1*5697Smcpowers /*
2*5697Smcpowers * ***** BEGIN LICENSE BLOCK *****
3*5697Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*5697Smcpowers *
5*5697Smcpowers * The contents of this file are subject to the Mozilla Public License Version
6*5697Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with
7*5697Smcpowers * the License. You may obtain a copy of the License at
8*5697Smcpowers * http://www.mozilla.org/MPL/
9*5697Smcpowers *
10*5697Smcpowers * Software distributed under the License is distributed on an "AS IS" basis,
11*5697Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*5697Smcpowers * for the specific language governing rights and limitations under the
13*5697Smcpowers * License.
14*5697Smcpowers *
15*5697Smcpowers * The Original Code is the elliptic curve math library for prime field curves.
16*5697Smcpowers *
17*5697Smcpowers * The Initial Developer of the Original Code is
18*5697Smcpowers * Sun Microsystems, Inc.
19*5697Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003
20*5697Smcpowers * the Initial Developer. All Rights Reserved.
21*5697Smcpowers *
22*5697Smcpowers * Contributor(s):
23*5697Smcpowers * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24*5697Smcpowers * Stephen Fung <fungstep@hotmail.com>, and
25*5697Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26*5697Smcpowers * Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
27*5697Smcpowers * Nils Larsch <nla@trustcenter.de>, and
28*5697Smcpowers * Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
29*5697Smcpowers *
30*5697Smcpowers * Alternatively, the contents of this file may be used under the terms of
31*5697Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or
32*5697Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
33*5697Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead
34*5697Smcpowers * of those above. If you wish to allow use of your version of this file only
35*5697Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to
36*5697Smcpowers * use your version of this file under the terms of the MPL, indicate your
37*5697Smcpowers * decision by deleting the provisions above and replace them with the notice
38*5697Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete
39*5697Smcpowers * the provisions above, a recipient may use your version of this file under
40*5697Smcpowers * the terms of any one of the MPL, the GPL or the LGPL.
41*5697Smcpowers *
42*5697Smcpowers * ***** END LICENSE BLOCK ***** */
43*5697Smcpowers /*
44*5697Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
45*5697Smcpowers * Use is subject to license terms.
46*5697Smcpowers *
47*5697Smcpowers * Sun elects to use this software under the MPL license.
48*5697Smcpowers */
49*5697Smcpowers
50*5697Smcpowers #pragma ident "%Z%%M% %I% %E% SMI"
51*5697Smcpowers
52*5697Smcpowers #include "ecp.h"
53*5697Smcpowers #include "mplogic.h"
54*5697Smcpowers #ifndef _KERNEL
55*5697Smcpowers #include <stdlib.h>
56*5697Smcpowers #endif
57*5697Smcpowers
58*5697Smcpowers /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
59*5697Smcpowers mp_err
ec_GFp_pt_is_inf_aff(const mp_int * px,const mp_int * py)60*5697Smcpowers ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
61*5697Smcpowers {
62*5697Smcpowers
63*5697Smcpowers if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
64*5697Smcpowers return MP_YES;
65*5697Smcpowers } else {
66*5697Smcpowers return MP_NO;
67*5697Smcpowers }
68*5697Smcpowers
69*5697Smcpowers }
70*5697Smcpowers
71*5697Smcpowers /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
72*5697Smcpowers mp_err
ec_GFp_pt_set_inf_aff(mp_int * px,mp_int * py)73*5697Smcpowers ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
74*5697Smcpowers {
75*5697Smcpowers mp_zero(px);
76*5697Smcpowers mp_zero(py);
77*5697Smcpowers return MP_OKAY;
78*5697Smcpowers }
79*5697Smcpowers
80*5697Smcpowers /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
81*5697Smcpowers * Q, and R can all be identical. Uses affine coordinates. Assumes input
82*5697Smcpowers * is already field-encoded using field_enc, and returns output that is
83*5697Smcpowers * still field-encoded. */
84*5697Smcpowers mp_err
ec_GFp_pt_add_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)85*5697Smcpowers ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
86*5697Smcpowers const mp_int *qy, mp_int *rx, mp_int *ry,
87*5697Smcpowers const ECGroup *group)
88*5697Smcpowers {
89*5697Smcpowers mp_err res = MP_OKAY;
90*5697Smcpowers mp_int lambda, temp, tempx, tempy;
91*5697Smcpowers
92*5697Smcpowers MP_DIGITS(&lambda) = 0;
93*5697Smcpowers MP_DIGITS(&temp) = 0;
94*5697Smcpowers MP_DIGITS(&tempx) = 0;
95*5697Smcpowers MP_DIGITS(&tempy) = 0;
96*5697Smcpowers MP_CHECKOK(mp_init(&lambda, FLAG(px)));
97*5697Smcpowers MP_CHECKOK(mp_init(&temp, FLAG(px)));
98*5697Smcpowers MP_CHECKOK(mp_init(&tempx, FLAG(px)));
99*5697Smcpowers MP_CHECKOK(mp_init(&tempy, FLAG(px)));
100*5697Smcpowers /* if P = inf, then R = Q */
101*5697Smcpowers if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
102*5697Smcpowers MP_CHECKOK(mp_copy(qx, rx));
103*5697Smcpowers MP_CHECKOK(mp_copy(qy, ry));
104*5697Smcpowers res = MP_OKAY;
105*5697Smcpowers goto CLEANUP;
106*5697Smcpowers }
107*5697Smcpowers /* if Q = inf, then R = P */
108*5697Smcpowers if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
109*5697Smcpowers MP_CHECKOK(mp_copy(px, rx));
110*5697Smcpowers MP_CHECKOK(mp_copy(py, ry));
111*5697Smcpowers res = MP_OKAY;
112*5697Smcpowers goto CLEANUP;
113*5697Smcpowers }
114*5697Smcpowers /* if px != qx, then lambda = (py-qy) / (px-qx) */
115*5697Smcpowers if (mp_cmp(px, qx) != 0) {
116*5697Smcpowers MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
117*5697Smcpowers MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
118*5697Smcpowers MP_CHECKOK(group->meth->
119*5697Smcpowers field_div(&tempy, &tempx, &lambda, group->meth));
120*5697Smcpowers } else {
121*5697Smcpowers /* if py != qy or qy = 0, then R = inf */
122*5697Smcpowers if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
123*5697Smcpowers mp_zero(rx);
124*5697Smcpowers mp_zero(ry);
125*5697Smcpowers res = MP_OKAY;
126*5697Smcpowers goto CLEANUP;
127*5697Smcpowers }
128*5697Smcpowers /* lambda = (3qx^2+a) / (2qy) */
129*5697Smcpowers MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
130*5697Smcpowers MP_CHECKOK(mp_set_int(&temp, 3));
131*5697Smcpowers if (group->meth->field_enc) {
132*5697Smcpowers MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
133*5697Smcpowers }
134*5697Smcpowers MP_CHECKOK(group->meth->
135*5697Smcpowers field_mul(&tempx, &temp, &tempx, group->meth));
136*5697Smcpowers MP_CHECKOK(group->meth->
137*5697Smcpowers field_add(&tempx, &group->curvea, &tempx, group->meth));
138*5697Smcpowers MP_CHECKOK(mp_set_int(&temp, 2));
139*5697Smcpowers if (group->meth->field_enc) {
140*5697Smcpowers MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
141*5697Smcpowers }
142*5697Smcpowers MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
143*5697Smcpowers MP_CHECKOK(group->meth->
144*5697Smcpowers field_div(&tempx, &tempy, &lambda, group->meth));
145*5697Smcpowers }
146*5697Smcpowers /* rx = lambda^2 - px - qx */
147*5697Smcpowers MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
148*5697Smcpowers MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
149*5697Smcpowers MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
150*5697Smcpowers /* ry = (x1-x2) * lambda - y1 */
151*5697Smcpowers MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
152*5697Smcpowers MP_CHECKOK(group->meth->
153*5697Smcpowers field_mul(&tempy, &lambda, &tempy, group->meth));
154*5697Smcpowers MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
155*5697Smcpowers MP_CHECKOK(mp_copy(&tempx, rx));
156*5697Smcpowers MP_CHECKOK(mp_copy(&tempy, ry));
157*5697Smcpowers
158*5697Smcpowers CLEANUP:
159*5697Smcpowers mp_clear(&lambda);
160*5697Smcpowers mp_clear(&temp);
161*5697Smcpowers mp_clear(&tempx);
162*5697Smcpowers mp_clear(&tempy);
163*5697Smcpowers return res;
164*5697Smcpowers }
165*5697Smcpowers
166*5697Smcpowers /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
167*5697Smcpowers * identical. Uses affine coordinates. Assumes input is already
168*5697Smcpowers * field-encoded using field_enc, and returns output that is still
169*5697Smcpowers * field-encoded. */
170*5697Smcpowers mp_err
ec_GFp_pt_sub_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)171*5697Smcpowers ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
172*5697Smcpowers const mp_int *qy, mp_int *rx, mp_int *ry,
173*5697Smcpowers const ECGroup *group)
174*5697Smcpowers {
175*5697Smcpowers mp_err res = MP_OKAY;
176*5697Smcpowers mp_int nqy;
177*5697Smcpowers
178*5697Smcpowers MP_DIGITS(&nqy) = 0;
179*5697Smcpowers MP_CHECKOK(mp_init(&nqy, FLAG(px)));
180*5697Smcpowers /* nqy = -qy */
181*5697Smcpowers MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
182*5697Smcpowers res = group->point_add(px, py, qx, &nqy, rx, ry, group);
183*5697Smcpowers CLEANUP:
184*5697Smcpowers mp_clear(&nqy);
185*5697Smcpowers return res;
186*5697Smcpowers }
187*5697Smcpowers
188*5697Smcpowers /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
189*5697Smcpowers * affine coordinates. Assumes input is already field-encoded using
190*5697Smcpowers * field_enc, and returns output that is still field-encoded. */
191*5697Smcpowers mp_err
ec_GFp_pt_dbl_aff(const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)192*5697Smcpowers ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
193*5697Smcpowers mp_int *ry, const ECGroup *group)
194*5697Smcpowers {
195*5697Smcpowers return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
196*5697Smcpowers }
197*5697Smcpowers
198*5697Smcpowers /* by default, this routine is unused and thus doesn't need to be compiled */
199*5697Smcpowers #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
200*5697Smcpowers /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
201*5697Smcpowers * R can be identical. Uses affine coordinates. Assumes input is already
202*5697Smcpowers * field-encoded using field_enc, and returns output that is still
203*5697Smcpowers * field-encoded. */
204*5697Smcpowers mp_err
ec_GFp_pt_mul_aff(const mp_int * n,const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)205*5697Smcpowers ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
206*5697Smcpowers mp_int *rx, mp_int *ry, const ECGroup *group)
207*5697Smcpowers {
208*5697Smcpowers mp_err res = MP_OKAY;
209*5697Smcpowers mp_int k, k3, qx, qy, sx, sy;
210*5697Smcpowers int b1, b3, i, l;
211*5697Smcpowers
212*5697Smcpowers MP_DIGITS(&k) = 0;
213*5697Smcpowers MP_DIGITS(&k3) = 0;
214*5697Smcpowers MP_DIGITS(&qx) = 0;
215*5697Smcpowers MP_DIGITS(&qy) = 0;
216*5697Smcpowers MP_DIGITS(&sx) = 0;
217*5697Smcpowers MP_DIGITS(&sy) = 0;
218*5697Smcpowers MP_CHECKOK(mp_init(&k));
219*5697Smcpowers MP_CHECKOK(mp_init(&k3));
220*5697Smcpowers MP_CHECKOK(mp_init(&qx));
221*5697Smcpowers MP_CHECKOK(mp_init(&qy));
222*5697Smcpowers MP_CHECKOK(mp_init(&sx));
223*5697Smcpowers MP_CHECKOK(mp_init(&sy));
224*5697Smcpowers
225*5697Smcpowers /* if n = 0 then r = inf */
226*5697Smcpowers if (mp_cmp_z(n) == 0) {
227*5697Smcpowers mp_zero(rx);
228*5697Smcpowers mp_zero(ry);
229*5697Smcpowers res = MP_OKAY;
230*5697Smcpowers goto CLEANUP;
231*5697Smcpowers }
232*5697Smcpowers /* Q = P, k = n */
233*5697Smcpowers MP_CHECKOK(mp_copy(px, &qx));
234*5697Smcpowers MP_CHECKOK(mp_copy(py, &qy));
235*5697Smcpowers MP_CHECKOK(mp_copy(n, &k));
236*5697Smcpowers /* if n < 0 then Q = -Q, k = -k */
237*5697Smcpowers if (mp_cmp_z(n) < 0) {
238*5697Smcpowers MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
239*5697Smcpowers MP_CHECKOK(mp_neg(&k, &k));
240*5697Smcpowers }
241*5697Smcpowers #ifdef ECL_DEBUG /* basic double and add method */
242*5697Smcpowers l = mpl_significant_bits(&k) - 1;
243*5697Smcpowers MP_CHECKOK(mp_copy(&qx, &sx));
244*5697Smcpowers MP_CHECKOK(mp_copy(&qy, &sy));
245*5697Smcpowers for (i = l - 1; i >= 0; i--) {
246*5697Smcpowers /* S = 2S */
247*5697Smcpowers MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
248*5697Smcpowers /* if k_i = 1, then S = S + Q */
249*5697Smcpowers if (mpl_get_bit(&k, i) != 0) {
250*5697Smcpowers MP_CHECKOK(group->
251*5697Smcpowers point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
252*5697Smcpowers }
253*5697Smcpowers }
254*5697Smcpowers #else /* double and add/subtract method from
255*5697Smcpowers * standard */
256*5697Smcpowers /* k3 = 3 * k */
257*5697Smcpowers MP_CHECKOK(mp_set_int(&k3, 3));
258*5697Smcpowers MP_CHECKOK(mp_mul(&k, &k3, &k3));
259*5697Smcpowers /* S = Q */
260*5697Smcpowers MP_CHECKOK(mp_copy(&qx, &sx));
261*5697Smcpowers MP_CHECKOK(mp_copy(&qy, &sy));
262*5697Smcpowers /* l = index of high order bit in binary representation of 3*k */
263*5697Smcpowers l = mpl_significant_bits(&k3) - 1;
264*5697Smcpowers /* for i = l-1 downto 1 */
265*5697Smcpowers for (i = l - 1; i >= 1; i--) {
266*5697Smcpowers /* S = 2S */
267*5697Smcpowers MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
268*5697Smcpowers b3 = MP_GET_BIT(&k3, i);
269*5697Smcpowers b1 = MP_GET_BIT(&k, i);
270*5697Smcpowers /* if k3_i = 1 and k_i = 0, then S = S + Q */
271*5697Smcpowers if ((b3 == 1) && (b1 == 0)) {
272*5697Smcpowers MP_CHECKOK(group->
273*5697Smcpowers point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
274*5697Smcpowers /* if k3_i = 0 and k_i = 1, then S = S - Q */
275*5697Smcpowers } else if ((b3 == 0) && (b1 == 1)) {
276*5697Smcpowers MP_CHECKOK(group->
277*5697Smcpowers point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
278*5697Smcpowers }
279*5697Smcpowers }
280*5697Smcpowers #endif
281*5697Smcpowers /* output S */
282*5697Smcpowers MP_CHECKOK(mp_copy(&sx, rx));
283*5697Smcpowers MP_CHECKOK(mp_copy(&sy, ry));
284*5697Smcpowers
285*5697Smcpowers CLEANUP:
286*5697Smcpowers mp_clear(&k);
287*5697Smcpowers mp_clear(&k3);
288*5697Smcpowers mp_clear(&qx);
289*5697Smcpowers mp_clear(&qy);
290*5697Smcpowers mp_clear(&sx);
291*5697Smcpowers mp_clear(&sy);
292*5697Smcpowers return res;
293*5697Smcpowers }
294*5697Smcpowers #endif
295*5697Smcpowers
296*5697Smcpowers /* Validates a point on a GFp curve. */
297*5697Smcpowers mp_err
ec_GFp_validate_point(const mp_int * px,const mp_int * py,const ECGroup * group)298*5697Smcpowers ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
299*5697Smcpowers {
300*5697Smcpowers mp_err res = MP_NO;
301*5697Smcpowers mp_int accl, accr, tmp, pxt, pyt;
302*5697Smcpowers
303*5697Smcpowers MP_DIGITS(&accl) = 0;
304*5697Smcpowers MP_DIGITS(&accr) = 0;
305*5697Smcpowers MP_DIGITS(&tmp) = 0;
306*5697Smcpowers MP_DIGITS(&pxt) = 0;
307*5697Smcpowers MP_DIGITS(&pyt) = 0;
308*5697Smcpowers MP_CHECKOK(mp_init(&accl, FLAG(px)));
309*5697Smcpowers MP_CHECKOK(mp_init(&accr, FLAG(px)));
310*5697Smcpowers MP_CHECKOK(mp_init(&tmp, FLAG(px)));
311*5697Smcpowers MP_CHECKOK(mp_init(&pxt, FLAG(px)));
312*5697Smcpowers MP_CHECKOK(mp_init(&pyt, FLAG(px)));
313*5697Smcpowers
314*5697Smcpowers /* 1: Verify that publicValue is not the point at infinity */
315*5697Smcpowers if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
316*5697Smcpowers res = MP_NO;
317*5697Smcpowers goto CLEANUP;
318*5697Smcpowers }
319*5697Smcpowers /* 2: Verify that the coordinates of publicValue are elements
320*5697Smcpowers * of the field.
321*5697Smcpowers */
322*5697Smcpowers if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
323*5697Smcpowers (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
324*5697Smcpowers res = MP_NO;
325*5697Smcpowers goto CLEANUP;
326*5697Smcpowers }
327*5697Smcpowers /* 3: Verify that publicValue is on the curve. */
328*5697Smcpowers if (group->meth->field_enc) {
329*5697Smcpowers group->meth->field_enc(px, &pxt, group->meth);
330*5697Smcpowers group->meth->field_enc(py, &pyt, group->meth);
331*5697Smcpowers } else {
332*5697Smcpowers mp_copy(px, &pxt);
333*5697Smcpowers mp_copy(py, &pyt);
334*5697Smcpowers }
335*5697Smcpowers /* left-hand side: y^2 */
336*5697Smcpowers MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
337*5697Smcpowers /* right-hand side: x^3 + a*x + b */
338*5697Smcpowers MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
339*5697Smcpowers MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
340*5697Smcpowers MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
341*5697Smcpowers MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
342*5697Smcpowers MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
343*5697Smcpowers /* check LHS - RHS == 0 */
344*5697Smcpowers MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
345*5697Smcpowers if (mp_cmp_z(&accr) != 0) {
346*5697Smcpowers res = MP_NO;
347*5697Smcpowers goto CLEANUP;
348*5697Smcpowers }
349*5697Smcpowers /* 4: Verify that the order of the curve times the publicValue
350*5697Smcpowers * is the point at infinity.
351*5697Smcpowers */
352*5697Smcpowers MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
353*5697Smcpowers if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
354*5697Smcpowers res = MP_NO;
355*5697Smcpowers goto CLEANUP;
356*5697Smcpowers }
357*5697Smcpowers
358*5697Smcpowers res = MP_YES;
359*5697Smcpowers
360*5697Smcpowers CLEANUP:
361*5697Smcpowers mp_clear(&accl);
362*5697Smcpowers mp_clear(&accr);
363*5697Smcpowers mp_clear(&tmp);
364*5697Smcpowers mp_clear(&pxt);
365*5697Smcpowers mp_clear(&pyt);
366*5697Smcpowers return res;
367*5697Smcpowers }
368