1*2175Sjp161948=pod 2*2175Sjp161948 3*2175Sjp161948=head1 NAME 4*2175Sjp161948 5*2175Sjp161948lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg, lh_error - dynamic hash table 6*2175Sjp161948 7*2175Sjp161948=head1 SYNOPSIS 8*2175Sjp161948 9*2175Sjp161948 #include <openssl/lhash.h> 10*2175Sjp161948 11*2175Sjp161948 LHASH *lh_new(LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE compare); 12*2175Sjp161948 void lh_free(LHASH *table); 13*2175Sjp161948 14*2175Sjp161948 void *lh_insert(LHASH *table, void *data); 15*2175Sjp161948 void *lh_delete(LHASH *table, void *data); 16*2175Sjp161948 void *lh_retrieve(LHASH *table, void *data); 17*2175Sjp161948 18*2175Sjp161948 void lh_doall(LHASH *table, LHASH_DOALL_FN_TYPE func); 19*2175Sjp161948 void lh_doall_arg(LHASH *table, LHASH_DOALL_ARG_FN_TYPE func, 20*2175Sjp161948 void *arg); 21*2175Sjp161948 22*2175Sjp161948 int lh_error(LHASH *table); 23*2175Sjp161948 24*2175Sjp161948 typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *); 25*2175Sjp161948 typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *); 26*2175Sjp161948 typedef void (*LHASH_DOALL_FN_TYPE)(const void *); 27*2175Sjp161948 typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); 28*2175Sjp161948 29*2175Sjp161948=head1 DESCRIPTION 30*2175Sjp161948 31*2175Sjp161948This library implements dynamic hash tables. The hash table entries 32*2175Sjp161948can be arbitrary structures. Usually they consist of key and value 33*2175Sjp161948fields. 34*2175Sjp161948 35*2175Sjp161948lh_new() creates a new B<LHASH> structure to store arbitrary data 36*2175Sjp161948entries, and provides the 'hash' and 'compare' callbacks to be used in 37*2175Sjp161948organising the table's entries. The B<hash> callback takes a pointer 38*2175Sjp161948to a table entry as its argument and returns an unsigned long hash 39*2175Sjp161948value for its key field. The hash value is normally truncated to a 40*2175Sjp161948power of 2, so make sure that your hash function returns well mixed 41*2175Sjp161948low order bits. The B<compare> callback takes two arguments (pointers 42*2175Sjp161948to two hash table entries), and returns 0 if their keys are equal, 43*2175Sjp161948non-zero otherwise. If your hash table will contain items of some 44*2175Sjp161948particular type and the B<hash> and B<compare> callbacks hash/compare 45*2175Sjp161948these types, then the B<DECLARE_LHASH_HASH_FN> and 46*2175Sjp161948B<IMPLEMENT_LHASH_COMP_FN> macros can be used to create callback 47*2175Sjp161948wrappers of the prototypes required by lh_new(). These provide 48*2175Sjp161948per-variable casts before calling the type-specific callbacks written 49*2175Sjp161948by the application author. These macros, as well as those used for 50*2175Sjp161948the "doall" callbacks, are defined as; 51*2175Sjp161948 52*2175Sjp161948 #define DECLARE_LHASH_HASH_FN(f_name,o_type) \ 53*2175Sjp161948 unsigned long f_name##_LHASH_HASH(const void *); 54*2175Sjp161948 #define IMPLEMENT_LHASH_HASH_FN(f_name,o_type) \ 55*2175Sjp161948 unsigned long f_name##_LHASH_HASH(const void *arg) { \ 56*2175Sjp161948 o_type a = (o_type)arg; \ 57*2175Sjp161948 return f_name(a); } 58*2175Sjp161948 #define LHASH_HASH_FN(f_name) f_name##_LHASH_HASH 59*2175Sjp161948 60*2175Sjp161948 #define DECLARE_LHASH_COMP_FN(f_name,o_type) \ 61*2175Sjp161948 int f_name##_LHASH_COMP(const void *, const void *); 62*2175Sjp161948 #define IMPLEMENT_LHASH_COMP_FN(f_name,o_type) \ 63*2175Sjp161948 int f_name##_LHASH_COMP(const void *arg1, const void *arg2) { \ 64*2175Sjp161948 o_type a = (o_type)arg1; \ 65*2175Sjp161948 o_type b = (o_type)arg2; \ 66*2175Sjp161948 return f_name(a,b); } 67*2175Sjp161948 #define LHASH_COMP_FN(f_name) f_name##_LHASH_COMP 68*2175Sjp161948 69*2175Sjp161948 #define DECLARE_LHASH_DOALL_FN(f_name,o_type) \ 70*2175Sjp161948 void f_name##_LHASH_DOALL(const void *); 71*2175Sjp161948 #define IMPLEMENT_LHASH_DOALL_FN(f_name,o_type) \ 72*2175Sjp161948 void f_name##_LHASH_DOALL(const void *arg) { \ 73*2175Sjp161948 o_type a = (o_type)arg; \ 74*2175Sjp161948 f_name(a); } 75*2175Sjp161948 #define LHASH_DOALL_FN(f_name) f_name##_LHASH_DOALL 76*2175Sjp161948 77*2175Sjp161948 #define DECLARE_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \ 78*2175Sjp161948 void f_name##_LHASH_DOALL_ARG(const void *, const void *); 79*2175Sjp161948 #define IMPLEMENT_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \ 80*2175Sjp161948 void f_name##_LHASH_DOALL_ARG(const void *arg1, const void *arg2) { \ 81*2175Sjp161948 o_type a = (o_type)arg1; \ 82*2175Sjp161948 a_type b = (a_type)arg2; \ 83*2175Sjp161948 f_name(a,b); } 84*2175Sjp161948 #define LHASH_DOALL_ARG_FN(f_name) f_name##_LHASH_DOALL_ARG 85*2175Sjp161948 86*2175Sjp161948An example of a hash table storing (pointers to) structures of type 'STUFF' 87*2175Sjp161948could be defined as follows; 88*2175Sjp161948 89*2175Sjp161948 /* Calculates the hash value of 'tohash' (implemented elsewhere) */ 90*2175Sjp161948 unsigned long STUFF_hash(const STUFF *tohash); 91*2175Sjp161948 /* Orders 'arg1' and 'arg2' (implemented elsewhere) */ 92*2175Sjp161948 int STUFF_cmp(const STUFF *arg1, const STUFF *arg2); 93*2175Sjp161948 /* Create the type-safe wrapper functions for use in the LHASH internals */ 94*2175Sjp161948 static IMPLEMENT_LHASH_HASH_FN(STUFF_hash, const STUFF *) 95*2175Sjp161948 static IMPLEMENT_LHASH_COMP_FN(STUFF_cmp, const STUFF *); 96*2175Sjp161948 /* ... */ 97*2175Sjp161948 int main(int argc, char *argv[]) { 98*2175Sjp161948 /* Create the new hash table using the hash/compare wrappers */ 99*2175Sjp161948 LHASH *hashtable = lh_new(LHASH_HASH_FN(STUFF_hash), 100*2175Sjp161948 LHASH_COMP_FN(STUFF_cmp)); 101*2175Sjp161948 /* ... */ 102*2175Sjp161948 } 103*2175Sjp161948 104*2175Sjp161948lh_free() frees the B<LHASH> structure B<table>. Allocated hash table 105*2175Sjp161948entries will not be freed; consider using lh_doall() to deallocate any 106*2175Sjp161948remaining entries in the hash table (see below). 107*2175Sjp161948 108*2175Sjp161948lh_insert() inserts the structure pointed to by B<data> into B<table>. 109*2175Sjp161948If there already is an entry with the same key, the old value is 110*2175Sjp161948replaced. Note that lh_insert() stores pointers, the data are not 111*2175Sjp161948copied. 112*2175Sjp161948 113*2175Sjp161948lh_delete() deletes an entry from B<table>. 114*2175Sjp161948 115*2175Sjp161948lh_retrieve() looks up an entry in B<table>. Normally, B<data> is 116*2175Sjp161948a structure with the key field(s) set; the function will return a 117*2175Sjp161948pointer to a fully populated structure. 118*2175Sjp161948 119*2175Sjp161948lh_doall() will, for every entry in the hash table, call B<func> with 120*2175Sjp161948the data item as its parameter. For lh_doall() and lh_doall_arg(), 121*2175Sjp161948function pointer casting should be avoided in the callbacks (see 122*2175Sjp161948B<NOTE>) - instead, either declare the callbacks to match the 123*2175Sjp161948prototype required in lh_new() or use the declare/implement macros to 124*2175Sjp161948create type-safe wrappers that cast variables prior to calling your 125*2175Sjp161948type-specific callbacks. An example of this is illustrated here where 126*2175Sjp161948the callback is used to cleanup resources for items in the hash table 127*2175Sjp161948prior to the hashtable itself being deallocated: 128*2175Sjp161948 129*2175Sjp161948 /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */ 130*2175Sjp161948 void STUFF_cleanup(STUFF *a); 131*2175Sjp161948 /* Implement a prototype-compatible wrapper for "STUFF_cleanup" */ 132*2175Sjp161948 IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF *) 133*2175Sjp161948 /* ... then later in the code ... */ 134*2175Sjp161948 /* So to run "STUFF_cleanup" against all items in a hash table ... */ 135*2175Sjp161948 lh_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup)); 136*2175Sjp161948 /* Then the hash table itself can be deallocated */ 137*2175Sjp161948 lh_free(hashtable); 138*2175Sjp161948 139*2175Sjp161948When doing this, be careful if you delete entries from the hash table 140*2175Sjp161948in your callbacks: the table may decrease in size, moving the item 141*2175Sjp161948that you are currently on down lower in the hash table - this could 142*2175Sjp161948cause some entries to be skipped during the iteration. The second 143*2175Sjp161948best solution to this problem is to set hash-E<gt>down_load=0 before 144*2175Sjp161948you start (which will stop the hash table ever decreasing in size). 145*2175Sjp161948The best solution is probably to avoid deleting items from the hash 146*2175Sjp161948table inside a "doall" callback! 147*2175Sjp161948 148*2175Sjp161948lh_doall_arg() is the same as lh_doall() except that B<func> will be 149*2175Sjp161948called with B<arg> as the second argument and B<func> should be of 150*2175Sjp161948type B<LHASH_DOALL_ARG_FN_TYPE> (a callback prototype that is passed 151*2175Sjp161948both the table entry and an extra argument). As with lh_doall(), you 152*2175Sjp161948can instead choose to declare your callback with a prototype matching 153*2175Sjp161948the types you are dealing with and use the declare/implement macros to 154*2175Sjp161948create compatible wrappers that cast variables before calling your 155*2175Sjp161948type-specific callbacks. An example of this is demonstrated here 156*2175Sjp161948(printing all hash table entries to a BIO that is provided by the 157*2175Sjp161948caller): 158*2175Sjp161948 159*2175Sjp161948 /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */ 160*2175Sjp161948 void STUFF_print(const STUFF *a, BIO *output_bio); 161*2175Sjp161948 /* Implement a prototype-compatible wrapper for "STUFF_print" */ 162*2175Sjp161948 static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF_print, const STUFF *, BIO *) 163*2175Sjp161948 /* ... then later in the code ... */ 164*2175Sjp161948 /* Print out the entire hashtable to a particular BIO */ 165*2175Sjp161948 lh_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), logging_bio); 166*2175Sjp161948 167*2175Sjp161948lh_error() can be used to determine if an error occurred in the last 168*2175Sjp161948operation. lh_error() is a macro. 169*2175Sjp161948 170*2175Sjp161948=head1 RETURN VALUES 171*2175Sjp161948 172*2175Sjp161948lh_new() returns B<NULL> on error, otherwise a pointer to the new 173*2175Sjp161948B<LHASH> structure. 174*2175Sjp161948 175*2175Sjp161948When a hash table entry is replaced, lh_insert() returns the value 176*2175Sjp161948being replaced. B<NULL> is returned on normal operation and on error. 177*2175Sjp161948 178*2175Sjp161948lh_delete() returns the entry being deleted. B<NULL> is returned if 179*2175Sjp161948there is no such value in the hash table. 180*2175Sjp161948 181*2175Sjp161948lh_retrieve() returns the hash table entry if it has been found, 182*2175Sjp161948B<NULL> otherwise. 183*2175Sjp161948 184*2175Sjp161948lh_error() returns 1 if an error occurred in the last operation, 0 185*2175Sjp161948otherwise. 186*2175Sjp161948 187*2175Sjp161948lh_free(), lh_doall() and lh_doall_arg() return no values. 188*2175Sjp161948 189*2175Sjp161948=head1 NOTE 190*2175Sjp161948 191*2175Sjp161948The various LHASH macros and callback types exist to make it possible 192*2175Sjp161948to write type-safe code without resorting to function-prototype 193*2175Sjp161948casting - an evil that makes application code much harder to 194*2175Sjp161948audit/verify and also opens the window of opportunity for stack 195*2175Sjp161948corruption and other hard-to-find bugs. It also, apparently, violates 196*2175Sjp161948ANSI-C. 197*2175Sjp161948 198*2175Sjp161948The LHASH code regards table entries as constant data. As such, it 199*2175Sjp161948internally represents lh_insert()'d items with a "const void *" 200*2175Sjp161948pointer type. This is why callbacks such as those used by lh_doall() 201*2175Sjp161948and lh_doall_arg() declare their prototypes with "const", even for the 202*2175Sjp161948parameters that pass back the table items' data pointers - for 203*2175Sjp161948consistency, user-provided data is "const" at all times as far as the 204*2175Sjp161948LHASH code is concerned. However, as callers are themselves providing 205*2175Sjp161948these pointers, they can choose whether they too should be treating 206*2175Sjp161948all such parameters as constant. 207*2175Sjp161948 208*2175Sjp161948As an example, a hash table may be maintained by code that, for 209*2175Sjp161948reasons of encapsulation, has only "const" access to the data being 210*2175Sjp161948indexed in the hash table (ie. it is returned as "const" from 211*2175Sjp161948elsewhere in their code) - in this case the LHASH prototypes are 212*2175Sjp161948appropriate as-is. Conversely, if the caller is responsible for the 213*2175Sjp161948life-time of the data in question, then they may well wish to make 214*2175Sjp161948modifications to table item passed back in the lh_doall() or 215*2175Sjp161948lh_doall_arg() callbacks (see the "STUFF_cleanup" example above). If 216*2175Sjp161948so, the caller can either cast the "const" away (if they're providing 217*2175Sjp161948the raw callbacks themselves) or use the macros to declare/implement 218*2175Sjp161948the wrapper functions without "const" types. 219*2175Sjp161948 220*2175Sjp161948Callers that only have "const" access to data they're indexing in a 221*2175Sjp161948table, yet declare callbacks without constant types (or cast the 222*2175Sjp161948"const" away themselves), are therefore creating their own risks/bugs 223*2175Sjp161948without being encouraged to do so by the API. On a related note, 224*2175Sjp161948those auditing code should pay special attention to any instances of 225*2175Sjp161948DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types 226*2175Sjp161948without any "const" qualifiers. 227*2175Sjp161948 228*2175Sjp161948=head1 BUGS 229*2175Sjp161948 230*2175Sjp161948lh_insert() returns B<NULL> both for success and error. 231*2175Sjp161948 232*2175Sjp161948=head1 INTERNALS 233*2175Sjp161948 234*2175Sjp161948The following description is based on the SSLeay documentation: 235*2175Sjp161948 236*2175Sjp161948The B<lhash> library implements a hash table described in the 237*2175Sjp161948I<Communications of the ACM> in 1991. What makes this hash table 238*2175Sjp161948different is that as the table fills, the hash table is increased (or 239*2175Sjp161948decreased) in size via OPENSSL_realloc(). When a 'resize' is done, instead of 240*2175Sjp161948all hashes being redistributed over twice as many 'buckets', one 241*2175Sjp161948bucket is split. So when an 'expand' is done, there is only a minimal 242*2175Sjp161948cost to redistribute some values. Subsequent inserts will cause more 243*2175Sjp161948single 'bucket' redistributions but there will never be a sudden large 244*2175Sjp161948cost due to redistributing all the 'buckets'. 245*2175Sjp161948 246*2175Sjp161948The state for a particular hash table is kept in the B<LHASH> structure. 247*2175Sjp161948The decision to increase or decrease the hash table size is made 248*2175Sjp161948depending on the 'load' of the hash table. The load is the number of 249*2175Sjp161948items in the hash table divided by the size of the hash table. The 250*2175Sjp161948default values are as follows. If (hash->up_load E<lt> load) =E<gt> 251*2175Sjp161948expand. if (hash-E<gt>down_load E<gt> load) =E<gt> contract. The 252*2175Sjp161948B<up_load> has a default value of 1 and B<down_load> has a default value 253*2175Sjp161948of 2. These numbers can be modified by the application by just 254*2175Sjp161948playing with the B<up_load> and B<down_load> variables. The 'load' is 255*2175Sjp161948kept in a form which is multiplied by 256. So 256*2175Sjp161948hash-E<gt>up_load=8*256; will cause a load of 8 to be set. 257*2175Sjp161948 258*2175Sjp161948If you are interested in performance the field to watch is 259*2175Sjp161948num_comp_calls. The hash library keeps track of the 'hash' value for 260*2175Sjp161948each item so when a lookup is done, the 'hashes' are compared, if 261*2175Sjp161948there is a match, then a full compare is done, and 262*2175Sjp161948hash-E<gt>num_comp_calls is incremented. If num_comp_calls is not equal 263*2175Sjp161948to num_delete plus num_retrieve it means that your hash function is 264*2175Sjp161948generating hashes that are the same for different values. It is 265*2175Sjp161948probably worth changing your hash function if this is the case because 266*2175Sjp161948even if your hash table has 10 items in a 'bucket', it can be searched 267*2175Sjp161948with 10 B<unsigned long> compares and 10 linked list traverses. This 268*2175Sjp161948will be much less expensive that 10 calls to your compare function. 269*2175Sjp161948 270*2175Sjp161948lh_strhash() is a demo string hashing function: 271*2175Sjp161948 272*2175Sjp161948 unsigned long lh_strhash(const char *c); 273*2175Sjp161948 274*2175Sjp161948Since the B<LHASH> routines would normally be passed structures, this 275*2175Sjp161948routine would not normally be passed to lh_new(), rather it would be 276*2175Sjp161948used in the function passed to lh_new(). 277*2175Sjp161948 278*2175Sjp161948=head1 SEE ALSO 279*2175Sjp161948 280*2175Sjp161948L<lh_stats(3)|lh_stats(3)> 281*2175Sjp161948 282*2175Sjp161948=head1 HISTORY 283*2175Sjp161948 284*2175Sjp161948The B<lhash> library is available in all versions of SSLeay and OpenSSL. 285*2175Sjp161948lh_error() was added in SSLeay 0.9.1b. 286*2175Sjp161948 287*2175Sjp161948This manpage is derived from the SSLeay documentation. 288*2175Sjp161948 289*2175Sjp161948In OpenSSL 0.9.7, all lhash functions that were passed function pointers 290*2175Sjp161948were changed for better type safety, and the function types LHASH_COMP_FN_TYPE, 291*2175Sjp161948LHASH_HASH_FN_TYPE, LHASH_DOALL_FN_TYPE and LHASH_DOALL_ARG_FN_TYPE 292*2175Sjp161948became available. 293*2175Sjp161948 294*2175Sjp161948=cut 295