1*0Sstevel@tonic-gate# 2*0Sstevel@tonic-gate# Complex numbers and associated mathematical functions 3*0Sstevel@tonic-gate# -- Raphael Manfredi Since Sep 1996 4*0Sstevel@tonic-gate# -- Jarkko Hietaniemi Since Mar 1997 5*0Sstevel@tonic-gate# -- Daniel S. Lewart Since Sep 1997 6*0Sstevel@tonic-gate# 7*0Sstevel@tonic-gate 8*0Sstevel@tonic-gatepackage Math::Complex; 9*0Sstevel@tonic-gate 10*0Sstevel@tonic-gateour($VERSION, @ISA, @EXPORT, %EXPORT_TAGS, $Inf); 11*0Sstevel@tonic-gate 12*0Sstevel@tonic-gate$VERSION = 1.34; 13*0Sstevel@tonic-gate 14*0Sstevel@tonic-gateBEGIN { 15*0Sstevel@tonic-gate unless ($^O eq 'unicosmk') { 16*0Sstevel@tonic-gate my $e = $!; 17*0Sstevel@tonic-gate # We do want an arithmetic overflow, Inf INF inf Infinity:. 18*0Sstevel@tonic-gate undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; 19*0Sstevel@tonic-gate local $SIG{FPE} = sub {die}; 20*0Sstevel@tonic-gate my $t = CORE::exp 30; 21*0Sstevel@tonic-gate $Inf = CORE::exp $t; 22*0Sstevel@tonic-gateEOE 23*0Sstevel@tonic-gate if (!defined $Inf) { # Try a different method 24*0Sstevel@tonic-gate undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; 25*0Sstevel@tonic-gate local $SIG{FPE} = sub {die}; 26*0Sstevel@tonic-gate my $t = 1; 27*0Sstevel@tonic-gate $Inf = $t + "1e99999999999999999999999999999999"; 28*0Sstevel@tonic-gateEOE 29*0Sstevel@tonic-gate } 30*0Sstevel@tonic-gate $! = $e; # Clear ERANGE. 31*0Sstevel@tonic-gate } 32*0Sstevel@tonic-gate $Inf = "Inf" if !defined $Inf || !($Inf > 0); # Desperation. 33*0Sstevel@tonic-gate} 34*0Sstevel@tonic-gate 35*0Sstevel@tonic-gateuse strict; 36*0Sstevel@tonic-gate 37*0Sstevel@tonic-gatemy $i; 38*0Sstevel@tonic-gatemy %LOGN; 39*0Sstevel@tonic-gate 40*0Sstevel@tonic-gate# Regular expression for floating point numbers. 41*0Sstevel@tonic-gatemy $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?)))'; 42*0Sstevel@tonic-gate 43*0Sstevel@tonic-gaterequire Exporter; 44*0Sstevel@tonic-gate 45*0Sstevel@tonic-gate@ISA = qw(Exporter); 46*0Sstevel@tonic-gate 47*0Sstevel@tonic-gatemy @trig = qw( 48*0Sstevel@tonic-gate pi 49*0Sstevel@tonic-gate tan 50*0Sstevel@tonic-gate csc cosec sec cot cotan 51*0Sstevel@tonic-gate asin acos atan 52*0Sstevel@tonic-gate acsc acosec asec acot acotan 53*0Sstevel@tonic-gate sinh cosh tanh 54*0Sstevel@tonic-gate csch cosech sech coth cotanh 55*0Sstevel@tonic-gate asinh acosh atanh 56*0Sstevel@tonic-gate acsch acosech asech acoth acotanh 57*0Sstevel@tonic-gate ); 58*0Sstevel@tonic-gate 59*0Sstevel@tonic-gate@EXPORT = (qw( 60*0Sstevel@tonic-gate i Re Im rho theta arg 61*0Sstevel@tonic-gate sqrt log ln 62*0Sstevel@tonic-gate log10 logn cbrt root 63*0Sstevel@tonic-gate cplx cplxe 64*0Sstevel@tonic-gate ), 65*0Sstevel@tonic-gate @trig); 66*0Sstevel@tonic-gate 67*0Sstevel@tonic-gate%EXPORT_TAGS = ( 68*0Sstevel@tonic-gate 'trig' => [@trig], 69*0Sstevel@tonic-gate); 70*0Sstevel@tonic-gate 71*0Sstevel@tonic-gateuse overload 72*0Sstevel@tonic-gate '+' => \&plus, 73*0Sstevel@tonic-gate '-' => \&minus, 74*0Sstevel@tonic-gate '*' => \&multiply, 75*0Sstevel@tonic-gate '/' => \÷, 76*0Sstevel@tonic-gate '**' => \&power, 77*0Sstevel@tonic-gate '==' => \&numeq, 78*0Sstevel@tonic-gate '<=>' => \&spaceship, 79*0Sstevel@tonic-gate 'neg' => \&negate, 80*0Sstevel@tonic-gate '~' => \&conjugate, 81*0Sstevel@tonic-gate 'abs' => \&abs, 82*0Sstevel@tonic-gate 'sqrt' => \&sqrt, 83*0Sstevel@tonic-gate 'exp' => \&exp, 84*0Sstevel@tonic-gate 'log' => \&log, 85*0Sstevel@tonic-gate 'sin' => \&sin, 86*0Sstevel@tonic-gate 'cos' => \&cos, 87*0Sstevel@tonic-gate 'tan' => \&tan, 88*0Sstevel@tonic-gate 'atan2' => \&atan2, 89*0Sstevel@tonic-gate qw("" stringify); 90*0Sstevel@tonic-gate 91*0Sstevel@tonic-gate# 92*0Sstevel@tonic-gate# Package "privates" 93*0Sstevel@tonic-gate# 94*0Sstevel@tonic-gate 95*0Sstevel@tonic-gatemy %DISPLAY_FORMAT = ('style' => 'cartesian', 96*0Sstevel@tonic-gate 'polar_pretty_print' => 1); 97*0Sstevel@tonic-gatemy $eps = 1e-14; # Epsilon 98*0Sstevel@tonic-gate 99*0Sstevel@tonic-gate# 100*0Sstevel@tonic-gate# Object attributes (internal): 101*0Sstevel@tonic-gate# cartesian [real, imaginary] -- cartesian form 102*0Sstevel@tonic-gate# polar [rho, theta] -- polar form 103*0Sstevel@tonic-gate# c_dirty cartesian form not up-to-date 104*0Sstevel@tonic-gate# p_dirty polar form not up-to-date 105*0Sstevel@tonic-gate# display display format (package's global when not set) 106*0Sstevel@tonic-gate# 107*0Sstevel@tonic-gate 108*0Sstevel@tonic-gate# Die on bad *make() arguments. 109*0Sstevel@tonic-gate 110*0Sstevel@tonic-gatesub _cannot_make { 111*0Sstevel@tonic-gate die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n"; 112*0Sstevel@tonic-gate} 113*0Sstevel@tonic-gate 114*0Sstevel@tonic-gatesub _remake { 115*0Sstevel@tonic-gate my $arg = shift; 116*0Sstevel@tonic-gate my ($made, $p, $q); 117*0Sstevel@tonic-gate 118*0Sstevel@tonic-gate if ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { 119*0Sstevel@tonic-gate ($p, $q) = ($1 || 0, $2); 120*0Sstevel@tonic-gate $made = 'cart'; 121*0Sstevel@tonic-gate } elsif ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { 122*0Sstevel@tonic-gate ($p, $q) = ($1, $2 || 0); 123*0Sstevel@tonic-gate $made = 'exp'; 124*0Sstevel@tonic-gate } 125*0Sstevel@tonic-gate 126*0Sstevel@tonic-gate if ($made) { 127*0Sstevel@tonic-gate $p =~ s/^\+//; 128*0Sstevel@tonic-gate $q =~ s/^\+//; 129*0Sstevel@tonic-gate } 130*0Sstevel@tonic-gate 131*0Sstevel@tonic-gate return ($made, $p, $q); 132*0Sstevel@tonic-gate} 133*0Sstevel@tonic-gate 134*0Sstevel@tonic-gate# 135*0Sstevel@tonic-gate# ->make 136*0Sstevel@tonic-gate# 137*0Sstevel@tonic-gate# Create a new complex number (cartesian form) 138*0Sstevel@tonic-gate# 139*0Sstevel@tonic-gatesub make { 140*0Sstevel@tonic-gate my $self = bless {}, shift; 141*0Sstevel@tonic-gate my ($re, $im) = @_; 142*0Sstevel@tonic-gate if (@_ == 1) { 143*0Sstevel@tonic-gate my ($remade, $p, $q) = _remake($re); 144*0Sstevel@tonic-gate if ($remade) { 145*0Sstevel@tonic-gate if ($remade eq 'cart') { 146*0Sstevel@tonic-gate ($re, $im) = ($p, $q); 147*0Sstevel@tonic-gate } else { 148*0Sstevel@tonic-gate return (ref $self)->emake($p, $q); 149*0Sstevel@tonic-gate } 150*0Sstevel@tonic-gate } 151*0Sstevel@tonic-gate } 152*0Sstevel@tonic-gate my $rre = ref $re; 153*0Sstevel@tonic-gate if ( $rre ) { 154*0Sstevel@tonic-gate if ( $rre eq ref $self ) { 155*0Sstevel@tonic-gate $re = Re($re); 156*0Sstevel@tonic-gate } else { 157*0Sstevel@tonic-gate _cannot_make("real part", $rre); 158*0Sstevel@tonic-gate } 159*0Sstevel@tonic-gate } 160*0Sstevel@tonic-gate my $rim = ref $im; 161*0Sstevel@tonic-gate if ( $rim ) { 162*0Sstevel@tonic-gate if ( $rim eq ref $self ) { 163*0Sstevel@tonic-gate $im = Im($im); 164*0Sstevel@tonic-gate } else { 165*0Sstevel@tonic-gate _cannot_make("imaginary part", $rim); 166*0Sstevel@tonic-gate } 167*0Sstevel@tonic-gate } 168*0Sstevel@tonic-gate _cannot_make("real part", $re) unless $re =~ /^$gre$/; 169*0Sstevel@tonic-gate $im ||= 0; 170*0Sstevel@tonic-gate _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; 171*0Sstevel@tonic-gate $self->{'cartesian'} = [ $re, $im ]; 172*0Sstevel@tonic-gate $self->{c_dirty} = 0; 173*0Sstevel@tonic-gate $self->{p_dirty} = 1; 174*0Sstevel@tonic-gate $self->display_format('cartesian'); 175*0Sstevel@tonic-gate return $self; 176*0Sstevel@tonic-gate} 177*0Sstevel@tonic-gate 178*0Sstevel@tonic-gate# 179*0Sstevel@tonic-gate# ->emake 180*0Sstevel@tonic-gate# 181*0Sstevel@tonic-gate# Create a new complex number (exponential form) 182*0Sstevel@tonic-gate# 183*0Sstevel@tonic-gatesub emake { 184*0Sstevel@tonic-gate my $self = bless {}, shift; 185*0Sstevel@tonic-gate my ($rho, $theta) = @_; 186*0Sstevel@tonic-gate if (@_ == 1) { 187*0Sstevel@tonic-gate my ($remade, $p, $q) = _remake($rho); 188*0Sstevel@tonic-gate if ($remade) { 189*0Sstevel@tonic-gate if ($remade eq 'exp') { 190*0Sstevel@tonic-gate ($rho, $theta) = ($p, $q); 191*0Sstevel@tonic-gate } else { 192*0Sstevel@tonic-gate return (ref $self)->make($p, $q); 193*0Sstevel@tonic-gate } 194*0Sstevel@tonic-gate } 195*0Sstevel@tonic-gate } 196*0Sstevel@tonic-gate my $rrh = ref $rho; 197*0Sstevel@tonic-gate if ( $rrh ) { 198*0Sstevel@tonic-gate if ( $rrh eq ref $self ) { 199*0Sstevel@tonic-gate $rho = rho($rho); 200*0Sstevel@tonic-gate } else { 201*0Sstevel@tonic-gate _cannot_make("rho", $rrh); 202*0Sstevel@tonic-gate } 203*0Sstevel@tonic-gate } 204*0Sstevel@tonic-gate my $rth = ref $theta; 205*0Sstevel@tonic-gate if ( $rth ) { 206*0Sstevel@tonic-gate if ( $rth eq ref $self ) { 207*0Sstevel@tonic-gate $theta = theta($theta); 208*0Sstevel@tonic-gate } else { 209*0Sstevel@tonic-gate _cannot_make("theta", $rth); 210*0Sstevel@tonic-gate } 211*0Sstevel@tonic-gate } 212*0Sstevel@tonic-gate if ($rho < 0) { 213*0Sstevel@tonic-gate $rho = -$rho; 214*0Sstevel@tonic-gate $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); 215*0Sstevel@tonic-gate } 216*0Sstevel@tonic-gate _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; 217*0Sstevel@tonic-gate $theta ||= 0; 218*0Sstevel@tonic-gate _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; 219*0Sstevel@tonic-gate $self->{'polar'} = [$rho, $theta]; 220*0Sstevel@tonic-gate $self->{p_dirty} = 0; 221*0Sstevel@tonic-gate $self->{c_dirty} = 1; 222*0Sstevel@tonic-gate $self->display_format('polar'); 223*0Sstevel@tonic-gate return $self; 224*0Sstevel@tonic-gate} 225*0Sstevel@tonic-gate 226*0Sstevel@tonic-gatesub new { &make } # For backward compatibility only. 227*0Sstevel@tonic-gate 228*0Sstevel@tonic-gate# 229*0Sstevel@tonic-gate# cplx 230*0Sstevel@tonic-gate# 231*0Sstevel@tonic-gate# Creates a complex number from a (re, im) tuple. 232*0Sstevel@tonic-gate# This avoids the burden of writing Math::Complex->make(re, im). 233*0Sstevel@tonic-gate# 234*0Sstevel@tonic-gatesub cplx { 235*0Sstevel@tonic-gate return __PACKAGE__->make(@_); 236*0Sstevel@tonic-gate} 237*0Sstevel@tonic-gate 238*0Sstevel@tonic-gate# 239*0Sstevel@tonic-gate# cplxe 240*0Sstevel@tonic-gate# 241*0Sstevel@tonic-gate# Creates a complex number from a (rho, theta) tuple. 242*0Sstevel@tonic-gate# This avoids the burden of writing Math::Complex->emake(rho, theta). 243*0Sstevel@tonic-gate# 244*0Sstevel@tonic-gatesub cplxe { 245*0Sstevel@tonic-gate return __PACKAGE__->emake(@_); 246*0Sstevel@tonic-gate} 247*0Sstevel@tonic-gate 248*0Sstevel@tonic-gate# 249*0Sstevel@tonic-gate# pi 250*0Sstevel@tonic-gate# 251*0Sstevel@tonic-gate# The number defined as pi = 180 degrees 252*0Sstevel@tonic-gate# 253*0Sstevel@tonic-gatesub pi () { 4 * CORE::atan2(1, 1) } 254*0Sstevel@tonic-gate 255*0Sstevel@tonic-gate# 256*0Sstevel@tonic-gate# pit2 257*0Sstevel@tonic-gate# 258*0Sstevel@tonic-gate# The full circle 259*0Sstevel@tonic-gate# 260*0Sstevel@tonic-gatesub pit2 () { 2 * pi } 261*0Sstevel@tonic-gate 262*0Sstevel@tonic-gate# 263*0Sstevel@tonic-gate# pip2 264*0Sstevel@tonic-gate# 265*0Sstevel@tonic-gate# The quarter circle 266*0Sstevel@tonic-gate# 267*0Sstevel@tonic-gatesub pip2 () { pi / 2 } 268*0Sstevel@tonic-gate 269*0Sstevel@tonic-gate# 270*0Sstevel@tonic-gate# deg1 271*0Sstevel@tonic-gate# 272*0Sstevel@tonic-gate# One degree in radians, used in stringify_polar. 273*0Sstevel@tonic-gate# 274*0Sstevel@tonic-gate 275*0Sstevel@tonic-gatesub deg1 () { pi / 180 } 276*0Sstevel@tonic-gate 277*0Sstevel@tonic-gate# 278*0Sstevel@tonic-gate# uplog10 279*0Sstevel@tonic-gate# 280*0Sstevel@tonic-gate# Used in log10(). 281*0Sstevel@tonic-gate# 282*0Sstevel@tonic-gatesub uplog10 () { 1 / CORE::log(10) } 283*0Sstevel@tonic-gate 284*0Sstevel@tonic-gate# 285*0Sstevel@tonic-gate# i 286*0Sstevel@tonic-gate# 287*0Sstevel@tonic-gate# The number defined as i*i = -1; 288*0Sstevel@tonic-gate# 289*0Sstevel@tonic-gatesub i () { 290*0Sstevel@tonic-gate return $i if ($i); 291*0Sstevel@tonic-gate $i = bless {}; 292*0Sstevel@tonic-gate $i->{'cartesian'} = [0, 1]; 293*0Sstevel@tonic-gate $i->{'polar'} = [1, pip2]; 294*0Sstevel@tonic-gate $i->{c_dirty} = 0; 295*0Sstevel@tonic-gate $i->{p_dirty} = 0; 296*0Sstevel@tonic-gate return $i; 297*0Sstevel@tonic-gate} 298*0Sstevel@tonic-gate 299*0Sstevel@tonic-gate# 300*0Sstevel@tonic-gate# ip2 301*0Sstevel@tonic-gate# 302*0Sstevel@tonic-gate# Half of i. 303*0Sstevel@tonic-gate# 304*0Sstevel@tonic-gatesub ip2 () { i / 2 } 305*0Sstevel@tonic-gate 306*0Sstevel@tonic-gate# 307*0Sstevel@tonic-gate# Attribute access/set routines 308*0Sstevel@tonic-gate# 309*0Sstevel@tonic-gate 310*0Sstevel@tonic-gatesub cartesian {$_[0]->{c_dirty} ? 311*0Sstevel@tonic-gate $_[0]->update_cartesian : $_[0]->{'cartesian'}} 312*0Sstevel@tonic-gatesub polar {$_[0]->{p_dirty} ? 313*0Sstevel@tonic-gate $_[0]->update_polar : $_[0]->{'polar'}} 314*0Sstevel@tonic-gate 315*0Sstevel@tonic-gatesub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } 316*0Sstevel@tonic-gatesub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } 317*0Sstevel@tonic-gate 318*0Sstevel@tonic-gate# 319*0Sstevel@tonic-gate# ->update_cartesian 320*0Sstevel@tonic-gate# 321*0Sstevel@tonic-gate# Recompute and return the cartesian form, given accurate polar form. 322*0Sstevel@tonic-gate# 323*0Sstevel@tonic-gatesub update_cartesian { 324*0Sstevel@tonic-gate my $self = shift; 325*0Sstevel@tonic-gate my ($r, $t) = @{$self->{'polar'}}; 326*0Sstevel@tonic-gate $self->{c_dirty} = 0; 327*0Sstevel@tonic-gate return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; 328*0Sstevel@tonic-gate} 329*0Sstevel@tonic-gate 330*0Sstevel@tonic-gate# 331*0Sstevel@tonic-gate# 332*0Sstevel@tonic-gate# ->update_polar 333*0Sstevel@tonic-gate# 334*0Sstevel@tonic-gate# Recompute and return the polar form, given accurate cartesian form. 335*0Sstevel@tonic-gate# 336*0Sstevel@tonic-gatesub update_polar { 337*0Sstevel@tonic-gate my $self = shift; 338*0Sstevel@tonic-gate my ($x, $y) = @{$self->{'cartesian'}}; 339*0Sstevel@tonic-gate $self->{p_dirty} = 0; 340*0Sstevel@tonic-gate return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; 341*0Sstevel@tonic-gate return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), 342*0Sstevel@tonic-gate CORE::atan2($y, $x)]; 343*0Sstevel@tonic-gate} 344*0Sstevel@tonic-gate 345*0Sstevel@tonic-gate# 346*0Sstevel@tonic-gate# (plus) 347*0Sstevel@tonic-gate# 348*0Sstevel@tonic-gate# Computes z1+z2. 349*0Sstevel@tonic-gate# 350*0Sstevel@tonic-gatesub plus { 351*0Sstevel@tonic-gate my ($z1, $z2, $regular) = @_; 352*0Sstevel@tonic-gate my ($re1, $im1) = @{$z1->cartesian}; 353*0Sstevel@tonic-gate $z2 = cplx($z2) unless ref $z2; 354*0Sstevel@tonic-gate my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); 355*0Sstevel@tonic-gate unless (defined $regular) { 356*0Sstevel@tonic-gate $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); 357*0Sstevel@tonic-gate return $z1; 358*0Sstevel@tonic-gate } 359*0Sstevel@tonic-gate return (ref $z1)->make($re1 + $re2, $im1 + $im2); 360*0Sstevel@tonic-gate} 361*0Sstevel@tonic-gate 362*0Sstevel@tonic-gate# 363*0Sstevel@tonic-gate# (minus) 364*0Sstevel@tonic-gate# 365*0Sstevel@tonic-gate# Computes z1-z2. 366*0Sstevel@tonic-gate# 367*0Sstevel@tonic-gatesub minus { 368*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 369*0Sstevel@tonic-gate my ($re1, $im1) = @{$z1->cartesian}; 370*0Sstevel@tonic-gate $z2 = cplx($z2) unless ref $z2; 371*0Sstevel@tonic-gate my ($re2, $im2) = @{$z2->cartesian}; 372*0Sstevel@tonic-gate unless (defined $inverted) { 373*0Sstevel@tonic-gate $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); 374*0Sstevel@tonic-gate return $z1; 375*0Sstevel@tonic-gate } 376*0Sstevel@tonic-gate return $inverted ? 377*0Sstevel@tonic-gate (ref $z1)->make($re2 - $re1, $im2 - $im1) : 378*0Sstevel@tonic-gate (ref $z1)->make($re1 - $re2, $im1 - $im2); 379*0Sstevel@tonic-gate 380*0Sstevel@tonic-gate} 381*0Sstevel@tonic-gate 382*0Sstevel@tonic-gate# 383*0Sstevel@tonic-gate# (multiply) 384*0Sstevel@tonic-gate# 385*0Sstevel@tonic-gate# Computes z1*z2. 386*0Sstevel@tonic-gate# 387*0Sstevel@tonic-gatesub multiply { 388*0Sstevel@tonic-gate my ($z1, $z2, $regular) = @_; 389*0Sstevel@tonic-gate if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { 390*0Sstevel@tonic-gate # if both polar better use polar to avoid rounding errors 391*0Sstevel@tonic-gate my ($r1, $t1) = @{$z1->polar}; 392*0Sstevel@tonic-gate my ($r2, $t2) = @{$z2->polar}; 393*0Sstevel@tonic-gate my $t = $t1 + $t2; 394*0Sstevel@tonic-gate if ($t > pi()) { $t -= pit2 } 395*0Sstevel@tonic-gate elsif ($t <= -pi()) { $t += pit2 } 396*0Sstevel@tonic-gate unless (defined $regular) { 397*0Sstevel@tonic-gate $z1->set_polar([$r1 * $r2, $t]); 398*0Sstevel@tonic-gate return $z1; 399*0Sstevel@tonic-gate } 400*0Sstevel@tonic-gate return (ref $z1)->emake($r1 * $r2, $t); 401*0Sstevel@tonic-gate } else { 402*0Sstevel@tonic-gate my ($x1, $y1) = @{$z1->cartesian}; 403*0Sstevel@tonic-gate if (ref $z2) { 404*0Sstevel@tonic-gate my ($x2, $y2) = @{$z2->cartesian}; 405*0Sstevel@tonic-gate return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); 406*0Sstevel@tonic-gate } else { 407*0Sstevel@tonic-gate return (ref $z1)->make($x1*$z2, $y1*$z2); 408*0Sstevel@tonic-gate } 409*0Sstevel@tonic-gate } 410*0Sstevel@tonic-gate} 411*0Sstevel@tonic-gate 412*0Sstevel@tonic-gate# 413*0Sstevel@tonic-gate# _divbyzero 414*0Sstevel@tonic-gate# 415*0Sstevel@tonic-gate# Die on division by zero. 416*0Sstevel@tonic-gate# 417*0Sstevel@tonic-gatesub _divbyzero { 418*0Sstevel@tonic-gate my $mess = "$_[0]: Division by zero.\n"; 419*0Sstevel@tonic-gate 420*0Sstevel@tonic-gate if (defined $_[1]) { 421*0Sstevel@tonic-gate $mess .= "(Because in the definition of $_[0], the divisor "; 422*0Sstevel@tonic-gate $mess .= "$_[1] " unless ("$_[1]" eq '0'); 423*0Sstevel@tonic-gate $mess .= "is 0)\n"; 424*0Sstevel@tonic-gate } 425*0Sstevel@tonic-gate 426*0Sstevel@tonic-gate my @up = caller(1); 427*0Sstevel@tonic-gate 428*0Sstevel@tonic-gate $mess .= "Died at $up[1] line $up[2].\n"; 429*0Sstevel@tonic-gate 430*0Sstevel@tonic-gate die $mess; 431*0Sstevel@tonic-gate} 432*0Sstevel@tonic-gate 433*0Sstevel@tonic-gate# 434*0Sstevel@tonic-gate# (divide) 435*0Sstevel@tonic-gate# 436*0Sstevel@tonic-gate# Computes z1/z2. 437*0Sstevel@tonic-gate# 438*0Sstevel@tonic-gatesub divide { 439*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 440*0Sstevel@tonic-gate if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { 441*0Sstevel@tonic-gate # if both polar better use polar to avoid rounding errors 442*0Sstevel@tonic-gate my ($r1, $t1) = @{$z1->polar}; 443*0Sstevel@tonic-gate my ($r2, $t2) = @{$z2->polar}; 444*0Sstevel@tonic-gate my $t; 445*0Sstevel@tonic-gate if ($inverted) { 446*0Sstevel@tonic-gate _divbyzero "$z2/0" if ($r1 == 0); 447*0Sstevel@tonic-gate $t = $t2 - $t1; 448*0Sstevel@tonic-gate if ($t > pi()) { $t -= pit2 } 449*0Sstevel@tonic-gate elsif ($t <= -pi()) { $t += pit2 } 450*0Sstevel@tonic-gate return (ref $z1)->emake($r2 / $r1, $t); 451*0Sstevel@tonic-gate } else { 452*0Sstevel@tonic-gate _divbyzero "$z1/0" if ($r2 == 0); 453*0Sstevel@tonic-gate $t = $t1 - $t2; 454*0Sstevel@tonic-gate if ($t > pi()) { $t -= pit2 } 455*0Sstevel@tonic-gate elsif ($t <= -pi()) { $t += pit2 } 456*0Sstevel@tonic-gate return (ref $z1)->emake($r1 / $r2, $t); 457*0Sstevel@tonic-gate } 458*0Sstevel@tonic-gate } else { 459*0Sstevel@tonic-gate my ($d, $x2, $y2); 460*0Sstevel@tonic-gate if ($inverted) { 461*0Sstevel@tonic-gate ($x2, $y2) = @{$z1->cartesian}; 462*0Sstevel@tonic-gate $d = $x2*$x2 + $y2*$y2; 463*0Sstevel@tonic-gate _divbyzero "$z2/0" if $d == 0; 464*0Sstevel@tonic-gate return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); 465*0Sstevel@tonic-gate } else { 466*0Sstevel@tonic-gate my ($x1, $y1) = @{$z1->cartesian}; 467*0Sstevel@tonic-gate if (ref $z2) { 468*0Sstevel@tonic-gate ($x2, $y2) = @{$z2->cartesian}; 469*0Sstevel@tonic-gate $d = $x2*$x2 + $y2*$y2; 470*0Sstevel@tonic-gate _divbyzero "$z1/0" if $d == 0; 471*0Sstevel@tonic-gate my $u = ($x1*$x2 + $y1*$y2)/$d; 472*0Sstevel@tonic-gate my $v = ($y1*$x2 - $x1*$y2)/$d; 473*0Sstevel@tonic-gate return (ref $z1)->make($u, $v); 474*0Sstevel@tonic-gate } else { 475*0Sstevel@tonic-gate _divbyzero "$z1/0" if $z2 == 0; 476*0Sstevel@tonic-gate return (ref $z1)->make($x1/$z2, $y1/$z2); 477*0Sstevel@tonic-gate } 478*0Sstevel@tonic-gate } 479*0Sstevel@tonic-gate } 480*0Sstevel@tonic-gate} 481*0Sstevel@tonic-gate 482*0Sstevel@tonic-gate# 483*0Sstevel@tonic-gate# (power) 484*0Sstevel@tonic-gate# 485*0Sstevel@tonic-gate# Computes z1**z2 = exp(z2 * log z1)). 486*0Sstevel@tonic-gate# 487*0Sstevel@tonic-gatesub power { 488*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 489*0Sstevel@tonic-gate if ($inverted) { 490*0Sstevel@tonic-gate return 1 if $z1 == 0 || $z2 == 1; 491*0Sstevel@tonic-gate return 0 if $z2 == 0 && Re($z1) > 0; 492*0Sstevel@tonic-gate } else { 493*0Sstevel@tonic-gate return 1 if $z2 == 0 || $z1 == 1; 494*0Sstevel@tonic-gate return 0 if $z1 == 0 && Re($z2) > 0; 495*0Sstevel@tonic-gate } 496*0Sstevel@tonic-gate my $w = $inverted ? &exp($z1 * &log($z2)) 497*0Sstevel@tonic-gate : &exp($z2 * &log($z1)); 498*0Sstevel@tonic-gate # If both arguments cartesian, return cartesian, else polar. 499*0Sstevel@tonic-gate return $z1->{c_dirty} == 0 && 500*0Sstevel@tonic-gate (not ref $z2 or $z2->{c_dirty} == 0) ? 501*0Sstevel@tonic-gate cplx(@{$w->cartesian}) : $w; 502*0Sstevel@tonic-gate} 503*0Sstevel@tonic-gate 504*0Sstevel@tonic-gate# 505*0Sstevel@tonic-gate# (spaceship) 506*0Sstevel@tonic-gate# 507*0Sstevel@tonic-gate# Computes z1 <=> z2. 508*0Sstevel@tonic-gate# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. 509*0Sstevel@tonic-gate# 510*0Sstevel@tonic-gatesub spaceship { 511*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 512*0Sstevel@tonic-gate my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); 513*0Sstevel@tonic-gate my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); 514*0Sstevel@tonic-gate my $sgn = $inverted ? -1 : 1; 515*0Sstevel@tonic-gate return $sgn * ($re1 <=> $re2) if $re1 != $re2; 516*0Sstevel@tonic-gate return $sgn * ($im1 <=> $im2); 517*0Sstevel@tonic-gate} 518*0Sstevel@tonic-gate 519*0Sstevel@tonic-gate# 520*0Sstevel@tonic-gate# (numeq) 521*0Sstevel@tonic-gate# 522*0Sstevel@tonic-gate# Computes z1 == z2. 523*0Sstevel@tonic-gate# 524*0Sstevel@tonic-gate# (Required in addition to spaceship() because of NaNs.) 525*0Sstevel@tonic-gatesub numeq { 526*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 527*0Sstevel@tonic-gate my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); 528*0Sstevel@tonic-gate my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); 529*0Sstevel@tonic-gate return $re1 == $re2 && $im1 == $im2 ? 1 : 0; 530*0Sstevel@tonic-gate} 531*0Sstevel@tonic-gate 532*0Sstevel@tonic-gate# 533*0Sstevel@tonic-gate# (negate) 534*0Sstevel@tonic-gate# 535*0Sstevel@tonic-gate# Computes -z. 536*0Sstevel@tonic-gate# 537*0Sstevel@tonic-gatesub negate { 538*0Sstevel@tonic-gate my ($z) = @_; 539*0Sstevel@tonic-gate if ($z->{c_dirty}) { 540*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 541*0Sstevel@tonic-gate $t = ($t <= 0) ? $t + pi : $t - pi; 542*0Sstevel@tonic-gate return (ref $z)->emake($r, $t); 543*0Sstevel@tonic-gate } 544*0Sstevel@tonic-gate my ($re, $im) = @{$z->cartesian}; 545*0Sstevel@tonic-gate return (ref $z)->make(-$re, -$im); 546*0Sstevel@tonic-gate} 547*0Sstevel@tonic-gate 548*0Sstevel@tonic-gate# 549*0Sstevel@tonic-gate# (conjugate) 550*0Sstevel@tonic-gate# 551*0Sstevel@tonic-gate# Compute complex's conjugate. 552*0Sstevel@tonic-gate# 553*0Sstevel@tonic-gatesub conjugate { 554*0Sstevel@tonic-gate my ($z) = @_; 555*0Sstevel@tonic-gate if ($z->{c_dirty}) { 556*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 557*0Sstevel@tonic-gate return (ref $z)->emake($r, -$t); 558*0Sstevel@tonic-gate } 559*0Sstevel@tonic-gate my ($re, $im) = @{$z->cartesian}; 560*0Sstevel@tonic-gate return (ref $z)->make($re, -$im); 561*0Sstevel@tonic-gate} 562*0Sstevel@tonic-gate 563*0Sstevel@tonic-gate# 564*0Sstevel@tonic-gate# (abs) 565*0Sstevel@tonic-gate# 566*0Sstevel@tonic-gate# Compute or set complex's norm (rho). 567*0Sstevel@tonic-gate# 568*0Sstevel@tonic-gatesub abs { 569*0Sstevel@tonic-gate my ($z, $rho) = @_; 570*0Sstevel@tonic-gate unless (ref $z) { 571*0Sstevel@tonic-gate if (@_ == 2) { 572*0Sstevel@tonic-gate $_[0] = $_[1]; 573*0Sstevel@tonic-gate } else { 574*0Sstevel@tonic-gate return CORE::abs($z); 575*0Sstevel@tonic-gate } 576*0Sstevel@tonic-gate } 577*0Sstevel@tonic-gate if (defined $rho) { 578*0Sstevel@tonic-gate $z->{'polar'} = [ $rho, ${$z->polar}[1] ]; 579*0Sstevel@tonic-gate $z->{p_dirty} = 0; 580*0Sstevel@tonic-gate $z->{c_dirty} = 1; 581*0Sstevel@tonic-gate return $rho; 582*0Sstevel@tonic-gate } else { 583*0Sstevel@tonic-gate return ${$z->polar}[0]; 584*0Sstevel@tonic-gate } 585*0Sstevel@tonic-gate} 586*0Sstevel@tonic-gate 587*0Sstevel@tonic-gatesub _theta { 588*0Sstevel@tonic-gate my $theta = $_[0]; 589*0Sstevel@tonic-gate 590*0Sstevel@tonic-gate if ($$theta > pi()) { $$theta -= pit2 } 591*0Sstevel@tonic-gate elsif ($$theta <= -pi()) { $$theta += pit2 } 592*0Sstevel@tonic-gate} 593*0Sstevel@tonic-gate 594*0Sstevel@tonic-gate# 595*0Sstevel@tonic-gate# arg 596*0Sstevel@tonic-gate# 597*0Sstevel@tonic-gate# Compute or set complex's argument (theta). 598*0Sstevel@tonic-gate# 599*0Sstevel@tonic-gatesub arg { 600*0Sstevel@tonic-gate my ($z, $theta) = @_; 601*0Sstevel@tonic-gate return $z unless ref $z; 602*0Sstevel@tonic-gate if (defined $theta) { 603*0Sstevel@tonic-gate _theta(\$theta); 604*0Sstevel@tonic-gate $z->{'polar'} = [ ${$z->polar}[0], $theta ]; 605*0Sstevel@tonic-gate $z->{p_dirty} = 0; 606*0Sstevel@tonic-gate $z->{c_dirty} = 1; 607*0Sstevel@tonic-gate } else { 608*0Sstevel@tonic-gate $theta = ${$z->polar}[1]; 609*0Sstevel@tonic-gate _theta(\$theta); 610*0Sstevel@tonic-gate } 611*0Sstevel@tonic-gate return $theta; 612*0Sstevel@tonic-gate} 613*0Sstevel@tonic-gate 614*0Sstevel@tonic-gate# 615*0Sstevel@tonic-gate# (sqrt) 616*0Sstevel@tonic-gate# 617*0Sstevel@tonic-gate# Compute sqrt(z). 618*0Sstevel@tonic-gate# 619*0Sstevel@tonic-gate# It is quite tempting to use wantarray here so that in list context 620*0Sstevel@tonic-gate# sqrt() would return the two solutions. This, however, would 621*0Sstevel@tonic-gate# break things like 622*0Sstevel@tonic-gate# 623*0Sstevel@tonic-gate# print "sqrt(z) = ", sqrt($z), "\n"; 624*0Sstevel@tonic-gate# 625*0Sstevel@tonic-gate# The two values would be printed side by side without no intervening 626*0Sstevel@tonic-gate# whitespace, quite confusing. 627*0Sstevel@tonic-gate# Therefore if you want the two solutions use the root(). 628*0Sstevel@tonic-gate# 629*0Sstevel@tonic-gatesub sqrt { 630*0Sstevel@tonic-gate my ($z) = @_; 631*0Sstevel@tonic-gate my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0); 632*0Sstevel@tonic-gate return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) 633*0Sstevel@tonic-gate if $im == 0; 634*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 635*0Sstevel@tonic-gate return (ref $z)->emake(CORE::sqrt($r), $t/2); 636*0Sstevel@tonic-gate} 637*0Sstevel@tonic-gate 638*0Sstevel@tonic-gate# 639*0Sstevel@tonic-gate# cbrt 640*0Sstevel@tonic-gate# 641*0Sstevel@tonic-gate# Compute cbrt(z) (cubic root). 642*0Sstevel@tonic-gate# 643*0Sstevel@tonic-gate# Why are we not returning three values? The same answer as for sqrt(). 644*0Sstevel@tonic-gate# 645*0Sstevel@tonic-gatesub cbrt { 646*0Sstevel@tonic-gate my ($z) = @_; 647*0Sstevel@tonic-gate return $z < 0 ? 648*0Sstevel@tonic-gate -CORE::exp(CORE::log(-$z)/3) : 649*0Sstevel@tonic-gate ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) 650*0Sstevel@tonic-gate unless ref $z; 651*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 652*0Sstevel@tonic-gate return 0 if $r == 0; 653*0Sstevel@tonic-gate return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); 654*0Sstevel@tonic-gate} 655*0Sstevel@tonic-gate 656*0Sstevel@tonic-gate# 657*0Sstevel@tonic-gate# _rootbad 658*0Sstevel@tonic-gate# 659*0Sstevel@tonic-gate# Die on bad root. 660*0Sstevel@tonic-gate# 661*0Sstevel@tonic-gatesub _rootbad { 662*0Sstevel@tonic-gate my $mess = "Root $_[0] illegal, root rank must be positive integer.\n"; 663*0Sstevel@tonic-gate 664*0Sstevel@tonic-gate my @up = caller(1); 665*0Sstevel@tonic-gate 666*0Sstevel@tonic-gate $mess .= "Died at $up[1] line $up[2].\n"; 667*0Sstevel@tonic-gate 668*0Sstevel@tonic-gate die $mess; 669*0Sstevel@tonic-gate} 670*0Sstevel@tonic-gate 671*0Sstevel@tonic-gate# 672*0Sstevel@tonic-gate# root 673*0Sstevel@tonic-gate# 674*0Sstevel@tonic-gate# Computes all nth root for z, returning an array whose size is n. 675*0Sstevel@tonic-gate# `n' must be a positive integer. 676*0Sstevel@tonic-gate# 677*0Sstevel@tonic-gate# The roots are given by (for k = 0..n-1): 678*0Sstevel@tonic-gate# 679*0Sstevel@tonic-gate# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) 680*0Sstevel@tonic-gate# 681*0Sstevel@tonic-gatesub root { 682*0Sstevel@tonic-gate my ($z, $n) = @_; 683*0Sstevel@tonic-gate _rootbad($n) if ($n < 1 or int($n) != $n); 684*0Sstevel@tonic-gate my ($r, $t) = ref $z ? 685*0Sstevel@tonic-gate @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); 686*0Sstevel@tonic-gate my @root; 687*0Sstevel@tonic-gate my $k; 688*0Sstevel@tonic-gate my $theta_inc = pit2 / $n; 689*0Sstevel@tonic-gate my $rho = $r ** (1/$n); 690*0Sstevel@tonic-gate my $theta; 691*0Sstevel@tonic-gate my $cartesian = ref $z && $z->{c_dirty} == 0; 692*0Sstevel@tonic-gate for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { 693*0Sstevel@tonic-gate my $w = cplxe($rho, $theta); 694*0Sstevel@tonic-gate # Yes, $cartesian is loop invariant. 695*0Sstevel@tonic-gate push @root, $cartesian ? cplx(@{$w->cartesian}) : $w; 696*0Sstevel@tonic-gate } 697*0Sstevel@tonic-gate return @root; 698*0Sstevel@tonic-gate} 699*0Sstevel@tonic-gate 700*0Sstevel@tonic-gate# 701*0Sstevel@tonic-gate# Re 702*0Sstevel@tonic-gate# 703*0Sstevel@tonic-gate# Return or set Re(z). 704*0Sstevel@tonic-gate# 705*0Sstevel@tonic-gatesub Re { 706*0Sstevel@tonic-gate my ($z, $Re) = @_; 707*0Sstevel@tonic-gate return $z unless ref $z; 708*0Sstevel@tonic-gate if (defined $Re) { 709*0Sstevel@tonic-gate $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ]; 710*0Sstevel@tonic-gate $z->{c_dirty} = 0; 711*0Sstevel@tonic-gate $z->{p_dirty} = 1; 712*0Sstevel@tonic-gate } else { 713*0Sstevel@tonic-gate return ${$z->cartesian}[0]; 714*0Sstevel@tonic-gate } 715*0Sstevel@tonic-gate} 716*0Sstevel@tonic-gate 717*0Sstevel@tonic-gate# 718*0Sstevel@tonic-gate# Im 719*0Sstevel@tonic-gate# 720*0Sstevel@tonic-gate# Return or set Im(z). 721*0Sstevel@tonic-gate# 722*0Sstevel@tonic-gatesub Im { 723*0Sstevel@tonic-gate my ($z, $Im) = @_; 724*0Sstevel@tonic-gate return 0 unless ref $z; 725*0Sstevel@tonic-gate if (defined $Im) { 726*0Sstevel@tonic-gate $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ]; 727*0Sstevel@tonic-gate $z->{c_dirty} = 0; 728*0Sstevel@tonic-gate $z->{p_dirty} = 1; 729*0Sstevel@tonic-gate } else { 730*0Sstevel@tonic-gate return ${$z->cartesian}[1]; 731*0Sstevel@tonic-gate } 732*0Sstevel@tonic-gate} 733*0Sstevel@tonic-gate 734*0Sstevel@tonic-gate# 735*0Sstevel@tonic-gate# rho 736*0Sstevel@tonic-gate# 737*0Sstevel@tonic-gate# Return or set rho(w). 738*0Sstevel@tonic-gate# 739*0Sstevel@tonic-gatesub rho { 740*0Sstevel@tonic-gate Math::Complex::abs(@_); 741*0Sstevel@tonic-gate} 742*0Sstevel@tonic-gate 743*0Sstevel@tonic-gate# 744*0Sstevel@tonic-gate# theta 745*0Sstevel@tonic-gate# 746*0Sstevel@tonic-gate# Return or set theta(w). 747*0Sstevel@tonic-gate# 748*0Sstevel@tonic-gatesub theta { 749*0Sstevel@tonic-gate Math::Complex::arg(@_); 750*0Sstevel@tonic-gate} 751*0Sstevel@tonic-gate 752*0Sstevel@tonic-gate# 753*0Sstevel@tonic-gate# (exp) 754*0Sstevel@tonic-gate# 755*0Sstevel@tonic-gate# Computes exp(z). 756*0Sstevel@tonic-gate# 757*0Sstevel@tonic-gatesub exp { 758*0Sstevel@tonic-gate my ($z) = @_; 759*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 760*0Sstevel@tonic-gate return (ref $z)->emake(CORE::exp($x), $y); 761*0Sstevel@tonic-gate} 762*0Sstevel@tonic-gate 763*0Sstevel@tonic-gate# 764*0Sstevel@tonic-gate# _logofzero 765*0Sstevel@tonic-gate# 766*0Sstevel@tonic-gate# Die on logarithm of zero. 767*0Sstevel@tonic-gate# 768*0Sstevel@tonic-gatesub _logofzero { 769*0Sstevel@tonic-gate my $mess = "$_[0]: Logarithm of zero.\n"; 770*0Sstevel@tonic-gate 771*0Sstevel@tonic-gate if (defined $_[1]) { 772*0Sstevel@tonic-gate $mess .= "(Because in the definition of $_[0], the argument "; 773*0Sstevel@tonic-gate $mess .= "$_[1] " unless ($_[1] eq '0'); 774*0Sstevel@tonic-gate $mess .= "is 0)\n"; 775*0Sstevel@tonic-gate } 776*0Sstevel@tonic-gate 777*0Sstevel@tonic-gate my @up = caller(1); 778*0Sstevel@tonic-gate 779*0Sstevel@tonic-gate $mess .= "Died at $up[1] line $up[2].\n"; 780*0Sstevel@tonic-gate 781*0Sstevel@tonic-gate die $mess; 782*0Sstevel@tonic-gate} 783*0Sstevel@tonic-gate 784*0Sstevel@tonic-gate# 785*0Sstevel@tonic-gate# (log) 786*0Sstevel@tonic-gate# 787*0Sstevel@tonic-gate# Compute log(z). 788*0Sstevel@tonic-gate# 789*0Sstevel@tonic-gatesub log { 790*0Sstevel@tonic-gate my ($z) = @_; 791*0Sstevel@tonic-gate unless (ref $z) { 792*0Sstevel@tonic-gate _logofzero("log") if $z == 0; 793*0Sstevel@tonic-gate return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); 794*0Sstevel@tonic-gate } 795*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 796*0Sstevel@tonic-gate _logofzero("log") if $r == 0; 797*0Sstevel@tonic-gate if ($t > pi()) { $t -= pit2 } 798*0Sstevel@tonic-gate elsif ($t <= -pi()) { $t += pit2 } 799*0Sstevel@tonic-gate return (ref $z)->make(CORE::log($r), $t); 800*0Sstevel@tonic-gate} 801*0Sstevel@tonic-gate 802*0Sstevel@tonic-gate# 803*0Sstevel@tonic-gate# ln 804*0Sstevel@tonic-gate# 805*0Sstevel@tonic-gate# Alias for log(). 806*0Sstevel@tonic-gate# 807*0Sstevel@tonic-gatesub ln { Math::Complex::log(@_) } 808*0Sstevel@tonic-gate 809*0Sstevel@tonic-gate# 810*0Sstevel@tonic-gate# log10 811*0Sstevel@tonic-gate# 812*0Sstevel@tonic-gate# Compute log10(z). 813*0Sstevel@tonic-gate# 814*0Sstevel@tonic-gate 815*0Sstevel@tonic-gatesub log10 { 816*0Sstevel@tonic-gate return Math::Complex::log($_[0]) * uplog10; 817*0Sstevel@tonic-gate} 818*0Sstevel@tonic-gate 819*0Sstevel@tonic-gate# 820*0Sstevel@tonic-gate# logn 821*0Sstevel@tonic-gate# 822*0Sstevel@tonic-gate# Compute logn(z,n) = log(z) / log(n) 823*0Sstevel@tonic-gate# 824*0Sstevel@tonic-gatesub logn { 825*0Sstevel@tonic-gate my ($z, $n) = @_; 826*0Sstevel@tonic-gate $z = cplx($z, 0) unless ref $z; 827*0Sstevel@tonic-gate my $logn = $LOGN{$n}; 828*0Sstevel@tonic-gate $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) 829*0Sstevel@tonic-gate return &log($z) / $logn; 830*0Sstevel@tonic-gate} 831*0Sstevel@tonic-gate 832*0Sstevel@tonic-gate# 833*0Sstevel@tonic-gate# (cos) 834*0Sstevel@tonic-gate# 835*0Sstevel@tonic-gate# Compute cos(z) = (exp(iz) + exp(-iz))/2. 836*0Sstevel@tonic-gate# 837*0Sstevel@tonic-gatesub cos { 838*0Sstevel@tonic-gate my ($z) = @_; 839*0Sstevel@tonic-gate return CORE::cos($z) unless ref $z; 840*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 841*0Sstevel@tonic-gate my $ey = CORE::exp($y); 842*0Sstevel@tonic-gate my $sx = CORE::sin($x); 843*0Sstevel@tonic-gate my $cx = CORE::cos($x); 844*0Sstevel@tonic-gate my $ey_1 = $ey ? 1 / $ey : $Inf; 845*0Sstevel@tonic-gate return (ref $z)->make($cx * ($ey + $ey_1)/2, 846*0Sstevel@tonic-gate $sx * ($ey_1 - $ey)/2); 847*0Sstevel@tonic-gate} 848*0Sstevel@tonic-gate 849*0Sstevel@tonic-gate# 850*0Sstevel@tonic-gate# (sin) 851*0Sstevel@tonic-gate# 852*0Sstevel@tonic-gate# Compute sin(z) = (exp(iz) - exp(-iz))/2. 853*0Sstevel@tonic-gate# 854*0Sstevel@tonic-gatesub sin { 855*0Sstevel@tonic-gate my ($z) = @_; 856*0Sstevel@tonic-gate return CORE::sin($z) unless ref $z; 857*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 858*0Sstevel@tonic-gate my $ey = CORE::exp($y); 859*0Sstevel@tonic-gate my $sx = CORE::sin($x); 860*0Sstevel@tonic-gate my $cx = CORE::cos($x); 861*0Sstevel@tonic-gate my $ey_1 = $ey ? 1 / $ey : $Inf; 862*0Sstevel@tonic-gate return (ref $z)->make($sx * ($ey + $ey_1)/2, 863*0Sstevel@tonic-gate $cx * ($ey - $ey_1)/2); 864*0Sstevel@tonic-gate} 865*0Sstevel@tonic-gate 866*0Sstevel@tonic-gate# 867*0Sstevel@tonic-gate# tan 868*0Sstevel@tonic-gate# 869*0Sstevel@tonic-gate# Compute tan(z) = sin(z) / cos(z). 870*0Sstevel@tonic-gate# 871*0Sstevel@tonic-gatesub tan { 872*0Sstevel@tonic-gate my ($z) = @_; 873*0Sstevel@tonic-gate my $cz = &cos($z); 874*0Sstevel@tonic-gate _divbyzero "tan($z)", "cos($z)" if $cz == 0; 875*0Sstevel@tonic-gate return &sin($z) / $cz; 876*0Sstevel@tonic-gate} 877*0Sstevel@tonic-gate 878*0Sstevel@tonic-gate# 879*0Sstevel@tonic-gate# sec 880*0Sstevel@tonic-gate# 881*0Sstevel@tonic-gate# Computes the secant sec(z) = 1 / cos(z). 882*0Sstevel@tonic-gate# 883*0Sstevel@tonic-gatesub sec { 884*0Sstevel@tonic-gate my ($z) = @_; 885*0Sstevel@tonic-gate my $cz = &cos($z); 886*0Sstevel@tonic-gate _divbyzero "sec($z)", "cos($z)" if ($cz == 0); 887*0Sstevel@tonic-gate return 1 / $cz; 888*0Sstevel@tonic-gate} 889*0Sstevel@tonic-gate 890*0Sstevel@tonic-gate# 891*0Sstevel@tonic-gate# csc 892*0Sstevel@tonic-gate# 893*0Sstevel@tonic-gate# Computes the cosecant csc(z) = 1 / sin(z). 894*0Sstevel@tonic-gate# 895*0Sstevel@tonic-gatesub csc { 896*0Sstevel@tonic-gate my ($z) = @_; 897*0Sstevel@tonic-gate my $sz = &sin($z); 898*0Sstevel@tonic-gate _divbyzero "csc($z)", "sin($z)" if ($sz == 0); 899*0Sstevel@tonic-gate return 1 / $sz; 900*0Sstevel@tonic-gate} 901*0Sstevel@tonic-gate 902*0Sstevel@tonic-gate# 903*0Sstevel@tonic-gate# cosec 904*0Sstevel@tonic-gate# 905*0Sstevel@tonic-gate# Alias for csc(). 906*0Sstevel@tonic-gate# 907*0Sstevel@tonic-gatesub cosec { Math::Complex::csc(@_) } 908*0Sstevel@tonic-gate 909*0Sstevel@tonic-gate# 910*0Sstevel@tonic-gate# cot 911*0Sstevel@tonic-gate# 912*0Sstevel@tonic-gate# Computes cot(z) = cos(z) / sin(z). 913*0Sstevel@tonic-gate# 914*0Sstevel@tonic-gatesub cot { 915*0Sstevel@tonic-gate my ($z) = @_; 916*0Sstevel@tonic-gate my $sz = &sin($z); 917*0Sstevel@tonic-gate _divbyzero "cot($z)", "sin($z)" if ($sz == 0); 918*0Sstevel@tonic-gate return &cos($z) / $sz; 919*0Sstevel@tonic-gate} 920*0Sstevel@tonic-gate 921*0Sstevel@tonic-gate# 922*0Sstevel@tonic-gate# cotan 923*0Sstevel@tonic-gate# 924*0Sstevel@tonic-gate# Alias for cot(). 925*0Sstevel@tonic-gate# 926*0Sstevel@tonic-gatesub cotan { Math::Complex::cot(@_) } 927*0Sstevel@tonic-gate 928*0Sstevel@tonic-gate# 929*0Sstevel@tonic-gate# acos 930*0Sstevel@tonic-gate# 931*0Sstevel@tonic-gate# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). 932*0Sstevel@tonic-gate# 933*0Sstevel@tonic-gatesub acos { 934*0Sstevel@tonic-gate my $z = $_[0]; 935*0Sstevel@tonic-gate return CORE::atan2(CORE::sqrt(1-$z*$z), $z) 936*0Sstevel@tonic-gate if (! ref $z) && CORE::abs($z) <= 1; 937*0Sstevel@tonic-gate $z = cplx($z, 0) unless ref $z; 938*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 939*0Sstevel@tonic-gate return 0 if $x == 1 && $y == 0; 940*0Sstevel@tonic-gate my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); 941*0Sstevel@tonic-gate my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); 942*0Sstevel@tonic-gate my $alpha = ($t1 + $t2)/2; 943*0Sstevel@tonic-gate my $beta = ($t1 - $t2)/2; 944*0Sstevel@tonic-gate $alpha = 1 if $alpha < 1; 945*0Sstevel@tonic-gate if ($beta > 1) { $beta = 1 } 946*0Sstevel@tonic-gate elsif ($beta < -1) { $beta = -1 } 947*0Sstevel@tonic-gate my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); 948*0Sstevel@tonic-gate my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); 949*0Sstevel@tonic-gate $v = -$v if $y > 0 || ($y == 0 && $x < -1); 950*0Sstevel@tonic-gate return (ref $z)->make($u, $v); 951*0Sstevel@tonic-gate} 952*0Sstevel@tonic-gate 953*0Sstevel@tonic-gate# 954*0Sstevel@tonic-gate# asin 955*0Sstevel@tonic-gate# 956*0Sstevel@tonic-gate# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). 957*0Sstevel@tonic-gate# 958*0Sstevel@tonic-gatesub asin { 959*0Sstevel@tonic-gate my $z = $_[0]; 960*0Sstevel@tonic-gate return CORE::atan2($z, CORE::sqrt(1-$z*$z)) 961*0Sstevel@tonic-gate if (! ref $z) && CORE::abs($z) <= 1; 962*0Sstevel@tonic-gate $z = cplx($z, 0) unless ref $z; 963*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 964*0Sstevel@tonic-gate return 0 if $x == 0 && $y == 0; 965*0Sstevel@tonic-gate my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); 966*0Sstevel@tonic-gate my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); 967*0Sstevel@tonic-gate my $alpha = ($t1 + $t2)/2; 968*0Sstevel@tonic-gate my $beta = ($t1 - $t2)/2; 969*0Sstevel@tonic-gate $alpha = 1 if $alpha < 1; 970*0Sstevel@tonic-gate if ($beta > 1) { $beta = 1 } 971*0Sstevel@tonic-gate elsif ($beta < -1) { $beta = -1 } 972*0Sstevel@tonic-gate my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); 973*0Sstevel@tonic-gate my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); 974*0Sstevel@tonic-gate $v = -$v if $y > 0 || ($y == 0 && $x < -1); 975*0Sstevel@tonic-gate return (ref $z)->make($u, $v); 976*0Sstevel@tonic-gate} 977*0Sstevel@tonic-gate 978*0Sstevel@tonic-gate# 979*0Sstevel@tonic-gate# atan 980*0Sstevel@tonic-gate# 981*0Sstevel@tonic-gate# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). 982*0Sstevel@tonic-gate# 983*0Sstevel@tonic-gatesub atan { 984*0Sstevel@tonic-gate my ($z) = @_; 985*0Sstevel@tonic-gate return CORE::atan2($z, 1) unless ref $z; 986*0Sstevel@tonic-gate my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); 987*0Sstevel@tonic-gate return 0 if $x == 0 && $y == 0; 988*0Sstevel@tonic-gate _divbyzero "atan(i)" if ( $z == i); 989*0Sstevel@tonic-gate _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... 990*0Sstevel@tonic-gate my $log = &log((i + $z) / (i - $z)); 991*0Sstevel@tonic-gate return ip2 * $log; 992*0Sstevel@tonic-gate} 993*0Sstevel@tonic-gate 994*0Sstevel@tonic-gate# 995*0Sstevel@tonic-gate# asec 996*0Sstevel@tonic-gate# 997*0Sstevel@tonic-gate# Computes the arc secant asec(z) = acos(1 / z). 998*0Sstevel@tonic-gate# 999*0Sstevel@tonic-gatesub asec { 1000*0Sstevel@tonic-gate my ($z) = @_; 1001*0Sstevel@tonic-gate _divbyzero "asec($z)", $z if ($z == 0); 1002*0Sstevel@tonic-gate return acos(1 / $z); 1003*0Sstevel@tonic-gate} 1004*0Sstevel@tonic-gate 1005*0Sstevel@tonic-gate# 1006*0Sstevel@tonic-gate# acsc 1007*0Sstevel@tonic-gate# 1008*0Sstevel@tonic-gate# Computes the arc cosecant acsc(z) = asin(1 / z). 1009*0Sstevel@tonic-gate# 1010*0Sstevel@tonic-gatesub acsc { 1011*0Sstevel@tonic-gate my ($z) = @_; 1012*0Sstevel@tonic-gate _divbyzero "acsc($z)", $z if ($z == 0); 1013*0Sstevel@tonic-gate return asin(1 / $z); 1014*0Sstevel@tonic-gate} 1015*0Sstevel@tonic-gate 1016*0Sstevel@tonic-gate# 1017*0Sstevel@tonic-gate# acosec 1018*0Sstevel@tonic-gate# 1019*0Sstevel@tonic-gate# Alias for acsc(). 1020*0Sstevel@tonic-gate# 1021*0Sstevel@tonic-gatesub acosec { Math::Complex::acsc(@_) } 1022*0Sstevel@tonic-gate 1023*0Sstevel@tonic-gate# 1024*0Sstevel@tonic-gate# acot 1025*0Sstevel@tonic-gate# 1026*0Sstevel@tonic-gate# Computes the arc cotangent acot(z) = atan(1 / z) 1027*0Sstevel@tonic-gate# 1028*0Sstevel@tonic-gatesub acot { 1029*0Sstevel@tonic-gate my ($z) = @_; 1030*0Sstevel@tonic-gate _divbyzero "acot(0)" if $z == 0; 1031*0Sstevel@tonic-gate return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) 1032*0Sstevel@tonic-gate unless ref $z; 1033*0Sstevel@tonic-gate _divbyzero "acot(i)" if ($z - i == 0); 1034*0Sstevel@tonic-gate _logofzero "acot(-i)" if ($z + i == 0); 1035*0Sstevel@tonic-gate return atan(1 / $z); 1036*0Sstevel@tonic-gate} 1037*0Sstevel@tonic-gate 1038*0Sstevel@tonic-gate# 1039*0Sstevel@tonic-gate# acotan 1040*0Sstevel@tonic-gate# 1041*0Sstevel@tonic-gate# Alias for acot(). 1042*0Sstevel@tonic-gate# 1043*0Sstevel@tonic-gatesub acotan { Math::Complex::acot(@_) } 1044*0Sstevel@tonic-gate 1045*0Sstevel@tonic-gate# 1046*0Sstevel@tonic-gate# cosh 1047*0Sstevel@tonic-gate# 1048*0Sstevel@tonic-gate# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. 1049*0Sstevel@tonic-gate# 1050*0Sstevel@tonic-gatesub cosh { 1051*0Sstevel@tonic-gate my ($z) = @_; 1052*0Sstevel@tonic-gate my $ex; 1053*0Sstevel@tonic-gate unless (ref $z) { 1054*0Sstevel@tonic-gate $ex = CORE::exp($z); 1055*0Sstevel@tonic-gate return $ex ? ($ex + 1/$ex)/2 : $Inf; 1056*0Sstevel@tonic-gate } 1057*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 1058*0Sstevel@tonic-gate $ex = CORE::exp($x); 1059*0Sstevel@tonic-gate my $ex_1 = $ex ? 1 / $ex : $Inf; 1060*0Sstevel@tonic-gate return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, 1061*0Sstevel@tonic-gate CORE::sin($y) * ($ex - $ex_1)/2); 1062*0Sstevel@tonic-gate} 1063*0Sstevel@tonic-gate 1064*0Sstevel@tonic-gate# 1065*0Sstevel@tonic-gate# sinh 1066*0Sstevel@tonic-gate# 1067*0Sstevel@tonic-gate# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. 1068*0Sstevel@tonic-gate# 1069*0Sstevel@tonic-gatesub sinh { 1070*0Sstevel@tonic-gate my ($z) = @_; 1071*0Sstevel@tonic-gate my $ex; 1072*0Sstevel@tonic-gate unless (ref $z) { 1073*0Sstevel@tonic-gate return 0 if $z == 0; 1074*0Sstevel@tonic-gate $ex = CORE::exp($z); 1075*0Sstevel@tonic-gate return $ex ? ($ex - 1/$ex)/2 : "-$Inf"; 1076*0Sstevel@tonic-gate } 1077*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 1078*0Sstevel@tonic-gate my $cy = CORE::cos($y); 1079*0Sstevel@tonic-gate my $sy = CORE::sin($y); 1080*0Sstevel@tonic-gate $ex = CORE::exp($x); 1081*0Sstevel@tonic-gate my $ex_1 = $ex ? 1 / $ex : $Inf; 1082*0Sstevel@tonic-gate return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, 1083*0Sstevel@tonic-gate CORE::sin($y) * ($ex + $ex_1)/2); 1084*0Sstevel@tonic-gate} 1085*0Sstevel@tonic-gate 1086*0Sstevel@tonic-gate# 1087*0Sstevel@tonic-gate# tanh 1088*0Sstevel@tonic-gate# 1089*0Sstevel@tonic-gate# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). 1090*0Sstevel@tonic-gate# 1091*0Sstevel@tonic-gatesub tanh { 1092*0Sstevel@tonic-gate my ($z) = @_; 1093*0Sstevel@tonic-gate my $cz = cosh($z); 1094*0Sstevel@tonic-gate _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); 1095*0Sstevel@tonic-gate return sinh($z) / $cz; 1096*0Sstevel@tonic-gate} 1097*0Sstevel@tonic-gate 1098*0Sstevel@tonic-gate# 1099*0Sstevel@tonic-gate# sech 1100*0Sstevel@tonic-gate# 1101*0Sstevel@tonic-gate# Computes the hyperbolic secant sech(z) = 1 / cosh(z). 1102*0Sstevel@tonic-gate# 1103*0Sstevel@tonic-gatesub sech { 1104*0Sstevel@tonic-gate my ($z) = @_; 1105*0Sstevel@tonic-gate my $cz = cosh($z); 1106*0Sstevel@tonic-gate _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); 1107*0Sstevel@tonic-gate return 1 / $cz; 1108*0Sstevel@tonic-gate} 1109*0Sstevel@tonic-gate 1110*0Sstevel@tonic-gate# 1111*0Sstevel@tonic-gate# csch 1112*0Sstevel@tonic-gate# 1113*0Sstevel@tonic-gate# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). 1114*0Sstevel@tonic-gate# 1115*0Sstevel@tonic-gatesub csch { 1116*0Sstevel@tonic-gate my ($z) = @_; 1117*0Sstevel@tonic-gate my $sz = sinh($z); 1118*0Sstevel@tonic-gate _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); 1119*0Sstevel@tonic-gate return 1 / $sz; 1120*0Sstevel@tonic-gate} 1121*0Sstevel@tonic-gate 1122*0Sstevel@tonic-gate# 1123*0Sstevel@tonic-gate# cosech 1124*0Sstevel@tonic-gate# 1125*0Sstevel@tonic-gate# Alias for csch(). 1126*0Sstevel@tonic-gate# 1127*0Sstevel@tonic-gatesub cosech { Math::Complex::csch(@_) } 1128*0Sstevel@tonic-gate 1129*0Sstevel@tonic-gate# 1130*0Sstevel@tonic-gate# coth 1131*0Sstevel@tonic-gate# 1132*0Sstevel@tonic-gate# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). 1133*0Sstevel@tonic-gate# 1134*0Sstevel@tonic-gatesub coth { 1135*0Sstevel@tonic-gate my ($z) = @_; 1136*0Sstevel@tonic-gate my $sz = sinh($z); 1137*0Sstevel@tonic-gate _divbyzero "coth($z)", "sinh($z)" if $sz == 0; 1138*0Sstevel@tonic-gate return cosh($z) / $sz; 1139*0Sstevel@tonic-gate} 1140*0Sstevel@tonic-gate 1141*0Sstevel@tonic-gate# 1142*0Sstevel@tonic-gate# cotanh 1143*0Sstevel@tonic-gate# 1144*0Sstevel@tonic-gate# Alias for coth(). 1145*0Sstevel@tonic-gate# 1146*0Sstevel@tonic-gatesub cotanh { Math::Complex::coth(@_) } 1147*0Sstevel@tonic-gate 1148*0Sstevel@tonic-gate# 1149*0Sstevel@tonic-gate# acosh 1150*0Sstevel@tonic-gate# 1151*0Sstevel@tonic-gate# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). 1152*0Sstevel@tonic-gate# 1153*0Sstevel@tonic-gatesub acosh { 1154*0Sstevel@tonic-gate my ($z) = @_; 1155*0Sstevel@tonic-gate unless (ref $z) { 1156*0Sstevel@tonic-gate $z = cplx($z, 0); 1157*0Sstevel@tonic-gate } 1158*0Sstevel@tonic-gate my ($re, $im) = @{$z->cartesian}; 1159*0Sstevel@tonic-gate if ($im == 0) { 1160*0Sstevel@tonic-gate return CORE::log($re + CORE::sqrt($re*$re - 1)) 1161*0Sstevel@tonic-gate if $re >= 1; 1162*0Sstevel@tonic-gate return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) 1163*0Sstevel@tonic-gate if CORE::abs($re) < 1; 1164*0Sstevel@tonic-gate } 1165*0Sstevel@tonic-gate my $t = &sqrt($z * $z - 1) + $z; 1166*0Sstevel@tonic-gate # Try Taylor if looking bad (this usually means that 1167*0Sstevel@tonic-gate # $z was large negative, therefore the sqrt is really 1168*0Sstevel@tonic-gate # close to abs(z), summing that with z...) 1169*0Sstevel@tonic-gate $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) 1170*0Sstevel@tonic-gate if $t == 0; 1171*0Sstevel@tonic-gate my $u = &log($t); 1172*0Sstevel@tonic-gate $u->Im(-$u->Im) if $re < 0 && $im == 0; 1173*0Sstevel@tonic-gate return $re < 0 ? -$u : $u; 1174*0Sstevel@tonic-gate} 1175*0Sstevel@tonic-gate 1176*0Sstevel@tonic-gate# 1177*0Sstevel@tonic-gate# asinh 1178*0Sstevel@tonic-gate# 1179*0Sstevel@tonic-gate# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) 1180*0Sstevel@tonic-gate# 1181*0Sstevel@tonic-gatesub asinh { 1182*0Sstevel@tonic-gate my ($z) = @_; 1183*0Sstevel@tonic-gate unless (ref $z) { 1184*0Sstevel@tonic-gate my $t = $z + CORE::sqrt($z*$z + 1); 1185*0Sstevel@tonic-gate return CORE::log($t) if $t; 1186*0Sstevel@tonic-gate } 1187*0Sstevel@tonic-gate my $t = &sqrt($z * $z + 1) + $z; 1188*0Sstevel@tonic-gate # Try Taylor if looking bad (this usually means that 1189*0Sstevel@tonic-gate # $z was large negative, therefore the sqrt is really 1190*0Sstevel@tonic-gate # close to abs(z), summing that with z...) 1191*0Sstevel@tonic-gate $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) 1192*0Sstevel@tonic-gate if $t == 0; 1193*0Sstevel@tonic-gate return &log($t); 1194*0Sstevel@tonic-gate} 1195*0Sstevel@tonic-gate 1196*0Sstevel@tonic-gate# 1197*0Sstevel@tonic-gate# atanh 1198*0Sstevel@tonic-gate# 1199*0Sstevel@tonic-gate# Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). 1200*0Sstevel@tonic-gate# 1201*0Sstevel@tonic-gatesub atanh { 1202*0Sstevel@tonic-gate my ($z) = @_; 1203*0Sstevel@tonic-gate unless (ref $z) { 1204*0Sstevel@tonic-gate return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; 1205*0Sstevel@tonic-gate $z = cplx($z, 0); 1206*0Sstevel@tonic-gate } 1207*0Sstevel@tonic-gate _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); 1208*0Sstevel@tonic-gate _logofzero 'atanh(-1)' if (1 + $z == 0); 1209*0Sstevel@tonic-gate return 0.5 * &log((1 + $z) / (1 - $z)); 1210*0Sstevel@tonic-gate} 1211*0Sstevel@tonic-gate 1212*0Sstevel@tonic-gate# 1213*0Sstevel@tonic-gate# asech 1214*0Sstevel@tonic-gate# 1215*0Sstevel@tonic-gate# Computes the hyperbolic arc secant asech(z) = acosh(1 / z). 1216*0Sstevel@tonic-gate# 1217*0Sstevel@tonic-gatesub asech { 1218*0Sstevel@tonic-gate my ($z) = @_; 1219*0Sstevel@tonic-gate _divbyzero 'asech(0)', "$z" if ($z == 0); 1220*0Sstevel@tonic-gate return acosh(1 / $z); 1221*0Sstevel@tonic-gate} 1222*0Sstevel@tonic-gate 1223*0Sstevel@tonic-gate# 1224*0Sstevel@tonic-gate# acsch 1225*0Sstevel@tonic-gate# 1226*0Sstevel@tonic-gate# Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). 1227*0Sstevel@tonic-gate# 1228*0Sstevel@tonic-gatesub acsch { 1229*0Sstevel@tonic-gate my ($z) = @_; 1230*0Sstevel@tonic-gate _divbyzero 'acsch(0)', $z if ($z == 0); 1231*0Sstevel@tonic-gate return asinh(1 / $z); 1232*0Sstevel@tonic-gate} 1233*0Sstevel@tonic-gate 1234*0Sstevel@tonic-gate# 1235*0Sstevel@tonic-gate# acosech 1236*0Sstevel@tonic-gate# 1237*0Sstevel@tonic-gate# Alias for acosh(). 1238*0Sstevel@tonic-gate# 1239*0Sstevel@tonic-gatesub acosech { Math::Complex::acsch(@_) } 1240*0Sstevel@tonic-gate 1241*0Sstevel@tonic-gate# 1242*0Sstevel@tonic-gate# acoth 1243*0Sstevel@tonic-gate# 1244*0Sstevel@tonic-gate# Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). 1245*0Sstevel@tonic-gate# 1246*0Sstevel@tonic-gatesub acoth { 1247*0Sstevel@tonic-gate my ($z) = @_; 1248*0Sstevel@tonic-gate _divbyzero 'acoth(0)' if ($z == 0); 1249*0Sstevel@tonic-gate unless (ref $z) { 1250*0Sstevel@tonic-gate return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; 1251*0Sstevel@tonic-gate $z = cplx($z, 0); 1252*0Sstevel@tonic-gate } 1253*0Sstevel@tonic-gate _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); 1254*0Sstevel@tonic-gate _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); 1255*0Sstevel@tonic-gate return &log((1 + $z) / ($z - 1)) / 2; 1256*0Sstevel@tonic-gate} 1257*0Sstevel@tonic-gate 1258*0Sstevel@tonic-gate# 1259*0Sstevel@tonic-gate# acotanh 1260*0Sstevel@tonic-gate# 1261*0Sstevel@tonic-gate# Alias for acot(). 1262*0Sstevel@tonic-gate# 1263*0Sstevel@tonic-gatesub acotanh { Math::Complex::acoth(@_) } 1264*0Sstevel@tonic-gate 1265*0Sstevel@tonic-gate# 1266*0Sstevel@tonic-gate# (atan2) 1267*0Sstevel@tonic-gate# 1268*0Sstevel@tonic-gate# Compute atan(z1/z2). 1269*0Sstevel@tonic-gate# 1270*0Sstevel@tonic-gatesub atan2 { 1271*0Sstevel@tonic-gate my ($z1, $z2, $inverted) = @_; 1272*0Sstevel@tonic-gate my ($re1, $im1, $re2, $im2); 1273*0Sstevel@tonic-gate if ($inverted) { 1274*0Sstevel@tonic-gate ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); 1275*0Sstevel@tonic-gate ($re2, $im2) = @{$z1->cartesian}; 1276*0Sstevel@tonic-gate } else { 1277*0Sstevel@tonic-gate ($re1, $im1) = @{$z1->cartesian}; 1278*0Sstevel@tonic-gate ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); 1279*0Sstevel@tonic-gate } 1280*0Sstevel@tonic-gate if ($im2 == 0) { 1281*0Sstevel@tonic-gate return CORE::atan2($re1, $re2) if $im1 == 0; 1282*0Sstevel@tonic-gate return ($im1<=>0) * pip2 if $re2 == 0; 1283*0Sstevel@tonic-gate } 1284*0Sstevel@tonic-gate my $w = atan($z1/$z2); 1285*0Sstevel@tonic-gate my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); 1286*0Sstevel@tonic-gate $u += pi if $re2 < 0; 1287*0Sstevel@tonic-gate $u -= pit2 if $u > pi; 1288*0Sstevel@tonic-gate return cplx($u, $v); 1289*0Sstevel@tonic-gate} 1290*0Sstevel@tonic-gate 1291*0Sstevel@tonic-gate# 1292*0Sstevel@tonic-gate# display_format 1293*0Sstevel@tonic-gate# ->display_format 1294*0Sstevel@tonic-gate# 1295*0Sstevel@tonic-gate# Set (get if no argument) the display format for all complex numbers that 1296*0Sstevel@tonic-gate# don't happen to have overridden it via ->display_format 1297*0Sstevel@tonic-gate# 1298*0Sstevel@tonic-gate# When called as an object method, this actually sets the display format for 1299*0Sstevel@tonic-gate# the current object. 1300*0Sstevel@tonic-gate# 1301*0Sstevel@tonic-gate# Valid object formats are 'c' and 'p' for cartesian and polar. The first 1302*0Sstevel@tonic-gate# letter is used actually, so the type can be fully spelled out for clarity. 1303*0Sstevel@tonic-gate# 1304*0Sstevel@tonic-gatesub display_format { 1305*0Sstevel@tonic-gate my $self = shift; 1306*0Sstevel@tonic-gate my %display_format = %DISPLAY_FORMAT; 1307*0Sstevel@tonic-gate 1308*0Sstevel@tonic-gate if (ref $self) { # Called as an object method 1309*0Sstevel@tonic-gate if (exists $self->{display_format}) { 1310*0Sstevel@tonic-gate my %obj = %{$self->{display_format}}; 1311*0Sstevel@tonic-gate @display_format{keys %obj} = values %obj; 1312*0Sstevel@tonic-gate } 1313*0Sstevel@tonic-gate } 1314*0Sstevel@tonic-gate if (@_ == 1) { 1315*0Sstevel@tonic-gate $display_format{style} = shift; 1316*0Sstevel@tonic-gate } else { 1317*0Sstevel@tonic-gate my %new = @_; 1318*0Sstevel@tonic-gate @display_format{keys %new} = values %new; 1319*0Sstevel@tonic-gate } 1320*0Sstevel@tonic-gate 1321*0Sstevel@tonic-gate if (ref $self) { # Called as an object method 1322*0Sstevel@tonic-gate $self->{display_format} = { %display_format }; 1323*0Sstevel@tonic-gate return 1324*0Sstevel@tonic-gate wantarray ? 1325*0Sstevel@tonic-gate %{$self->{display_format}} : 1326*0Sstevel@tonic-gate $self->{display_format}->{style}; 1327*0Sstevel@tonic-gate } 1328*0Sstevel@tonic-gate 1329*0Sstevel@tonic-gate # Called as a class method 1330*0Sstevel@tonic-gate %DISPLAY_FORMAT = %display_format; 1331*0Sstevel@tonic-gate return 1332*0Sstevel@tonic-gate wantarray ? 1333*0Sstevel@tonic-gate %DISPLAY_FORMAT : 1334*0Sstevel@tonic-gate $DISPLAY_FORMAT{style}; 1335*0Sstevel@tonic-gate} 1336*0Sstevel@tonic-gate 1337*0Sstevel@tonic-gate# 1338*0Sstevel@tonic-gate# (stringify) 1339*0Sstevel@tonic-gate# 1340*0Sstevel@tonic-gate# Show nicely formatted complex number under its cartesian or polar form, 1341*0Sstevel@tonic-gate# depending on the current display format: 1342*0Sstevel@tonic-gate# 1343*0Sstevel@tonic-gate# . If a specific display format has been recorded for this object, use it. 1344*0Sstevel@tonic-gate# . Otherwise, use the generic current default for all complex numbers, 1345*0Sstevel@tonic-gate# which is a package global variable. 1346*0Sstevel@tonic-gate# 1347*0Sstevel@tonic-gatesub stringify { 1348*0Sstevel@tonic-gate my ($z) = shift; 1349*0Sstevel@tonic-gate 1350*0Sstevel@tonic-gate my $style = $z->display_format; 1351*0Sstevel@tonic-gate 1352*0Sstevel@tonic-gate $style = $DISPLAY_FORMAT{style} unless defined $style; 1353*0Sstevel@tonic-gate 1354*0Sstevel@tonic-gate return $z->stringify_polar if $style =~ /^p/i; 1355*0Sstevel@tonic-gate return $z->stringify_cartesian; 1356*0Sstevel@tonic-gate} 1357*0Sstevel@tonic-gate 1358*0Sstevel@tonic-gate# 1359*0Sstevel@tonic-gate# ->stringify_cartesian 1360*0Sstevel@tonic-gate# 1361*0Sstevel@tonic-gate# Stringify as a cartesian representation 'a+bi'. 1362*0Sstevel@tonic-gate# 1363*0Sstevel@tonic-gatesub stringify_cartesian { 1364*0Sstevel@tonic-gate my $z = shift; 1365*0Sstevel@tonic-gate my ($x, $y) = @{$z->cartesian}; 1366*0Sstevel@tonic-gate my ($re, $im); 1367*0Sstevel@tonic-gate 1368*0Sstevel@tonic-gate my %format = $z->display_format; 1369*0Sstevel@tonic-gate my $format = $format{format}; 1370*0Sstevel@tonic-gate 1371*0Sstevel@tonic-gate if ($x) { 1372*0Sstevel@tonic-gate if ($x =~ /^NaN[QS]?$/i) { 1373*0Sstevel@tonic-gate $re = $x; 1374*0Sstevel@tonic-gate } else { 1375*0Sstevel@tonic-gate if ($x =~ /^-?$Inf$/oi) { 1376*0Sstevel@tonic-gate $re = $x; 1377*0Sstevel@tonic-gate } else { 1378*0Sstevel@tonic-gate $re = defined $format ? sprintf($format, $x) : $x; 1379*0Sstevel@tonic-gate } 1380*0Sstevel@tonic-gate } 1381*0Sstevel@tonic-gate } else { 1382*0Sstevel@tonic-gate undef $re; 1383*0Sstevel@tonic-gate } 1384*0Sstevel@tonic-gate 1385*0Sstevel@tonic-gate if ($y) { 1386*0Sstevel@tonic-gate if ($y =~ /^(NaN[QS]?)$/i) { 1387*0Sstevel@tonic-gate $im = $y; 1388*0Sstevel@tonic-gate } else { 1389*0Sstevel@tonic-gate if ($y =~ /^-?$Inf$/oi) { 1390*0Sstevel@tonic-gate $im = $y; 1391*0Sstevel@tonic-gate } else { 1392*0Sstevel@tonic-gate $im = 1393*0Sstevel@tonic-gate defined $format ? 1394*0Sstevel@tonic-gate sprintf($format, $y) : 1395*0Sstevel@tonic-gate ($y == 1 ? "" : ($y == -1 ? "-" : $y)); 1396*0Sstevel@tonic-gate } 1397*0Sstevel@tonic-gate } 1398*0Sstevel@tonic-gate $im .= "i"; 1399*0Sstevel@tonic-gate } else { 1400*0Sstevel@tonic-gate undef $im; 1401*0Sstevel@tonic-gate } 1402*0Sstevel@tonic-gate 1403*0Sstevel@tonic-gate my $str = $re; 1404*0Sstevel@tonic-gate 1405*0Sstevel@tonic-gate if (defined $im) { 1406*0Sstevel@tonic-gate if ($y < 0) { 1407*0Sstevel@tonic-gate $str .= $im; 1408*0Sstevel@tonic-gate } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { 1409*0Sstevel@tonic-gate $str .= "+" if defined $re; 1410*0Sstevel@tonic-gate $str .= $im; 1411*0Sstevel@tonic-gate } 1412*0Sstevel@tonic-gate } elsif (!defined $re) { 1413*0Sstevel@tonic-gate $str = "0"; 1414*0Sstevel@tonic-gate } 1415*0Sstevel@tonic-gate 1416*0Sstevel@tonic-gate return $str; 1417*0Sstevel@tonic-gate} 1418*0Sstevel@tonic-gate 1419*0Sstevel@tonic-gate 1420*0Sstevel@tonic-gate# 1421*0Sstevel@tonic-gate# ->stringify_polar 1422*0Sstevel@tonic-gate# 1423*0Sstevel@tonic-gate# Stringify as a polar representation '[r,t]'. 1424*0Sstevel@tonic-gate# 1425*0Sstevel@tonic-gatesub stringify_polar { 1426*0Sstevel@tonic-gate my $z = shift; 1427*0Sstevel@tonic-gate my ($r, $t) = @{$z->polar}; 1428*0Sstevel@tonic-gate my $theta; 1429*0Sstevel@tonic-gate 1430*0Sstevel@tonic-gate my %format = $z->display_format; 1431*0Sstevel@tonic-gate my $format = $format{format}; 1432*0Sstevel@tonic-gate 1433*0Sstevel@tonic-gate if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) { 1434*0Sstevel@tonic-gate $theta = $t; 1435*0Sstevel@tonic-gate } elsif ($t == pi) { 1436*0Sstevel@tonic-gate $theta = "pi"; 1437*0Sstevel@tonic-gate } elsif ($r == 0 || $t == 0) { 1438*0Sstevel@tonic-gate $theta = defined $format ? sprintf($format, $t) : $t; 1439*0Sstevel@tonic-gate } 1440*0Sstevel@tonic-gate 1441*0Sstevel@tonic-gate return "[$r,$theta]" if defined $theta; 1442*0Sstevel@tonic-gate 1443*0Sstevel@tonic-gate # 1444*0Sstevel@tonic-gate # Try to identify pi/n and friends. 1445*0Sstevel@tonic-gate # 1446*0Sstevel@tonic-gate 1447*0Sstevel@tonic-gate $t -= int(CORE::abs($t) / pit2) * pit2; 1448*0Sstevel@tonic-gate 1449*0Sstevel@tonic-gate if ($format{polar_pretty_print} && $t) { 1450*0Sstevel@tonic-gate my ($a, $b); 1451*0Sstevel@tonic-gate for $a (2..9) { 1452*0Sstevel@tonic-gate $b = $t * $a / pi; 1453*0Sstevel@tonic-gate if ($b =~ /^-?\d+$/) { 1454*0Sstevel@tonic-gate $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; 1455*0Sstevel@tonic-gate $theta = "${b}pi/$a"; 1456*0Sstevel@tonic-gate last; 1457*0Sstevel@tonic-gate } 1458*0Sstevel@tonic-gate } 1459*0Sstevel@tonic-gate } 1460*0Sstevel@tonic-gate 1461*0Sstevel@tonic-gate if (defined $format) { 1462*0Sstevel@tonic-gate $r = sprintf($format, $r); 1463*0Sstevel@tonic-gate $theta = sprintf($format, $theta) unless defined $theta; 1464*0Sstevel@tonic-gate } else { 1465*0Sstevel@tonic-gate $theta = $t unless defined $theta; 1466*0Sstevel@tonic-gate } 1467*0Sstevel@tonic-gate 1468*0Sstevel@tonic-gate return "[$r,$theta]"; 1469*0Sstevel@tonic-gate} 1470*0Sstevel@tonic-gate 1471*0Sstevel@tonic-gate1; 1472*0Sstevel@tonic-gate__END__ 1473*0Sstevel@tonic-gate 1474*0Sstevel@tonic-gate=pod 1475*0Sstevel@tonic-gate 1476*0Sstevel@tonic-gate=head1 NAME 1477*0Sstevel@tonic-gate 1478*0Sstevel@tonic-gateMath::Complex - complex numbers and associated mathematical functions 1479*0Sstevel@tonic-gate 1480*0Sstevel@tonic-gate=head1 SYNOPSIS 1481*0Sstevel@tonic-gate 1482*0Sstevel@tonic-gate use Math::Complex; 1483*0Sstevel@tonic-gate 1484*0Sstevel@tonic-gate $z = Math::Complex->make(5, 6); 1485*0Sstevel@tonic-gate $t = 4 - 3*i + $z; 1486*0Sstevel@tonic-gate $j = cplxe(1, 2*pi/3); 1487*0Sstevel@tonic-gate 1488*0Sstevel@tonic-gate=head1 DESCRIPTION 1489*0Sstevel@tonic-gate 1490*0Sstevel@tonic-gateThis package lets you create and manipulate complex numbers. By default, 1491*0Sstevel@tonic-gateI<Perl> limits itself to real numbers, but an extra C<use> statement brings 1492*0Sstevel@tonic-gatefull complex support, along with a full set of mathematical functions 1493*0Sstevel@tonic-gatetypically associated with and/or extended to complex numbers. 1494*0Sstevel@tonic-gate 1495*0Sstevel@tonic-gateIf you wonder what complex numbers are, they were invented to be able to solve 1496*0Sstevel@tonic-gatethe following equation: 1497*0Sstevel@tonic-gate 1498*0Sstevel@tonic-gate x*x = -1 1499*0Sstevel@tonic-gate 1500*0Sstevel@tonic-gateand by definition, the solution is noted I<i> (engineers use I<j> instead since 1501*0Sstevel@tonic-gateI<i> usually denotes an intensity, but the name does not matter). The number 1502*0Sstevel@tonic-gateI<i> is a pure I<imaginary> number. 1503*0Sstevel@tonic-gate 1504*0Sstevel@tonic-gateThe arithmetics with pure imaginary numbers works just like you would expect 1505*0Sstevel@tonic-gateit with real numbers... you just have to remember that 1506*0Sstevel@tonic-gate 1507*0Sstevel@tonic-gate i*i = -1 1508*0Sstevel@tonic-gate 1509*0Sstevel@tonic-gateso you have: 1510*0Sstevel@tonic-gate 1511*0Sstevel@tonic-gate 5i + 7i = i * (5 + 7) = 12i 1512*0Sstevel@tonic-gate 4i - 3i = i * (4 - 3) = i 1513*0Sstevel@tonic-gate 4i * 2i = -8 1514*0Sstevel@tonic-gate 6i / 2i = 3 1515*0Sstevel@tonic-gate 1 / i = -i 1516*0Sstevel@tonic-gate 1517*0Sstevel@tonic-gateComplex numbers are numbers that have both a real part and an imaginary 1518*0Sstevel@tonic-gatepart, and are usually noted: 1519*0Sstevel@tonic-gate 1520*0Sstevel@tonic-gate a + bi 1521*0Sstevel@tonic-gate 1522*0Sstevel@tonic-gatewhere C<a> is the I<real> part and C<b> is the I<imaginary> part. The 1523*0Sstevel@tonic-gatearithmetic with complex numbers is straightforward. You have to 1524*0Sstevel@tonic-gatekeep track of the real and the imaginary parts, but otherwise the 1525*0Sstevel@tonic-gaterules used for real numbers just apply: 1526*0Sstevel@tonic-gate 1527*0Sstevel@tonic-gate (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i 1528*0Sstevel@tonic-gate (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i 1529*0Sstevel@tonic-gate 1530*0Sstevel@tonic-gateA graphical representation of complex numbers is possible in a plane 1531*0Sstevel@tonic-gate(also called the I<complex plane>, but it's really a 2D plane). 1532*0Sstevel@tonic-gateThe number 1533*0Sstevel@tonic-gate 1534*0Sstevel@tonic-gate z = a + bi 1535*0Sstevel@tonic-gate 1536*0Sstevel@tonic-gateis the point whose coordinates are (a, b). Actually, it would 1537*0Sstevel@tonic-gatebe the vector originating from (0, 0) to (a, b). It follows that the addition 1538*0Sstevel@tonic-gateof two complex numbers is a vectorial addition. 1539*0Sstevel@tonic-gate 1540*0Sstevel@tonic-gateSince there is a bijection between a point in the 2D plane and a complex 1541*0Sstevel@tonic-gatenumber (i.e. the mapping is unique and reciprocal), a complex number 1542*0Sstevel@tonic-gatecan also be uniquely identified with polar coordinates: 1543*0Sstevel@tonic-gate 1544*0Sstevel@tonic-gate [rho, theta] 1545*0Sstevel@tonic-gate 1546*0Sstevel@tonic-gatewhere C<rho> is the distance to the origin, and C<theta> the angle between 1547*0Sstevel@tonic-gatethe vector and the I<x> axis. There is a notation for this using the 1548*0Sstevel@tonic-gateexponential form, which is: 1549*0Sstevel@tonic-gate 1550*0Sstevel@tonic-gate rho * exp(i * theta) 1551*0Sstevel@tonic-gate 1552*0Sstevel@tonic-gatewhere I<i> is the famous imaginary number introduced above. Conversion 1553*0Sstevel@tonic-gatebetween this form and the cartesian form C<a + bi> is immediate: 1554*0Sstevel@tonic-gate 1555*0Sstevel@tonic-gate a = rho * cos(theta) 1556*0Sstevel@tonic-gate b = rho * sin(theta) 1557*0Sstevel@tonic-gate 1558*0Sstevel@tonic-gatewhich is also expressed by this formula: 1559*0Sstevel@tonic-gate 1560*0Sstevel@tonic-gate z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) 1561*0Sstevel@tonic-gate 1562*0Sstevel@tonic-gateIn other words, it's the projection of the vector onto the I<x> and I<y> 1563*0Sstevel@tonic-gateaxes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> 1564*0Sstevel@tonic-gatethe I<argument> of the complex number. The I<norm> of C<z> will be 1565*0Sstevel@tonic-gatenoted C<abs(z)>. 1566*0Sstevel@tonic-gate 1567*0Sstevel@tonic-gateThe polar notation (also known as the trigonometric 1568*0Sstevel@tonic-gaterepresentation) is much more handy for performing multiplications and 1569*0Sstevel@tonic-gatedivisions of complex numbers, whilst the cartesian notation is better 1570*0Sstevel@tonic-gatesuited for additions and subtractions. Real numbers are on the I<x> 1571*0Sstevel@tonic-gateaxis, and therefore I<theta> is zero or I<pi>. 1572*0Sstevel@tonic-gate 1573*0Sstevel@tonic-gateAll the common operations that can be performed on a real number have 1574*0Sstevel@tonic-gatebeen defined to work on complex numbers as well, and are merely 1575*0Sstevel@tonic-gateI<extensions> of the operations defined on real numbers. This means 1576*0Sstevel@tonic-gatethey keep their natural meaning when there is no imaginary part, provided 1577*0Sstevel@tonic-gatethe number is within their definition set. 1578*0Sstevel@tonic-gate 1579*0Sstevel@tonic-gateFor instance, the C<sqrt> routine which computes the square root of 1580*0Sstevel@tonic-gateits argument is only defined for non-negative real numbers and yields a 1581*0Sstevel@tonic-gatenon-negative real number (it is an application from B<R+> to B<R+>). 1582*0Sstevel@tonic-gateIf we allow it to return a complex number, then it can be extended to 1583*0Sstevel@tonic-gatenegative real numbers to become an application from B<R> to B<C> (the 1584*0Sstevel@tonic-gateset of complex numbers): 1585*0Sstevel@tonic-gate 1586*0Sstevel@tonic-gate sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i 1587*0Sstevel@tonic-gate 1588*0Sstevel@tonic-gateIt can also be extended to be an application from B<C> to B<C>, 1589*0Sstevel@tonic-gatewhilst its restriction to B<R> behaves as defined above by using 1590*0Sstevel@tonic-gatethe following definition: 1591*0Sstevel@tonic-gate 1592*0Sstevel@tonic-gate sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) 1593*0Sstevel@tonic-gate 1594*0Sstevel@tonic-gateIndeed, a negative real number can be noted C<[x,pi]> (the modulus 1595*0Sstevel@tonic-gateI<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative 1596*0Sstevel@tonic-gatenumber) and the above definition states that 1597*0Sstevel@tonic-gate 1598*0Sstevel@tonic-gate sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i 1599*0Sstevel@tonic-gate 1600*0Sstevel@tonic-gatewhich is exactly what we had defined for negative real numbers above. 1601*0Sstevel@tonic-gateThe C<sqrt> returns only one of the solutions: if you want the both, 1602*0Sstevel@tonic-gateuse the C<root> function. 1603*0Sstevel@tonic-gate 1604*0Sstevel@tonic-gateAll the common mathematical functions defined on real numbers that 1605*0Sstevel@tonic-gateare extended to complex numbers share that same property of working 1606*0Sstevel@tonic-gateI<as usual> when the imaginary part is zero (otherwise, it would not 1607*0Sstevel@tonic-gatebe called an extension, would it?). 1608*0Sstevel@tonic-gate 1609*0Sstevel@tonic-gateA I<new> operation possible on a complex number that is 1610*0Sstevel@tonic-gatethe identity for real numbers is called the I<conjugate>, and is noted 1611*0Sstevel@tonic-gatewith a horizontal bar above the number, or C<~z> here. 1612*0Sstevel@tonic-gate 1613*0Sstevel@tonic-gate z = a + bi 1614*0Sstevel@tonic-gate ~z = a - bi 1615*0Sstevel@tonic-gate 1616*0Sstevel@tonic-gateSimple... Now look: 1617*0Sstevel@tonic-gate 1618*0Sstevel@tonic-gate z * ~z = (a + bi) * (a - bi) = a*a + b*b 1619*0Sstevel@tonic-gate 1620*0Sstevel@tonic-gateWe saw that the norm of C<z> was noted C<abs(z)> and was defined as the 1621*0Sstevel@tonic-gatedistance to the origin, also known as: 1622*0Sstevel@tonic-gate 1623*0Sstevel@tonic-gate rho = abs(z) = sqrt(a*a + b*b) 1624*0Sstevel@tonic-gate 1625*0Sstevel@tonic-gateso 1626*0Sstevel@tonic-gate 1627*0Sstevel@tonic-gate z * ~z = abs(z) ** 2 1628*0Sstevel@tonic-gate 1629*0Sstevel@tonic-gateIf z is a pure real number (i.e. C<b == 0>), then the above yields: 1630*0Sstevel@tonic-gate 1631*0Sstevel@tonic-gate a * a = abs(a) ** 2 1632*0Sstevel@tonic-gate 1633*0Sstevel@tonic-gatewhich is true (C<abs> has the regular meaning for real number, i.e. stands 1634*0Sstevel@tonic-gatefor the absolute value). This example explains why the norm of C<z> is 1635*0Sstevel@tonic-gatenoted C<abs(z)>: it extends the C<abs> function to complex numbers, yet 1636*0Sstevel@tonic-gateis the regular C<abs> we know when the complex number actually has no 1637*0Sstevel@tonic-gateimaginary part... This justifies I<a posteriori> our use of the C<abs> 1638*0Sstevel@tonic-gatenotation for the norm. 1639*0Sstevel@tonic-gate 1640*0Sstevel@tonic-gate=head1 OPERATIONS 1641*0Sstevel@tonic-gate 1642*0Sstevel@tonic-gateGiven the following notations: 1643*0Sstevel@tonic-gate 1644*0Sstevel@tonic-gate z1 = a + bi = r1 * exp(i * t1) 1645*0Sstevel@tonic-gate z2 = c + di = r2 * exp(i * t2) 1646*0Sstevel@tonic-gate z = <any complex or real number> 1647*0Sstevel@tonic-gate 1648*0Sstevel@tonic-gatethe following (overloaded) operations are supported on complex numbers: 1649*0Sstevel@tonic-gate 1650*0Sstevel@tonic-gate z1 + z2 = (a + c) + i(b + d) 1651*0Sstevel@tonic-gate z1 - z2 = (a - c) + i(b - d) 1652*0Sstevel@tonic-gate z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) 1653*0Sstevel@tonic-gate z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) 1654*0Sstevel@tonic-gate z1 ** z2 = exp(z2 * log z1) 1655*0Sstevel@tonic-gate ~z = a - bi 1656*0Sstevel@tonic-gate abs(z) = r1 = sqrt(a*a + b*b) 1657*0Sstevel@tonic-gate sqrt(z) = sqrt(r1) * exp(i * t/2) 1658*0Sstevel@tonic-gate exp(z) = exp(a) * exp(i * b) 1659*0Sstevel@tonic-gate log(z) = log(r1) + i*t 1660*0Sstevel@tonic-gate sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) 1661*0Sstevel@tonic-gate cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) 1662*0Sstevel@tonic-gate atan2(z1, z2) = atan(z1/z2) 1663*0Sstevel@tonic-gate 1664*0Sstevel@tonic-gateThe following extra operations are supported on both real and complex 1665*0Sstevel@tonic-gatenumbers: 1666*0Sstevel@tonic-gate 1667*0Sstevel@tonic-gate Re(z) = a 1668*0Sstevel@tonic-gate Im(z) = b 1669*0Sstevel@tonic-gate arg(z) = t 1670*0Sstevel@tonic-gate abs(z) = r 1671*0Sstevel@tonic-gate 1672*0Sstevel@tonic-gate cbrt(z) = z ** (1/3) 1673*0Sstevel@tonic-gate log10(z) = log(z) / log(10) 1674*0Sstevel@tonic-gate logn(z, n) = log(z) / log(n) 1675*0Sstevel@tonic-gate 1676*0Sstevel@tonic-gate tan(z) = sin(z) / cos(z) 1677*0Sstevel@tonic-gate 1678*0Sstevel@tonic-gate csc(z) = 1 / sin(z) 1679*0Sstevel@tonic-gate sec(z) = 1 / cos(z) 1680*0Sstevel@tonic-gate cot(z) = 1 / tan(z) 1681*0Sstevel@tonic-gate 1682*0Sstevel@tonic-gate asin(z) = -i * log(i*z + sqrt(1-z*z)) 1683*0Sstevel@tonic-gate acos(z) = -i * log(z + i*sqrt(1-z*z)) 1684*0Sstevel@tonic-gate atan(z) = i/2 * log((i+z) / (i-z)) 1685*0Sstevel@tonic-gate 1686*0Sstevel@tonic-gate acsc(z) = asin(1 / z) 1687*0Sstevel@tonic-gate asec(z) = acos(1 / z) 1688*0Sstevel@tonic-gate acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) 1689*0Sstevel@tonic-gate 1690*0Sstevel@tonic-gate sinh(z) = 1/2 (exp(z) - exp(-z)) 1691*0Sstevel@tonic-gate cosh(z) = 1/2 (exp(z) + exp(-z)) 1692*0Sstevel@tonic-gate tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) 1693*0Sstevel@tonic-gate 1694*0Sstevel@tonic-gate csch(z) = 1 / sinh(z) 1695*0Sstevel@tonic-gate sech(z) = 1 / cosh(z) 1696*0Sstevel@tonic-gate coth(z) = 1 / tanh(z) 1697*0Sstevel@tonic-gate 1698*0Sstevel@tonic-gate asinh(z) = log(z + sqrt(z*z+1)) 1699*0Sstevel@tonic-gate acosh(z) = log(z + sqrt(z*z-1)) 1700*0Sstevel@tonic-gate atanh(z) = 1/2 * log((1+z) / (1-z)) 1701*0Sstevel@tonic-gate 1702*0Sstevel@tonic-gate acsch(z) = asinh(1 / z) 1703*0Sstevel@tonic-gate asech(z) = acosh(1 / z) 1704*0Sstevel@tonic-gate acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) 1705*0Sstevel@tonic-gate 1706*0Sstevel@tonic-gateI<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, 1707*0Sstevel@tonic-gateI<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, 1708*0Sstevel@tonic-gateI<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, 1709*0Sstevel@tonic-gateI<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, 1710*0Sstevel@tonic-gateC<rho>, and C<theta> can be used also as mutators. The C<cbrt> 1711*0Sstevel@tonic-gatereturns only one of the solutions: if you want all three, use the 1712*0Sstevel@tonic-gateC<root> function. 1713*0Sstevel@tonic-gate 1714*0Sstevel@tonic-gateThe I<root> function is available to compute all the I<n> 1715*0Sstevel@tonic-gateroots of some complex, where I<n> is a strictly positive integer. 1716*0Sstevel@tonic-gateThere are exactly I<n> such roots, returned as a list. Getting the 1717*0Sstevel@tonic-gatenumber mathematicians call C<j> such that: 1718*0Sstevel@tonic-gate 1719*0Sstevel@tonic-gate 1 + j + j*j = 0; 1720*0Sstevel@tonic-gate 1721*0Sstevel@tonic-gateis a simple matter of writing: 1722*0Sstevel@tonic-gate 1723*0Sstevel@tonic-gate $j = ((root(1, 3))[1]; 1724*0Sstevel@tonic-gate 1725*0Sstevel@tonic-gateThe I<k>th root for C<z = [r,t]> is given by: 1726*0Sstevel@tonic-gate 1727*0Sstevel@tonic-gate (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) 1728*0Sstevel@tonic-gate 1729*0Sstevel@tonic-gateThe I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In 1730*0Sstevel@tonic-gateorder to ensure its restriction to real numbers is conform to what you 1731*0Sstevel@tonic-gatewould expect, the comparison is run on the real part of the complex 1732*0Sstevel@tonic-gatenumber first, and imaginary parts are compared only when the real 1733*0Sstevel@tonic-gateparts match. 1734*0Sstevel@tonic-gate 1735*0Sstevel@tonic-gate=head1 CREATION 1736*0Sstevel@tonic-gate 1737*0Sstevel@tonic-gateTo create a complex number, use either: 1738*0Sstevel@tonic-gate 1739*0Sstevel@tonic-gate $z = Math::Complex->make(3, 4); 1740*0Sstevel@tonic-gate $z = cplx(3, 4); 1741*0Sstevel@tonic-gate 1742*0Sstevel@tonic-gateif you know the cartesian form of the number, or 1743*0Sstevel@tonic-gate 1744*0Sstevel@tonic-gate $z = 3 + 4*i; 1745*0Sstevel@tonic-gate 1746*0Sstevel@tonic-gateif you like. To create a number using the polar form, use either: 1747*0Sstevel@tonic-gate 1748*0Sstevel@tonic-gate $z = Math::Complex->emake(5, pi/3); 1749*0Sstevel@tonic-gate $x = cplxe(5, pi/3); 1750*0Sstevel@tonic-gate 1751*0Sstevel@tonic-gateinstead. The first argument is the modulus, the second is the angle 1752*0Sstevel@tonic-gate(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a 1753*0Sstevel@tonic-gatenotation for complex numbers in the polar form). 1754*0Sstevel@tonic-gate 1755*0Sstevel@tonic-gateIt is possible to write: 1756*0Sstevel@tonic-gate 1757*0Sstevel@tonic-gate $x = cplxe(-3, pi/4); 1758*0Sstevel@tonic-gate 1759*0Sstevel@tonic-gatebut that will be silently converted into C<[3,-3pi/4]>, since the 1760*0Sstevel@tonic-gatemodulus must be non-negative (it represents the distance to the origin 1761*0Sstevel@tonic-gatein the complex plane). 1762*0Sstevel@tonic-gate 1763*0Sstevel@tonic-gateIt is also possible to have a complex number as either argument of the 1764*0Sstevel@tonic-gateC<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of 1765*0Sstevel@tonic-gatethe argument will be used. 1766*0Sstevel@tonic-gate 1767*0Sstevel@tonic-gate $z1 = cplx(-2, 1); 1768*0Sstevel@tonic-gate $z2 = cplx($z1, 4); 1769*0Sstevel@tonic-gate 1770*0Sstevel@tonic-gateThe C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also 1771*0Sstevel@tonic-gateunderstand a single (string) argument of the forms 1772*0Sstevel@tonic-gate 1773*0Sstevel@tonic-gate 2-3i 1774*0Sstevel@tonic-gate -3i 1775*0Sstevel@tonic-gate [2,3] 1776*0Sstevel@tonic-gate [2] 1777*0Sstevel@tonic-gate 1778*0Sstevel@tonic-gatein which case the appropriate cartesian and exponential components 1779*0Sstevel@tonic-gatewill be parsed from the string and used to create new complex numbers. 1780*0Sstevel@tonic-gateThe imaginary component and the theta, respectively, will default to zero. 1781*0Sstevel@tonic-gate 1782*0Sstevel@tonic-gate=head1 STRINGIFICATION 1783*0Sstevel@tonic-gate 1784*0Sstevel@tonic-gateWhen printed, a complex number is usually shown under its cartesian 1785*0Sstevel@tonic-gatestyle I<a+bi>, but there are legitimate cases where the polar style 1786*0Sstevel@tonic-gateI<[r,t]> is more appropriate. 1787*0Sstevel@tonic-gate 1788*0Sstevel@tonic-gateBy calling the class method C<Math::Complex::display_format> and 1789*0Sstevel@tonic-gatesupplying either C<"polar"> or C<"cartesian"> as an argument, you 1790*0Sstevel@tonic-gateoverride the default display style, which is C<"cartesian">. Not 1791*0Sstevel@tonic-gatesupplying any argument returns the current settings. 1792*0Sstevel@tonic-gate 1793*0Sstevel@tonic-gateThis default can be overridden on a per-number basis by calling the 1794*0Sstevel@tonic-gateC<display_format> method instead. As before, not supplying any argument 1795*0Sstevel@tonic-gatereturns the current display style for this number. Otherwise whatever you 1796*0Sstevel@tonic-gatespecify will be the new display style for I<this> particular number. 1797*0Sstevel@tonic-gate 1798*0Sstevel@tonic-gateFor instance: 1799*0Sstevel@tonic-gate 1800*0Sstevel@tonic-gate use Math::Complex; 1801*0Sstevel@tonic-gate 1802*0Sstevel@tonic-gate Math::Complex::display_format('polar'); 1803*0Sstevel@tonic-gate $j = (root(1, 3))[1]; 1804*0Sstevel@tonic-gate print "j = $j\n"; # Prints "j = [1,2pi/3]" 1805*0Sstevel@tonic-gate $j->display_format('cartesian'); 1806*0Sstevel@tonic-gate print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" 1807*0Sstevel@tonic-gate 1808*0Sstevel@tonic-gateThe polar style attempts to emphasize arguments like I<k*pi/n> 1809*0Sstevel@tonic-gate(where I<n> is a positive integer and I<k> an integer within [-9, +9]), 1810*0Sstevel@tonic-gatethis is called I<polar pretty-printing>. 1811*0Sstevel@tonic-gate 1812*0Sstevel@tonic-gate=head2 CHANGED IN PERL 5.6 1813*0Sstevel@tonic-gate 1814*0Sstevel@tonic-gateThe C<display_format> class method and the corresponding 1815*0Sstevel@tonic-gateC<display_format> object method can now be called using 1816*0Sstevel@tonic-gatea parameter hash instead of just a one parameter. 1817*0Sstevel@tonic-gate 1818*0Sstevel@tonic-gateThe old display format style, which can have values C<"cartesian"> or 1819*0Sstevel@tonic-gateC<"polar">, can be changed using the C<"style"> parameter. 1820*0Sstevel@tonic-gate 1821*0Sstevel@tonic-gate $j->display_format(style => "polar"); 1822*0Sstevel@tonic-gate 1823*0Sstevel@tonic-gateThe one parameter calling convention also still works. 1824*0Sstevel@tonic-gate 1825*0Sstevel@tonic-gate $j->display_format("polar"); 1826*0Sstevel@tonic-gate 1827*0Sstevel@tonic-gateThere are two new display parameters. 1828*0Sstevel@tonic-gate 1829*0Sstevel@tonic-gateThe first one is C<"format">, which is a sprintf()-style format string 1830*0Sstevel@tonic-gateto be used for both numeric parts of the complex number(s). The is 1831*0Sstevel@tonic-gatesomewhat system-dependent but most often it corresponds to C<"%.15g">. 1832*0Sstevel@tonic-gateYou can revert to the default by setting the C<format> to C<undef>. 1833*0Sstevel@tonic-gate 1834*0Sstevel@tonic-gate # the $j from the above example 1835*0Sstevel@tonic-gate 1836*0Sstevel@tonic-gate $j->display_format('format' => '%.5f'); 1837*0Sstevel@tonic-gate print "j = $j\n"; # Prints "j = -0.50000+0.86603i" 1838*0Sstevel@tonic-gate $j->display_format('format' => undef); 1839*0Sstevel@tonic-gate print "j = $j\n"; # Prints "j = -0.5+0.86603i" 1840*0Sstevel@tonic-gate 1841*0Sstevel@tonic-gateNotice that this affects also the return values of the 1842*0Sstevel@tonic-gateC<display_format> methods: in list context the whole parameter hash 1843*0Sstevel@tonic-gatewill be returned, as opposed to only the style parameter value. 1844*0Sstevel@tonic-gateThis is a potential incompatibility with earlier versions if you 1845*0Sstevel@tonic-gatehave been calling the C<display_format> method in list context. 1846*0Sstevel@tonic-gate 1847*0Sstevel@tonic-gateThe second new display parameter is C<"polar_pretty_print">, which can 1848*0Sstevel@tonic-gatebe set to true or false, the default being true. See the previous 1849*0Sstevel@tonic-gatesection for what this means. 1850*0Sstevel@tonic-gate 1851*0Sstevel@tonic-gate=head1 USAGE 1852*0Sstevel@tonic-gate 1853*0Sstevel@tonic-gateThanks to overloading, the handling of arithmetics with complex numbers 1854*0Sstevel@tonic-gateis simple and almost transparent. 1855*0Sstevel@tonic-gate 1856*0Sstevel@tonic-gateHere are some examples: 1857*0Sstevel@tonic-gate 1858*0Sstevel@tonic-gate use Math::Complex; 1859*0Sstevel@tonic-gate 1860*0Sstevel@tonic-gate $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 1861*0Sstevel@tonic-gate print "j = $j, j**3 = ", $j ** 3, "\n"; 1862*0Sstevel@tonic-gate print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; 1863*0Sstevel@tonic-gate 1864*0Sstevel@tonic-gate $z = -16 + 0*i; # Force it to be a complex 1865*0Sstevel@tonic-gate print "sqrt($z) = ", sqrt($z), "\n"; 1866*0Sstevel@tonic-gate 1867*0Sstevel@tonic-gate $k = exp(i * 2*pi/3); 1868*0Sstevel@tonic-gate print "$j - $k = ", $j - $k, "\n"; 1869*0Sstevel@tonic-gate 1870*0Sstevel@tonic-gate $z->Re(3); # Re, Im, arg, abs, 1871*0Sstevel@tonic-gate $j->arg(2); # (the last two aka rho, theta) 1872*0Sstevel@tonic-gate # can be used also as mutators. 1873*0Sstevel@tonic-gate 1874*0Sstevel@tonic-gate=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO 1875*0Sstevel@tonic-gate 1876*0Sstevel@tonic-gateThe division (/) and the following functions 1877*0Sstevel@tonic-gate 1878*0Sstevel@tonic-gate log ln log10 logn 1879*0Sstevel@tonic-gate tan sec csc cot 1880*0Sstevel@tonic-gate atan asec acsc acot 1881*0Sstevel@tonic-gate tanh sech csch coth 1882*0Sstevel@tonic-gate atanh asech acsch acoth 1883*0Sstevel@tonic-gate 1884*0Sstevel@tonic-gatecannot be computed for all arguments because that would mean dividing 1885*0Sstevel@tonic-gateby zero or taking logarithm of zero. These situations cause fatal 1886*0Sstevel@tonic-gateruntime errors looking like this 1887*0Sstevel@tonic-gate 1888*0Sstevel@tonic-gate cot(0): Division by zero. 1889*0Sstevel@tonic-gate (Because in the definition of cot(0), the divisor sin(0) is 0) 1890*0Sstevel@tonic-gate Died at ... 1891*0Sstevel@tonic-gate 1892*0Sstevel@tonic-gateor 1893*0Sstevel@tonic-gate 1894*0Sstevel@tonic-gate atanh(-1): Logarithm of zero. 1895*0Sstevel@tonic-gate Died at... 1896*0Sstevel@tonic-gate 1897*0Sstevel@tonic-gateFor the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, 1898*0Sstevel@tonic-gateC<asech>, C<acsch>, the argument cannot be C<0> (zero). For the 1899*0Sstevel@tonic-gatelogarithmic functions and the C<atanh>, C<acoth>, the argument cannot 1900*0Sstevel@tonic-gatebe C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be 1901*0Sstevel@tonic-gateC<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be 1902*0Sstevel@tonic-gateC<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument 1903*0Sstevel@tonic-gatecannot be C<-i> (the negative imaginary unit). For the C<tan>, 1904*0Sstevel@tonic-gateC<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> 1905*0Sstevel@tonic-gateis any integer. 1906*0Sstevel@tonic-gate 1907*0Sstevel@tonic-gateNote that because we are operating on approximations of real numbers, 1908*0Sstevel@tonic-gatethese errors can happen when merely `too close' to the singularities 1909*0Sstevel@tonic-gatelisted above. 1910*0Sstevel@tonic-gate 1911*0Sstevel@tonic-gate=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS 1912*0Sstevel@tonic-gate 1913*0Sstevel@tonic-gateThe C<make> and C<emake> accept both real and complex arguments. 1914*0Sstevel@tonic-gateWhen they cannot recognize the arguments they will die with error 1915*0Sstevel@tonic-gatemessages like the following 1916*0Sstevel@tonic-gate 1917*0Sstevel@tonic-gate Math::Complex::make: Cannot take real part of ... 1918*0Sstevel@tonic-gate Math::Complex::make: Cannot take real part of ... 1919*0Sstevel@tonic-gate Math::Complex::emake: Cannot take rho of ... 1920*0Sstevel@tonic-gate Math::Complex::emake: Cannot take theta of ... 1921*0Sstevel@tonic-gate 1922*0Sstevel@tonic-gate=head1 BUGS 1923*0Sstevel@tonic-gate 1924*0Sstevel@tonic-gateSaying C<use Math::Complex;> exports many mathematical routines in the 1925*0Sstevel@tonic-gatecaller environment and even overrides some (C<sqrt>, C<log>). 1926*0Sstevel@tonic-gateThis is construed as a feature by the Authors, actually... ;-) 1927*0Sstevel@tonic-gate 1928*0Sstevel@tonic-gateAll routines expect to be given real or complex numbers. Don't attempt to 1929*0Sstevel@tonic-gateuse BigFloat, since Perl has currently no rule to disambiguate a '+' 1930*0Sstevel@tonic-gateoperation (for instance) between two overloaded entities. 1931*0Sstevel@tonic-gate 1932*0Sstevel@tonic-gateIn Cray UNICOS there is some strange numerical instability that results 1933*0Sstevel@tonic-gatein root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. 1934*0Sstevel@tonic-gateThe bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. 1935*0Sstevel@tonic-gateWhatever it is, it does not manifest itself anywhere else where Perl runs. 1936*0Sstevel@tonic-gate 1937*0Sstevel@tonic-gate=head1 AUTHORS 1938*0Sstevel@tonic-gate 1939*0Sstevel@tonic-gateDaniel S. Lewart <F<d-lewart@uiuc.edu>> 1940*0Sstevel@tonic-gate 1941*0Sstevel@tonic-gateOriginal authors Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and 1942*0Sstevel@tonic-gateJarkko Hietaniemi <F<jhi@iki.fi>> 1943*0Sstevel@tonic-gate 1944*0Sstevel@tonic-gate=cut 1945*0Sstevel@tonic-gate 1946*0Sstevel@tonic-gate1; 1947*0Sstevel@tonic-gate 1948*0Sstevel@tonic-gate# eof 1949