1*4887Schin #include "FEATURE/uwin" 2*4887Schin 3*4887Schin #if !_UWIN 4*4887Schin 5*4887Schin void _STUB_exp(){} 6*4887Schin 7*4887Schin #else 8*4887Schin 9*4887Schin /* 10*4887Schin * Copyright (c) 1985, 1993 11*4887Schin * The Regents of the University of California. All rights reserved. 12*4887Schin * 13*4887Schin * Redistribution and use in source and binary forms, with or without 14*4887Schin * modification, are permitted provided that the following conditions 15*4887Schin * are met: 16*4887Schin * 1. Redistributions of source code must retain the above copyright 17*4887Schin * notice, this list of conditions and the following disclaimer. 18*4887Schin * 2. Redistributions in binary form must reproduce the above copyright 19*4887Schin * notice, this list of conditions and the following disclaimer in the 20*4887Schin * documentation and/or other materials provided with the distribution. 21*4887Schin * 3. Neither the name of the University nor the names of its contributors 22*4887Schin * may be used to endorse or promote products derived from this software 23*4887Schin * without specific prior written permission. 24*4887Schin * 25*4887Schin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26*4887Schin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27*4887Schin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28*4887Schin * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29*4887Schin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30*4887Schin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31*4887Schin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32*4887Schin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33*4887Schin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34*4887Schin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35*4887Schin * SUCH DAMAGE. 36*4887Schin */ 37*4887Schin 38*4887Schin #ifndef lint 39*4887Schin static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93"; 40*4887Schin #endif /* not lint */ 41*4887Schin 42*4887Schin /* EXP(X) 43*4887Schin * RETURN THE EXPONENTIAL OF X 44*4887Schin * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 45*4887Schin * CODED IN C BY K.C. NG, 1/19/85; 46*4887Schin * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. 47*4887Schin * 48*4887Schin * Required system supported functions: 49*4887Schin * scalb(x,n) 50*4887Schin * copysign(x,y) 51*4887Schin * finite(x) 52*4887Schin * 53*4887Schin * Method: 54*4887Schin * 1. Argument Reduction: given the input x, find r and integer k such 55*4887Schin * that 56*4887Schin * x = k*ln2 + r, |r| <= 0.5*ln2 . 57*4887Schin * r will be represented as r := z+c for better accuracy. 58*4887Schin * 59*4887Schin * 2. Compute exp(r) by 60*4887Schin * 61*4887Schin * exp(r) = 1 + r + r*R1/(2-R1), 62*4887Schin * where 63*4887Schin * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). 64*4887Schin * 65*4887Schin * 3. exp(x) = 2^k * exp(r) . 66*4887Schin * 67*4887Schin * Special cases: 68*4887Schin * exp(INF) is INF, exp(NaN) is NaN; 69*4887Schin * exp(-INF)= 0; 70*4887Schin * for finite argument, only exp(0)=1 is exact. 71*4887Schin * 72*4887Schin * Accuracy: 73*4887Schin * exp(x) returns the exponential of x nearly rounded. In a test run 74*4887Schin * with 1,156,000 random arguments on a VAX, the maximum observed 75*4887Schin * error was 0.869 ulps (units in the last place). 76*4887Schin * 77*4887Schin * Constants: 78*4887Schin * The hexadecimal values are the intended ones for the following constants. 79*4887Schin * The decimal values may be used, provided that the compiler will convert 80*4887Schin * from decimal to binary accurately enough to produce the hexadecimal values 81*4887Schin * shown. 82*4887Schin */ 83*4887Schin 84*4887Schin #include "mathimpl.h" 85*4887Schin 86*4887Schin vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 87*4887Schin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 88*4887Schin vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 89*4887Schin vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF) 90*4887Schin vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 91*4887Schin vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1) 92*4887Schin vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94) 93*4887Schin vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F) 94*4887Schin vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84) 95*4887Schin vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683) 96*4887Schin 97*4887Schin #ifdef vccast 98*4887Schin #define ln2hi vccast(ln2hi) 99*4887Schin #define ln2lo vccast(ln2lo) 100*4887Schin #define lnhuge vccast(lnhuge) 101*4887Schin #define lntiny vccast(lntiny) 102*4887Schin #define invln2 vccast(invln2) 103*4887Schin #define p1 vccast(p1) 104*4887Schin #define p2 vccast(p2) 105*4887Schin #define p3 vccast(p3) 106*4887Schin #define p4 vccast(p4) 107*4887Schin #define p5 vccast(p5) 108*4887Schin #endif 109*4887Schin 110*4887Schin ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E) 111*4887Schin ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93) 112*4887Schin ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C) 113*4887Schin ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1) 114*4887Schin ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0) 115*4887Schin ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 116*4887Schin ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76) 117*4887Schin ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 118*4887Schin ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354) 119*4887Schin ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 120*4887Schin 121*4887Schin #if !_lib_exp 122*4887Schin 123*4887Schin extern double exp(x) 124*4887Schin double x; 125*4887Schin { 126*4887Schin double z,hi,lo,c; 127*4887Schin int k; 128*4887Schin 129*4887Schin #if !defined(vax)&&!defined(tahoe) 130*4887Schin if(x!=x) return(x); /* x is NaN */ 131*4887Schin #endif /* !defined(vax)&&!defined(tahoe) */ 132*4887Schin if( x <= lnhuge ) { 133*4887Schin if( x >= lntiny ) { 134*4887Schin 135*4887Schin /* argument reduction : x --> x - k*ln2 */ 136*4887Schin 137*4887Schin k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 138*4887Schin 139*4887Schin /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ 140*4887Schin 141*4887Schin hi=x-k*ln2hi; 142*4887Schin x=hi-(lo=k*ln2lo); 143*4887Schin 144*4887Schin /* return 2^k*[1+x+x*c/(2+c)] */ 145*4887Schin z=x*x; 146*4887Schin c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 147*4887Schin return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); 148*4887Schin 149*4887Schin } 150*4887Schin /* end of x > lntiny */ 151*4887Schin 152*4887Schin else 153*4887Schin /* exp(-big#) underflows to zero */ 154*4887Schin if(finite(x)) return(scalb(1.0,-5000)); 155*4887Schin 156*4887Schin /* exp(-INF) is zero */ 157*4887Schin else return(0.0); 158*4887Schin } 159*4887Schin /* end of x < lnhuge */ 160*4887Schin 161*4887Schin else 162*4887Schin /* exp(INF) is INF, exp(+big#) overflows to INF */ 163*4887Schin return( finite(x) ? scalb(1.0,5000) : x); 164*4887Schin } 165*4887Schin 166*4887Schin #endif 167*4887Schin 168*4887Schin /* returns exp(r = x + c) for |c| < |x| with no overlap. */ 169*4887Schin 170*4887Schin double __exp__D(x, c) 171*4887Schin double x, c; 172*4887Schin { 173*4887Schin double z,hi,lo; 174*4887Schin int k; 175*4887Schin 176*4887Schin #if !defined(vax)&&!defined(tahoe) 177*4887Schin if (x!=x) return(x); /* x is NaN */ 178*4887Schin #endif /* !defined(vax)&&!defined(tahoe) */ 179*4887Schin if ( x <= lnhuge ) { 180*4887Schin if ( x >= lntiny ) { 181*4887Schin 182*4887Schin /* argument reduction : x --> x - k*ln2 */ 183*4887Schin z = invln2*x; 184*4887Schin k = (int)z + copysign(.5, x); 185*4887Schin 186*4887Schin /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ 187*4887Schin 188*4887Schin hi=(x-k*ln2hi); /* Exact. */ 189*4887Schin x= hi - (lo = k*ln2lo-c); 190*4887Schin /* return 2^k*[1+x+x*c/(2+c)] */ 191*4887Schin z=x*x; 192*4887Schin c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 193*4887Schin c = (x*c)/(2.0-c); 194*4887Schin 195*4887Schin return scalb(1.+(hi-(lo - c)), k); 196*4887Schin } 197*4887Schin /* end of x > lntiny */ 198*4887Schin 199*4887Schin else 200*4887Schin /* exp(-big#) underflows to zero */ 201*4887Schin if(finite(x)) return(scalb(1.0,-5000)); 202*4887Schin 203*4887Schin /* exp(-INF) is zero */ 204*4887Schin else return(0.0); 205*4887Schin } 206*4887Schin /* end of x < lnhuge */ 207*4887Schin 208*4887Schin else 209*4887Schin /* exp(INF) is INF, exp(+big#) overflows to INF */ 210*4887Schin return( finite(x) ? scalb(1.0,5000) : x); 211*4887Schin } 212*4887Schin 213*4887Schin #endif 214