1*2175Sjp161948=pod
2*2175Sjp161948
3*2175Sjp161948=head1 NAME
4*2175Sjp161948
5*2175Sjp161948BN_mod_mul_reciprocal,  BN_div_recp, BN_RECP_CTX_new, BN_RECP_CTX_init,
6*2175Sjp161948BN_RECP_CTX_free, BN_RECP_CTX_set - modular multiplication using
7*2175Sjp161948reciprocal
8*2175Sjp161948
9*2175Sjp161948=head1 SYNOPSIS
10*2175Sjp161948
11*2175Sjp161948 #include <openssl/bn.h>
12*2175Sjp161948
13*2175Sjp161948 BN_RECP_CTX *BN_RECP_CTX_new(void);
14*2175Sjp161948 void BN_RECP_CTX_init(BN_RECP_CTX *recp);
15*2175Sjp161948 void BN_RECP_CTX_free(BN_RECP_CTX *recp);
16*2175Sjp161948
17*2175Sjp161948 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);
18*2175Sjp161948
19*2175Sjp161948 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, BIGNUM *a, BN_RECP_CTX *recp,
20*2175Sjp161948        BN_CTX *ctx);
21*2175Sjp161948
22*2175Sjp161948 int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
23*2175Sjp161948        BN_RECP_CTX *recp, BN_CTX *ctx);
24*2175Sjp161948
25*2175Sjp161948=head1 DESCRIPTION
26*2175Sjp161948
27*2175Sjp161948BN_mod_mul_reciprocal() can be used to perform an efficient
28*2175Sjp161948L<BN_mod_mul(3)|BN_mod_mul(3)> operation when the operation will be performed
29*2175Sjp161948repeatedly with the same modulus. It computes B<r>=(B<a>*B<b>)%B<m>
30*2175Sjp161948using B<recp>=1/B<m>, which is set as described below.  B<ctx> is a
31*2175Sjp161948previously allocated B<BN_CTX> used for temporary variables.
32*2175Sjp161948
33*2175Sjp161948BN_RECP_CTX_new() allocates and initializes a B<BN_RECP> structure.
34*2175Sjp161948BN_RECP_CTX_init() initializes an existing uninitialized B<BN_RECP>.
35*2175Sjp161948
36*2175Sjp161948BN_RECP_CTX_free() frees the components of the B<BN_RECP>, and, if it
37*2175Sjp161948was created by BN_RECP_CTX_new(), also the structure itself.
38*2175Sjp161948
39*2175Sjp161948BN_RECP_CTX_set() stores B<m> in B<recp> and sets it up for computing
40*2175Sjp1619481/B<m> and shifting it left by BN_num_bits(B<m>)+1 to make it an
41*2175Sjp161948integer. The result and the number of bits it was shifted left will
42*2175Sjp161948later be stored in B<recp>.
43*2175Sjp161948
44*2175Sjp161948BN_div_recp() divides B<a> by B<m> using B<recp>. It places the quotient
45*2175Sjp161948in B<dv> and the remainder in B<rem>.
46*2175Sjp161948
47*2175Sjp161948The B<BN_RECP_CTX> structure is defined as follows:
48*2175Sjp161948
49*2175Sjp161948 typedef struct bn_recp_ctx_st
50*2175Sjp161948	{
51*2175Sjp161948	BIGNUM N;	/* the divisor */
52*2175Sjp161948	BIGNUM Nr;	/* the reciprocal */
53*2175Sjp161948	int num_bits;
54*2175Sjp161948	int shift;
55*2175Sjp161948	int flags;
56*2175Sjp161948	} BN_RECP_CTX;
57*2175Sjp161948
58*2175Sjp161948It cannot be shared between threads.
59*2175Sjp161948
60*2175Sjp161948=head1 RETURN VALUES
61*2175Sjp161948
62*2175Sjp161948BN_RECP_CTX_new() returns the newly allocated B<BN_RECP_CTX>, and NULL
63*2175Sjp161948on error.
64*2175Sjp161948
65*2175Sjp161948BN_RECP_CTX_init() and BN_RECP_CTX_free() have no return values.
66*2175Sjp161948
67*2175Sjp161948For the other functions, 1 is returned for success, 0 on error.
68*2175Sjp161948The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.
69*2175Sjp161948
70*2175Sjp161948=head1 SEE ALSO
71*2175Sjp161948
72*2175Sjp161948L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_add(3)|BN_add(3)>,
73*2175Sjp161948L<BN_CTX_new(3)|BN_CTX_new(3)>
74*2175Sjp161948
75*2175Sjp161948=head1 HISTORY
76*2175Sjp161948
77*2175Sjp161948B<BN_RECP_CTX> was added in SSLeay 0.9.0. Before that, the function
78*2175Sjp161948BN_reciprocal() was used instead, and the BN_mod_mul_reciprocal()
79*2175Sjp161948arguments were different.
80*2175Sjp161948
81*2175Sjp161948=cut
82