16877Sda73024 /* 26877Sda73024 * --------------------------------------------------------------------------- 36877Sda73024 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. 46877Sda73024 * 56877Sda73024 * LICENSE TERMS 66877Sda73024 * 76877Sda73024 * The free distribution and use of this software is allowed (with or without 86877Sda73024 * changes) provided that: 96877Sda73024 * 106877Sda73024 * 1. source code distributions include the above copyright notice, this 116877Sda73024 * list of conditions and the following disclaimer; 126877Sda73024 * 136877Sda73024 * 2. binary distributions include the above copyright notice, this list 146877Sda73024 * of conditions and the following disclaimer in their documentation; 156877Sda73024 * 166877Sda73024 * 3. the name of the copyright holder is not used to endorse products 176877Sda73024 * built using this software without specific written permission. 186877Sda73024 * 196877Sda73024 * DISCLAIMER 206877Sda73024 * 216877Sda73024 * This software is provided 'as is' with no explicit or implied warranties 226877Sda73024 * in respect of its properties, including, but not limited to, correctness 236877Sda73024 * and/or fitness for purpose. 246877Sda73024 * --------------------------------------------------------------------------- 256877Sda73024 * Issue Date: 20/12/2007 266877Sda73024 * 276877Sda73024 * This file contains the compilation options for AES (Rijndael) and code 286877Sda73024 * that is common across encryption, key scheduling and table generation. 296877Sda73024 * 306877Sda73024 * OPERATION 316877Sda73024 * 326877Sda73024 * These source code files implement the AES algorithm Rijndael designed by 336877Sda73024 * Joan Daemen and Vincent Rijmen. This version is designed for the standard 346877Sda73024 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 356877Sda73024 * and 32 bytes). 366877Sda73024 * 376877Sda73024 * This version is designed for flexibility and speed using operations on 386877Sda73024 * 32-bit words rather than operations on bytes. It can be compiled with 396877Sda73024 * either big or little endian internal byte order but is faster when the 406877Sda73024 * native byte order for the processor is used. 416877Sda73024 * 426877Sda73024 * THE CIPHER INTERFACE 436877Sda73024 * 446877Sda73024 * The cipher interface is implemented as an array of bytes in which lower 456877Sda73024 * AES bit sequence indexes map to higher numeric significance within bytes. 466877Sda73024 */ 476877Sda73024 486877Sda73024 /* 496877Sda73024 * OpenSolaris changes 506877Sda73024 * 1. Added __cplusplus and _AESTAB_H header guards 516877Sda73024 * 2. Added header files sys/types.h and aes_impl.h 526877Sda73024 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C 536877Sda73024 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER 546877Sda73024 * from brg_endian.h 556877Sda73024 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT 566877Sda73024 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t 57*7421SDaniel.Anderson@Sun.COM * 7. Defined aes_sw32 as htonl() for byte swapping 58*7421SDaniel.Anderson@Sun.COM * 8. Cstyled and hdrchk code 596877Sda73024 * 606877Sda73024 */ 616877Sda73024 626877Sda73024 #ifndef _AESOPT_H 636877Sda73024 #define _AESOPT_H 646877Sda73024 656877Sda73024 #ifdef __cplusplus 666877Sda73024 extern "C" { 676877Sda73024 #endif 686877Sda73024 696877Sda73024 #include <sys/types.h> 70*7421SDaniel.Anderson@Sun.COM #include <sys/byteorder.h> 716877Sda73024 #include <aes_impl.h> 726877Sda73024 736877Sda73024 /* SUPPORT FEATURES */ 746877Sda73024 #define AES_ENCRYPT /* if support for encryption is needed */ 756877Sda73024 #define AES_DECRYPT /* if support for decryption is needed */ 766877Sda73024 776877Sda73024 /* PLATFORM-SPECIFIC FEATURES */ 786877Sda73024 #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ 796877Sda73024 #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ 806877Sda73024 #define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN 816877Sda73024 #define AES_REV_DKS /* define to reverse decryption key schedule */ 826877Sda73024 836877Sda73024 846877Sda73024 /* 856877Sda73024 * CONFIGURATION - THE USE OF DEFINES 866877Sda73024 * Later in this section there are a number of defines that control the 876877Sda73024 * operation of the code. In each section, the purpose of each define is 886877Sda73024 * explained so that the relevant form can be included or excluded by 896877Sda73024 * setting either 1's or 0's respectively on the branches of the related 906877Sda73024 * #if clauses. The following local defines should not be changed. 916877Sda73024 */ 926877Sda73024 936877Sda73024 #define ENCRYPTION_IN_C 1 946877Sda73024 #define DECRYPTION_IN_C 2 956877Sda73024 #define ENC_KEYING_IN_C 4 966877Sda73024 #define DEC_KEYING_IN_C 8 976877Sda73024 986877Sda73024 #define NO_TABLES 0 996877Sda73024 #define ONE_TABLE 1 1006877Sda73024 #define FOUR_TABLES 4 1016877Sda73024 #define NONE 0 1026877Sda73024 #define PARTIAL 1 1036877Sda73024 #define FULL 2 1046877Sda73024 1056877Sda73024 /* --- START OF USER CONFIGURED OPTIONS --- */ 1066877Sda73024 1076877Sda73024 /* 1086877Sda73024 * 1. BYTE ORDER WITHIN 32 BIT WORDS 1096877Sda73024 * 1106877Sda73024 * The fundamental data processing units in Rijndael are 8-bit bytes. The 1116877Sda73024 * input, output and key input are all enumerated arrays of bytes in which 1126877Sda73024 * bytes are numbered starting at zero and increasing to one less than the 1136877Sda73024 * number of bytes in the array in question. This enumeration is only used 1146877Sda73024 * for naming bytes and does not imply any adjacency or order relationship 1156877Sda73024 * from one byte to another. When these inputs and outputs are considered 1166877Sda73024 * as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to 1176877Sda73024 * byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. 1186877Sda73024 * In this implementation bits are numbered from 0 to 7 starting at the 1196877Sda73024 * numerically least significant end of each byte. Bit n represents 2^n. 1206877Sda73024 * 1216877Sda73024 * However, Rijndael can be implemented more efficiently using 32-bit 1226877Sda73024 * words by packing bytes into words so that bytes 4*n to 4*n+3 are placed 1236877Sda73024 * into word[n]. While in principle these bytes can be assembled into words 1246877Sda73024 * in any positions, this implementation only supports the two formats in 1256877Sda73024 * which bytes in adjacent positions within words also have adjacent byte 1266877Sda73024 * numbers. This order is called big-endian if the lowest numbered bytes 1276877Sda73024 * in words have the highest numeric significance and little-endian if the 1286877Sda73024 * opposite applies. 1296877Sda73024 * 1306877Sda73024 * This code can work in either order irrespective of the order used by the 1316877Sda73024 * machine on which it runs. Normally the internal byte order will be set 1326877Sda73024 * to the order of the processor on which the code is to be run but this 1336877Sda73024 * define can be used to reverse this in special situations 1346877Sda73024 * 1356877Sda73024 * WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. 1366877Sda73024 * This define will hence be redefined later (in section 4) if necessary 1376877Sda73024 */ 1386877Sda73024 1396877Sda73024 #if 1 1406877Sda73024 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER 1416877Sda73024 #elif 0 1426877Sda73024 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN 1436877Sda73024 #elif 0 1446877Sda73024 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN 1456877Sda73024 #else 1466877Sda73024 #error The algorithm byte order is not defined 1476877Sda73024 #endif 1486877Sda73024 1496877Sda73024 /* 2. VIA ACE SUPPORT */ 1506877Sda73024 1516877Sda73024 #if defined(__GNUC__) && defined(__i386__) || \ 1526877Sda73024 defined(_WIN32) && defined(_M_IX86) && \ 1536877Sda73024 !(defined(_WIN64) || defined(_WIN32_WCE) || \ 1546877Sda73024 defined(_MSC_VER) && (_MSC_VER <= 800)) 1556877Sda73024 #define VIA_ACE_POSSIBLE 1566877Sda73024 #endif 1576877Sda73024 1586877Sda73024 /* 1596877Sda73024 * Define this option if support for the VIA ACE is required. This uses 1606877Sda73024 * inline assembler instructions and is only implemented for the Microsoft, 1616877Sda73024 * Intel and GCC compilers. If VIA ACE is known to be present, then defining 1626877Sda73024 * ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption 1636877Sda73024 * code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if 1646877Sda73024 * it is detected (both present and enabled) but the normal AES code will 1656877Sda73024 * also be present. 1666877Sda73024 * 1676877Sda73024 * When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte 1686877Sda73024 * aligned; other input/output buffers do not need to be 16 byte aligned 1696877Sda73024 * but there are very large performance gains if this can be arranged. 1706877Sda73024 * VIA ACE also requires the decryption key schedule to be in reverse 1716877Sda73024 * order (which later checks below ensure). 1726877Sda73024 */ 1736877Sda73024 1746877Sda73024 /* VIA ACE is not used here for OpenSolaris: */ 1756877Sda73024 #undef VIA_ACE_POSSIBLE 1766877Sda73024 #undef ASSUME_VIA_ACE_PRESENT 1776877Sda73024 1786877Sda73024 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT) 1796877Sda73024 #define USE_VIA_ACE_IF_PRESENT 1806877Sda73024 #endif 1816877Sda73024 1826877Sda73024 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT) 1836877Sda73024 #define ASSUME_VIA_ACE_PRESENT 1846877Sda73024 #endif 1856877Sda73024 1866877Sda73024 1876877Sda73024 /* 1886877Sda73024 * 3. ASSEMBLER SUPPORT 1896877Sda73024 * 1906877Sda73024 * This define (which can be on the command line) enables the use of the 1916877Sda73024 * assembler code routines for encryption, decryption and key scheduling 1926877Sda73024 * as follows: 1936877Sda73024 * 1946877Sda73024 * ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for 1956877Sda73024 * encryption and decryption and but with key scheduling in C 1966877Sda73024 * ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for 1976877Sda73024 * encryption, decryption and key scheduling 1986877Sda73024 * ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for 1996877Sda73024 * encryption and decryption and but with key scheduling in C 2006877Sda73024 * ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for 2016877Sda73024 * encryption and decryption and but with key scheduling in C 2026877Sda73024 * 2036877Sda73024 * Change one 'if 0' below to 'if 1' to select the version or define 2046877Sda73024 * as a compilation option. 2056877Sda73024 */ 2066877Sda73024 2076877Sda73024 #if 0 && !defined(ASM_X86_V1C) 2086877Sda73024 #define ASM_X86_V1C 2096877Sda73024 #elif 0 && !defined(ASM_X86_V2) 2106877Sda73024 #define ASM_X86_V2 2116877Sda73024 #elif 0 && !defined(ASM_X86_V2C) 2126877Sda73024 #define ASM_X86_V2C 2136877Sda73024 #elif 1 && !defined(ASM_AMD64_C) 2146877Sda73024 #define ASM_AMD64_C 2156877Sda73024 #endif 2166877Sda73024 2176877Sda73024 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \ 2186877Sda73024 !defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \ 2196877Sda73024 !defined(__amd64) 2206877Sda73024 #error Assembler code is only available for x86 and AMD64 systems 2216877Sda73024 #endif 2226877Sda73024 2236877Sda73024 /* 2246877Sda73024 * 4. FAST INPUT/OUTPUT OPERATIONS. 2256877Sda73024 * 2266877Sda73024 * On some machines it is possible to improve speed by transferring the 2276877Sda73024 * bytes in the input and output arrays to and from the internal 32-bit 2286877Sda73024 * variables by addressing these arrays as if they are arrays of 32-bit 2296877Sda73024 * words. On some machines this will always be possible but there may 2306877Sda73024 * be a large performance penalty if the byte arrays are not aligned on 2316877Sda73024 * the normal word boundaries. On other machines this technique will 2326877Sda73024 * lead to memory access errors when such 32-bit word accesses are not 2336877Sda73024 * properly aligned. The option SAFE_IO avoids such problems but will 2346877Sda73024 * often be slower on those machines that support misaligned access 2356877Sda73024 * (especially so if care is taken to align the input and output byte 2366877Sda73024 * arrays on 32-bit word boundaries). If SAFE_IO is not defined it is 2376877Sda73024 * assumed that access to byte arrays as if they are arrays of 32-bit 2386877Sda73024 * words will not cause problems when such accesses are misaligned. 2396877Sda73024 */ 2406877Sda73024 #if 1 && !defined(_MSC_VER) 2416877Sda73024 #define SAFE_IO 2426877Sda73024 #endif 2436877Sda73024 2446877Sda73024 /* 2456877Sda73024 * 5. LOOP UNROLLING 2466877Sda73024 * 2476877Sda73024 * The code for encryption and decryption cycles through a number of rounds 2486877Sda73024 * that can be implemented either in a loop or by expanding the code into a 2496877Sda73024 * long sequence of instructions, the latter producing a larger program but 2506877Sda73024 * one that will often be much faster. The latter is called loop unrolling. 2516877Sda73024 * There are also potential speed advantages in expanding two iterations in 2526877Sda73024 * a loop with half the number of iterations, which is called partial loop 2536877Sda73024 * unrolling. The following options allow partial or full loop unrolling 2546877Sda73024 * to be set independently for encryption and decryption 2556877Sda73024 */ 2566877Sda73024 #if 1 2576877Sda73024 #define ENC_UNROLL FULL 2586877Sda73024 #elif 0 2596877Sda73024 #define ENC_UNROLL PARTIAL 2606877Sda73024 #else 2616877Sda73024 #define ENC_UNROLL NONE 2626877Sda73024 #endif 2636877Sda73024 2646877Sda73024 #if 1 2656877Sda73024 #define DEC_UNROLL FULL 2666877Sda73024 #elif 0 2676877Sda73024 #define DEC_UNROLL PARTIAL 2686877Sda73024 #else 2696877Sda73024 #define DEC_UNROLL NONE 2706877Sda73024 #endif 2716877Sda73024 2726877Sda73024 #if 1 2736877Sda73024 #define ENC_KS_UNROLL 2746877Sda73024 #endif 2756877Sda73024 2766877Sda73024 #if 1 2776877Sda73024 #define DEC_KS_UNROLL 2786877Sda73024 #endif 2796877Sda73024 2806877Sda73024 /* 2816877Sda73024 * 6. FAST FINITE FIELD OPERATIONS 2826877Sda73024 * 2836877Sda73024 * If this section is included, tables are used to provide faster finite 2846877Sda73024 * field arithmetic. This has no effect if FIXED_TABLES is defined. 2856877Sda73024 */ 2866877Sda73024 #if 1 2876877Sda73024 #define FF_TABLES 2886877Sda73024 #endif 2896877Sda73024 2906877Sda73024 /* 2916877Sda73024 * 7. INTERNAL STATE VARIABLE FORMAT 2926877Sda73024 * 2936877Sda73024 * The internal state of Rijndael is stored in a number of local 32-bit 2946877Sda73024 * word variables which can be defined either as an array or as individual 2956877Sda73024 * names variables. Include this section if you want to store these local 2966877Sda73024 * variables in arrays. Otherwise individual local variables will be used. 2976877Sda73024 */ 2986877Sda73024 #if 1 2996877Sda73024 #define ARRAYS 3006877Sda73024 #endif 3016877Sda73024 3026877Sda73024 /* 3036877Sda73024 * 8. FIXED OR DYNAMIC TABLES 3046877Sda73024 * 3056877Sda73024 * When this section is included the tables used by the code are compiled 3066877Sda73024 * statically into the binary file. Otherwise the subroutine aes_init() 3076877Sda73024 * must be called to compute them before the code is first used. 3086877Sda73024 */ 3096877Sda73024 #if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800)) 3106877Sda73024 #define FIXED_TABLES 3116877Sda73024 #endif 3126877Sda73024 3136877Sda73024 /* 3146877Sda73024 * 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES 3156877Sda73024 * 3166877Sda73024 * In some systems it is better to mask longer values to extract bytes 3176877Sda73024 * rather than using a cast. This option allows this choice. 3186877Sda73024 */ 3196877Sda73024 #if 0 3206877Sda73024 #define to_byte(x) ((uint8_t)(x)) 3216877Sda73024 #else 3226877Sda73024 #define to_byte(x) ((x) & 0xff) 3236877Sda73024 #endif 3246877Sda73024 3256877Sda73024 /* 3266877Sda73024 * 10. TABLE ALIGNMENT 3276877Sda73024 * 3286877Sda73024 * On some systems speed will be improved by aligning the AES large lookup 3296877Sda73024 * tables on particular boundaries. This define should be set to a power of 3306877Sda73024 * two giving the desired alignment. It can be left undefined if alignment 3316877Sda73024 * is not needed. This option is specific to the Micrsoft VC++ compiler - 3326877Sda73024 * it seems to sometimes cause trouble for the VC++ version 6 compiler. 3336877Sda73024 */ 3346877Sda73024 3356877Sda73024 #if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300) 3366877Sda73024 #define TABLE_ALIGN 32 3376877Sda73024 #endif 3386877Sda73024 3396877Sda73024 /* 3406877Sda73024 * 11. REDUCE CODE AND TABLE SIZE 3416877Sda73024 * 3426877Sda73024 * This replaces some expanded macros with function calls if AES_ASM_V2 or 3436877Sda73024 * AES_ASM_V2C are defined 3446877Sda73024 */ 3456877Sda73024 3466877Sda73024 #if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C)) 3476877Sda73024 #define REDUCE_CODE_SIZE 3486877Sda73024 #endif 3496877Sda73024 3506877Sda73024 /* 3516877Sda73024 * 12. TABLE OPTIONS 3526877Sda73024 * 3536877Sda73024 * This cipher proceeds by repeating in a number of cycles known as rounds 3546877Sda73024 * which are implemented by a round function which is optionally be speeded 3556877Sda73024 * up using tables. The basic tables are 256 32-bit words, with either 3566877Sda73024 * one or four tables being required for each round function depending on 3576877Sda73024 * how much speed is required. Encryption and decryption round functions 3586877Sda73024 * are different and the last encryption and decryption round functions are 3596877Sda73024 * different again making four different round functions in all. 3606877Sda73024 * 3616877Sda73024 * This means that: 3626877Sda73024 * 1. Normal encryption and decryption rounds can each use either 0, 1 3636877Sda73024 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 3646877Sda73024 * 2. The last encryption and decryption rounds can also use either 0, 1 3656877Sda73024 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 3666877Sda73024 * 3676877Sda73024 * Include or exclude the appropriate definitions below to set the number 3686877Sda73024 * of tables used by this implementation. 3696877Sda73024 */ 3706877Sda73024 3716877Sda73024 #if 1 /* set tables for the normal encryption round */ 3726877Sda73024 #define ENC_ROUND FOUR_TABLES 3736877Sda73024 #elif 0 3746877Sda73024 #define ENC_ROUND ONE_TABLE 3756877Sda73024 #else 3766877Sda73024 #define ENC_ROUND NO_TABLES 3776877Sda73024 #endif 3786877Sda73024 3796877Sda73024 #if 1 /* set tables for the last encryption round */ 3806877Sda73024 #define LAST_ENC_ROUND FOUR_TABLES 3816877Sda73024 #elif 0 3826877Sda73024 #define LAST_ENC_ROUND ONE_TABLE 3836877Sda73024 #else 3846877Sda73024 #define LAST_ENC_ROUND NO_TABLES 3856877Sda73024 #endif 3866877Sda73024 3876877Sda73024 #if 1 /* set tables for the normal decryption round */ 3886877Sda73024 #define DEC_ROUND FOUR_TABLES 3896877Sda73024 #elif 0 3906877Sda73024 #define DEC_ROUND ONE_TABLE 3916877Sda73024 #else 3926877Sda73024 #define DEC_ROUND NO_TABLES 3936877Sda73024 #endif 3946877Sda73024 3956877Sda73024 #if 1 /* set tables for the last decryption round */ 3966877Sda73024 #define LAST_DEC_ROUND FOUR_TABLES 3976877Sda73024 #elif 0 3986877Sda73024 #define LAST_DEC_ROUND ONE_TABLE 3996877Sda73024 #else 4006877Sda73024 #define LAST_DEC_ROUND NO_TABLES 4016877Sda73024 #endif 4026877Sda73024 4036877Sda73024 /* 4046877Sda73024 * The decryption key schedule can be speeded up with tables in the same 4056877Sda73024 * way that the round functions can. Include or exclude the following 4066877Sda73024 * defines to set this requirement. 4076877Sda73024 */ 4086877Sda73024 #if 1 4096877Sda73024 #define KEY_SCHED FOUR_TABLES 4106877Sda73024 #elif 0 4116877Sda73024 #define KEY_SCHED ONE_TABLE 4126877Sda73024 #else 4136877Sda73024 #define KEY_SCHED NO_TABLES 4146877Sda73024 #endif 4156877Sda73024 4166877Sda73024 /* ---- END OF USER CONFIGURED OPTIONS ---- */ 4176877Sda73024 4186877Sda73024 /* VIA ACE support is only available for VC++ and GCC */ 4196877Sda73024 4206877Sda73024 #if !defined(_MSC_VER) && !defined(__GNUC__) 4216877Sda73024 #if defined(ASSUME_VIA_ACE_PRESENT) 4226877Sda73024 #undef ASSUME_VIA_ACE_PRESENT 4236877Sda73024 #endif 4246877Sda73024 #if defined(USE_VIA_ACE_IF_PRESENT) 4256877Sda73024 #undef USE_VIA_ACE_IF_PRESENT 4266877Sda73024 #endif 4276877Sda73024 #endif 4286877Sda73024 4296877Sda73024 #if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT) 4306877Sda73024 #define USE_VIA_ACE_IF_PRESENT 4316877Sda73024 #endif 4326877Sda73024 4336877Sda73024 #if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS) 4346877Sda73024 #define AES_REV_DKS 4356877Sda73024 #endif 4366877Sda73024 4376877Sda73024 /* Assembler support requires the use of platform byte order */ 4386877Sda73024 4396877Sda73024 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \ 4406877Sda73024 (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) 4416877Sda73024 #undef ALGORITHM_BYTE_ORDER 4426877Sda73024 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER 4436877Sda73024 #endif 4446877Sda73024 4456877Sda73024 /* 4466877Sda73024 * In this implementation the columns of the state array are each held in 4476877Sda73024 * 32-bit words. The state array can be held in various ways: in an array 4486877Sda73024 * of words, in a number of individual word variables or in a number of 4496877Sda73024 * processor registers. The following define maps a variable name x and 4506877Sda73024 * a column number c to the way the state array variable is to be held. 4516877Sda73024 * The first define below maps the state into an array x[c] whereas the 4526877Sda73024 * second form maps the state into a number of individual variables x0, 4536877Sda73024 * x1, etc. Another form could map individual state columns to machine 4546877Sda73024 * register names. 4556877Sda73024 */ 4566877Sda73024 4576877Sda73024 #if defined(ARRAYS) 4586877Sda73024 #define s(x, c) x[c] 4596877Sda73024 #else 4606877Sda73024 #define s(x, c) x##c 4616877Sda73024 #endif 4626877Sda73024 4636877Sda73024 /* 4646877Sda73024 * This implementation provides subroutines for encryption, decryption 4656877Sda73024 * and for setting the three key lengths (separately) for encryption 4666877Sda73024 * and decryption. Since not all functions are needed, masks are set 4676877Sda73024 * up here to determine which will be implemented in C 4686877Sda73024 */ 4696877Sda73024 4706877Sda73024 #if !defined(AES_ENCRYPT) 4716877Sda73024 #define EFUNCS_IN_C 0 4726877Sda73024 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \ 4736877Sda73024 defined(ASM_X86_V2C) || defined(ASM_AMD64_C) 4746877Sda73024 #define EFUNCS_IN_C ENC_KEYING_IN_C 4756877Sda73024 #elif !defined(ASM_X86_V2) 4766877Sda73024 #define EFUNCS_IN_C (ENCRYPTION_IN_C | ENC_KEYING_IN_C) 4776877Sda73024 #else 4786877Sda73024 #define EFUNCS_IN_C 0 4796877Sda73024 #endif 4806877Sda73024 4816877Sda73024 #if !defined(AES_DECRYPT) 4826877Sda73024 #define DFUNCS_IN_C 0 4836877Sda73024 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \ 4846877Sda73024 defined(ASM_X86_V2C) || defined(ASM_AMD64_C) 4856877Sda73024 #define DFUNCS_IN_C DEC_KEYING_IN_C 4866877Sda73024 #elif !defined(ASM_X86_V2) 4876877Sda73024 #define DFUNCS_IN_C (DECRYPTION_IN_C | DEC_KEYING_IN_C) 4886877Sda73024 #else 4896877Sda73024 #define DFUNCS_IN_C 0 4906877Sda73024 #endif 4916877Sda73024 4926877Sda73024 #define FUNCS_IN_C (EFUNCS_IN_C | DFUNCS_IN_C) 4936877Sda73024 4946877Sda73024 /* END OF CONFIGURATION OPTIONS */ 4956877Sda73024 4966877Sda73024 /* Disable or report errors on some combinations of options */ 4976877Sda73024 4986877Sda73024 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES 4996877Sda73024 #undef LAST_ENC_ROUND 5006877Sda73024 #define LAST_ENC_ROUND NO_TABLES 5016877Sda73024 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES 5026877Sda73024 #undef LAST_ENC_ROUND 5036877Sda73024 #define LAST_ENC_ROUND ONE_TABLE 5046877Sda73024 #endif 5056877Sda73024 5066877Sda73024 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE 5076877Sda73024 #undef ENC_UNROLL 5086877Sda73024 #define ENC_UNROLL NONE 5096877Sda73024 #endif 5106877Sda73024 5116877Sda73024 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES 5126877Sda73024 #undef LAST_DEC_ROUND 5136877Sda73024 #define LAST_DEC_ROUND NO_TABLES 5146877Sda73024 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES 5156877Sda73024 #undef LAST_DEC_ROUND 5166877Sda73024 #define LAST_DEC_ROUND ONE_TABLE 5176877Sda73024 #endif 5186877Sda73024 5196877Sda73024 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE 5206877Sda73024 #undef DEC_UNROLL 5216877Sda73024 #define DEC_UNROLL NONE 5226877Sda73024 #endif 5236877Sda73024 524*7421SDaniel.Anderson@Sun.COM #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN) 525*7421SDaniel.Anderson@Sun.COM #define aes_sw32 htonl 526*7421SDaniel.Anderson@Sun.COM #elif defined(bswap32) 5276877Sda73024 #define aes_sw32 bswap32 5286877Sda73024 #elif defined(bswap_32) 5296877Sda73024 #define aes_sw32 bswap_32 5306877Sda73024 #else 531*7421SDaniel.Anderson@Sun.COM #define brot(x, n) (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n)))) 5326877Sda73024 #define aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00)) 5336877Sda73024 #endif 5346877Sda73024 535*7421SDaniel.Anderson@Sun.COM 5366877Sda73024 /* 537*7421SDaniel.Anderson@Sun.COM * upr(x, n): rotates bytes within words by n positions, moving bytes to 5386877Sda73024 * higher index positions with wrap around into low positions 5396877Sda73024 * ups(x, n): moves bytes by n positions to higher index positions in 5406877Sda73024 * words but without wrap around 5416877Sda73024 * bval(x, n): extracts a byte from a word 5426877Sda73024 * 5436877Sda73024 * WARNING: The definitions given here are intended only for use with 5446877Sda73024 * unsigned variables and with shift counts that are compile 5456877Sda73024 * time constants 5466877Sda73024 */ 5476877Sda73024 5486877Sda73024 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN) 5496877Sda73024 #define upr(x, n) (((uint32_t)(x) << (8 * (n))) | \ 5506877Sda73024 ((uint32_t)(x) >> (32 - 8 * (n)))) 5516877Sda73024 #define ups(x, n) ((uint32_t)(x) << (8 * (n))) 5526877Sda73024 #define bval(x, n) to_byte((x) >> (8 * (n))) 5536877Sda73024 #define bytes2word(b0, b1, b2, b3) \ 5546877Sda73024 (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \ 5556877Sda73024 ((uint32_t)(b1) << 8) | (b0)) 5566877Sda73024 #endif 5576877Sda73024 5586877Sda73024 #if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN) 5596877Sda73024 #define upr(x, n) (((uint32_t)(x) >> (8 * (n))) | \ 5606877Sda73024 ((uint32_t)(x) << (32 - 8 * (n)))) 5616877Sda73024 #define ups(x, n) ((uint32_t)(x) >> (8 * (n))) 5626877Sda73024 #define bval(x, n) to_byte((x) >> (24 - 8 * (n))) 5636877Sda73024 #define bytes2word(b0, b1, b2, b3) \ 5646877Sda73024 (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \ 5656877Sda73024 ((uint32_t)(b2) << 8) | (b3)) 5666877Sda73024 #endif 5676877Sda73024 5686877Sda73024 #if defined(SAFE_IO) 5696877Sda73024 #define word_in(x, c) bytes2word(((const uint8_t *)(x) + 4 * c)[0], \ 5706877Sda73024 ((const uint8_t *)(x) + 4 * c)[1], \ 5716877Sda73024 ((const uint8_t *)(x) + 4 * c)[2], \ 5726877Sda73024 ((const uint8_t *)(x) + 4 * c)[3]) 5736877Sda73024 #define word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \ 5746877Sda73024 ((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \ 5756877Sda73024 ((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \ 5766877Sda73024 ((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); } 5776877Sda73024 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER) 5786877Sda73024 #define word_in(x, c) (*((uint32_t *)(x) + (c))) 5796877Sda73024 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v)) 5806877Sda73024 #else 5816877Sda73024 #define word_in(x, c) aes_sw32(*((uint32_t *)(x) + (c))) 5826877Sda73024 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v)) 5836877Sda73024 #endif 5846877Sda73024 5856877Sda73024 /* the finite field modular polynomial and elements */ 5866877Sda73024 5876877Sda73024 #define WPOLY 0x011b 5886877Sda73024 #define BPOLY 0x1b 5896877Sda73024 5906877Sda73024 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ 5916877Sda73024 5926877Sda73024 #define m1 0x80808080 5936877Sda73024 #define m2 0x7f7f7f7f 5946877Sda73024 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) 5956877Sda73024 5966877Sda73024 /* 5976877Sda73024 * The following defines provide alternative definitions of gf_mulx that might 5986877Sda73024 * give improved performance if a fast 32-bit multiply is not available. Note 5996877Sda73024 * that a temporary variable u needs to be defined where gf_mulx is used. 6006877Sda73024 * 6016877Sda73024 * #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \ 6026877Sda73024 * ((u >> 3) | (u >> 6)) 6036877Sda73024 * #define m4 (0x01010101 * BPOLY) 6046877Sda73024 * #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \ 6056877Sda73024 * & m4) 6066877Sda73024 */ 6076877Sda73024 6086877Sda73024 /* Work out which tables are needed for the different options */ 6096877Sda73024 6106877Sda73024 #if defined(ASM_X86_V1C) 6116877Sda73024 #if defined(ENC_ROUND) 6126877Sda73024 #undef ENC_ROUND 6136877Sda73024 #endif 6146877Sda73024 #define ENC_ROUND FOUR_TABLES 6156877Sda73024 #if defined(LAST_ENC_ROUND) 6166877Sda73024 #undef LAST_ENC_ROUND 6176877Sda73024 #endif 6186877Sda73024 #define LAST_ENC_ROUND FOUR_TABLES 6196877Sda73024 #if defined(DEC_ROUND) 6206877Sda73024 #undef DEC_ROUND 6216877Sda73024 #endif 6226877Sda73024 #define DEC_ROUND FOUR_TABLES 6236877Sda73024 #if defined(LAST_DEC_ROUND) 6246877Sda73024 #undef LAST_DEC_ROUND 6256877Sda73024 #endif 6266877Sda73024 #define LAST_DEC_ROUND FOUR_TABLES 6276877Sda73024 #if defined(KEY_SCHED) 6286877Sda73024 #undef KEY_SCHED 6296877Sda73024 #define KEY_SCHED FOUR_TABLES 6306877Sda73024 #endif 6316877Sda73024 #endif 6326877Sda73024 6336877Sda73024 #if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C) 6346877Sda73024 #if ENC_ROUND == ONE_TABLE 6356877Sda73024 #define FT1_SET 6366877Sda73024 #elif ENC_ROUND == FOUR_TABLES 6376877Sda73024 #define FT4_SET 6386877Sda73024 #else 6396877Sda73024 #define SBX_SET 6406877Sda73024 #endif 6416877Sda73024 #if LAST_ENC_ROUND == ONE_TABLE 6426877Sda73024 #define FL1_SET 6436877Sda73024 #elif LAST_ENC_ROUND == FOUR_TABLES 6446877Sda73024 #define FL4_SET 6456877Sda73024 #elif !defined(SBX_SET) 6466877Sda73024 #define SBX_SET 6476877Sda73024 #endif 6486877Sda73024 #endif 6496877Sda73024 6506877Sda73024 #if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C) 6516877Sda73024 #if DEC_ROUND == ONE_TABLE 6526877Sda73024 #define IT1_SET 6536877Sda73024 #elif DEC_ROUND == FOUR_TABLES 6546877Sda73024 #define IT4_SET 6556877Sda73024 #else 6566877Sda73024 #define ISB_SET 6576877Sda73024 #endif 6586877Sda73024 #if LAST_DEC_ROUND == ONE_TABLE 6596877Sda73024 #define IL1_SET 6606877Sda73024 #elif LAST_DEC_ROUND == FOUR_TABLES 6616877Sda73024 #define IL4_SET 6626877Sda73024 #elif !defined(ISB_SET) 6636877Sda73024 #define ISB_SET 6646877Sda73024 #endif 6656877Sda73024 #endif 6666877Sda73024 6676877Sda73024 6686877Sda73024 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \ 6696877Sda73024 defined(ASM_X86_V2C))) 6706877Sda73024 #if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)) 6716877Sda73024 #if KEY_SCHED == ONE_TABLE 6726877Sda73024 #if !defined(FL1_SET) && !defined(FL4_SET) 6736877Sda73024 #define LS1_SET 6746877Sda73024 #endif 6756877Sda73024 #elif KEY_SCHED == FOUR_TABLES 6766877Sda73024 #if !defined(FL4_SET) 6776877Sda73024 #define LS4_SET 6786877Sda73024 #endif 6796877Sda73024 #elif !defined(SBX_SET) 6806877Sda73024 #define SBX_SET 6816877Sda73024 #endif 6826877Sda73024 #endif 6836877Sda73024 #if (FUNCS_IN_C & DEC_KEYING_IN_C) 6846877Sda73024 #if KEY_SCHED == ONE_TABLE 6856877Sda73024 #define IM1_SET 6866877Sda73024 #elif KEY_SCHED == FOUR_TABLES 6876877Sda73024 #define IM4_SET 6886877Sda73024 #elif !defined(SBX_SET) 6896877Sda73024 #define SBX_SET 6906877Sda73024 #endif 6916877Sda73024 #endif 6926877Sda73024 #endif 6936877Sda73024 6946877Sda73024 /* generic definitions of Rijndael macros that use tables */ 6956877Sda73024 6966877Sda73024 #define no_table(x, box, vf, rf, c) bytes2word(\ 6976877Sda73024 box[bval(vf(x, 0, c), rf(0, c))], \ 6986877Sda73024 box[bval(vf(x, 1, c), rf(1, c))], \ 6996877Sda73024 box[bval(vf(x, 2, c), rf(2, c))], \ 7006877Sda73024 box[bval(vf(x, 3, c), rf(3, c))]) 7016877Sda73024 7026877Sda73024 #define one_table(x, op, tab, vf, rf, c) \ 7036877Sda73024 (tab[bval(vf(x, 0, c), rf(0, c))] \ 7046877Sda73024 ^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \ 7056877Sda73024 ^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \ 7066877Sda73024 ^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3)) 7076877Sda73024 7086877Sda73024 #define four_tables(x, tab, vf, rf, c) \ 7096877Sda73024 (tab[0][bval(vf(x, 0, c), rf(0, c))] \ 7106877Sda73024 ^ tab[1][bval(vf(x, 1, c), rf(1, c))] \ 7116877Sda73024 ^ tab[2][bval(vf(x, 2, c), rf(2, c))] \ 7126877Sda73024 ^ tab[3][bval(vf(x, 3, c), rf(3, c))]) 7136877Sda73024 7146877Sda73024 #define vf1(x, r, c) (x) 7156877Sda73024 #define rf1(r, c) (r) 7166877Sda73024 #define rf2(r, c) ((8+r-c)&3) 7176877Sda73024 7186877Sda73024 /* 7196877Sda73024 * Perform forward and inverse column mix operation on four bytes in long word 7206877Sda73024 * x in parallel. NOTE: x must be a simple variable, NOT an expression in 7216877Sda73024 * these macros. 7226877Sda73024 */ 7236877Sda73024 7246877Sda73024 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \ 7256877Sda73024 defined(ASM_X86_V2C))) 7266877Sda73024 7276877Sda73024 #if defined(FM4_SET) /* not currently used */ 7286877Sda73024 #define fwd_mcol(x) four_tables(x, t_use(f, m), vf1, rf1, 0) 7296877Sda73024 #elif defined(FM1_SET) /* not currently used */ 7306877Sda73024 #define fwd_mcol(x) one_table(x, upr, t_use(f, m), vf1, rf1, 0) 7316877Sda73024 #else 7326877Sda73024 #define dec_fmvars uint32_t g2 7336877Sda73024 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \ 7346877Sda73024 upr((x), 2) ^ upr((x), 1)) 7356877Sda73024 #endif 7366877Sda73024 7376877Sda73024 #if defined(IM4_SET) 7386877Sda73024 #define inv_mcol(x) four_tables(x, t_use(i, m), vf1, rf1, 0) 7396877Sda73024 #elif defined(IM1_SET) 7406877Sda73024 #define inv_mcol(x) one_table(x, upr, t_use(i, m), vf1, rf1, 0) 7416877Sda73024 #else 7426877Sda73024 #define dec_imvars uint32_t g2, g4, g9 7436877Sda73024 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \ 7446877Sda73024 (x) ^ gf_mulx(g4), g4 ^= g9, \ 7456877Sda73024 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \ 7466877Sda73024 upr(g4, 2) ^ upr(g9, 1)) 7476877Sda73024 #endif 7486877Sda73024 7496877Sda73024 #if defined(FL4_SET) 7506877Sda73024 #define ls_box(x, c) four_tables(x, t_use(f, l), vf1, rf2, c) 7516877Sda73024 #elif defined(LS4_SET) 7526877Sda73024 #define ls_box(x, c) four_tables(x, t_use(l, s), vf1, rf2, c) 7536877Sda73024 #elif defined(FL1_SET) 7546877Sda73024 #define ls_box(x, c) one_table(x, upr, t_use(f, l), vf1, rf2, c) 7556877Sda73024 #elif defined(LS1_SET) 7566877Sda73024 #define ls_box(x, c) one_table(x, upr, t_use(l, s), vf1, rf2, c) 7576877Sda73024 #else 7586877Sda73024 #define ls_box(x, c) no_table(x, t_use(s, box), vf1, rf2, c) 7596877Sda73024 #endif 7606877Sda73024 7616877Sda73024 #endif 7626877Sda73024 7636877Sda73024 #if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET) 7646877Sda73024 #define ISB_SET 7656877Sda73024 #endif 7666877Sda73024 7676877Sda73024 #ifdef __cplusplus 7686877Sda73024 } 7696877Sda73024 #endif 7706877Sda73024 7716877Sda73024 #endif /* _AESOPT_H */ 772