1*2175Sjp161948=pod 2*2175Sjp161948 3*2175Sjp161948=head1 NAME 4*2175Sjp161948 5*2175Sjp161948DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, 6*2175Sjp161948DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key, 7*2175Sjp161948DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt, 8*2175Sjp161948DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt, 9*2175Sjp161948DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, 10*2175Sjp161948DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, 11*2175Sjp161948DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, 12*2175Sjp161948DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys, 13*2175Sjp161948DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption 14*2175Sjp161948 15*2175Sjp161948=head1 SYNOPSIS 16*2175Sjp161948 17*2175Sjp161948 #include <openssl/des.h> 18*2175Sjp161948 19*2175Sjp161948 void DES_random_key(DES_cblock *ret); 20*2175Sjp161948 21*2175Sjp161948 int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule); 22*2175Sjp161948 int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule); 23*2175Sjp161948 int DES_set_key_checked(const_DES_cblock *key, 24*2175Sjp161948 DES_key_schedule *schedule); 25*2175Sjp161948 void DES_set_key_unchecked(const_DES_cblock *key, 26*2175Sjp161948 DES_key_schedule *schedule); 27*2175Sjp161948 28*2175Sjp161948 void DES_set_odd_parity(DES_cblock *key); 29*2175Sjp161948 int DES_is_weak_key(const_DES_cblock *key); 30*2175Sjp161948 31*2175Sjp161948 void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, 32*2175Sjp161948 DES_key_schedule *ks, int enc); 33*2175Sjp161948 void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output, 34*2175Sjp161948 DES_key_schedule *ks1, DES_key_schedule *ks2, int enc); 35*2175Sjp161948 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, 36*2175Sjp161948 DES_key_schedule *ks1, DES_key_schedule *ks2, 37*2175Sjp161948 DES_key_schedule *ks3, int enc); 38*2175Sjp161948 39*2175Sjp161948 void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output, 40*2175Sjp161948 long length, DES_key_schedule *schedule, DES_cblock *ivec, 41*2175Sjp161948 int enc); 42*2175Sjp161948 void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, 43*2175Sjp161948 int numbits, long length, DES_key_schedule *schedule, 44*2175Sjp161948 DES_cblock *ivec, int enc); 45*2175Sjp161948 void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, 46*2175Sjp161948 int numbits, long length, DES_key_schedule *schedule, 47*2175Sjp161948 DES_cblock *ivec); 48*2175Sjp161948 void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, 49*2175Sjp161948 long length, DES_key_schedule *schedule, DES_cblock *ivec, 50*2175Sjp161948 int enc); 51*2175Sjp161948 void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out, 52*2175Sjp161948 long length, DES_key_schedule *schedule, DES_cblock *ivec, 53*2175Sjp161948 int *num, int enc); 54*2175Sjp161948 void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out, 55*2175Sjp161948 long length, DES_key_schedule *schedule, DES_cblock *ivec, 56*2175Sjp161948 int *num); 57*2175Sjp161948 58*2175Sjp161948 void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output, 59*2175Sjp161948 long length, DES_key_schedule *schedule, DES_cblock *ivec, 60*2175Sjp161948 const_DES_cblock *inw, const_DES_cblock *outw, int enc); 61*2175Sjp161948 62*2175Sjp161948 void DES_ede2_cbc_encrypt(const unsigned char *input, 63*2175Sjp161948 unsigned char *output, long length, DES_key_schedule *ks1, 64*2175Sjp161948 DES_key_schedule *ks2, DES_cblock *ivec, int enc); 65*2175Sjp161948 void DES_ede2_cfb64_encrypt(const unsigned char *in, 66*2175Sjp161948 unsigned char *out, long length, DES_key_schedule *ks1, 67*2175Sjp161948 DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); 68*2175Sjp161948 void DES_ede2_ofb64_encrypt(const unsigned char *in, 69*2175Sjp161948 unsigned char *out, long length, DES_key_schedule *ks1, 70*2175Sjp161948 DES_key_schedule *ks2, DES_cblock *ivec, int *num); 71*2175Sjp161948 72*2175Sjp161948 void DES_ede3_cbc_encrypt(const unsigned char *input, 73*2175Sjp161948 unsigned char *output, long length, DES_key_schedule *ks1, 74*2175Sjp161948 DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, 75*2175Sjp161948 int enc); 76*2175Sjp161948 void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out, 77*2175Sjp161948 long length, DES_key_schedule *ks1, DES_key_schedule *ks2, 78*2175Sjp161948 DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2, 79*2175Sjp161948 int enc); 80*2175Sjp161948 void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, 81*2175Sjp161948 long length, DES_key_schedule *ks1, DES_key_schedule *ks2, 82*2175Sjp161948 DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc); 83*2175Sjp161948 void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out, 84*2175Sjp161948 long length, DES_key_schedule *ks1, 85*2175Sjp161948 DES_key_schedule *ks2, DES_key_schedule *ks3, 86*2175Sjp161948 DES_cblock *ivec, int *num); 87*2175Sjp161948 88*2175Sjp161948 DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output, 89*2175Sjp161948 long length, DES_key_schedule *schedule, 90*2175Sjp161948 const_DES_cblock *ivec); 91*2175Sjp161948 DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], 92*2175Sjp161948 long length, int out_count, DES_cblock *seed); 93*2175Sjp161948 void DES_string_to_key(const char *str, DES_cblock *key); 94*2175Sjp161948 void DES_string_to_2keys(const char *str, DES_cblock *key1, 95*2175Sjp161948 DES_cblock *key2); 96*2175Sjp161948 97*2175Sjp161948 char *DES_fcrypt(const char *buf, const char *salt, char *ret); 98*2175Sjp161948 char *DES_crypt(const char *buf, const char *salt); 99*2175Sjp161948 100*2175Sjp161948 int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched, 101*2175Sjp161948 DES_cblock *iv); 102*2175Sjp161948 int DES_enc_write(int fd, const void *buf, int len, 103*2175Sjp161948 DES_key_schedule *sched, DES_cblock *iv); 104*2175Sjp161948 105*2175Sjp161948=head1 DESCRIPTION 106*2175Sjp161948 107*2175Sjp161948This library contains a fast implementation of the DES encryption 108*2175Sjp161948algorithm. 109*2175Sjp161948 110*2175Sjp161948There are two phases to the use of DES encryption. The first is the 111*2175Sjp161948generation of a I<DES_key_schedule> from a key, the second is the 112*2175Sjp161948actual encryption. A DES key is of type I<DES_cblock>. This type is 113*2175Sjp161948consists of 8 bytes with odd parity. The least significant bit in 114*2175Sjp161948each byte is the parity bit. The key schedule is an expanded form of 115*2175Sjp161948the key; it is used to speed the encryption process. 116*2175Sjp161948 117*2175Sjp161948DES_random_key() generates a random key. The PRNG must be seeded 118*2175Sjp161948prior to using this function (see L<rand(3)|rand(3)>). If the PRNG 119*2175Sjp161948could not generate a secure key, 0 is returned. 120*2175Sjp161948 121*2175Sjp161948Before a DES key can be used, it must be converted into the 122*2175Sjp161948architecture dependent I<DES_key_schedule> via the 123*2175Sjp161948DES_set_key_checked() or DES_set_key_unchecked() function. 124*2175Sjp161948 125*2175Sjp161948DES_set_key_checked() will check that the key passed is of odd parity 126*2175Sjp161948and is not a week or semi-weak key. If the parity is wrong, then -1 127*2175Sjp161948is returned. If the key is a weak key, then -2 is returned. If an 128*2175Sjp161948error is returned, the key schedule is not generated. 129*2175Sjp161948 130*2175Sjp161948DES_set_key() works like 131*2175Sjp161948DES_set_key_checked() if the I<DES_check_key> flag is non-zero, 132*2175Sjp161948otherwise like DES_set_key_unchecked(). These functions are available 133*2175Sjp161948for compatibility; it is recommended to use a function that does not 134*2175Sjp161948depend on a global variable. 135*2175Sjp161948 136*2175Sjp161948DES_set_odd_parity() sets the parity of the passed I<key> to odd. 137*2175Sjp161948 138*2175Sjp161948DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it 139*2175Sjp161948is ok. The probability that a randomly generated key is weak is 140*2175Sjp1619481/2^52, so it is not really worth checking for them. 141*2175Sjp161948 142*2175Sjp161948The following routines mostly operate on an input and output stream of 143*2175Sjp161948I<DES_cblock>s. 144*2175Sjp161948 145*2175Sjp161948DES_ecb_encrypt() is the basic DES encryption routine that encrypts or 146*2175Sjp161948decrypts a single 8-byte I<DES_cblock> in I<electronic code book> 147*2175Sjp161948(ECB) mode. It always transforms the input data, pointed to by 148*2175Sjp161948I<input>, into the output data, pointed to by the I<output> argument. 149*2175Sjp161948If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input> 150*2175Sjp161948(cleartext) is encrypted in to the I<output> (ciphertext) using the 151*2175Sjp161948key_schedule specified by the I<schedule> argument, previously set via 152*2175Sjp161948I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now 153*2175Sjp161948ciphertext) is decrypted into the I<output> (now cleartext). Input 154*2175Sjp161948and output may overlap. DES_ecb_encrypt() does not return a value. 155*2175Sjp161948 156*2175Sjp161948DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using 157*2175Sjp161948three-key Triple-DES encryption in ECB mode. This involves encrypting 158*2175Sjp161948the input with I<ks1>, decrypting with the key schedule I<ks2>, and 159*2175Sjp161948then encrypting with I<ks3>. This routine greatly reduces the chances 160*2175Sjp161948of brute force breaking of DES and has the advantage of if I<ks1>, 161*2175Sjp161948I<ks2> and I<ks3> are the same, it is equivalent to just encryption 162*2175Sjp161948using ECB mode and I<ks1> as the key. 163*2175Sjp161948 164*2175Sjp161948The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES 165*2175Sjp161948encryption by using I<ks1> for the final encryption. 166*2175Sjp161948 167*2175Sjp161948DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining> 168*2175Sjp161948(CBC) mode of DES. If the I<encrypt> argument is non-zero, the 169*2175Sjp161948routine cipher-block-chain encrypts the cleartext data pointed to by 170*2175Sjp161948the I<input> argument into the ciphertext pointed to by the I<output> 171*2175Sjp161948argument, using the key schedule provided by the I<schedule> argument, 172*2175Sjp161948and initialization vector provided by the I<ivec> argument. If the 173*2175Sjp161948I<length> argument is not an integral multiple of eight bytes, the 174*2175Sjp161948last block is copied to a temporary area and zero filled. The output 175*2175Sjp161948is always an integral multiple of eight bytes. 176*2175Sjp161948 177*2175Sjp161948DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and 178*2175Sjp161948I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret 179*2175Sjp161948(unlike the iv) and are as such, part of the key. So the key is sort 180*2175Sjp161948of 24 bytes. This is much better than CBC DES. 181*2175Sjp161948 182*2175Sjp161948DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with 183*2175Sjp161948three keys. This means that each DES operation inside the CBC mode is 184*2175Sjp161948really an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL. 185*2175Sjp161948 186*2175Sjp161948The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by 187*2175Sjp161948reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>. 188*2175Sjp161948This form of Triple-DES is used by the RSAREF library. 189*2175Sjp161948 190*2175Sjp161948DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block 191*2175Sjp161948chaining mode used by Kerberos v4. Its parameters are the same as 192*2175Sjp161948DES_ncbc_encrypt(). 193*2175Sjp161948 194*2175Sjp161948DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This 195*2175Sjp161948method takes an array of characters as input and outputs and array of 196*2175Sjp161948characters. It does not require any padding to 8 character groups. 197*2175Sjp161948Note: the I<ivec> variable is changed and the new changed value needs to 198*2175Sjp161948be passed to the next call to this function. Since this function runs 199*2175Sjp161948a complete DES ECB encryption per I<numbits>, this function is only 200*2175Sjp161948suggested for use when sending small numbers of characters. 201*2175Sjp161948 202*2175Sjp161948DES_cfb64_encrypt() 203*2175Sjp161948implements CFB mode of DES with 64bit feedback. Why is this 204*2175Sjp161948useful you ask? Because this routine will allow you to encrypt an 205*2175Sjp161948arbitrary number of bytes, no 8 byte padding. Each call to this 206*2175Sjp161948routine will encrypt the input bytes to output and then update ivec 207*2175Sjp161948and num. num contains 'how far' we are though ivec. If this does 208*2175Sjp161948not make much sense, read more about cfb mode of DES :-). 209*2175Sjp161948 210*2175Sjp161948DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as 211*2175Sjp161948DES_cfb64_encrypt() except that Triple-DES is used. 212*2175Sjp161948 213*2175Sjp161948DES_ofb_encrypt() encrypts using output feedback mode. This method 214*2175Sjp161948takes an array of characters as input and outputs and array of 215*2175Sjp161948characters. It does not require any padding to 8 character groups. 216*2175Sjp161948Note: the I<ivec> variable is changed and the new changed value needs to 217*2175Sjp161948be passed to the next call to this function. Since this function runs 218*2175Sjp161948a complete DES ECB encryption per numbits, this function is only 219*2175Sjp161948suggested for use when sending small numbers of characters. 220*2175Sjp161948 221*2175Sjp161948DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output 222*2175Sjp161948Feed Back mode. 223*2175Sjp161948 224*2175Sjp161948DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as 225*2175Sjp161948DES_ofb64_encrypt(), using Triple-DES. 226*2175Sjp161948 227*2175Sjp161948The following functions are included in the DES library for 228*2175Sjp161948compatibility with the MIT Kerberos library. 229*2175Sjp161948 230*2175Sjp161948DES_cbc_cksum() produces an 8 byte checksum based on the input stream 231*2175Sjp161948(via CBC encryption). The last 4 bytes of the checksum are returned 232*2175Sjp161948and the complete 8 bytes are placed in I<output>. This function is 233*2175Sjp161948used by Kerberos v4. Other applications should use 234*2175Sjp161948L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead. 235*2175Sjp161948 236*2175Sjp161948DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte 237*2175Sjp161948checksum from the input bytes. The algorithm can be iterated over the 238*2175Sjp161948input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is 239*2175Sjp161948non-NULL, the 8 bytes generated by each pass are written into 240*2175Sjp161948I<output>. 241*2175Sjp161948 242*2175Sjp161948The following are DES-based transformations: 243*2175Sjp161948 244*2175Sjp161948DES_fcrypt() is a fast version of the Unix crypt(3) function. This 245*2175Sjp161948version takes only a small amount of space relative to other fast 246*2175Sjp161948crypt() implementations. This is different to the normal crypt in 247*2175Sjp161948that the third parameter is the buffer that the return value is 248*2175Sjp161948written into. It needs to be at least 14 bytes long. This function 249*2175Sjp161948is thread safe, unlike the normal crypt. 250*2175Sjp161948 251*2175Sjp161948DES_crypt() is a faster replacement for the normal system crypt(). 252*2175Sjp161948This function calls DES_fcrypt() with a static array passed as the 253*2175Sjp161948third parameter. This emulates the normal non-thread safe semantics 254*2175Sjp161948of crypt(3). 255*2175Sjp161948 256*2175Sjp161948DES_enc_write() writes I<len> bytes to file descriptor I<fd> from 257*2175Sjp161948buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default) 258*2175Sjp161948using I<sched> for the key and I<iv> as a starting vector. The actual 259*2175Sjp161948data send down I<fd> consists of 4 bytes (in network byte order) 260*2175Sjp161948containing the length of the following encrypted data. The encrypted 261*2175Sjp161948data then follows, padded with random data out to a multiple of 8 262*2175Sjp161948bytes. 263*2175Sjp161948 264*2175Sjp161948DES_enc_read() is used to read I<len> bytes from file descriptor 265*2175Sjp161948I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to 266*2175Sjp161948have come from DES_enc_write() and is decrypted using I<sched> for 267*2175Sjp161948the key schedule and I<iv> for the initial vector. 268*2175Sjp161948 269*2175Sjp161948B<Warning:> The data format used by DES_enc_write() and DES_enc_read() 270*2175Sjp161948has a cryptographic weakness: When asked to write more than MAXWRITE 271*2175Sjp161948bytes, DES_enc_write() will split the data into several chunks that 272*2175Sjp161948are all encrypted using the same IV. So don't use these functions 273*2175Sjp161948unless you are sure you know what you do (in which case you might not 274*2175Sjp161948want to use them anyway). They cannot handle non-blocking sockets. 275*2175Sjp161948DES_enc_read() uses an internal state and thus cannot be used on 276*2175Sjp161948multiple files. 277*2175Sjp161948 278*2175Sjp161948I<DES_rw_mode> is used to specify the encryption mode to use with 279*2175Sjp161948DES_enc_read() and DES_end_write(). If set to I<DES_PCBC_MODE> (the 280*2175Sjp161948default), DES_pcbc_encrypt is used. If set to I<DES_CBC_MODE> 281*2175Sjp161948DES_cbc_encrypt is used. 282*2175Sjp161948 283*2175Sjp161948=head1 NOTES 284*2175Sjp161948 285*2175Sjp161948Single-key DES is insecure due to its short key size. ECB mode is 286*2175Sjp161948not suitable for most applications; see L<des_modes(7)|des_modes(7)>. 287*2175Sjp161948 288*2175Sjp161948The L<evp(3)|evp(3)> library provides higher-level encryption functions. 289*2175Sjp161948 290*2175Sjp161948=head1 BUGS 291*2175Sjp161948 292*2175Sjp161948DES_3cbc_encrypt() is flawed and must not be used in applications. 293*2175Sjp161948 294*2175Sjp161948DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt() 295*2175Sjp161948instead. 296*2175Sjp161948 297*2175Sjp161948DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. 298*2175Sjp161948What this means is that if you set numbits to 12, and length to 2, the 299*2175Sjp161948first 12 bits will come from the 1st input byte and the low half of 300*2175Sjp161948the second input byte. The second 12 bits will have the low 8 bits 301*2175Sjp161948taken from the 3rd input byte and the top 4 bits taken from the 4th 302*2175Sjp161948input byte. The same holds for output. This function has been 303*2175Sjp161948implemented this way because most people will be using a multiple of 8 304*2175Sjp161948and because once you get into pulling bytes input bytes apart things 305*2175Sjp161948get ugly! 306*2175Sjp161948 307*2175Sjp161948DES_string_to_key() is available for backward compatibility with the 308*2175Sjp161948MIT library. New applications should use a cryptographic hash function. 309*2175Sjp161948The same applies for DES_string_to_2key(). 310*2175Sjp161948 311*2175Sjp161948=head1 CONFORMING TO 312*2175Sjp161948 313*2175Sjp161948ANSI X3.106 314*2175Sjp161948 315*2175Sjp161948The B<des> library was written to be source code compatible with 316*2175Sjp161948the MIT Kerberos library. 317*2175Sjp161948 318*2175Sjp161948=head1 SEE ALSO 319*2175Sjp161948 320*2175Sjp161948crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)> 321*2175Sjp161948 322*2175Sjp161948=head1 HISTORY 323*2175Sjp161948 324*2175Sjp161948In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid 325*2175Sjp161948clashes with older versions of libdes. Compatibility des_ functions 326*2175Sjp161948are provided for a short while, as well as crypt(). 327*2175Sjp161948Declarations for these are in <openssl/des_old.h>. There is no DES_ 328*2175Sjp161948variant for des_random_seed(). 329*2175Sjp161948This will happen to other functions 330*2175Sjp161948as well if they are deemed redundant (des_random_seed() just calls 331*2175Sjp161948RAND_seed() and is present for backward compatibility only), buggy or 332*2175Sjp161948already scheduled for removal. 333*2175Sjp161948 334*2175Sjp161948des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), 335*2175Sjp161948des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(), 336*2175Sjp161948des_quad_cksum(), des_random_key() and des_string_to_key() 337*2175Sjp161948are available in the MIT Kerberos library; 338*2175Sjp161948des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key() 339*2175Sjp161948are available in newer versions of that library. 340*2175Sjp161948 341*2175Sjp161948des_set_key_checked() and des_set_key_unchecked() were added in 342*2175Sjp161948OpenSSL 0.9.5. 343*2175Sjp161948 344*2175Sjp161948des_generate_random_block(), des_init_random_number_generator(), 345*2175Sjp161948des_new_random_key(), des_set_random_generator_seed() and 346*2175Sjp161948des_set_sequence_number() and des_rand_data() are used in newer 347*2175Sjp161948versions of Kerberos but are not implemented here. 348*2175Sjp161948 349*2175Sjp161948des_random_key() generated cryptographically weak random data in 350*2175Sjp161948SSLeay and in OpenSSL prior version 0.9.5, as well as in the original 351*2175Sjp161948MIT library. 352*2175Sjp161948 353*2175Sjp161948=head1 AUTHOR 354*2175Sjp161948 355*2175Sjp161948Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project 356*2175Sjp161948(http://www.openssl.org). 357*2175Sjp161948 358*2175Sjp161948=cut 359