1*2175Sjp161948=pod 2*2175Sjp161948 3*2175Sjp161948=head1 NAME 4*2175Sjp161948 5*2175Sjp161948BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, 6*2175Sjp161948BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - 7*2175Sjp161948arithmetic operations on BIGNUMs 8*2175Sjp161948 9*2175Sjp161948=head1 SYNOPSIS 10*2175Sjp161948 11*2175Sjp161948 #include <openssl/bn.h> 12*2175Sjp161948 13*2175Sjp161948 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 14*2175Sjp161948 15*2175Sjp161948 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 16*2175Sjp161948 17*2175Sjp161948 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); 18*2175Sjp161948 19*2175Sjp161948 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); 20*2175Sjp161948 21*2175Sjp161948 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, 22*2175Sjp161948 BN_CTX *ctx); 23*2175Sjp161948 24*2175Sjp161948 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 25*2175Sjp161948 26*2175Sjp161948 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 27*2175Sjp161948 28*2175Sjp161948 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 29*2175Sjp161948 BN_CTX *ctx); 30*2175Sjp161948 31*2175Sjp161948 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 32*2175Sjp161948 BN_CTX *ctx); 33*2175Sjp161948 34*2175Sjp161948 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 35*2175Sjp161948 BN_CTX *ctx); 36*2175Sjp161948 37*2175Sjp161948 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 38*2175Sjp161948 39*2175Sjp161948 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); 40*2175Sjp161948 41*2175Sjp161948 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, 42*2175Sjp161948 const BIGNUM *m, BN_CTX *ctx); 43*2175Sjp161948 44*2175Sjp161948 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); 45*2175Sjp161948 46*2175Sjp161948=head1 DESCRIPTION 47*2175Sjp161948 48*2175Sjp161948BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>). 49*2175Sjp161948I<r> may be the same B<BIGNUM> as I<a> or I<b>. 50*2175Sjp161948 51*2175Sjp161948BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>). 52*2175Sjp161948 53*2175Sjp161948BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>). 54*2175Sjp161948I<r> may be the same B<BIGNUM> as I<a> or I<b>. 55*2175Sjp161948For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>. 56*2175Sjp161948 57*2175Sjp161948BN_sqr() takes the square of I<a> and places the result in I<r> 58*2175Sjp161948(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>. 59*2175Sjp161948This function is faster than BN_mul(r,a,a). 60*2175Sjp161948 61*2175Sjp161948BN_div() divides I<a> by I<d> and places the result in I<dv> and the 62*2175Sjp161948remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may 63*2175Sjp161948be B<NULL>, in which case the respective value is not returned. 64*2175Sjp161948The result is rounded towards zero; thus if I<a> is negative, the 65*2175Sjp161948remainder will be zero or negative. 66*2175Sjp161948For division by powers of 2, use BN_rshift(3). 67*2175Sjp161948 68*2175Sjp161948BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>. 69*2175Sjp161948 70*2175Sjp161948BN_nnmod() reduces I<a> modulo I<m> and places the non-negative 71*2175Sjp161948remainder in I<r>. 72*2175Sjp161948 73*2175Sjp161948BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative 74*2175Sjp161948result in I<r>. 75*2175Sjp161948 76*2175Sjp161948BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the 77*2175Sjp161948non-negative result in I<r>. 78*2175Sjp161948 79*2175Sjp161948BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative 80*2175Sjp161948remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be 81*2175Sjp161948the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for 82*2175Sjp161948repeated computations using the same modulus, see 83*2175Sjp161948L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> and 84*2175Sjp161948L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>. 85*2175Sjp161948 86*2175Sjp161948BN_mod_sqr() takes the square of I<a> modulo B<m> and places the 87*2175Sjp161948result in I<r>. 88*2175Sjp161948 89*2175Sjp161948BN_exp() raises I<a> to the I<p>-th power and places the result in I<r> 90*2175Sjp161948(C<r=a^p>). This function is faster than repeated applications of 91*2175Sjp161948BN_mul(). 92*2175Sjp161948 93*2175Sjp161948BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p % 94*2175Sjp161948m>). This function uses less time and space than BN_exp(). 95*2175Sjp161948 96*2175Sjp161948BN_gcd() computes the greatest common divisor of I<a> and I<b> and 97*2175Sjp161948places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or 98*2175Sjp161948I<b>. 99*2175Sjp161948 100*2175Sjp161948For all functions, I<ctx> is a previously allocated B<BN_CTX> used for 101*2175Sjp161948temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>. 102*2175Sjp161948 103*2175Sjp161948Unless noted otherwise, the result B<BIGNUM> must be different from 104*2175Sjp161948the arguments. 105*2175Sjp161948 106*2175Sjp161948=head1 RETURN VALUES 107*2175Sjp161948 108*2175Sjp161948For all functions, 1 is returned for success, 0 on error. The return 109*2175Sjp161948value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>). 110*2175Sjp161948The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. 111*2175Sjp161948 112*2175Sjp161948=head1 SEE ALSO 113*2175Sjp161948 114*2175Sjp161948L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>, 115*2175Sjp161948L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)> 116*2175Sjp161948 117*2175Sjp161948=head1 HISTORY 118*2175Sjp161948 119*2175Sjp161948BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), 120*2175Sjp161948BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and 121*2175Sjp161948OpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay 122*2175Sjp1619480.9.1b. BN_exp() appeared in SSLeay 0.9.0. 123*2175Sjp161948BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in 124*2175Sjp161948OpenSSL 0.9.7. 125*2175Sjp161948 126*2175Sjp161948=cut 127