1*2175Sjp161948=pod 2*2175Sjp161948 3*2175Sjp161948=head1 NAME 4*2175Sjp161948 5*2175Sjp161948EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, 6*2175Sjp161948EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate, 7*2175Sjp161948EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, 8*2175Sjp161948EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length, 9*2175Sjp161948EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, 10*2175Sjp161948EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal, 11*2175Sjp161948EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname, 12*2175Sjp161948EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, 13*2175Sjp161948EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length, 14*2175Sjp161948EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, 15*2175Sjp161948EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, 16*2175Sjp161948EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data, 17*2175Sjp161948EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags, 18*2175Sjp161948EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param, 19*2175Sjp161948EVP_CIPHER_CTX_set_padding - EVP cipher routines 20*2175Sjp161948 21*2175Sjp161948=head1 SYNOPSIS 22*2175Sjp161948 23*2175Sjp161948 #include <openssl/evp.h> 24*2175Sjp161948 25*2175Sjp161948 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a); 26*2175Sjp161948 27*2175Sjp161948 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 28*2175Sjp161948 ENGINE *impl, unsigned char *key, unsigned char *iv); 29*2175Sjp161948 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 30*2175Sjp161948 int *outl, unsigned char *in, int inl); 31*2175Sjp161948 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, 32*2175Sjp161948 int *outl); 33*2175Sjp161948 34*2175Sjp161948 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 35*2175Sjp161948 ENGINE *impl, unsigned char *key, unsigned char *iv); 36*2175Sjp161948 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 37*2175Sjp161948 int *outl, unsigned char *in, int inl); 38*2175Sjp161948 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, 39*2175Sjp161948 int *outl); 40*2175Sjp161948 41*2175Sjp161948 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 42*2175Sjp161948 ENGINE *impl, unsigned char *key, unsigned char *iv, int enc); 43*2175Sjp161948 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 44*2175Sjp161948 int *outl, unsigned char *in, int inl); 45*2175Sjp161948 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, 46*2175Sjp161948 int *outl); 47*2175Sjp161948 48*2175Sjp161948 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 49*2175Sjp161948 unsigned char *key, unsigned char *iv); 50*2175Sjp161948 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, 51*2175Sjp161948 int *outl); 52*2175Sjp161948 53*2175Sjp161948 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 54*2175Sjp161948 unsigned char *key, unsigned char *iv); 55*2175Sjp161948 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, 56*2175Sjp161948 int *outl); 57*2175Sjp161948 58*2175Sjp161948 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 59*2175Sjp161948 unsigned char *key, unsigned char *iv, int enc); 60*2175Sjp161948 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, 61*2175Sjp161948 int *outl); 62*2175Sjp161948 63*2175Sjp161948 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding); 64*2175Sjp161948 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen); 65*2175Sjp161948 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr); 66*2175Sjp161948 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a); 67*2175Sjp161948 68*2175Sjp161948 const EVP_CIPHER *EVP_get_cipherbyname(const char *name); 69*2175Sjp161948 #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a)) 70*2175Sjp161948 #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a)) 71*2175Sjp161948 72*2175Sjp161948 #define EVP_CIPHER_nid(e) ((e)->nid) 73*2175Sjp161948 #define EVP_CIPHER_block_size(e) ((e)->block_size) 74*2175Sjp161948 #define EVP_CIPHER_key_length(e) ((e)->key_len) 75*2175Sjp161948 #define EVP_CIPHER_iv_length(e) ((e)->iv_len) 76*2175Sjp161948 #define EVP_CIPHER_flags(e) ((e)->flags) 77*2175Sjp161948 #define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE) 78*2175Sjp161948 int EVP_CIPHER_type(const EVP_CIPHER *ctx); 79*2175Sjp161948 80*2175Sjp161948 #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher) 81*2175Sjp161948 #define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid) 82*2175Sjp161948 #define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size) 83*2175Sjp161948 #define EVP_CIPHER_CTX_key_length(e) ((e)->key_len) 84*2175Sjp161948 #define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len) 85*2175Sjp161948 #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data) 86*2175Sjp161948 #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d)) 87*2175Sjp161948 #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c)) 88*2175Sjp161948 #define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags) 89*2175Sjp161948 #define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE) 90*2175Sjp161948 91*2175Sjp161948 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type); 92*2175Sjp161948 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type); 93*2175Sjp161948 94*2175Sjp161948=head1 DESCRIPTION 95*2175Sjp161948 96*2175Sjp161948The EVP cipher routines are a high level interface to certain 97*2175Sjp161948symmetric ciphers. 98*2175Sjp161948 99*2175Sjp161948EVP_CIPHER_CTX_init() initializes cipher contex B<ctx>. 100*2175Sjp161948 101*2175Sjp161948EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption 102*2175Sjp161948with cipher B<type> from ENGINE B<impl>. B<ctx> must be initialized 103*2175Sjp161948before calling this function. B<type> is normally supplied 104*2175Sjp161948by a function such as EVP_des_cbc(). If B<impl> is NULL then the 105*2175Sjp161948default implementation is used. B<key> is the symmetric key to use 106*2175Sjp161948and B<iv> is the IV to use (if necessary), the actual number of bytes 107*2175Sjp161948used for the key and IV depends on the cipher. It is possible to set 108*2175Sjp161948all parameters to NULL except B<type> in an initial call and supply 109*2175Sjp161948the remaining parameters in subsequent calls, all of which have B<type> 110*2175Sjp161948set to NULL. This is done when the default cipher parameters are not 111*2175Sjp161948appropriate. 112*2175Sjp161948 113*2175Sjp161948EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and 114*2175Sjp161948writes the encrypted version to B<out>. This function can be called 115*2175Sjp161948multiple times to encrypt successive blocks of data. The amount 116*2175Sjp161948of data written depends on the block alignment of the encrypted data: 117*2175Sjp161948as a result the amount of data written may be anything from zero bytes 118*2175Sjp161948to (inl + cipher_block_size - 1) so B<outl> should contain sufficient 119*2175Sjp161948room. The actual number of bytes written is placed in B<outl>. 120*2175Sjp161948 121*2175Sjp161948If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts 122*2175Sjp161948the "final" data, that is any data that remains in a partial block. 123*2175Sjp161948It uses L<standard block padding|/NOTES> (aka PKCS padding). The encrypted 124*2175Sjp161948final data is written to B<out> which should have sufficient space for 125*2175Sjp161948one cipher block. The number of bytes written is placed in B<outl>. After 126*2175Sjp161948this function is called the encryption operation is finished and no further 127*2175Sjp161948calls to EVP_EncryptUpdate() should be made. 128*2175Sjp161948 129*2175Sjp161948If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more 130*2175Sjp161948data and it will return an error if any data remains in a partial block: 131*2175Sjp161948that is if the total data length is not a multiple of the block size. 132*2175Sjp161948 133*2175Sjp161948EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the 134*2175Sjp161948corresponding decryption operations. EVP_DecryptFinal() will return an 135*2175Sjp161948error code if padding is enabled and the final block is not correctly 136*2175Sjp161948formatted. The parameters and restrictions are identical to the encryption 137*2175Sjp161948operations except that if padding is enabled the decrypted data buffer B<out> 138*2175Sjp161948passed to EVP_DecryptUpdate() should have sufficient room for 139*2175Sjp161948(B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in 140*2175Sjp161948which case B<inl> bytes is sufficient. 141*2175Sjp161948 142*2175Sjp161948EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are 143*2175Sjp161948functions that can be used for decryption or encryption. The operation 144*2175Sjp161948performed depends on the value of the B<enc> parameter. It should be set 145*2175Sjp161948to 1 for encryption, 0 for decryption and -1 to leave the value unchanged 146*2175Sjp161948(the actual value of 'enc' being supplied in a previous call). 147*2175Sjp161948 148*2175Sjp161948EVP_CIPHER_CTX_cleanup() clears all information from a cipher context 149*2175Sjp161948and free up any allocated memory associate with it. It should be called 150*2175Sjp161948after all operations using a cipher are complete so sensitive information 151*2175Sjp161948does not remain in memory. 152*2175Sjp161948 153*2175Sjp161948EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a 154*2175Sjp161948similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex and 155*2175Sjp161948EVP_CipherInit_ex() except the B<ctx> paramter does not need to be 156*2175Sjp161948initialized and they always use the default cipher implementation. 157*2175Sjp161948 158*2175Sjp161948EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() behave in a 159*2175Sjp161948similar way to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and 160*2175Sjp161948EVP_CipherFinal_ex() except B<ctx> is automatically cleaned up 161*2175Sjp161948after the call. 162*2175Sjp161948 163*2175Sjp161948EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() 164*2175Sjp161948return an EVP_CIPHER structure when passed a cipher name, a NID or an 165*2175Sjp161948ASN1_OBJECT structure. 166*2175Sjp161948 167*2175Sjp161948EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when 168*2175Sjp161948passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID 169*2175Sjp161948value is an internal value which may not have a corresponding OBJECT 170*2175Sjp161948IDENTIFIER. 171*2175Sjp161948 172*2175Sjp161948EVP_CIPHER_CTX_set_padding() enables or disables padding. By default 173*2175Sjp161948encryption operations are padded using standard block padding and the 174*2175Sjp161948padding is checked and removed when decrypting. If the B<pad> parameter 175*2175Sjp161948is zero then no padding is performed, the total amount of data encrypted 176*2175Sjp161948or decrypted must then be a multiple of the block size or an error will 177*2175Sjp161948occur. 178*2175Sjp161948 179*2175Sjp161948EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key 180*2175Sjp161948length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> 181*2175Sjp161948structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length 182*2175Sjp161948for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a 183*2175Sjp161948given cipher, the value of EVP_CIPHER_CTX_key_length() may be different 184*2175Sjp161948for variable key length ciphers. 185*2175Sjp161948 186*2175Sjp161948EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. 187*2175Sjp161948If the cipher is a fixed length cipher then attempting to set the key 188*2175Sjp161948length to any value other than the fixed value is an error. 189*2175Sjp161948 190*2175Sjp161948EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV 191*2175Sjp161948length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>. 192*2175Sjp161948It will return zero if the cipher does not use an IV. The constant 193*2175Sjp161948B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers. 194*2175Sjp161948 195*2175Sjp161948EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block 196*2175Sjp161948size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> 197*2175Sjp161948structure. The constant B<EVP_MAX_IV_LENGTH> is also the maximum block 198*2175Sjp161948length for all ciphers. 199*2175Sjp161948 200*2175Sjp161948EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed 201*2175Sjp161948cipher or context. This "type" is the actual NID of the cipher OBJECT 202*2175Sjp161948IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and 203*2175Sjp161948128 bit RC2 have the same NID. If the cipher does not have an object 204*2175Sjp161948identifier or does not have ASN1 support this function will return 205*2175Sjp161948B<NID_undef>. 206*2175Sjp161948 207*2175Sjp161948EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed 208*2175Sjp161948an B<EVP_CIPHER_CTX> structure. 209*2175Sjp161948 210*2175Sjp161948EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode: 211*2175Sjp161948EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or 212*2175Sjp161948EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then 213*2175Sjp161948EVP_CIPH_STREAM_CIPHER is returned. 214*2175Sjp161948 215*2175Sjp161948EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based 216*2175Sjp161948on the passed cipher. This will typically include any parameters and an 217*2175Sjp161948IV. The cipher IV (if any) must be set when this call is made. This call 218*2175Sjp161948should be made before the cipher is actually "used" (before any 219*2175Sjp161948EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function 220*2175Sjp161948may fail if the cipher does not have any ASN1 support. 221*2175Sjp161948 222*2175Sjp161948EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 223*2175Sjp161948AlgorithmIdentifier "parameter". The precise effect depends on the cipher 224*2175Sjp161948In the case of RC2, for example, it will set the IV and effective key length. 225*2175Sjp161948This function should be called after the base cipher type is set but before 226*2175Sjp161948the key is set. For example EVP_CipherInit() will be called with the IV and 227*2175Sjp161948key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally 228*2175Sjp161948EVP_CipherInit() again with all parameters except the key set to NULL. It is 229*2175Sjp161948possible for this function to fail if the cipher does not have any ASN1 support 230*2175Sjp161948or the parameters cannot be set (for example the RC2 effective key length 231*2175Sjp161948is not supported. 232*2175Sjp161948 233*2175Sjp161948EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined 234*2175Sjp161948and set. Currently only the RC2 effective key length and the number of rounds of 235*2175Sjp161948RC5 can be set. 236*2175Sjp161948 237*2175Sjp161948=head1 RETURN VALUES 238*2175Sjp161948 239*2175Sjp161948EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() 240*2175Sjp161948return 1 for success and 0 for failure. 241*2175Sjp161948 242*2175Sjp161948EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure. 243*2175Sjp161948EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success. 244*2175Sjp161948 245*2175Sjp161948EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure. 246*2175Sjp161948EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success. 247*2175Sjp161948 248*2175Sjp161948EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure. 249*2175Sjp161948 250*2175Sjp161948EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() 251*2175Sjp161948return an B<EVP_CIPHER> structure or NULL on error. 252*2175Sjp161948 253*2175Sjp161948EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID. 254*2175Sjp161948 255*2175Sjp161948EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block 256*2175Sjp161948size. 257*2175Sjp161948 258*2175Sjp161948EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key 259*2175Sjp161948length. 260*2175Sjp161948 261*2175Sjp161948EVP_CIPHER_CTX_set_padding() always returns 1. 262*2175Sjp161948 263*2175Sjp161948EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV 264*2175Sjp161948length or zero if the cipher does not use an IV. 265*2175Sjp161948 266*2175Sjp161948EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's 267*2175Sjp161948OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER. 268*2175Sjp161948 269*2175Sjp161948EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure. 270*2175Sjp161948 271*2175Sjp161948EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for 272*2175Sjp161948success or zero for failure. 273*2175Sjp161948 274*2175Sjp161948=head1 CIPHER LISTING 275*2175Sjp161948 276*2175Sjp161948All algorithms have a fixed key length unless otherwise stated. 277*2175Sjp161948 278*2175Sjp161948=over 4 279*2175Sjp161948 280*2175Sjp161948=item EVP_enc_null() 281*2175Sjp161948 282*2175Sjp161948Null cipher: does nothing. 283*2175Sjp161948 284*2175Sjp161948=item EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void) 285*2175Sjp161948 286*2175Sjp161948DES in CBC, ECB, CFB and OFB modes respectively. 287*2175Sjp161948 288*2175Sjp161948=item EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void) 289*2175Sjp161948 290*2175Sjp161948Two key triple DES in CBC, ECB, CFB and OFB modes respectively. 291*2175Sjp161948 292*2175Sjp161948=item EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void) 293*2175Sjp161948 294*2175Sjp161948Three key triple DES in CBC, ECB, CFB and OFB modes respectively. 295*2175Sjp161948 296*2175Sjp161948=item EVP_desx_cbc(void) 297*2175Sjp161948 298*2175Sjp161948DESX algorithm in CBC mode. 299*2175Sjp161948 300*2175Sjp161948=item EVP_rc4(void) 301*2175Sjp161948 302*2175Sjp161948RC4 stream cipher. This is a variable key length cipher with default key length 128 bits. 303*2175Sjp161948 304*2175Sjp161948=item EVP_rc4_40(void) 305*2175Sjp161948 306*2175Sjp161948RC4 stream cipher with 40 bit key length. This is obsolete and new code should use EVP_rc4() 307*2175Sjp161948and the EVP_CIPHER_CTX_set_key_length() function. 308*2175Sjp161948 309*2175Sjp161948=item EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void), EVP_idea_cbc(void) 310*2175Sjp161948 311*2175Sjp161948IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively. 312*2175Sjp161948 313*2175Sjp161948=item EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void) 314*2175Sjp161948 315*2175Sjp161948RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key 316*2175Sjp161948length cipher with an additional parameter called "effective key bits" or "effective key length". 317*2175Sjp161948By default both are set to 128 bits. 318*2175Sjp161948 319*2175Sjp161948=item EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void) 320*2175Sjp161948 321*2175Sjp161948RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits. 322*2175Sjp161948These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and 323*2175Sjp161948EVP_CIPHER_CTX_ctrl() to set the key length and effective key length. 324*2175Sjp161948 325*2175Sjp161948=item EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void); 326*2175Sjp161948 327*2175Sjp161948Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key 328*2175Sjp161948length cipher. 329*2175Sjp161948 330*2175Sjp161948=item EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void) 331*2175Sjp161948 332*2175Sjp161948CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key 333*2175Sjp161948length cipher. 334*2175Sjp161948 335*2175Sjp161948=item EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void) 336*2175Sjp161948 337*2175Sjp161948RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length 338*2175Sjp161948cipher with an additional "number of rounds" parameter. By default the key length is set to 128 339*2175Sjp161948bits and 12 rounds. 340*2175Sjp161948 341*2175Sjp161948=back 342*2175Sjp161948 343*2175Sjp161948=head1 NOTES 344*2175Sjp161948 345*2175Sjp161948Where possible the B<EVP> interface to symmetric ciphers should be used in 346*2175Sjp161948preference to the low level interfaces. This is because the code then becomes 347*2175Sjp161948transparent to the cipher used and much more flexible. 348*2175Sjp161948 349*2175Sjp161948PKCS padding works by adding B<n> padding bytes of value B<n> to make the total 350*2175Sjp161948length of the encrypted data a multiple of the block size. Padding is always 351*2175Sjp161948added so if the data is already a multiple of the block size B<n> will equal 352*2175Sjp161948the block size. For example if the block size is 8 and 11 bytes are to be 353*2175Sjp161948encrypted then 5 padding bytes of value 5 will be added. 354*2175Sjp161948 355*2175Sjp161948When decrypting the final block is checked to see if it has the correct form. 356*2175Sjp161948 357*2175Sjp161948Although the decryption operation can produce an error if padding is enabled, 358*2175Sjp161948it is not a strong test that the input data or key is correct. A random block 359*2175Sjp161948has better than 1 in 256 chance of being of the correct format and problems with 360*2175Sjp161948the input data earlier on will not produce a final decrypt error. 361*2175Sjp161948 362*2175Sjp161948If padding is disabled then the decryption operation will always succeed if 363*2175Sjp161948the total amount of data decrypted is a multiple of the block size. 364*2175Sjp161948 365*2175Sjp161948The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), 366*2175Sjp161948EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for 367*2175Sjp161948compatibility with existing code. New code should use EVP_EncryptInit_ex(), 368*2175Sjp161948EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), 369*2175Sjp161948EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an 370*2175Sjp161948existing context without allocating and freeing it up on each call. 371*2175Sjp161948 372*2175Sjp161948=head1 BUGS 373*2175Sjp161948 374*2175Sjp161948For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is 375*2175Sjp161948a limitation of the current RC5 code rather than the EVP interface. 376*2175Sjp161948 377*2175Sjp161948EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with 378*2175Sjp161948default key lengths. If custom ciphers exceed these values the results are 379*2175Sjp161948unpredictable. This is because it has become standard practice to define a 380*2175Sjp161948generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes. 381*2175Sjp161948 382*2175Sjp161948The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested 383*2175Sjp161948for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode. 384*2175Sjp161948 385*2175Sjp161948=head1 EXAMPLES 386*2175Sjp161948 387*2175Sjp161948Get the number of rounds used in RC5: 388*2175Sjp161948 389*2175Sjp161948 int nrounds; 390*2175Sjp161948 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds); 391*2175Sjp161948 392*2175Sjp161948Get the RC2 effective key length: 393*2175Sjp161948 394*2175Sjp161948 int key_bits; 395*2175Sjp161948 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits); 396*2175Sjp161948 397*2175Sjp161948Set the number of rounds used in RC5: 398*2175Sjp161948 399*2175Sjp161948 int nrounds; 400*2175Sjp161948 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL); 401*2175Sjp161948 402*2175Sjp161948Set the effective key length used in RC2: 403*2175Sjp161948 404*2175Sjp161948 int key_bits; 405*2175Sjp161948 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL); 406*2175Sjp161948 407*2175Sjp161948Encrypt a string using blowfish: 408*2175Sjp161948 409*2175Sjp161948 int do_crypt(char *outfile) 410*2175Sjp161948 { 411*2175Sjp161948 unsigned char outbuf[1024]; 412*2175Sjp161948 int outlen, tmplen; 413*2175Sjp161948 /* Bogus key and IV: we'd normally set these from 414*2175Sjp161948 * another source. 415*2175Sjp161948 */ 416*2175Sjp161948 unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 417*2175Sjp161948 unsigned char iv[] = {1,2,3,4,5,6,7,8}; 418*2175Sjp161948 char intext[] = "Some Crypto Text"; 419*2175Sjp161948 EVP_CIPHER_CTX ctx; 420*2175Sjp161948 FILE *out; 421*2175Sjp161948 EVP_CIPHER_CTX_init(&ctx); 422*2175Sjp161948 EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv); 423*2175Sjp161948 424*2175Sjp161948 if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext))) 425*2175Sjp161948 { 426*2175Sjp161948 /* Error */ 427*2175Sjp161948 return 0; 428*2175Sjp161948 } 429*2175Sjp161948 /* Buffer passed to EVP_EncryptFinal() must be after data just 430*2175Sjp161948 * encrypted to avoid overwriting it. 431*2175Sjp161948 */ 432*2175Sjp161948 if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen)) 433*2175Sjp161948 { 434*2175Sjp161948 /* Error */ 435*2175Sjp161948 return 0; 436*2175Sjp161948 } 437*2175Sjp161948 outlen += tmplen; 438*2175Sjp161948 EVP_CIPHER_CTX_cleanup(&ctx); 439*2175Sjp161948 /* Need binary mode for fopen because encrypted data is 440*2175Sjp161948 * binary data. Also cannot use strlen() on it because 441*2175Sjp161948 * it wont be null terminated and may contain embedded 442*2175Sjp161948 * nulls. 443*2175Sjp161948 */ 444*2175Sjp161948 out = fopen(outfile, "wb"); 445*2175Sjp161948 fwrite(outbuf, 1, outlen, out); 446*2175Sjp161948 fclose(out); 447*2175Sjp161948 return 1; 448*2175Sjp161948 } 449*2175Sjp161948 450*2175Sjp161948The ciphertext from the above example can be decrypted using the B<openssl> 451*2175Sjp161948utility with the command line: 452*2175Sjp161948 453*2175Sjp161948 S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d> 454*2175Sjp161948 455*2175Sjp161948General encryption, decryption function example using FILE I/O and RC2 with an 456*2175Sjp16194880 bit key: 457*2175Sjp161948 458*2175Sjp161948 int do_crypt(FILE *in, FILE *out, int do_encrypt) 459*2175Sjp161948 { 460*2175Sjp161948 /* Allow enough space in output buffer for additional block */ 461*2175Sjp161948 inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; 462*2175Sjp161948 int inlen, outlen; 463*2175Sjp161948 /* Bogus key and IV: we'd normally set these from 464*2175Sjp161948 * another source. 465*2175Sjp161948 */ 466*2175Sjp161948 unsigned char key[] = "0123456789"; 467*2175Sjp161948 unsigned char iv[] = "12345678"; 468*2175Sjp161948 /* Don't set key or IV because we will modify the parameters */ 469*2175Sjp161948 EVP_CIPHER_CTX_init(&ctx); 470*2175Sjp161948 EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt); 471*2175Sjp161948 EVP_CIPHER_CTX_set_key_length(&ctx, 10); 472*2175Sjp161948 /* We finished modifying parameters so now we can set key and IV */ 473*2175Sjp161948 EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt); 474*2175Sjp161948 475*2175Sjp161948 for(;;) 476*2175Sjp161948 { 477*2175Sjp161948 inlen = fread(inbuf, 1, 1024, in); 478*2175Sjp161948 if(inlen <= 0) break; 479*2175Sjp161948 if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen)) 480*2175Sjp161948 { 481*2175Sjp161948 /* Error */ 482*2175Sjp161948 EVP_CIPHER_CTX_cleanup(&ctx); 483*2175Sjp161948 return 0; 484*2175Sjp161948 } 485*2175Sjp161948 fwrite(outbuf, 1, outlen, out); 486*2175Sjp161948 } 487*2175Sjp161948 if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen)) 488*2175Sjp161948 { 489*2175Sjp161948 /* Error */ 490*2175Sjp161948 EVP_CIPHER_CTX_cleanup(&ctx); 491*2175Sjp161948 return 0; 492*2175Sjp161948 } 493*2175Sjp161948 fwrite(outbuf, 1, outlen, out); 494*2175Sjp161948 495*2175Sjp161948 EVP_CIPHER_CTX_cleanup(&ctx); 496*2175Sjp161948 return 1; 497*2175Sjp161948 } 498*2175Sjp161948 499*2175Sjp161948 500*2175Sjp161948=head1 SEE ALSO 501*2175Sjp161948 502*2175Sjp161948L<evp(3)|evp(3)> 503*2175Sjp161948 504*2175Sjp161948=head1 HISTORY 505*2175Sjp161948 506*2175Sjp161948EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), 507*2175Sjp161948EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(), 508*2175Sjp161948EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in 509*2175Sjp161948OpenSSL 0.9.7. 510*2175Sjp161948 511*2175Sjp161948=cut 512