xref: /onnv-gate/usr/src/common/openssl/doc/crypto/BN_add.pod (revision 2175:b0b2f052a486)
1*2175Sjp161948=pod
2*2175Sjp161948
3*2175Sjp161948=head1 NAME
4*2175Sjp161948
5*2175Sjp161948BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
6*2175Sjp161948BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
7*2175Sjp161948arithmetic operations on BIGNUMs
8*2175Sjp161948
9*2175Sjp161948=head1 SYNOPSIS
10*2175Sjp161948
11*2175Sjp161948 #include <openssl/bn.h>
12*2175Sjp161948
13*2175Sjp161948 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
14*2175Sjp161948
15*2175Sjp161948 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
16*2175Sjp161948
17*2175Sjp161948 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
18*2175Sjp161948
19*2175Sjp161948 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
20*2175Sjp161948
21*2175Sjp161948 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
22*2175Sjp161948         BN_CTX *ctx);
23*2175Sjp161948
24*2175Sjp161948 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
25*2175Sjp161948
26*2175Sjp161948 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
27*2175Sjp161948
28*2175Sjp161948 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
29*2175Sjp161948         BN_CTX *ctx);
30*2175Sjp161948
31*2175Sjp161948 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
32*2175Sjp161948         BN_CTX *ctx);
33*2175Sjp161948
34*2175Sjp161948 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
35*2175Sjp161948         BN_CTX *ctx);
36*2175Sjp161948
37*2175Sjp161948 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
38*2175Sjp161948
39*2175Sjp161948 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
40*2175Sjp161948
41*2175Sjp161948 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
42*2175Sjp161948         const BIGNUM *m, BN_CTX *ctx);
43*2175Sjp161948
44*2175Sjp161948 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
45*2175Sjp161948
46*2175Sjp161948=head1 DESCRIPTION
47*2175Sjp161948
48*2175Sjp161948BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
49*2175Sjp161948I<r> may be the same B<BIGNUM> as I<a> or I<b>.
50*2175Sjp161948
51*2175Sjp161948BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
52*2175Sjp161948
53*2175Sjp161948BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
54*2175Sjp161948I<r> may be the same B<BIGNUM> as I<a> or I<b>.
55*2175Sjp161948For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>.
56*2175Sjp161948
57*2175Sjp161948BN_sqr() takes the square of I<a> and places the result in I<r>
58*2175Sjp161948(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
59*2175Sjp161948This function is faster than BN_mul(r,a,a).
60*2175Sjp161948
61*2175Sjp161948BN_div() divides I<a> by I<d> and places the result in I<dv> and the
62*2175Sjp161948remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
63*2175Sjp161948be B<NULL>, in which case the respective value is not returned.
64*2175Sjp161948The result is rounded towards zero; thus if I<a> is negative, the
65*2175Sjp161948remainder will be zero or negative.
66*2175Sjp161948For division by powers of 2, use BN_rshift(3).
67*2175Sjp161948
68*2175Sjp161948BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
69*2175Sjp161948
70*2175Sjp161948BN_nnmod() reduces I<a> modulo I<m> and places the non-negative
71*2175Sjp161948remainder in I<r>.
72*2175Sjp161948
73*2175Sjp161948BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative
74*2175Sjp161948result in I<r>.
75*2175Sjp161948
76*2175Sjp161948BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
77*2175Sjp161948non-negative result in I<r>.
78*2175Sjp161948
79*2175Sjp161948BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative
80*2175Sjp161948remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
81*2175Sjp161948the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
82*2175Sjp161948repeated computations using the same modulus, see
83*2175Sjp161948L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> and
84*2175Sjp161948L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.
85*2175Sjp161948
86*2175Sjp161948BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
87*2175Sjp161948result in I<r>.
88*2175Sjp161948
89*2175Sjp161948BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
90*2175Sjp161948(C<r=a^p>). This function is faster than repeated applications of
91*2175Sjp161948BN_mul().
92*2175Sjp161948
93*2175Sjp161948BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
94*2175Sjp161948m>). This function uses less time and space than BN_exp().
95*2175Sjp161948
96*2175Sjp161948BN_gcd() computes the greatest common divisor of I<a> and I<b> and
97*2175Sjp161948places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
98*2175Sjp161948I<b>.
99*2175Sjp161948
100*2175Sjp161948For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
101*2175Sjp161948temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>.
102*2175Sjp161948
103*2175Sjp161948Unless noted otherwise, the result B<BIGNUM> must be different from
104*2175Sjp161948the arguments.
105*2175Sjp161948
106*2175Sjp161948=head1 RETURN VALUES
107*2175Sjp161948
108*2175Sjp161948For all functions, 1 is returned for success, 0 on error. The return
109*2175Sjp161948value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
110*2175Sjp161948The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.
111*2175Sjp161948
112*2175Sjp161948=head1 SEE ALSO
113*2175Sjp161948
114*2175Sjp161948L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>,
115*2175Sjp161948L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)>
116*2175Sjp161948
117*2175Sjp161948=head1 HISTORY
118*2175Sjp161948
119*2175Sjp161948BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
120*2175Sjp161948BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
121*2175Sjp161948OpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay
122*2175Sjp1619480.9.1b. BN_exp() appeared in SSLeay 0.9.0.
123*2175Sjp161948BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in
124*2175Sjp161948OpenSSL 0.9.7.
125*2175Sjp161948
126*2175Sjp161948=cut
127