xref: /onnv-gate/usr/src/lib/libc/sparc/fp/_D_cplx_div.c (revision 0:68f95e015346)
1*0Sstevel@tonic-gate /*
2*0Sstevel@tonic-gate  * CDDL HEADER START
3*0Sstevel@tonic-gate  *
4*0Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
5*0Sstevel@tonic-gate  * Common Development and Distribution License, Version 1.0 only
6*0Sstevel@tonic-gate  * (the "License").  You may not use this file except in compliance
7*0Sstevel@tonic-gate  * with the License.
8*0Sstevel@tonic-gate  *
9*0Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10*0Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
11*0Sstevel@tonic-gate  * See the License for the specific language governing permissions
12*0Sstevel@tonic-gate  * and limitations under the License.
13*0Sstevel@tonic-gate  *
14*0Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
15*0Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16*0Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
17*0Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
18*0Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
19*0Sstevel@tonic-gate  *
20*0Sstevel@tonic-gate  * CDDL HEADER END
21*0Sstevel@tonic-gate  */
22*0Sstevel@tonic-gate /*
23*0Sstevel@tonic-gate  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24*0Sstevel@tonic-gate  * Use is subject to license terms.
25*0Sstevel@tonic-gate  */
26*0Sstevel@tonic-gate 
27*0Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
28*0Sstevel@tonic-gate 
29*0Sstevel@tonic-gate /*
30*0Sstevel@tonic-gate  * _D_cplx_div(z, w) returns z / w with infinities handled according
31*0Sstevel@tonic-gate  * to C99.
32*0Sstevel@tonic-gate  *
33*0Sstevel@tonic-gate  * If z and w are both finite and w is nonzero, _D_cplx_div(z, w)
34*0Sstevel@tonic-gate  * delivers the complex quotient q according to the usual formula:
35*0Sstevel@tonic-gate  * let a = Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x +
36*0Sstevel@tonic-gate  * I * y where x = (a * c + b * d) / r and y = (b * c - a * d) / r
37*0Sstevel@tonic-gate  * with r = c * c + d * d.  This implementation scales to avoid
38*0Sstevel@tonic-gate  * premature underflow or overflow.
39*0Sstevel@tonic-gate  *
40*0Sstevel@tonic-gate  * If z is neither NaN nor zero and w is zero, or if z is infinite
41*0Sstevel@tonic-gate  * and w is finite and nonzero, _D_cplx_div delivers an infinite
42*0Sstevel@tonic-gate  * result.  If z is finite and w is infinite, _D_cplx_div delivers
43*0Sstevel@tonic-gate  * a zero result.
44*0Sstevel@tonic-gate  *
45*0Sstevel@tonic-gate  * If z and w are both zero or both infinite, or if either z or w is
46*0Sstevel@tonic-gate  * a complex NaN, _D_cplx_div delivers NaN + I * NaN.  C99 doesn't
47*0Sstevel@tonic-gate  * specify these cases.
48*0Sstevel@tonic-gate  *
49*0Sstevel@tonic-gate  * This implementation can raise spurious underflow, overflow, in-
50*0Sstevel@tonic-gate  * valid operation, inexact, and division-by-zero exceptions.  C99
51*0Sstevel@tonic-gate  * allows this.
52*0Sstevel@tonic-gate  *
53*0Sstevel@tonic-gate  * Warning: Do not attempt to "optimize" this code by removing multi-
54*0Sstevel@tonic-gate  * plications by zero.
55*0Sstevel@tonic-gate  */
56*0Sstevel@tonic-gate 
57*0Sstevel@tonic-gate #if !defined(sparc) && !defined(__sparc)
58*0Sstevel@tonic-gate #error This code is for SPARC only
59*0Sstevel@tonic-gate #endif
60*0Sstevel@tonic-gate 
61*0Sstevel@tonic-gate static union {
62*0Sstevel@tonic-gate 	int	i[2];
63*0Sstevel@tonic-gate 	double	d;
64*0Sstevel@tonic-gate } inf = {
65*0Sstevel@tonic-gate 	0x7ff00000, 0
66*0Sstevel@tonic-gate };
67*0Sstevel@tonic-gate 
68*0Sstevel@tonic-gate /*
69*0Sstevel@tonic-gate  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
70*0Sstevel@tonic-gate  */
71*0Sstevel@tonic-gate static int
testinf(double x)72*0Sstevel@tonic-gate testinf(double x)
73*0Sstevel@tonic-gate {
74*0Sstevel@tonic-gate 	union {
75*0Sstevel@tonic-gate 		int	i[2];
76*0Sstevel@tonic-gate 		double	d;
77*0Sstevel@tonic-gate 	} xx;
78*0Sstevel@tonic-gate 
79*0Sstevel@tonic-gate 	xx.d = x;
80*0Sstevel@tonic-gate 	return (((((xx.i[0] << 1) - 0xffe00000) | xx.i[1]) == 0)?
81*0Sstevel@tonic-gate 		(1 | (xx.i[0] >> 31)) : 0);
82*0Sstevel@tonic-gate }
83*0Sstevel@tonic-gate 
84*0Sstevel@tonic-gate double _Complex
_D_cplx_div(double _Complex z,double _Complex w)85*0Sstevel@tonic-gate _D_cplx_div(double _Complex z, double _Complex w)
86*0Sstevel@tonic-gate {
87*0Sstevel@tonic-gate 	double _Complex	v;
88*0Sstevel@tonic-gate 	union {
89*0Sstevel@tonic-gate 		int	i[2];
90*0Sstevel@tonic-gate 		double	d;
91*0Sstevel@tonic-gate 	} aa, bb, cc, dd, ss;
92*0Sstevel@tonic-gate 	double		a, b, c, d, r;
93*0Sstevel@tonic-gate 	int		ha, hb, hc, hd, hz, hw, hs, i, j;
94*0Sstevel@tonic-gate 
95*0Sstevel@tonic-gate 	/*
96*0Sstevel@tonic-gate 	 * The following is equivalent to
97*0Sstevel@tonic-gate 	 *
98*0Sstevel@tonic-gate 	 *  a = creal(z); b = cimag(z);
99*0Sstevel@tonic-gate 	 *  c = creal(w); d = cimag(w);
100*0Sstevel@tonic-gate 	 */
101*0Sstevel@tonic-gate 	a = ((double *)&z)[0];
102*0Sstevel@tonic-gate 	b = ((double *)&z)[1];
103*0Sstevel@tonic-gate 	c = ((double *)&w)[0];
104*0Sstevel@tonic-gate 	d = ((double *)&w)[1];
105*0Sstevel@tonic-gate 
106*0Sstevel@tonic-gate 	/* extract high-order words to estimate |z| and |w| */
107*0Sstevel@tonic-gate 	aa.d = a;
108*0Sstevel@tonic-gate 	bb.d = b;
109*0Sstevel@tonic-gate 	ha = aa.i[0] & ~0x80000000;
110*0Sstevel@tonic-gate 	hb = bb.i[0] & ~0x80000000;
111*0Sstevel@tonic-gate 	hz = (ha > hb)? ha : hb;
112*0Sstevel@tonic-gate 
113*0Sstevel@tonic-gate 	cc.d = c;
114*0Sstevel@tonic-gate 	dd.d = d;
115*0Sstevel@tonic-gate 	hc = cc.i[0] & ~0x80000000;
116*0Sstevel@tonic-gate 	hd = dd.i[0] & ~0x80000000;
117*0Sstevel@tonic-gate 	hw = (hc > hd)? hc : hd;
118*0Sstevel@tonic-gate 
119*0Sstevel@tonic-gate 	/* check for special cases */
120*0Sstevel@tonic-gate 	if (hw >= 0x7ff00000) { /* w is inf or nan */
121*0Sstevel@tonic-gate 		r = 0.0;
122*0Sstevel@tonic-gate 		i = testinf(c);
123*0Sstevel@tonic-gate 		j = testinf(d);
124*0Sstevel@tonic-gate 		if (i | j) { /* w is infinite */
125*0Sstevel@tonic-gate 			/*
126*0Sstevel@tonic-gate 			 * "factor out" infinity, being careful to preserve
127*0Sstevel@tonic-gate 			 * signs of finite values
128*0Sstevel@tonic-gate 			 */
129*0Sstevel@tonic-gate 			c = i? i : ((cc.i[0] < 0)? -0.0 : 0.0);
130*0Sstevel@tonic-gate 			d = j? j : ((dd.i[0] < 0)? -0.0 : 0.0);
131*0Sstevel@tonic-gate 			if (hz >= 0x7fe00000) {
132*0Sstevel@tonic-gate 				/* scale to avoid overflow below */
133*0Sstevel@tonic-gate 				c *= 0.5;
134*0Sstevel@tonic-gate 				d *= 0.5;
135*0Sstevel@tonic-gate 			}
136*0Sstevel@tonic-gate 		}
137*0Sstevel@tonic-gate 		((double *)&v)[0] = (a * c + b * d) * r;
138*0Sstevel@tonic-gate 		((double *)&v)[1] = (b * c - a * d) * r;
139*0Sstevel@tonic-gate 		return (v);
140*0Sstevel@tonic-gate 	}
141*0Sstevel@tonic-gate 
142*0Sstevel@tonic-gate 	if (hw < 0x00100000) {
143*0Sstevel@tonic-gate 		/*
144*0Sstevel@tonic-gate 		 * This nonsense is needed to work around some SPARC
145*0Sstevel@tonic-gate 		 * implementations of nonstandard mode; if both parts
146*0Sstevel@tonic-gate 		 * of w are subnormal, multiply them by one to force
147*0Sstevel@tonic-gate 		 * them to be flushed to zero when nonstandard mode
148*0Sstevel@tonic-gate 		 * is enabled.  Sheesh.
149*0Sstevel@tonic-gate 		 */
150*0Sstevel@tonic-gate 		cc.d = c = c * 1.0;
151*0Sstevel@tonic-gate 		dd.d = d = d * 1.0;
152*0Sstevel@tonic-gate 		hc = cc.i[0] & ~0x80000000;
153*0Sstevel@tonic-gate 		hd = dd.i[0] & ~0x80000000;
154*0Sstevel@tonic-gate 		hw = (hc > hd)? hc : hd;
155*0Sstevel@tonic-gate 	}
156*0Sstevel@tonic-gate 
157*0Sstevel@tonic-gate 	if (hw == 0 && (cc.i[1] | dd.i[1]) == 0) {
158*0Sstevel@tonic-gate 		/* w is zero; multiply z by 1/Re(w) - I * Im(w) */
159*0Sstevel@tonic-gate 		c = 1.0 / c;
160*0Sstevel@tonic-gate 		i = testinf(a);
161*0Sstevel@tonic-gate 		j = testinf(b);
162*0Sstevel@tonic-gate 		if (i | j) { /* z is infinite */
163*0Sstevel@tonic-gate 			a = i;
164*0Sstevel@tonic-gate 			b = j;
165*0Sstevel@tonic-gate 		}
166*0Sstevel@tonic-gate 		((double *)&v)[0] = a * c + b * d;
167*0Sstevel@tonic-gate 		((double *)&v)[1] = b * c - a * d;
168*0Sstevel@tonic-gate 		return (v);
169*0Sstevel@tonic-gate 	}
170*0Sstevel@tonic-gate 
171*0Sstevel@tonic-gate 	if (hz >= 0x7ff00000) { /* z is inf or nan */
172*0Sstevel@tonic-gate 		r = 1.0;
173*0Sstevel@tonic-gate 		i = testinf(a);
174*0Sstevel@tonic-gate 		j = testinf(b);
175*0Sstevel@tonic-gate 		if (i | j) { /* z is infinite */
176*0Sstevel@tonic-gate 			a = i;
177*0Sstevel@tonic-gate 			b = j;
178*0Sstevel@tonic-gate 			r = inf.d;
179*0Sstevel@tonic-gate 		}
180*0Sstevel@tonic-gate 		((double *)&v)[0] = (a * c + b * d) * r;
181*0Sstevel@tonic-gate 		((double *)&v)[1] = (b * c - a * d) * r;
182*0Sstevel@tonic-gate 		return (v);
183*0Sstevel@tonic-gate 	}
184*0Sstevel@tonic-gate 
185*0Sstevel@tonic-gate 	/*
186*0Sstevel@tonic-gate 	 * Scale c and d to compute 1/|w|^2 and the real and imaginary
187*0Sstevel@tonic-gate 	 * parts of the quotient.
188*0Sstevel@tonic-gate 	 *
189*0Sstevel@tonic-gate 	 * Note that for any s, if we let c' = sc, d' = sd, c'' = sc',
190*0Sstevel@tonic-gate 	 * and d'' = sd', then
191*0Sstevel@tonic-gate 	 *
192*0Sstevel@tonic-gate 	 *  (ac'' + bd'') / (c'^2 + d'^2) = (ac + bd) / (c^2 + d^2)
193*0Sstevel@tonic-gate 	 *
194*0Sstevel@tonic-gate 	 * and similarly for the imaginary part of the quotient.  We want
195*0Sstevel@tonic-gate 	 * to choose s such that (i) r := 1/(c'^2 + d'^2) can be computed
196*0Sstevel@tonic-gate 	 * without overflow or harmful underflow, and (ii) (ac'' + bd'')
197*0Sstevel@tonic-gate 	 * and (bc'' - ad'') can be computed without spurious overflow or
198*0Sstevel@tonic-gate 	 * harmful underflow.  To avoid unnecessary rounding, we restrict
199*0Sstevel@tonic-gate 	 * s to a power of two.
200*0Sstevel@tonic-gate 	 *
201*0Sstevel@tonic-gate 	 * To satisfy (i), we need to choose s such that max(|c'|,|d'|)
202*0Sstevel@tonic-gate 	 * is not too far from one.  To satisfy (ii), we need to choose
203*0Sstevel@tonic-gate 	 * s such that max(|c''|,|d''|) is also not too far from one.
204*0Sstevel@tonic-gate 	 * There is some leeway in our choice, but to keep the logic
205*0Sstevel@tonic-gate 	 * from getting overly complicated, we simply attempt to roughly
206*0Sstevel@tonic-gate 	 * balance these constraints by choosing s so as to make r about
207*0Sstevel@tonic-gate 	 * the same size as max(|c''|,|d''|).  This corresponds to choos-
208*0Sstevel@tonic-gate 	 * ing s to be a power of two near |w|^(-3/4).
209*0Sstevel@tonic-gate 	 *
210*0Sstevel@tonic-gate 	 * Regarding overflow, observe that if max(|c''|,|d''|) <= 1/2,
211*0Sstevel@tonic-gate 	 * then the computation of (ac'' + bd'') and (bc'' - ad'') can-
212*0Sstevel@tonic-gate 	 * not overflow; otherwise, the computation of either of these
213*0Sstevel@tonic-gate 	 * values can only incur overflow if the true result would be
214*0Sstevel@tonic-gate 	 * within a factor of two of the overflow threshold.  In other
215*0Sstevel@tonic-gate 	 * words, if we bias the choice of s such that at least one of
216*0Sstevel@tonic-gate 	 *
217*0Sstevel@tonic-gate 	 *  max(|c''|,|d''|) <= 1/2   or   r >= 2
218*0Sstevel@tonic-gate 	 *
219*0Sstevel@tonic-gate 	 * always holds, then no undeserved overflow can occur.
220*0Sstevel@tonic-gate 	 *
221*0Sstevel@tonic-gate 	 * To cope with underflow, note that if r < 2^-53, then any
222*0Sstevel@tonic-gate 	 * intermediate results that underflow are insignificant; either
223*0Sstevel@tonic-gate 	 * they will be added to normal results, rendering the under-
224*0Sstevel@tonic-gate 	 * flow no worse than ordinary roundoff, or they will contribute
225*0Sstevel@tonic-gate 	 * to a final result that is smaller than the smallest subnormal
226*0Sstevel@tonic-gate 	 * number.  Therefore, we need only modify the preceding logic
227*0Sstevel@tonic-gate 	 * when z is very small and w is not too far from one.  In that
228*0Sstevel@tonic-gate 	 * case, we can reduce the effect of any intermediate underflow
229*0Sstevel@tonic-gate 	 * to no worse than ordinary roundoff error by choosing s so as
230*0Sstevel@tonic-gate 	 * to make max(|c''|,|d''|) large enough that at least one of
231*0Sstevel@tonic-gate 	 * (ac'' + bd'') or (bc'' - ad'') is normal.
232*0Sstevel@tonic-gate 	 */
233*0Sstevel@tonic-gate 	hs = (((hw >> 2) - hw) + 0x6fd7ffff) & 0xfff00000;
234*0Sstevel@tonic-gate 	if (hz < 0x07200000) { /* |z| < 2^-909 */
235*0Sstevel@tonic-gate 		if (((hw - 0x32800000) | (0x47100000 - hw)) >= 0)
236*0Sstevel@tonic-gate 			hs = (((0x47100000 - hw) >> 1) & 0xfff00000)
237*0Sstevel@tonic-gate 				+ 0x3ff00000;
238*0Sstevel@tonic-gate 	}
239*0Sstevel@tonic-gate 	ss.i[0] = hs;
240*0Sstevel@tonic-gate 	ss.i[1] = 0;
241*0Sstevel@tonic-gate 
242*0Sstevel@tonic-gate 	c *= ss.d;
243*0Sstevel@tonic-gate 	d *= ss.d;
244*0Sstevel@tonic-gate 	r = 1.0 / (c * c + d * d);
245*0Sstevel@tonic-gate 
246*0Sstevel@tonic-gate 	c *= ss.d;
247*0Sstevel@tonic-gate 	d *= ss.d;
248*0Sstevel@tonic-gate 	((double *)&v)[0] = (a * c + b * d) * r;
249*0Sstevel@tonic-gate 	((double *)&v)[1] = (b * c - a * d) * r;
250*0Sstevel@tonic-gate 	return (v);
251*0Sstevel@tonic-gate }
252