xref: /onnv-gate/usr/src/common/openssl/doc/crypto/rand.pod (revision 2175:b0b2f052a486)
1*2175Sjp161948=pod
2*2175Sjp161948
3*2175Sjp161948=head1 NAME
4*2175Sjp161948
5*2175Sjp161948rand - pseudo-random number generator
6*2175Sjp161948
7*2175Sjp161948=head1 SYNOPSIS
8*2175Sjp161948
9*2175Sjp161948 #include <openssl/rand.h>
10*2175Sjp161948
11*2175Sjp161948 int  RAND_set_rand_engine(ENGINE *engine);
12*2175Sjp161948
13*2175Sjp161948 int  RAND_bytes(unsigned char *buf, int num);
14*2175Sjp161948 int  RAND_pseudo_bytes(unsigned char *buf, int num);
15*2175Sjp161948
16*2175Sjp161948 void RAND_seed(const void *buf, int num);
17*2175Sjp161948 void RAND_add(const void *buf, int num, int entropy);
18*2175Sjp161948 int  RAND_status(void);
19*2175Sjp161948
20*2175Sjp161948 int  RAND_load_file(const char *file, long max_bytes);
21*2175Sjp161948 int  RAND_write_file(const char *file);
22*2175Sjp161948 const char *RAND_file_name(char *file, size_t num);
23*2175Sjp161948
24*2175Sjp161948 int  RAND_egd(const char *path);
25*2175Sjp161948
26*2175Sjp161948 void RAND_set_rand_method(const RAND_METHOD *meth);
27*2175Sjp161948 const RAND_METHOD *RAND_get_rand_method(void);
28*2175Sjp161948 RAND_METHOD *RAND_SSLeay(void);
29*2175Sjp161948
30*2175Sjp161948 void RAND_cleanup(void);
31*2175Sjp161948
32*2175Sjp161948 /* For Win32 only */
33*2175Sjp161948 void RAND_screen(void);
34*2175Sjp161948 int RAND_event(UINT, WPARAM, LPARAM);
35*2175Sjp161948
36*2175Sjp161948=head1 DESCRIPTION
37*2175Sjp161948
38*2175Sjp161948Since the introduction of the ENGINE API, the recommended way of controlling
39*2175Sjp161948default implementations is by using the ENGINE API functions. The default
40*2175Sjp161948B<RAND_METHOD>, as set by RAND_set_rand_method() and returned by
41*2175Sjp161948RAND_get_rand_method(), is only used if no ENGINE has been set as the default
42*2175Sjp161948"rand" implementation. Hence, these two functions are no longer the recommened
43*2175Sjp161948way to control defaults.
44*2175Sjp161948
45*2175Sjp161948If an alternative B<RAND_METHOD> implementation is being used (either set
46*2175Sjp161948directly or as provided by an ENGINE module), then it is entirely responsible
47*2175Sjp161948for the generation and management of a cryptographically secure PRNG stream. The
48*2175Sjp161948mechanisms described below relate solely to the software PRNG implementation
49*2175Sjp161948built in to OpenSSL and used by default.
50*2175Sjp161948
51*2175Sjp161948These functions implement a cryptographically secure pseudo-random
52*2175Sjp161948number generator (PRNG). It is used by other library functions for
53*2175Sjp161948example to generate random keys, and applications can use it when they
54*2175Sjp161948need randomness.
55*2175Sjp161948
56*2175Sjp161948A cryptographic PRNG must be seeded with unpredictable data such as
57*2175Sjp161948mouse movements or keys pressed at random by the user. This is
58*2175Sjp161948described in L<RAND_add(3)|RAND_add(3)>. Its state can be saved in a seed file
59*2175Sjp161948(see L<RAND_load_file(3)|RAND_load_file(3)>) to avoid having to go through the
60*2175Sjp161948seeding process whenever the application is started.
61*2175Sjp161948
62*2175Sjp161948L<RAND_bytes(3)|RAND_bytes(3)> describes how to obtain random data from the
63*2175Sjp161948PRNG.
64*2175Sjp161948
65*2175Sjp161948=head1 INTERNALS
66*2175Sjp161948
67*2175Sjp161948The RAND_SSLeay() method implements a PRNG based on a cryptographic
68*2175Sjp161948hash function.
69*2175Sjp161948
70*2175Sjp161948The following description of its design is based on the SSLeay
71*2175Sjp161948documentation:
72*2175Sjp161948
73*2175Sjp161948First up I will state the things I believe I need for a good RNG.
74*2175Sjp161948
75*2175Sjp161948=over 4
76*2175Sjp161948
77*2175Sjp161948=item 1
78*2175Sjp161948
79*2175Sjp161948A good hashing algorithm to mix things up and to convert the RNG 'state'
80*2175Sjp161948to random numbers.
81*2175Sjp161948
82*2175Sjp161948=item 2
83*2175Sjp161948
84*2175Sjp161948An initial source of random 'state'.
85*2175Sjp161948
86*2175Sjp161948=item 3
87*2175Sjp161948
88*2175Sjp161948The state should be very large.  If the RNG is being used to generate
89*2175Sjp1619484096 bit RSA keys, 2 2048 bit random strings are required (at a minimum).
90*2175Sjp161948If your RNG state only has 128 bits, you are obviously limiting the
91*2175Sjp161948search space to 128 bits, not 2048.  I'm probably getting a little
92*2175Sjp161948carried away on this last point but it does indicate that it may not be
93*2175Sjp161948a bad idea to keep quite a lot of RNG state.  It should be easier to
94*2175Sjp161948break a cipher than guess the RNG seed data.
95*2175Sjp161948
96*2175Sjp161948=item 4
97*2175Sjp161948
98*2175Sjp161948Any RNG seed data should influence all subsequent random numbers
99*2175Sjp161948generated.  This implies that any random seed data entered will have
100*2175Sjp161948an influence on all subsequent random numbers generated.
101*2175Sjp161948
102*2175Sjp161948=item 5
103*2175Sjp161948
104*2175Sjp161948When using data to seed the RNG state, the data used should not be
105*2175Sjp161948extractable from the RNG state.  I believe this should be a
106*2175Sjp161948requirement because one possible source of 'secret' semi random
107*2175Sjp161948data would be a private key or a password.  This data must
108*2175Sjp161948not be disclosed by either subsequent random numbers or a
109*2175Sjp161948'core' dump left by a program crash.
110*2175Sjp161948
111*2175Sjp161948=item 6
112*2175Sjp161948
113*2175Sjp161948Given the same initial 'state', 2 systems should deviate in their RNG state
114*2175Sjp161948(and hence the random numbers generated) over time if at all possible.
115*2175Sjp161948
116*2175Sjp161948=item 7
117*2175Sjp161948
118*2175Sjp161948Given the random number output stream, it should not be possible to determine
119*2175Sjp161948the RNG state or the next random number.
120*2175Sjp161948
121*2175Sjp161948=back
122*2175Sjp161948
123*2175Sjp161948The algorithm is as follows.
124*2175Sjp161948
125*2175Sjp161948There is global state made up of a 1023 byte buffer (the 'state'), a
126*2175Sjp161948working hash value ('md'), and a counter ('count').
127*2175Sjp161948
128*2175Sjp161948Whenever seed data is added, it is inserted into the 'state' as
129*2175Sjp161948follows.
130*2175Sjp161948
131*2175Sjp161948The input is chopped up into units of 20 bytes (or less for
132*2175Sjp161948the last block).  Each of these blocks is run through the hash
133*2175Sjp161948function as follows:  The data passed to the hash function
134*2175Sjp161948is the current 'md', the same number of bytes from the 'state'
135*2175Sjp161948(the location determined by in incremented looping index) as
136*2175Sjp161948the current 'block', the new key data 'block', and 'count'
137*2175Sjp161948(which is incremented after each use).
138*2175Sjp161948The result of this is kept in 'md' and also xored into the
139*2175Sjp161948'state' at the same locations that were used as input into the
140*2175Sjp161948hash function. I
141*2175Sjp161948believe this system addresses points 1 (hash function; currently
142*2175Sjp161948SHA-1), 3 (the 'state'), 4 (via the 'md'), 5 (by the use of a hash
143*2175Sjp161948function and xor).
144*2175Sjp161948
145*2175Sjp161948When bytes are extracted from the RNG, the following process is used.
146*2175Sjp161948For each group of 10 bytes (or less), we do the following:
147*2175Sjp161948
148*2175Sjp161948Input into the hash function the local 'md' (which is initialized from
149*2175Sjp161948the global 'md' before any bytes are generated), the bytes that are to
150*2175Sjp161948be overwritten by the random bytes, and bytes from the 'state'
151*2175Sjp161948(incrementing looping index). From this digest output (which is kept
152*2175Sjp161948in 'md'), the top (up to) 10 bytes are returned to the caller and the
153*2175Sjp161948bottom 10 bytes are xored into the 'state'.
154*2175Sjp161948
155*2175Sjp161948Finally, after we have finished 'num' random bytes for the caller,
156*2175Sjp161948'count' (which is incremented) and the local and global 'md' are fed
157*2175Sjp161948into the hash function and the results are kept in the global 'md'.
158*2175Sjp161948
159*2175Sjp161948I believe the above addressed points 1 (use of SHA-1), 6 (by hashing
160*2175Sjp161948into the 'state' the 'old' data from the caller that is about to be
161*2175Sjp161948overwritten) and 7 (by not using the 10 bytes given to the caller to
162*2175Sjp161948update the 'state', but they are used to update 'md').
163*2175Sjp161948
164*2175Sjp161948So of the points raised, only 2 is not addressed (but see
165*2175Sjp161948L<RAND_add(3)|RAND_add(3)>).
166*2175Sjp161948
167*2175Sjp161948=head1 SEE ALSO
168*2175Sjp161948
169*2175Sjp161948L<BN_rand(3)|BN_rand(3)>, L<RAND_add(3)|RAND_add(3)>,
170*2175Sjp161948L<RAND_load_file(3)|RAND_load_file(3)>, L<RAND_egd(3)|RAND_egd(3)>,
171*2175Sjp161948L<RAND_bytes(3)|RAND_bytes(3)>,
172*2175Sjp161948L<RAND_set_rand_method(3)|RAND_set_rand_method(3)>,
173*2175Sjp161948L<RAND_cleanup(3)|RAND_cleanup(3)>
174*2175Sjp161948
175*2175Sjp161948=cut
176