 1415789Sahrens 1416789Sahrens if (!HDR_FREED_IN_READ(hdr)) { 1417789Sahrens /* 1418789Sahrens * Only call arc_access on anonymous buffers. This is because 1419789Sahrens * if we've issued an I/O for an evicted buffer, we've already 1420789Sahrens * called arc_access (to prevent any simultaneous readers from 1421789Sahrens * getting confused). 1422789Sahrens */ 1423789Sahrens if (zio->io_error == 0 && hdr->b_state == arc.anon) 1424789Sahrens arc_access(hdr, hash_lock); 1425789Sahrens mutex_exit(hash_lock); 1426789Sahrens } else { 1427789Sahrens /* 1428789Sahrens * This block was freed while we waited for the read to 1429789Sahrens * complete. It has been removed from the hash table and 1430789Sahrens * moved to the anonymous state (so that it won't show up 1431789Sahrens * in the cache). 1432789Sahrens */ 1433789Sahrens ASSERT3P(hdr->b_state, ==, arc.anon); 1434789Sahrens freeable = refcount_is_zero(&hdr->b_refcnt); 1435789Sahrens } 1436789Sahrens 1437789Sahrens cv_broadcast(&hdr->b_cv); 1438789Sahrens 1439789Sahrens /* execute each callback and free its structure */ 1440789Sahrens while ((acb = callback_list) != NULL) { 1441789Sahrens if (acb->acb_done) 1442789Sahrens acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1443789Sahrens 1444789Sahrens if (acb->acb_zio_dummy != NULL) { 1445789Sahrens acb->acb_zio_dummy->io_error = zio->io_error; 1446789Sahrens zio_nowait(acb->acb_zio_dummy); 1447789Sahrens } 1448789Sahrens 1449789Sahrens callback_list = acb->acb_next; 1450789Sahrens kmem_free(acb, sizeof (arc_callback_t)); 1451789Sahrens } 1452789Sahrens 1453789Sahrens if (freeable) 1454789Sahrens arc_hdr_free(hdr); 1455789Sahrens } 1456789Sahrens 1457789Sahrens /* 1458789Sahrens * "Read" the block block at the specified DVA (in bp) via the 1459789Sahrens * cache. If the block is found in the cache, invoke the provided 1460789Sahrens * callback immediately and return. Note that the `zio' parameter 1461789Sahrens * in the callback will be NULL in this case, since no IO was 1462789Sahrens * required. If the block is not in the cache pass the read request 1463789Sahrens * on to the spa with a substitute callback function, so that the 1464789Sahrens * requested block will be added to the cache. 1465789Sahrens * 1466789Sahrens * If a read request arrives for a block that has a read in-progress, 1467789Sahrens * either wait for the in-progress read to complete (and return the 1468789Sahrens * results); or, if this is a read with a "done" func, add a record 1469789Sahrens * to the read to invoke the "done" func when the read completes, 1470789Sahrens * and return; or just return. 1471789Sahrens * 1472789Sahrens * arc_read_done() will invoke all the requested "done" functions 1473789Sahrens * for readers of this block. 1474789Sahrens */ 1475789Sahrens int 1476789Sahrens arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1477789Sahrens arc_done_func_t *done, void *private, int priority, int flags, 1478789Sahrens uint32_t arc_flags) 1479789Sahrens { 1480789Sahrens arc_buf_hdr_t *hdr; 1481789Sahrens arc_buf_t *buf; 1482789Sahrens kmutex_t *hash_lock; 1483789Sahrens zio_t *rzio; 1484789Sahrens 1485789Sahrens top: 1486789Sahrens hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1487789Sahrens if (hdr && hdr->b_buf) { 1488789Sahrens 1489789Sahrens ASSERT((hdr->b_state == arc.mru_top) || 1490789Sahrens (hdr->b_state == arc.mfu_top) || 1491789Sahrens ((hdr->b_state == arc.anon) && 1492789Sahrens (HDR_IO_IN_PROGRESS(hdr)))); 1493789Sahrens 1494789Sahrens if (HDR_IO_IN_PROGRESS(hdr)) { 1495789Sahrens 1496789Sahrens if ((arc_flags & ARC_NOWAIT) && done) { 1497789Sahrens arc_callback_t *acb = NULL; 1498789Sahrens 1499789Sahrens acb = kmem_zalloc(sizeof (arc_callback_t), 1500789Sahrens KM_SLEEP); 1501789Sahrens acb->acb_done = done; 1502789Sahrens acb->acb_private = private; 1503789Sahrens acb->acb_byteswap = swap; 1504789Sahrens if (pio != NULL) 1505789Sahrens acb->acb_zio_dummy = zio_null(pio, 1506789Sahrens spa, NULL, NULL, flags); 1507789Sahrens 1508789Sahrens ASSERT(acb->acb_done != NULL); 1509789Sahrens acb->acb_next = hdr->b_acb; 1510789Sahrens hdr->b_acb = acb; 1511789Sahrens add_reference(hdr, hash_lock, private); 1512789Sahrens mutex_exit(hash_lock); 1513789Sahrens return (0); 1514789Sahrens } else if (arc_flags & ARC_WAIT) { 1515789Sahrens cv_wait(&hdr->b_cv, hash_lock); 1516789Sahrens mutex_exit(hash_lock); 1517789Sahrens goto top; 1518789Sahrens } 1519789Sahrens 1520789Sahrens mutex_exit(hash_lock); 1521789Sahrens return (0); 1522789Sahrens } 1523789Sahrens 1524789Sahrens /* 1525789Sahrens * If there is already a reference on this block, create 1526789Sahrens * a new copy of the data so that we will be guaranteed 1527789Sahrens * that arc_release() will always succeed. 1528789Sahrens */ 1529789Sahrens 1530789Sahrens if (done) 1531789Sahrens add_reference(hdr, hash_lock, private); 1532789Sahrens if (done && refcount_count(&hdr->b_refcnt) > 1) { 1533789Sahrens buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1534789Sahrens buf->b_data = zio_buf_alloc(hdr->b_size); 1535789Sahrens ASSERT3U(refcount_count(&hdr->b_refcnt), >, 1); 1536789Sahrens atomic_add_64(&arc.size, hdr->b_size); 1537789Sahrens bcopy(hdr->b_buf->b_data, buf->b_data, hdr->b_size); 1538789Sahrens buf->b_hdr = hdr; 1539789Sahrens buf->b_next = hdr->b_buf; 1540789Sahrens hdr->b_buf = buf; 1541789Sahrens atomic_add_64(&hdr->b_state->size, hdr->b_size); 1542789Sahrens } else { 1543789Sahrens buf = hdr->b_buf; 1544789Sahrens } 1545789Sahrens DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1546789Sahrens arc_access(hdr, hash_lock); 1547789Sahrens mutex_exit(hash_lock); 1548789Sahrens atomic_add_64(&arc.hits, 1); 1549789Sahrens if (done) 1550789Sahrens done(NULL, buf, private); 1551789Sahrens } else { 1552789Sahrens uint64_t size = BP_GET_LSIZE(bp); 1553789Sahrens arc_callback_t *acb; 1554789Sahrens 1555789Sahrens if (hdr == NULL) { 1556789Sahrens /* this block is not in the cache */ 1557789Sahrens arc_buf_hdr_t *exists; 1558789Sahrens 1559789Sahrens buf = arc_buf_alloc(spa, size, private); 1560789Sahrens hdr = buf->b_hdr; 1561789Sahrens hdr->b_dva = *BP_IDENTITY(bp); 1562789Sahrens hdr->b_birth = bp->blk_birth; 1563789Sahrens hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1564789Sahrens exists = buf_hash_insert(hdr, &hash_lock); 1565789Sahrens if (exists) { 1566789Sahrens /* somebody beat us to the hash insert */ 1567789Sahrens mutex_exit(hash_lock); 1568789Sahrens bzero(&hdr->b_dva, sizeof (dva_t)); 1569789Sahrens hdr->b_birth = 0; 1570789Sahrens hdr->b_cksum0 = 0; 1571789Sahrens arc_buf_free(buf, private); 1572789Sahrens goto top; /* restart the IO request */ 1573789Sahrens } 1574789Sahrens 1575789Sahrens } else { 1576789Sahrens /* this block is in the ghost cache */ 1577789Sahrens ASSERT((hdr->b_state == arc.mru_bot) || 1578789Sahrens (hdr->b_state == arc.mfu_bot)); 1579789Sahrens add_reference(hdr, hash_lock, private); 1580789Sahrens 1581789Sahrens buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1582789Sahrens buf->b_data = zio_buf_alloc(hdr->b_size); 1583789Sahrens atomic_add_64(&arc.size, hdr->b_size); 1584789Sahrens ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1585789Sahrens ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1586789Sahrens buf->b_hdr = hdr; 1587789Sahrens buf->b_next = NULL; 1588789Sahrens hdr->b_buf = buf; 1589789Sahrens } 1590789Sahrens 1591789Sahrens acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1592789Sahrens acb->acb_done = done; 1593789Sahrens acb->acb_private = private; 1594789Sahrens acb->acb_byteswap = swap; 1595789Sahrens 1596789Sahrens ASSERT(hdr->b_acb == NULL); 1597789Sahrens hdr->b_acb = acb; 1598789Sahrens 1599789Sahrens /* 1600789Sahrens * If this DVA is part of a prefetch, mark the buf 1601789Sahrens * header with the prefetch flag 1602789Sahrens */ 1603789Sahrens if (arc_flags & ARC_PREFETCH) 1604789Sahrens hdr->b_flags |= ARC_PREFETCH; 1605789Sahrens hdr->b_flags |= ARC_IO_IN_PROGRESS; 1606789Sahrens 1607789Sahrens /* 1608789Sahrens * If the buffer has been evicted, migrate it to a present state 1609789Sahrens * before issuing the I/O. Once we drop the hash-table lock, 1610789Sahrens * the header will be marked as I/O in progress and have an 1611789Sahrens * attached buffer. At this point, anybody who finds this 1612789Sahrens * buffer ought to notice that it's legit but has a pending I/O. 1613789Sahrens */ 1614789Sahrens 1615789Sahrens if ((hdr->b_state == arc.mru_bot) || 1616789Sahrens (hdr->b_state == arc.mfu_bot)) 1617789Sahrens arc_access(hdr, hash_lock); 1618789Sahrens 1619789Sahrens mutex_exit(hash_lock); 1620789Sahrens 1621789Sahrens ASSERT3U(hdr->b_size, ==, size); 1622789Sahrens DTRACE_PROBE2(arc__miss, blkptr_t *, bp, 1623789Sahrens uint64_t, size); 1624789Sahrens atomic_add_64(&arc.misses, 1); 1625789Sahrens rzio = zio_read(pio, spa, bp, buf->b_data, size, 1626789Sahrens arc_read_done, buf, priority, flags); 1627789Sahrens 1628789Sahrens if (arc_flags & ARC_WAIT) 1629789Sahrens return (zio_wait(rzio)); 1630789Sahrens 1631789Sahrens ASSERT(arc_flags & ARC_NOWAIT); 1632789Sahrens zio_nowait(rzio); 1633789Sahrens } 1634789Sahrens return (0); 1635789Sahrens } 1636789Sahrens 1637789Sahrens /* 1638789Sahrens * arc_read() variant to support pool traversal. If the block is already 1639789Sahrens * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1640789Sahrens * The idea is that we don't want pool traversal filling up memory, but 1641789Sahrens * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1642789Sahrens */ 1643789Sahrens int 1644789Sahrens arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1645789Sahrens { 1646789Sahrens arc_buf_hdr_t *hdr; 1647789Sahrens kmutex_t *hash_mtx; 1648789Sahrens int rc = 0; 1649789Sahrens 1650789Sahrens hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1651789Sahrens 1652789Sahrens if (hdr && hdr->b_buf && !HDR_IO_IN_PROGRESS(hdr)) 1653789Sahrens bcopy(hdr->b_buf->b_data, data, hdr->b_size); 1654789Sahrens else 1655789Sahrens rc = ENOENT; 1656789Sahrens 1657789Sahrens if (hash_mtx) 1658789Sahrens mutex_exit(hash_mtx); 1659789Sahrens 1660789Sahrens return (rc); 1661789Sahrens } 1662789Sahrens 1663789Sahrens /* 1664789Sahrens * Release this buffer from the cache. This must be done 1665789Sahrens * after a read and prior to modifying the buffer contents. 1666789Sahrens * If the buffer has more than one reference, we must make 1667789Sahrens * make a new hdr for the buffer. 1668789Sahrens */ 1669789Sahrens void 1670789Sahrens arc_release(arc_buf_t *buf, void *tag) 1671789Sahrens { 1672789Sahrens arc_buf_hdr_t *hdr = buf->b_hdr; 1673789Sahrens kmutex_t *hash_lock = HDR_LOCK(hdr); 1674789Sahrens 1675789Sahrens /* this buffer is not on any list */ 1676789Sahrens ASSERT(refcount_count(&hdr->b_refcnt) > 0); 1677789Sahrens 1678789Sahrens if (hdr->b_state == arc.anon) { 1679789Sahrens /* this buffer is already released */ 1680789Sahrens ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1681789Sahrens ASSERT(BUF_EMPTY(hdr)); 1682789Sahrens return; 1683789Sahrens } 1684789Sahrens 1685789Sahrens mutex_enter(hash_lock); 1686789Sahrens 1687789Sahrens if (refcount_count(&hdr->b_refcnt) > 1) { 1688789Sahrens arc_buf_hdr_t *nhdr; 1689789Sahrens arc_buf_t **bufp; 1690789Sahrens uint64_t blksz = hdr->b_size; 1691789Sahrens spa_t *spa = hdr->b_spa; 1692789Sahrens 1693789Sahrens /* 1694789Sahrens * Pull the data off of this buf and attach it to 1695789Sahrens * a new anonymous buf. 1696789Sahrens */ 1697789Sahrens bufp = &hdr->b_buf; 1698789Sahrens while (*bufp != buf) { 1699789Sahrens ASSERT(*bufp); 1700789Sahrens bufp = &(*bufp)->b_next; 1701789Sahrens } 1702789Sahrens *bufp = (*bufp)->b_next; 1703789Sahrens (void) refcount_remove(&hdr->b_refcnt, tag); 1704789Sahrens ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 1705789Sahrens atomic_add_64(&hdr->b_state->size, -hdr->b_size); 1706789Sahrens mutex_exit(hash_lock); 1707789Sahrens 1708789Sahrens nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 1709789Sahrens nhdr->b_size = blksz; 1710789Sahrens nhdr->b_spa = spa; 1711789Sahrens nhdr->b_buf = buf; 1712789Sahrens nhdr->b_state = arc.anon; 1713789Sahrens nhdr->b_arc_access = 0; 1714789Sahrens nhdr->b_flags = 0; 1715789Sahrens buf->b_hdr = nhdr; 1716789Sahrens buf->b_next = NULL; 1717789Sahrens (void) refcount_add(&nhdr->b_refcnt, tag); 1718789Sahrens atomic_add_64(&arc.anon->size, blksz); 1719789Sahrens 1720789Sahrens hdr = nhdr; 1721789Sahrens } else { 1722789Sahrens ASSERT(!list_link_active(&hdr->b_arc_node)); 1723789Sahrens ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1724789Sahrens arc_change_state(arc.anon, hdr, hash_lock); 1725789Sahrens hdr->b_arc_access = 0; 1726789Sahrens mutex_exit(hash_lock); 1727789Sahrens bzero(&hdr->b_dva, sizeof (dva_t)); 1728789Sahrens hdr->b_birth = 0; 1729789Sahrens hdr->b_cksum0 = 0; 1730789Sahrens } 1731789Sahrens } 1732789Sahrens 1733789Sahrens int 1734789Sahrens arc_released(arc_buf_t *buf) 1735789Sahrens { 1736789Sahrens return (buf->b_hdr->b_state == arc.anon); 1737789Sahrens } 1738789Sahrens 1739789Sahrens static void 1740789Sahrens arc_write_done(zio_t *zio) 1741789Sahrens { 1742789Sahrens arc_buf_t *buf; 1743789Sahrens arc_buf_hdr_t *hdr; 1744789Sahrens arc_callback_t *acb; 1745789Sahrens 1746789Sahrens buf = zio->io_private; 1747789Sahrens hdr = buf->b_hdr; 1748789Sahrens acb = hdr->b_acb; 1749789Sahrens hdr->b_acb = NULL; 1750789Sahrens 1751789Sahrens /* this buffer is on no lists and is not in the hash table */ 1752789Sahrens ASSERT3P(hdr->b_state, ==, arc.anon); 1753789Sahrens 1754789Sahrens hdr->b_dva = *BP_IDENTITY(zio->io_bp); 1755789Sahrens hdr->b_birth = zio->io_bp->blk_birth; 1756789Sahrens hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 1757789Sahrens /* clear the "in-write" flag */ 1758789Sahrens hdr->b_hash_next = NULL; 1759789Sahrens /* This write may be all-zero */ 1760789Sahrens if (!BUF_EMPTY(hdr)) { 1761789Sahrens arc_buf_hdr_t *exists; 1762789Sahrens kmutex_t *hash_lock; 1763789Sahrens 1764789Sahrens exists = buf_hash_insert(hdr, &hash_lock); 1765789Sahrens if (exists) { 1766789Sahrens /* 1767789Sahrens * This can only happen if we overwrite for 1768789Sahrens * sync-to-convergence, because we remove 1769789Sahrens * buffers from the hash table when we arc_free(). 1770789Sahrens */ 1771789Sahrens ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 1772789Sahrens BP_IDENTITY(zio->io_bp))); 1773789Sahrens ASSERT3U(zio->io_bp_orig.blk_birth, ==, 1774789Sahrens zio->io_bp->blk_birth); 1775789Sahrens 1776789Sahrens ASSERT(refcount_is_zero(&exists->b_refcnt)); 1777789Sahrens arc_change_state(arc.anon, exists, hash_lock); 1778789Sahrens mutex_exit(hash_lock); 1779789Sahrens arc_hdr_free(exists); 1780789Sahrens exists = buf_hash_insert(hdr, &hash_lock); 1781789Sahrens ASSERT3P(exists, ==, NULL); 1782789Sahrens } 1783789Sahrens arc_access(hdr, hash_lock); 1784789Sahrens mutex_exit(hash_lock); 1785789Sahrens } 1786789Sahrens if (acb && acb->acb_done) { 1787789Sahrens ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 1788789Sahrens acb->acb_done(zio, buf, acb->acb_private); 1789789Sahrens } 1790789Sahrens 1791789Sahrens if (acb) 1792789Sahrens kmem_free(acb, sizeof (arc_callback_t)); 1793789Sahrens } 1794789Sahrens 1795789Sahrens int 1796789Sahrens arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, 1797789Sahrens uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 1798789Sahrens arc_done_func_t *done, void *private, int priority, int flags, 1799789Sahrens uint32_t arc_flags) 1800789Sahrens { 1801789Sahrens arc_buf_hdr_t *hdr = buf->b_hdr; 1802789Sahrens arc_callback_t *acb; 1803789Sahrens zio_t *rzio; 1804789Sahrens 1805789Sahrens /* this is a private buffer - no locking required */ 1806789Sahrens ASSERT3P(hdr->b_state, ==, arc.anon); 1807789Sahrens ASSERT(BUF_EMPTY(hdr)); 1808789Sahrens ASSERT(!HDR_IO_ERROR(hdr)); 1809789Sahrens acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1810789Sahrens acb->acb_done = done; 1811789Sahrens acb->acb_private = private; 1812789Sahrens acb->acb_byteswap = (arc_byteswap_func_t *)-1; 1813789Sahrens hdr->b_acb = acb; 1814789Sahrens rzio = zio_write(pio, spa, checksum, compress, txg, bp, 1815789Sahrens buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags); 1816789Sahrens 1817789Sahrens if (arc_flags & ARC_WAIT) 1818789Sahrens return (zio_wait(rzio)); 1819789Sahrens 1820789Sahrens ASSERT(arc_flags & ARC_NOWAIT); 1821789Sahrens zio_nowait(rzio); 1822789Sahrens 1823789Sahrens return (0); 1824789Sahrens } 1825789Sahrens 1826789Sahrens int 1827789Sahrens arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1828789Sahrens zio_done_func_t *done, void *private, uint32_t arc_flags) 1829789Sahrens { 1830789Sahrens arc_buf_hdr_t *ab; 1831789Sahrens kmutex_t *hash_lock; 1832789Sahrens zio_t *zio; 1833789Sahrens 1834789Sahrens /* 1835789Sahrens * If this buffer is in the cache, release it, so it 1836789Sahrens * can be re-used. 1837789Sahrens */ 1838789Sahrens ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1839789Sahrens if (ab != NULL) { 1840789Sahrens /* 1841789Sahrens * The checksum of blocks to free is not always 1842789Sahrens * preserved (eg. on the deadlist). However, if it is 1843789Sahrens * nonzero, it should match what we have in the cache. 1844789Sahrens */ 1845789Sahrens ASSERT(bp->blk_cksum.zc_word[0] == 0 || 1846789Sahrens ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 1847789Sahrens arc_change_state(arc.anon, ab, hash_lock); 1848789Sahrens if (refcount_is_zero(&ab->b_refcnt)) { 1849789Sahrens mutex_exit(hash_lock); 1850789Sahrens arc_hdr_free(ab); 1851789Sahrens atomic_add_64(&arc.deleted, 1); 1852789Sahrens } else { 1853789Sahrens ASSERT3U(refcount_count(&ab->b_refcnt), ==, 1); 1854789Sahrens if (HDR_IO_IN_PROGRESS(ab)) 1855789Sahrens ab->b_flags |= ARC_FREED_IN_READ; 1856789Sahrens ab->b_arc_access = 0; 1857789Sahrens bzero(&ab->b_dva, sizeof (dva_t)); 1858789Sahrens ab->b_birth = 0; 1859789Sahrens ab->b_cksum0 = 0; 1860789Sahrens mutex_exit(hash_lock); 1861789Sahrens } 1862789Sahrens } 1863789Sahrens 1864789Sahrens zio = zio_free(pio, spa, txg, bp, done, private); 1865789Sahrens 1866789Sahrens if (arc_flags & ARC_WAIT) 1867789Sahrens return (zio_wait(zio)); 1868789Sahrens 1869789Sahrens ASSERT(arc_flags & ARC_NOWAIT); 1870789Sahrens zio_nowait(zio); 1871789Sahrens 1872789Sahrens return (0); 1873789Sahrens } 1874789Sahrens 1875789Sahrens void 1876789Sahrens arc_tempreserve_clear(uint64_t tempreserve) 1877789Sahrens { 1878789Sahrens atomic_add_64(&arc_tempreserve, -tempreserve); 1879789Sahrens ASSERT((int64_t)arc_tempreserve >= 0); 1880789Sahrens } 1881789Sahrens 1882789Sahrens int 1883789Sahrens arc_tempreserve_space(uint64_t tempreserve) 1884789Sahrens { 1885789Sahrens #ifdef ZFS_DEBUG 1886789Sahrens /* 1887789Sahrens * Once in a while, fail for no reason. Everything should cope. 1888789Sahrens */ 1889789Sahrens if (spa_get_random(10000) == 0) { 1890789Sahrens dprintf("forcing random failure\n"); 1891789Sahrens return (ERESTART); 1892789Sahrens } 1893789Sahrens #endif 1894*982Smaybee if (tempreserve > arc.c/4 && !arc.no_grow) 1895*982Smaybee arc.c = MIN(arc.c_max, tempreserve * 4); 1896*982Smaybee if (tempreserve > arc.c) 1897*982Smaybee return (ENOMEM); 1898*982Smaybee 1899789Sahrens /* 1900*982Smaybee * Throttle writes when the amount of dirty data in the cache 1901*982Smaybee * gets too large. We try to keep the cache less than half full 1902*982Smaybee * of dirty blocks so that our sync times don't grow too large. 1903*982Smaybee * Note: if two requests come in concurrently, we might let them 1904*982Smaybee * both succeed, when one of them should fail. Not a huge deal. 1905*982Smaybee * 1906*982Smaybee * XXX The limit should be adjusted dynamically to keep the time 1907*982Smaybee * to sync a dataset fixed (around 1-5 seconds?). 1908789Sahrens */ 1909789Sahrens 1910*982Smaybee if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 1911*982Smaybee arc_tempreserve + arc.anon->size > arc.c / 4) { 1912789Sahrens dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 1913789Sahrens "tempreserve=%lluK arc.c=%lluK\n", 1914789Sahrens arc_tempreserve>>10, arc.anon->lsize>>10, 1915789Sahrens tempreserve>>10, arc.c>>10); 1916789Sahrens return (ERESTART); 1917789Sahrens } 1918789Sahrens atomic_add_64(&arc_tempreserve, tempreserve); 1919789Sahrens return (0); 1920789Sahrens } 1921789Sahrens 1922789Sahrens void 1923789Sahrens arc_init(void) 1924789Sahrens { 1925789Sahrens mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 1926789Sahrens mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 1927789Sahrens cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 1928789Sahrens 1929789Sahrens /* Start out with 1/8 of all memory */ 1930789Sahrens arc.c = physmem * PAGESIZE / 8; 1931789Sahrens 1932789Sahrens #ifdef _KERNEL 1933789Sahrens /* 1934789Sahrens * On architectures where the physical memory can be larger 1935789Sahrens * than the addressable space (intel in 32-bit mode), we may 1936789Sahrens * need to limit the cache to 1/8 of VM size. 1937789Sahrens */ 1938789Sahrens arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 1939789Sahrens #endif 1940789Sahrens 1941*982Smaybee /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 1942789Sahrens arc.c_min = MAX(arc.c / 4, 64<<20); 1943*982Smaybee /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 1944789Sahrens if (arc.c * 8 >= 1<<30) 1945789Sahrens arc.c_max = (arc.c * 8) - (1<<30); 1946789Sahrens else 1947789Sahrens arc.c_max = arc.c_min; 1948789Sahrens arc.c_max = MAX(arc.c * 6, arc.c_max); 1949789Sahrens arc.c = arc.c_max; 1950789Sahrens arc.p = (arc.c >> 1); 1951789Sahrens 1952789Sahrens /* if kmem_flags are set, lets try to use less memory */ 1953789Sahrens if (kmem_debugging()) 1954789Sahrens arc.c = arc.c / 2; 1955789Sahrens if (arc.c < arc.c_min) 1956789Sahrens arc.c = arc.c_min; 1957789Sahrens 1958789Sahrens arc.anon = &ARC_anon; 1959789Sahrens arc.mru_top = &ARC_mru_top; 1960789Sahrens arc.mru_bot = &ARC_mru_bot; 1961789Sahrens arc.mfu_top = &ARC_mfu_top; 1962789Sahrens arc.mfu_bot = &ARC_mfu_bot; 1963789Sahrens 1964789Sahrens list_create(&arc.mru_top->list, sizeof (arc_buf_hdr_t), 1965789Sahrens offsetof(arc_buf_hdr_t, b_arc_node)); 1966789Sahrens list_create(&arc.mru_bot->list, sizeof (arc_buf_hdr_t), 1967789Sahrens offsetof(arc_buf_hdr_t, b_arc_node)); 1968789Sahrens list_create(&arc.mfu_top->list, sizeof (arc_buf_hdr_t), 1969789Sahrens offsetof(arc_buf_hdr_t, b_arc_node)); 1970789Sahrens list_create(&arc.mfu_bot->list, sizeof (arc_buf_hdr_t), 1971789Sahrens offsetof(arc_buf_hdr_t, b_arc_node)); 1972789Sahrens 1973789Sahrens buf_init(); 1974789Sahrens 1975789Sahrens arc_thread_exit = 0; 1976789Sahrens 1977789Sahrens (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 1978789Sahrens TS_RUN, minclsyspri); 1979789Sahrens } 1980789Sahrens 1981789Sahrens void 1982789Sahrens arc_fini(void) 1983789Sahrens { 1984789Sahrens mutex_enter(&arc_reclaim_thr_lock); 1985789Sahrens arc_thread_exit = 1; 1986789Sahrens while (arc_thread_exit != 0) 1987789Sahrens cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 1988789Sahrens mutex_exit(&arc_reclaim_thr_lock); 1989789Sahrens 1990789Sahrens arc_flush(); 1991789Sahrens 1992789Sahrens arc_dead = TRUE; 1993789Sahrens 1994789Sahrens mutex_destroy(&arc_reclaim_lock); 1995789Sahrens mutex_destroy(&arc_reclaim_thr_lock); 1996789Sahrens cv_destroy(&arc_reclaim_thr_cv); 1997789Sahrens 1998789Sahrens list_destroy(&arc.mru_top->list); 1999789Sahrens list_destroy(&arc.mru_bot->list); 2000789Sahrens list_destroy(&arc.mfu_top->list); 2001789Sahrens list_destroy(&arc.mfu_bot->list); 2002789Sahrens 2003789Sahrens buf_fini(); 2004789Sahrens } 2005